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Preface

Developed at the beginning of the 20th century, quantum mechanics is today the
most fundamental and far-reaching theory in physics. It shaped our World more than
any other science, as technologies based on quantum mechanical effects are the key
to an industry representing today one third of the World’s global domestic product.
Boosted by the invention of the transistor and the laser, the industry today branches
out in many areas including energy generation, electronics, optics, and photonics.
Nevertheless and despite its long history and its incomparable success, quantum me-
chanics is far from being exhausted. The invention of novel techniques for quantum
state manipulation and entanglement generation, awarded with various Nobel prizes
in the past, and advances in information science during the past 25 years prepared the
ground for a second wave of quantum-based technologies called Quantum Revolution
2.0. In terms of economic, military, and social advantages the stakes of this revolu-
tion are so important that they triggered a fierce international race for technological
domination.

The course starts in chapter 1 with a thorough introduction into the concep-
tual and mathematical foundations of quantum mechanics, which are disruptive with
classical mechanics and electrodynamics. The following Chps. 2 to 4 are organized
according to the symmetries (separable in Cartesian space, isotropic, or periodic)
underlying the studied systems.

This script represents a synthesis of several postgraduate courses given at the
Institute of Physics of São Carlos (IFSC) of the University of São Paulo (USP). The
courses are Quantum Mechanics (SFI5774), Atomic and Molecular Physics (SFI5814),
Quantum Mechanics B (SFI5707), Interaction of Light and Matter (SFI5905), and
Atomic Optics (SFI5887). The topics of the courses are, of course, closely intertwined.
The purpose of this composite script is to emphasize the interconnection of topics
and facilitate the understanding of how they are related. In part I we introduce the
quantum mechanics, which represents the fundamental theory for the rest of the book.
In the second part we focus on the structure of the atom. In the third and fourth
part we study the properties of light, its interaction with individual atoms and atomic
ensembles and how the interaction is influenced by cavities and surfaces. Finally, in
part V we introduce the optics of matter wave.

The course is intended for masters and PhD students in physics. The script
is a preliminary version continually being subject to corrections and modifications.
Error notifications and suggestions for improvement are always welcome. The script
incorporates exercises the solutions of which can be obtained from the author.

Information and announcements regarding the course will be published on the
website:
http://www.ifsc.usp.br/ strontium/ − > Teaching − > Semester

The student’s assessment will be based on written tests and a seminar on a special
topic chosen by the student. In the seminar the student will present the chosen topic
in 15 minutes. He will also deliver a 4-page scientific paper in digital form. Possible
topics are:
- Observation of super- and subradiant spontaneous emission of two ions (Exc. 23.2.4.9),
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- Squeezed states (Sec. 14.4),
- The Jaynes-Cummings model (Sec. 17.2),
- Quantum projection noise (Sec. 18.2.2),
- Quantum gates (Sec. 24.3),
- The method of quantum Monte-Carlo wavefunction simulation (Sec. 18.1.2),
- The quantum Zeno effect (Sec. 18.2.1),
- Bloch equations: derivation and interpretation (Sec. 16.3),
- The quantum jumps, its history and observation (Sec. 18.1.2),
- Schrödinger’s cat (Sec. 18.1.1),
- The Einstein-Podolski-Rosen hypothesis and its experimental falsification (Sec. 24.1.1),
- Elitzur and Vaidman bomb testing problem (Sec. 18.1.3),
- Topological phases and the Aharonov-Bohm effect (Sec. 18.3),
- Quantum non-demolition measurements (Sec. 18.2.3),
- Calculation of photoelectric effect from Fermi’s golden rule (Exc. 5.4.5.7),
- Quantum correlations and the experiments of Young and Hanbury-Brown-Twiss
(Sec. 17.3.1),
- The Hartree-Fock method (Sec. 11.3.3),
- Temporal evolution of a free particle described by a Gaussian wave packet,
- The WKB approximation (Sec. 5.3),
- Rydberg atoms (Sec. 9.4.4),
- The helium atom (Sec. 11.2),
- The quadratic and the dynamic Stark effect (Sec. 10.3),
- The blackbody radiation-induced Stark effect (Exc. 5.4.5.9),
- The method of combining atomic orbitals (LCAO) (Sec. 12.1.4),
- Ultracold molecules,
- Efimov states (Sec. 13.3.8),
- Bose-Einstein condensation (Chp. 27.9).

The following literature is recommended for preparation and further reading:

Ph.W. Courteille, script on Classical Mechanics: Dynamics of Point Masses and
Rigid Bodies, Vibrations and Waves, Gravity (2025)

Ph.W. Courteille, script on Electrodynamics: Electricity, Magnetism, and Radiation
(2025)

Ph.W. Courteille, script on Thermodynamics & Statistical Physics: applied to Gases
and Solids (2025)

Ph.W. Courteille, script on Quantum Mechanics applied to Atoms and Light (2025)

Ph.W. Courteille, script on Optical Spectroscopy: A practical course (2020)

W.R. Theis, Grundzüge der Quantentheorie, Teubner (1985)

H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping, Graduate Texts in
Contemporary Physics, Springer (1999)

J. Weiner and P-T. Ho, Light-Matter Interaction: Fundamentals and Applications,
Springer-Verlag, Berlin (2003)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ClassicalMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ClassicalMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumOpticsLab.pdf
https://link.springer.com/book/10.1007/978-3-322-84835-2
https://www.researchgate.net/publication/46648662_Laser_Cooling_and_Trapping/link/02bfe510786cf162ac000000/download
https://www.researchgate.net/publication/46648662_Laser_Cooling_and_Trapping/link/02bfe510786cf162ac000000/download
https://global.oup.com/ukhe/product/light-matter-interaction-9780198796671?cc=br&lang=en&
https://global.oup.com/ukhe/product/light-matter-interaction-9780198796671?cc=br&lang=en&
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Ch.J. Foot, Atomic physics, (Oxford Master Series in Atomic, Optical and Laser
Physics, 2005)

R. Loudon, The quantum theory of light, Oxford Science Publications, Oxford (1973)

Ch.C. Gerry and P.L. Knight, Introductory Quantum Optics, Cambridge University
Press (2005)

P. Meystre and M. Sargent III, Elements of Quantum Optics, Springer-Verlag, Berlin
(1990)

I.I. Sobelman, Atomic Spectra and Radiative Transitions, Springer Verlag, Berlin
(1977)

M. Weissbluth, Photon-Atom Interactions (Academic Press, Boston, 1989)

C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics, vol. 1, Wiley Inter-
science

D.J. Griffiths, Introduction to Quantum mechanics, Pearson Education Limited (2014)

L.I. Schiff, Quantum mechanics, McGraw-Hill Book Company (1968)

J.J. Sakurai, J.J. Napolitano, Modern Quantum Mechanics, 2nd ed., Springer (2011)

P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics, (3rd ed. Oxford
University (2001)

I.N. Levine, Quantum Chemistry, Allyn and Bacon, 7th ed. Pearson (1983)

H.A. Bethe, R. Jackiw, Intermediate Quantum Mechanics, 3rd ed. Taylor & Francis
(1997)

J.I. Steinfeld, Molecules and Radiation, The MIT Press, Cambridge (2005)

A. Corney, Atomic and Laser Spectroscopy, Clarendon Press, Oxford (1977)

B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, John Wiley & Sons
(1983)

Philippe W. Courteille, São Carlos, January 2025

https://archive.org/details/AtomicPhysicsChristopherJ1.Foot/page/n3
https://archive.org/details/AtomicPhysicsChristopherJ1.Foot/page/n3
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Chapter 1

Foundations and
mathematical formalism

This chapter traces briefly the historical conditions and the discoveries that led to the
invention of quantum mechanics. The fundamental idea of quantum mechanics is the
assumption that there are entities which can not be subdivided beyond a certain limit.
Examples are the mass of a body, the speed of an electron orbiting an atom, or the
intensity of a beam of light. This idea was first uttered by Leucippus 500 years a.c. and
his student Democritus, who imagined matter being made of smallest particles which
they called atoms. These atoms move freely, collide, combine, and separate: ’There
is nothing else than atoms and free space’ they claimed. The microscopic atoms
would have the same characteristics as the macroscopic objects they form when they
combine, for example, color and shape. The idea of the atom resurfaced and was
refined in the course of the 18th century (see Tab. 1.1 below). Today, we know that
the basic idea was good, but reality is a little more complicated.

Table 1.1: Historical time line of the quantization of matter.

500 a.c. Democritus invention of the atom

1800 Avogadro, Dalton reinvention of the atom

1897 Thomson charge transport, raisin-in-a-cake model

1909 Rutherford, Geiger, Marsden α-scattering, charge localized in nuclei

1911 Rutherford planetary model

1913 Bohr quantized orbitals

1923 de Broglie matter has characteristics of waves

1927 Davisson, Germer, Stern electron and atoms diffraction

Still, at the end of the 19th century, the physical world seemed rather simple:
matter and light was all that existed. Matter was made up of atoms and light was a
wave. Therefore, to describe a real system, it was enough to calculate the trajectories
of its elementary particles and the propagation of light between them. The way that
light interacts with polarizable and magnetizable matter via electric and magnetic
fields had been perfectly explained by laws discovered by Coulomb, Ampère, Faraday,
and Maxwell.

However, new experimental observations, such as the ultraviolet divergence of

1
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Figure 1.1: Particle-wave duality.

black-body radiation, that appeared in the late 19th century, were incompatible with
these traditional concepts. New ideas were pioneered by Max Planck who, in 1905,
with a little help from Einstein quantized the electromagnetic field, and therefore the
light, into small harmonic oscillators. This was the starting point for the development
of a new theory called ’quantum mechanics’. Soon, this theory was applied to explain
the photoelectric effect. The second important step was initialized by Niels Bohr,
who quantized the hydrogen atom in 1913 into discrete excitation levels.

Table 1.2: Historical time line of the quantization of light.

1801 Young light is diffracted like a wave

1860 Maxwell unified theory of electrodynamics including light

1888 Hertz detection of radio waves

∼ 1890 accurate measurements of black-body radiation spectra

1900 Planck quantum hypothesis: E = hν

1905 Einstein photoelectric effect, light behaves like a particle

Nowadays we know that our universe is not as simple as classical mechanics sug-
gested, and that atoms are also waves and light also behaves like particles. This
duality principle is one of the fundamental ideas of quantum mechanics. The appear-
ance of an object as a wave or as a particle depends on the situation in which it is
observed. While the wave nature of light was well established in classical physics since
a long time, Louis de Broglie was the first in 1924 to apply the duality principle also to
massive particles and to predict that particles, under certain conditions, behave like
waves the wavelengths of which increase as their velocity decreases. Each particle (or
body) is delocalized along a distance corresponding to this ’de Broglie wavelength’.
This feature of matter was soon discovered experimentally in electron beams and is
still used today in commercial devices, for example in electron microscopes.
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1.1 The discovery of the atom

1.1.1 Democrit’s model

’The principles of reality are atoms and emptiness while other things are mere opin-
ions.’ This is a quotation from the Greek philosopher Democritus 400 years before
Christ and before Socrates. Together with his teacher Leucippus, he formed the first
idea of indivisible particles: atoms.

Figure 1.2: Democritus and dust in a sun ray.

Democritus’ work only survived as second-hand accounts, the major part of it
having been written down by Aristotle, who also, defending the idea of the contin-
uum, was the greatest critic of Democritus’ theory. Aristotle said that the reasoning
that guided Democritus to affirm the existence of atoms was as follows. For a body to
change its shape, it is necessary that its parts can move. This presupposes an empti-
ness (or vacuum) in which the matter moves. But if matter were divided infinitely
into ever smaller parts, it would loose its consistency. Nothing could be formed be-
cause nothing could arise from the ever more infinitely deep dilution of matter into
emptiness. Hence, he concluded that the division of matter can not be infinite, that
is, there is an indivisible limit: the atom. ’There is only atoms and emptiness’, he
said.

Observing dust particles in a whirling motion within a ray of sunlight, Democritus
was led to the idea that atoms would behave in the same way, randomly colliding,
some crowding, others dispersing, others never yet joining with another atom.

The consistency of clusters of atoms, which makes something look solid, liquid,
gaseous, or animated (which is the state of the soul) would then be determined by the
shape of the atoms involved and their spatial arrangement. In this sense, water atoms
are smooth and slippery; the atoms of steel have shapes with sharp edges that hold
them solidly together; the atoms of salt, as their taste shows, are harsh and pointed;
the atoms of air are small and little connected, penetrating all other materials; and
the atoms of soul and fire are spherical and very delicate.

We know nowadays that Democritus’ first theory of the structure of matter was
very close to the truth: There really are indivisible particles called atoms composed
of a nucleus and an electronic shell, and the space between the atomic nuclei is, in
fact, quite empty.

The atomic hypothesis came to be reborn in the modern age with the scientists
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Figure 1.3: Atoms of steel and air, atoms of the soul, and Bohr’s atom model.

Boyle, Clausius, Maxwell, and Boltzmann due to their successful explanations of the
properties of gases based on the so-called kinetic theory, where they assumed a gas
being constituted of identical molecules that collided elastically with each other and
with the walls of the recipient containing them. The discovery of the atom through
the laws of proportions in chemistry and the establishment of Avogadro’s number
considerably strengthened the atomic hypothesis. The hypothesis was definitely con-
secrated with the various experiments that established the charge of the electron and
the mass ratio between electrons and protons.

By the beginning of the 19th century the atomic nature of matter had definitely
been established, and the basic composition of the atoms was already relatively well
known. It was known, through experiments, that electrons could be removed from
neutral atoms thus creating positively charged ions and that only a certain number
of electrons could be removed from each atom. This number proved to be dependent
on the atomic species and was called the atomic number Z. This information was
fundamental for establishing the basic composition of atoms. The question that arose
at this point concerned the dimensions and configurations of the atomic system. How
would loads and masses be distributed in this entity?

1.1.2 Thomson’s model and Rutherford’s experiment

The internal structure of a body can be studied by throwing beams of small parti-
cles against it. The detection of the angular distribution of the scattered particles
gives access to the structure factor of the body. In crystallography we throw X-rays
into super-complicated molecules to learn the architecture e.g. of proteins. And in
medicine, X-rays reveal the internal structure of the human body. Obviously, the
scattering technique is an extremely powerful tool, used in many areas of modern
physics.

In a series of experiments done before 1911, Ernest Rutherford analyzed the in-
ternal structure of gold atoms using α-particles, i.e., He2+ atoms. The experiments
carried out by Geiger, Marsden, and Rutherford consisted of observing the deflection
of particles from a collimated beam when scattered by a thin metallic sheet (gold of
thickness ∼ 1µm) carefully obtained by electroplating [see Fig. 1.4(cd)].

The atomic model proposed by Joseph John Thomson suggests a structure re-
sembling a pudding with raisins: the electrons would be homogeneously distributed
within an extended nucleus (size 0.1 nm) of positive charge thus compensating for the
negative charge of the electrons. The α-particles would penetrate the gold nucleus,
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Figure 1.4: Comparison of Rutherford scattering by free electrons and electrons strongly
bound to small nuclei. (a) Thomson’s ’raisin-in-a-pudding’ type atom; (b) Rutherford’s
’planetary’ atom. (c) Rutherford scattering by a raisin pudding atom and (d) by a planetary
atom.

perceived as almost homogeneous, but would suffer multiple deflections due to colli-
sions with the disordered electrons within the nucleus. Since electrons are very light,
the angle of deflection θ would be small, even after many collisions. For this model we
expect a Gaussian dependence of the particles’ deflection angle given by the scattering
cross section [see Fig. 1.4(a-b)],

dσ

dΩ
∝ e−θ2/θ20 , (1.1)

where θ0 is a small angle.
However, the measurements performed on this Rutherford scattering showed dif-

ferent results:

• For a fixed scattering angle, the amount of particles scattered into a solid angle
element dΩ is proportional to the thickness of the metal foil.

• For a given fixed angle and a given metal sheet the amount of scattered particles
in dΩ varies inversely with E2

kin, where Ekin is the kinetic energy of the α-
particles.

• For a given energy and a given metal sheet, the number of particles scattered
into dΩ is proportional to (sin θ

2 )
−4.

• For a given energy and sheet thickness, the number of particles scattered into
dΩ in a given direction is proportional to Z2

tg, where Ztg is the atomic number
of the element that constitutes the sheet.

The extremely rare deflection of α-particles and their angular distribution can be
understood by the assumption that the positive charge is concentrated in a very small
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volume (∼ 1 fm, that is 10000 times less than the size of the atom itself). This volume
is called the atomic nucleus, hence the denomination of nuclear model. Since most of
the particles pass through the gold sheet without hindrance, there must be a large
gap between the nuclei. The electrons, which move within a large (in comparison with
the diameter of the nucleus) empty space (the vacuum) around the nucleus, shield
the positive nuclear charge, so that the atom appears outwardly neutral.

Figure 1.5: (a) Trajectory of an α-particle. (b) Illustration of the scattering cross section.

We now derive Rutherford’s scattering formula from the hypothesis of a point-like
nucleus. Due to the repulsive action of the Coulomb force,

F =
ZαZtge

2

4πε0r2
, (1.2)

we have for the trajectory of the α-particle (Zα = 2) a hyperbola [see Fig. 1.5(a)].
The large half-axis of the hyperbola can be determined from the following ansatz,

Ekin =
ZαZtge

2

4πε0

1

2a
, (1.3)

where 2a is the minimum distance of the particle α, when it collides with the nucleus
in a central collision 1. The distance a depends on the kinetic energy and can also
be used for non-central collisions. The collision parameter b is the minimum distance
of the α-particle to the nucleus, if it continued to fly in a straight line. In fact the
α-particle will be deflected by an angle θ. From the geometry of the hyperbola, as
2ϕ+ θ = 180◦, we obtain the following equation:

tanϕ = b
a = tan

(
90◦ − θ

2

)
= cot θ2 , (1.4)

and therefore

cot θ2 =
b

a
=

8πε0Ekin

ZαZtge2
b , (1.5)

replacing a with the formula (1.3). Taking the derivative of this latter formula, we
obtain a relation between the width db of the hollow cone and the pertinent width dθ
of the deflection angle θ,

− 1

2 sin2 θ2
dθ =

8πε0Ekin

ZαZtge2
db . (1.6)

1In a central collision, when the α-particle reaches the minimum distance 2a, its initial kinetic
energy, Ekin is fully converted into potential energy.
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Let ntg =
Ntg

V be the density of the particles in the target (Ntg atoms per volume

V ) and x the film thickness. Then σ = A
Ntg

= V/x
Ntg

= 1
ntgx

is the average cross-section

per atom sensed by the α-particle on its way through the film. The probability P (θ)dθ
for the α-particle of being within a ring at distance b from the nucleus (whose area is
2πbdb) and being scattered into the angle θ is then given by,

P (θ)dθ =
2πbdb

σ
= ntgx2πbdb . (1.7)

These particles, i.e., dN of the N particles, are deflected into the hollow cone with
the probability,

dN

N
= P (θ)dθ = ntgx2π

ZαZtge
2

8πε0Ekin
cot

θ

2
· ZαZtge

2

8πε0Ekin
· 1

2 sin2 θ2
dθ (1.8)

= ntgx
Z2
αZ

2
tge

4

64πε20E
2
kin

· cos
θ
2

sin3 θ2
dθ ,

where we replaced the parameters b and db with the expressions (1.5) and (1.6). The
solid angle of the cone can be expressed by,

dΩ = 2π sin θdθ = 4π sin θ
2 cos

θ
2dθ . (1.9)

Thus, the number dN of particles scattered to the solid angle dΩ remains,

dN

N
= ntgx

Z2
αZ

2
tge

4

256π2ε20E
2
kin

· 1

sin4 θ2
dΩ . (1.10)

That is Rutherford’s scattering formula. Often, the formula is expressed with the
differential cross section dσ

dΩ . We get,

dN

N
=
dσ

σ
= ntgxdσ , (1.11)

and therefore
dσ

dΩ
=

dN

NntgxdΩ
=

(
ZαZtge

2

4πε0 · 4Ekin

)2
1

sin4 θ2
. (1.12)

Here, we have to make some comments:

• The angle θ = 0 is not defined, since there exists a minimum deflection angle
θmin. This angle is reached, when the α-particle moves at the distance b = bmax

from the atom, that is, at the edge of the circular area of the cross section.
For a greater collision parameter b, the α-particle traverses the field of the next
neighboring atom, and the deflection angle increases again. We have:

σ =
A

Ntg
= πb2max and θmin

2 ≃ tan θmin

2 =
ZαZtge

2

8πε0Ekin · bmax
, (1.13)

simply by inverting the formula (1.5). For very large impact parameters, that
is, when the α-particle passes the atom outside its electronic layer, the electrons
of the atom shield the charge of the nucleus, an effect called screening.
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• For very high energies, the distribution of the nuclear charge over a finite vol-
ume influences the scattering, calling for corrections in the Rutherford formula.
Moreover, at short internuclear distances, nuclear forces appear additionally to
the electromagnetic interaction.

• The integral over the probability distribution P (θ)dθ is normalized,

π∫

θmin

P (θ)dθ = 1 . (1.14)

Similarly, we have for the surface integrals,

∫

θ⩾θmin

dσ

dΩ
dΩ = σ . (1.15)

0 50 100 150

θ

10−30

10−28

10−26

10−24

N

Figure 1.6: (code) Angular dependence of the cross-section corresponding to Thomson’s

(green) and Rutherford’s (red) models.

Rutherford derived the formula (1.12) describing the scattering of α-particles
within classical physics. A derivation from the laws governing quantum mechanics
using the Born approximation shows that Rutherford’s formula describes scattering
correctly in first order, and that purely quantum effects present only minor correc-
tions. We will review the Rutherford scattering in Excs. 1.1.6.1 and 1.1.6.2 and discuss
the screening effect in Exc. 1.1.6.3.

1.1.3 Emission of radiation in the planetary model

The planetary model proposed by Rutherford suggests electrons spinning around a
positively charged nucleus in circular orbits 2. This motion of electrons should obey
the laws of Maxwell’s electrodynamic theory. Let us now calculate some consequences
of this picture.

2This type of model had already been proposed by Jean Perrin in 1901 and by Hantaro Nagaoka
in 1903, around the same time when Thompson developed his model. The planetary model was later
on rescued by John William Nicholson in 1911.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Fundaments_Rutherspectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Fundaments_Rutherspectrum.m
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Figure 1.7: Light-induced transitions between orbits in the planetary model.

We now treat the atom as a rotor where the negative particle, the electron, orbits
the positive particle. The dipole moment is,

p0 = −er . (1.16)

We calculate in the Exc. 1.1.6.4 the power emitted by the acceleration a = ω2r of the
electron on its circular trajectory,

P =
µ0ω

4p20
12πc

. (1.17)

The initial energy of the electron spinning around the nucleus (for a hydrogen atom
Z = 1),

E =
p2

2me
− e2

4πε0r
=
meω

2r2

2
− e2

4πε0r
, (1.18)

is dissipated by radiation of the power (1.17), i.e.,

−P =
dE

dt
= meω

2r
dr

dt
+

e2

4πε0r2
dr

dt
= 2meω

2r
dr

dt
. (1.19)

The latter equation supposes an equilibrium between the centrifugal force and the
Coulomb force,

meω
2r =

e2

4πε0r2
, (1.20)

allowing to link the revolution frequency ω to the instantaneous radius of the orbit
r(t). Resolving the Eq. (1.19) by ṙ and replacing the power by the relation (1.17) and
the frequency ω by the relation (1.20), we obtain,

dr

dt
= − P

2meω2r
= − µ0ω

2e2

24πmec
r = − e4

96π2ε20m
2
ec

3

1

r2
. (1.21)

Integration of this equation gives,

t− t0 = −32π2ε20m
2
ec

3

e4
[r3 − r3(t0)] . (1.22)
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Now inserting t0 = 0 and assuming r(t0) = aB, the time τ within which the loss of
energy due to radiation emission decreases the radius of the electronic orbit to r = 0,
is,

t = τ =
32π2ε20m

2
ec

3a3B
e4

. (1.23)

Insertion of the numerical values gives the decay time τ ∼ 10−10 s. This is the effect
called radiation collapse of the classical atomic model.

1.1.4 Zeeman effect in the planetary model

The orbital motion of the electron generates a ring current I = e/T = eω/2π, which
produces an orbital magnetic moment which, as shown in Exc. 1.1.6.5, can be calcu-
lated following the laws of electromagnetism,

µ⃗ℓ = IAn̂ =
eω

2π
πr2n̂ , (1.24)

where A = πr2 is the area of the trajectory. Introducing the angular momentum
L = meωr

2n̂ we get in vector notation,

µ⃗ℓ =
e

2me
L . (1.25)

We now imagine this atom in the presence of a magnetic field B⃗ oriented in the
direction that we will call z. This results in a precession of the magnetic moment
around the field (similar to the precession of a spinning top in the presence of a
gravitational field) governed by the equation,

dL

dt
= µ⃗ℓ × B⃗ =

e

2me
L× B⃗ = −ΩL × L ,

with ΩL = e
2me
B⃗ representing the precession frequency and being called Larmor

frequency. It is evident that the presence of the magnetic field considerably alters
the state of the atom, even producing profound modifications in the frequency of the
orbit of the electron ω0 and therefore in the energetic state of the atom. This change
is called Zeeman effect.

The Zeeman effect can be calculated by imagining that the field has an arbitrary
direction with respect to L. In this case, the equation describing the electronic motion
as resulting from an equilibrium between the centrifugal force and the Coulomb force
needs to be complemented by a Lorentz force,

mer̈+meω
2
0r = FL = −ev × B⃗ . (1.26)

where mr̈ is the centrifugal force due to the circular motion of the electron and meω
2
0r

the centripetal force due to the Coulomb attraction exerted by the nucleus. Assuming
the direction of the magnetic field given by B⃗ = Bêz with B = 2meΩL/e, the equations
of motion can be decomposed into,

ẍ+ ω2
0x+ 2ΩLẏ = 0 (1.27)

ÿ + ω2
0y − 2ΩLẋ = 0

z̈ + ω2
0z = 0 .
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The z-direction is not influenced. With the ansatz x = aeıωt and y = beıωt we obtain
the system of equations,

a(ω2
0 − ω2) + 2ıΩLωb = 0 (1.28)

b(ω2
0 − ω2)− 2ıΩLωa = 0 ,

which has a non-trivial solution for a and b only when the determinant of the coeffi-
cients of a and b vanishes:

0 =

∣∣∣∣
ω2
0 − ω2 2ıΩLω

−2ıΩLω ω2
0 − ω2

∣∣∣∣ = ω4 − (2ω2
0 + 4Ω2

L)ω
2 + ω4

0 . (1.29)

We get,

ω = ω1,2 =

√
ω2
0 + 2Ω2

L ± 2ΩL

√
ω2
0 +Ω2

L = ω0 ± ΩL +
1

2

Ω2
L

ω0
+ ... , (1.30)

or, as ΩL ≪ ω, we get ω1,2 = ω0 ∓ ΩL. The result is a splitting of the energy levels
proportional to the magnetic field,

∆E = 2ℏΩL =
ℏe
me
B = 2µBB , (1.31)

where the abbreviation µB = eℏ/2me ≃ 9.27 ·10−24 JT-1 is called the magneton Bohr.
Although the classical derivation shows quantitative deviations from experimental

observations, it is quite interesting, as it illustrates several aspects which have a
quantum mechanical equivalence.

Example 1 (Stern-Gerlach experiment): Among several historical experi-
ments carried out to unravel the atomic structure, one of the most important
is the experiment carried out by Otto Stern and Walther Gerlach in 1922 to
measure the magnetic moment of atoms. The results of this experiment once
again demonstrated the need for new concepts to explain the observations.
Using Bohr’s quantization rule, L = nℏ, within the formula (1.25) we get,

µ⃗ = −µB
L

ℏ
.

In the presence of a magnetic field the dipole undergoes an interaction W =
−µ⃗ · B⃗, and therefore a feels a force,

F = −µ⃗ · ∇B⃗ .

By subjecting beams of atoms to the gradient of a magnetic field and detect-

ing this force, Stern and Gerlach were able to measure the magnetic moment

produced by the rotation of the electrons around the atomic nuclei.

1.1.5 Bohr’s theory and its limitations

The classical model of the planetary atom provides a mechanical illustration of the
microscopic world but fails to quantitatively explain experimental observations such
as the discrete nature of atomic spectra.
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The radiation emitted by hydrogen atoms is characterized by discrete, spectrally
very thin lines. The observed lines are grouped in series named after Lyman, Ballmer
and others,

1

λ
= RH

µ

me

(
1

m2
− 1

n2

)
, (1.32)

where m and n are integers. RH = (1/4πϵ)2(mee
4/4πℏ3c) is the Rydberg constant

and µ = memat/(me +mat) the reduced mass.
The discrete nature of spectral lines and the problem of the radiation collapse led

Niels Bohr to formulate the following postulates:

1. There are specific stationary orbits, where electrons do not emit energy.

2. Each emission or absorption of radiation energy by electrons comes with a tran-
sition between stationary orbits. The radiation emitted during this transition
is homogeneous.

3. The laws of mechanics can describe the dynamic equilibrium of electrons in sta-
tionary states, but fails to describe the transition of electrons between stationary
orbits.

Thus, Bohr’s model predicts the quantization of energy levels, known as first quanti-
zation of quantum mechanics. The radii of the possible orbits can be calculated from
the postulate that the orbital angular momentum be quantized in units of ℏ, that is,
the electrons form stationary de Broglie waves along the orbits 3. We discuss Bohr’s
model in Excs. 1.1.6.6 and 1.1.6.7.

In the picture proposed by Bohr, the radiative decay happens as an abrupt tran-
sition of an electron between an outer (more energetic) orbit and an inner (less ener-
getic) orbit. Since the energies of stationary orbits are very well defined, the emitted
radiation is mono-energetic, i.e., the spectrum consists of discrete characteristic lines.

We note here that the picture of an abrupt transition of electrons between discrete
states, called the quantum jump, did not receive Schrödinger’s blessing. He rather
imagined for electrons, within his theory of quantum wave mechanics, wave-shaped
orbitals instead of planetary trajectories, thus avoiding the problem of radiation due
to charge deceleration and the quantum jump concept. According to him, during a
transition between electronic orbits, the energy is transformed into radiation gradu-
ally 4.

1.1.6 Exercises

1.1.6.1 Ex: Analysis of Rutherford scattering

a. What conclusions can be drawn from the observation that Rutherford’s formula
describes well the scattering of charged particles traveling through matter over a wide

3A generalization of Bohr’s theory was provided by Arnold Johannes Wilhelm Sommerfeld. As-
suming elliptical orbits for the electrons he managed to explain some features of the fine structure,
provided the motion of the electron was treated relativistically. The basic premises were 1. stable
orbits when the Coulomb attraction is balanced by the centrifugal force, 2. quantization of phase
space

∫
rqdq = nqℏ, and 3. quantization of angular momentum

∫
Ldθ = nθℏ.

4We note here, that quantum jumps were observed much later!

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EspalhamentoRutherford1.pdf
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range of parameters?
b. Why do we see a deviation from Rutherford’s formula for large energies?
c. The scattering of protons with energy E crossing a thin film of thorium is well
described up to energies of E = 4.3MeV by Rutherford’s formula. Estimate for this
case the range of nuclear forces.
d. For small scattering angles θ we observe large deviations from Rutherford’s formula.
Explain why?
e. Assume the thorium atoms of item (c) to form a periodic crystal with the lattice
constant d = 10aB. At which minimum angle θ Rutherford’s formula loses its validity.

1.1.6.2 Ex: Rutherford scattering

a. A beam of α-particles with energy Ekin = 3MeV and flux I = 5·103 s-1 impinges on
a thick gold film x = 1µm. Using Rutherford’s formula, calculate how many particles
are scattered in ∆t = 10minutes in the range of angles 10◦ ≤ θ ≤ 30◦.
b. Now, the gold film is replaced with an aluminum film of the same thickness. How
many α-particles are scattered under equal circumstances?

1.1.6.3 Ex: Screening of electrons

Consider thin layer of charge −Ztge with radius R. This screening causes a scattering
angle,

tan θ
2 =

D

2b

√
1− (b/R)2

1 +D/2R
,

with D ≡ 3Ze2

m2v2/2
for b < R. Verify how the screening changes the differential cross

section dσ
dΩ .

1.1.6.4 Ex: Radiation of an oscillating dipole

Calculate the angular distribution of the power radiated by an oscillating electric or
magnetic dipole from expressions for the emitted electric and magnetic fields found
in literature.

1.1.6.5 Ex: Magnetic moments

a. Derive from the expression µ⃗L = 1
2

∫
R3 r × j(r′)d3r′ of classical electrodynamics

and an appropriate parametrization of the current density j the relation between the
magnetic dipole moment µ⃗ due to the orbiting electron and the angular momentum
L.
b. The length of the angular momentum vector being given by |L| = ℏ, calculate the
magnetic moment for an electron and for a proton.

1.1.6.6 Ex: Bohr’s atom

In 1913, Niels Bohr presented his atomic model adapting Rutherford’s model to the
quantization ideas proposed by Max Planck.
a. Impose the quantization rule for the angular momentum (L = nℏ) of an electron

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EspalhamentoRutherford2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ScreeningEletrons.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_RadiacaoDipolar.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_MomentosMagneticos.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_AtomoBohr.pdf
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orbiting an atom of atomic number Z to find an expression for the radii of the allowed
orbits.
b. According to Bohr’s model, the transition between different orbits is accompanied
by the emission (or absorption) of a photon. Determine the energy of a photon emitted
during a transition between the first excited state and the ground state of a hydrogen
atom.
c. Consider an electron trapped in an infinite one-dimensional box potential of width
a. Determine an expression for the electronic energy levels.
d. What should be the width a of this potential, in terms of the Bohr radius, so to
ensure that a photon emitted during a transition between the first excited state and
the ground state equals that obtained in item (b)?

1.1.6.7 Ex: The hydrogen atom

The hydrogen atom can be seen as a point-like proton and an electron distributed
over space with charge density ρ = Ae−2r/aB around the proton that is in the center.
Here, A is a constant and r is the distance from the center.
a. Calculate A considering the fact that the atom is electrically neutral.
b. Calculate the amplitude of the electric field at a radius r = aB.

1.2 The discovery of the photon

The concept of the nature of light has a variable history. Newton proposed around
∼ 1650 a corpuscular model to explain Snellius’ law on the refraction of a light beam
penetrating a crystal. Around the same time Huygens found a wave-based interpre-
tation. The two models predicted different speeds of light within the dense medium.
Newton found, that the speed of light is greater in the medium than outside, while
Huygens found the opposite 5. In the late 1800’s the wave nature of light was estab-
lished through observations of interference effects confirming Huygens’ hypothesis.
However, some observations made were incompatible with this simplistic ideas, for
example, the spectrum of blackbody radiation, the Compton effect, the specific heat
of the solid, the radiation pressure, and the photoelectric effect. All these observations
are readily understood by assuming a corpuscular nature of the light 6.

Nowadays, knowing the theory of quantum mechanics, we are aware that both
ideas have their range of validity and that the electromagnetic radiation is dual: In
general, propagation and interference effects are best described by waves. However,
when interacting with matter, light tends to localize into small energy packets that
we call photons.

1.2.1 Radiation in a conductive cavity

In the age of lasers a classical treatment of the emission and absorption of light
may seem an atavism. However, even with coherent and monochromatic radiation

5Note that until today there remain doubts about the correct value of the momentum of light in
dielectric media [584].

6The corpuscular hypothesis is now called the second quantization of quantum theory or quanti-
zation of the electromagnetic field.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_AtomoHidrogenio.pdf
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sources, the most commonly used physical picture is that of a classical optical field
interacting with an atom or a molecule whose energetic structure is treated quantum
mechanically. And even the atomic or molecular dipole is often treated like a classical
oscillator. The exposition of such a dipole to simple boundary conditions prepares
the analogous development of a quantum oscillator and provides a direct path to
quantization of the radiation field.

Even if we rarely do experiments by throwing light into a small hole in a metallic
box, the electromagnetic fields obtained by solving Maxwell’s equation are particularly
simple for boundary conditions, where the fields disappear on the inner surfaces of
the box. Before discussing the physics of radiation in a perfectly conducting cavity,
we have to introduce some basic relations between electromagnetic amplitudes, stored
energy, and intensity.

The electric field of a plane wave oscillating with frequency ω and propagating
through vacuum in the direction of propagation defined by the wave vector,

k =
2π

λ
k̂ , (1.33)

can be written,

E⃗ = E⃗0eı(k·r−ωt) , (1.34)

where E⃗0 = E0ê consists of an amplitude E0 and a polarization ê. Since the field E⃗0
is transverse to the direction of propagation, the polarization has two components
perpendicular to k. The magnetic induction field associated with the wave is,

B0 = 1
cE0 . (1.35)

For a propagating wave E⃗ and B⃗ are in phase, while for a standing wave they are out
of phase.

For a given cavity mode we can express the standing wave in this mode as,

E⃗ = E⃗0(r)e−ıωt . (1.36)

The energy of the electromagnetic field of a standing wave, averaged over one oscilla-
tion of the frequency ω is,

Ū =
1

2

∫ (
ε0
2
|E⃗ |2 + 1

2µ0
|B⃗|2

)
dV . (1.37)

Now, the energy density of the oscillating electromagnetic field is given by,

ū =
dŪ

dV
=

1

4

(
ε0|E⃗ |2 +

1

µ0
|B⃗|2

)
. (1.38)

From the equation (1.35) we can see that the contributions of the electric and magnetic
fields are equal. Therefore,

Ū = 1
2

∫
ε0|E⃗ |2dV and ū = 1

2ε0|E⃗ |2 . (1.39)
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Another important quantity is the flux of electromagnetic energy through a surface.
The Poynting vector describing this flux is defined by,

I = 1
µ0
E⃗ × B⃗ . (1.40)

Again using the equation (1.35), we find the value averaged over a time period,

Ī = 1
2ε0c|E⃗ |2 . (1.41)

This quantity, called intensity, describes the fact that the flux is a density of energy
multiplied with the velocity of propagation in vacuum,

ūc = 1
2ε0c|E⃗ |2 = Ī . (1.42)

The intensity can also be written,

Ī =
1

2

√
ε0
µ0
|E⃗ |2 . (1.43)

where the factor
√
µ0/ε0 is called impedance of free space, because it has the unit

of a resistance and the last equation has the same form as the power dissipated in a
resistor,

W =
1

2

V 2

R
. (1.44)

1.2.2 Black body radiation

We now want to calculate the energy density inside the cavity before using the result to
describe the interaction between light and a sample of two-level atoms located inside
the cavity. The basic idea is to say that the electrons inside the conducting surface
of the cavity oscillate because of thermal motion. The oscillation generates a dipolar
radiation leading to stationary waves developing within the cavity. As the walls of the
cavity are conducting, the electric field E⃗ must disappear inside the wall and on its
surfaces. The task is now twofold: first count the number of possible standing waves,
which satisfy the boundary conditions as a function of frequency; second, determine
the energy for each wave and then calculate the spectral distribution of the energy
within the cavity.

The equations describing the radiated energy in free space are,

∇2E⃗ =
1

c2
∂2E⃗
∂t2

and ∇ · E⃗ = 0 . (1.45)

The stationary waves solutions separate into terms oscillating in time and in space.
Now, respecting the boundary conditions for a three-dimensional box of length L, we
have for the components of E⃗ 7,

E⃗(r, t) = e−ıωt[êx cos(kxx) sin(kyy) sin(kzz) (1.46)

+êy sin(kxx) cos(kyy) sin(kzz)

+êz sin(kxx) sin(kyy) cos(kzz)] ,

7See script on Electrodynamics: Electricity, Magnetism and Radiation (2025).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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Figure 1.8: (a) Cavity in position space showing the thermal motion of the electrons inside
the walls. (b and c) Density-of-states in a cavity in momentum space.

with the components,

kx =
πnx
L

for nx = 0, 1, 2, ... (1.47)

and similar for ky and kz. Note, that for each component Ex,y,z the transverse am-
plitudes disappear in 0 and L. By inserting this solution into Helmholtz’s equation
(1.45), we obtain,

k2x + k2y + k2z =
ω2

c2
. (1.48)

The states kx,y,z (enumerated by integer numbers nx,y,z) form a three-dimensional
orthogonal lattice of points in space k separated by a distance along the axes kx, ky,
kz of π

L , as shown in Fig. 1.8. In principle, the number of states that can be placed
within a sphere of radius k in the momentum space is,

N =

∫

sphere

dnxdnydnz . (1.49)

However, the periodic boundary conditions for |k| limit the components kx, ky, kz
to positive values (n ≥ 0), that is, the volume under consideration is limited to an
octant. On the other hand, we must multiply the number of states by two because of
the degeneracy of polarizations. Hence,

4N =

∫ n

0

4πn2dn =

(
L

π

)3 ∫ k

0

4πk2dk =
4L3

π2

k3

3
=

4L3ω3

3π2c3
. (1.50)

With this, we obtain the mode density,

N

L3
=

ω3

3π2c3
. (1.51)

The spectral density of modes ϱ can be given in several units,
∫
ϱ(n)dn =

∫
ϱ(k)dk =

∫
ϱ(ω)dω =

N

L3
, (1.52)

such that,

ϱ(n) =
πn2

L3
or ϱ(k) =

k2

π2
or ϱ(ω) =

ω2

π2c3
. (1.53)
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The density of oscillating modes within the cavity grows like the square of the
frequency. Now, the mean energy per mode in a sample of oscillators in thermal
equilibrium is, following the equipartition law, equal to,

Ē = kBT , (1.54)

where kB is the Boltzmann constant. We conclude that the spectral energy density
uRJ(ω) in the cavity is,

uRJ(ω)dω = kBTϱ(ω)dω = kBT
ω2

π2c3
dω . (1.55)

This law is known as the Rayleigh-Jeans law of black-body radiation. As seen in
Fig. 1.9, this law suggests the physically impossible fact, called ultraviolet catastrophe,
that the energy storage in the cavity grows without limits like the square of frequency.
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Figure 1.9: (code) Spectral energy density following Rayleigh-Jeans’ and Planck’s laws.

1.2.3 Planck’s distribution of modes

We obtained the result (1.54) by multiplying the number of modes with the mean
energy per mode. As there is no doubt about our method of counting the modes, the
problem with the ultraviolet catastrophe can only root in the use of the equipartition
principle for assigning energy to the oscillators.

Planck’s idea to solve this problem was to first consider the probability distribu-
tion for exciting the modes (thermal states) for a sample of oscillators in thermal
equilibrium at temperature T . This probability distribution p comes from mechanical
statistics and can be written in terms of the Boltzmann factor, e−En/kBT , and the
partition function q =

∑∞
n=0 e

−En/kBT as,

pn =
e−En/kBT

q
. (1.56)

Now Planck hypothesized that the energy be quantized, that is, it must be assigned
in discrete portions, proportional to the frequency, such that,

En = nℏω , (1.57)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Fundaments_RayleighJeans.m
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where n = 0, 1, 2, .. and the proportionality constant ℏ is called Planck’s constant.
With the abbreviation Z ≡ e−ℏω/kBT and using the rule

∑∞
n=0 Z

n = (1 − Z)−1, we
find the average number,

n̄ =
∑

n

npn = (1− Z)
∑

n

nZn = (1− Z)Z ∂

∂Z

∑

n

Zn =
Z

1− Z =
1

eℏω/kBT − 1
.

(1.58)
The probability of occupancy of state n is,

pn = (1− Z)Zn =
n̄n

(1 + n̄)1+n
, (1.59)

and the average energy is,

Ē =
∑

n

Enpn =
∑

n

nℏωe−nℏω/kBT =
ℏω

eℏω/kBT − 1
, (1.60)

in contrast to the initial assumption (1.55).
Finally, we obtain Planck’s expression for the energy density inside the cavity by

replacing the energy (1.60) for the factor kBT in Rayleigh-Jeans’ law (1.55),

uP (ω)dω = Ēϱ(ω)dω =
ω2

π2c3
ℏω

eℏω/kBT − 1
dω . (1.61)

This result, drawn in Fig. 1.9, is much more satisfactory, because now the energy
density has an upper bound, and it coincides with the results of experiments. For high
temperatures or low excitation energies, ℏω ≪ kBT , Planck’s distribution converges
to that of Rayleigh-Jeans’, uP (ω)→ uRJ(ω).

Note, that the form of the expression for the energy depends on the parametriza-
tion and must be derived respecting u(ω)dω = u(λ)dλ, etc.. Often the blackbody
radiation is expressed in terms of the spectral radiance,

L(ω) ≡ c

4π
u(ω) , (1.62)

which can be understood as the (isotropic) energy flux into all directions of space.
Solve the Excs. 1.2.9.1 to 1.2.9.7.

1.2.4 The corpuscular nature of the photon

1.2.4.1 The photoelectric effect

Light incident on a metallic surface can expel electrons. For this to occur, the light
must have a minimum frequency. If the frequency is below this value, there is no
point in increasing the light intensity: the electrons won’t be expelled. The main
experimental observations are: 1. Electrons are ejected without apparent delay, i.e. it
is not necessary (and it doesn’t help) to accumulate a certain amount of energy.
2. Higher light intensities increase the number of electrons, but not their kinetic
energy after expulsion. 3. Red light does not eject electrons, even at high intensities.
4. Weak ultraviolet light only ejects few electrons, but with high kinetic energy.
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These observations challenge the classical electromagnetic model according to
which the Lorentz acceleration of the electrons should be proportional to the field
amplitude. The observations were explained by Einstein’s theory of the photoelec-
tric effect, which assumes the light to be quantized (unlike Planck, who preferred to
quantize the process of light absorption),

E = hν . (1.63)

Assuming a fixed exit work A for the extraction of an electron, we can measure the
constant ℏ:

hν = A+ mv2

2 = A+ eV → h =
eV

ν − νg
. (1.64)

The energy of the fastest electrons is measured through the decelerating voltage by
varying ν and I. We will discuss the photoelectric effect quantitatively later in the
Exc. 5.4.5.7.

1.2.4.2 Bremsstrahlung and the Franck-Hertz experiment

Bremsstrahlung is, in a way, the inverse process of the photoelectric effect. Here,
electrons are accelerated toward a cathode. Finding a target they are rapidly decel-
erated, a process in which they emit a continuous spectrum of X-rays (in addition to
characteristic lines attributed to electronic transitions in the target atoms). For any
given kinetic energy the spectra have a red threshold corresponding to photons that
receive the entire energy of the electron.

In the Franck-Hertz experiment free electrons produced in a plasma are acceler-
ated by a strong electric field. Having traveled a sufficiently long distance they have
acquired enough kinetic energy to excite electronic transitions in the atoms of the
plasma. When an excitation occurs, the electron suddenly loses all its energy and
must be accelerated again, starting from rest, before it can excite another atom.

1.2.4.3 Radiative pressure and Compton scattering

When light is scattered from a particle, it transfers momentum to it called photonic
recoil. This effect, known as radiation pressure, occurs for example in Compton scat-
tering.

X-rays scattered by the electrons of a carbon target are red-shifted by an amount,
which increases with the scattering angle. This is the Compton effect. The data
are understood assuming a corpuscular nature of light and applying the laws of con-
servation of energy and momentum to the collision processes between photons and
electrons. The scattered photon sees its energy reduced and therefore its wavelength
increased.

In a material where there are free electrons, this effect will occur at all photon
energies. In other materials, it is only observed with high energy photons. For high
energy photons, exceeding the atomic binding energy, the electrons can be considered
free such that, in the scattering process, the photon is able to eject the electron from
its atom. The photon receives the remaining energy and is deviated, such that the
overall momentum of the system is conserved. The loss of energy for the photon
results in a spectral shift to the red during its passage through the material.
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Photons of visible light, on the other hand, do not have enough energy to eject
bound electrons. In this case, the mass in the Compton formula must be replaced by
the atomic mass, such that the spectral displacement becomes much smaller. This
limit, which involves bound electrons, is that of Thomson and Rayleigh scattering.

The relevance of this effect lies in the fact that it shows that light exhibits prop-
erties commonly attributed to corpuscles, since Thomson’s scattering model, based
on the classical theory of charged particles accelerated by electromagnetic fields, can
not explain any spectral shift.

1.2.5 Einstein’s transitions rates

Bohr’s atom model explained for the first, time how light interacts with matter: Atoms
have discrete excitation levels, and they absorb and emit discrete energy packets ℏω.
Unfortunately, Bohr’s model can not predict transition rates. Here, Einstein helped
out by developing a useful theory (see Fig. 1.10).

Figure 1.10: Bohr model and Einstein rate diagram.

We consider a two-level atom or a sample of atoms within a conducting cavity.
We have N1 atoms in the lower energy state E1 and N2 in the upper state E2. Light
interacts with these atoms through stimulated resonant absorption and emission. The
rates, B12u(ω) and B21u(ω) are proportional to the energy spectral density u(ω) of
the cavity modes. The central idea of Einstein is to postulate that atoms in the higher
state can emit light spontaneously at a rate A21, which depends only on the density
of modes of the cavity, i.e. the volume of the cavity, but not the energy of the field
of radiation. With the Einstein coefficients we can formulate valid rate equations in
situations, where the spectral distribution of the radiation is wider than the spectral
width of the atomic transition and where the spectral distribution of the light flux
from the source, Ī(ω), is weak compared to the saturation intensity of the atomic
transition. Even if modern light sources generally have very narrow and intense
spectral emission bands, Einstein’s coefficients are often used in the spectroscopic
literature to characterize the light-matter interaction with atoms and molecules.

The Einstein rate equations describe the energy flux between atoms and the optical
modes of the cavity,

dN1

dt
= −dN2

dt
= −R1→2 +R2→1 + S2→1 (1.65)

= −N1B12u(ω) +N2B21u(ω) +N2A21 .

R1→2 is the absorption rate, R2→1 the stimulated emission rate and S2→1 the sponta-
neous emission rate. The assumption of a third type of transition, called spontaneous
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emission, is necessary, if B12 = B21 but N1 > N2 in thermal equilibrium. In thermal
equilibrium we have the condition of stationarity, dN1

dt = −dN2

dt = 0 for a given energy
density value u(ω) = uth(ω), such that,

uth(ω) =
A21(

N1

N2

)
B12 −B21

. (1.66)

The Boltzmann distribution law controlling the distribution of the number of atoms
in the lower and upper states is given by,

N1

N2
=
g1
g2
e−(E1−E2)/kBT , (1.67)

where g1,2 are the degeneracies of the lower and upper states and E2−E1 = ℏω0. We
find,

uth(ω) =
A21

g1
g2
eℏω0/kBTB12 −B21

. (1.68)

But this result must be consistent with Planck’s distribution (1.61). Therefore, by
comparing this equation with the equation (1.68), it must be that,

g1
g2

B12

B21
= 1 . (1.69)

and also,
A21

B21
=

ℏω3
0

π2c3
. (1.70)

This equation shows that, once we know one of the three transition rates, we can
always calculate the others.

It is useful to compare the rate A21 with B21 from the equation (1.68) inserting
the equation (1.69),

A21

B21uth(ω)
= eℏω0/kBT − 1 . (1.71)

This expression shows that, when E2 − E1 ≫ kBT , that is, for optical, UV, or X-
ray frequencies, spontaneous emission dominates. But in low-frequency regimes, that
is, IR, microwave, or radio waves, stimulated emission is more important. Note that
even when stimulated emission dominates, spontaneous emission is always present and
plays an important role, for example, in processes ultimately limiting the emission
bandwidth of lasers.

1.2.6 Absorption spectrum for a single atom

Every light source has a certain spectral width. Conventional light sources, such
as incandescent bulbs or plasmas have relatively broad emission bands compared to
atomic or molecular absorbers, at least when the latter ones are studied in dilute
gases. Even when we use pure spectral sources, such as a laser tuned to the peak
of a resonance, the transition line always exhibits an intrinsic width associated with
the interruption of the phase evolution of the excited state. Phase interruptions such
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as spontaneous or stimulated emission and collisions are common examples of line
broadening mechanisms. The emission or absorption of radiation occurs within a
frequency distribution centered about ω0 ≡ ω2 − ω1, and we must account for this
spectral distribution in our calculation of the energy transfer.

On the other hand, as we will see in Sec. 16.1.3 and Sec. 16.4.1, spontaneous decay
at a rate Γ of the excited level causes a finite linewidth for the atomic transition.
Consequently, even perfectly monochromatic light will be absorbed according to a
probability distribution given by the spectral absorption profile of the atomic transi-
tion. This profile is called the frequency-dependent optical cross section and reads 8,

σ(ω) =
g2
g1
λ2

Γ

2π

1
4Γ

(ω − ω0)2 +
1
4Γ

2
=
g2
g1
λ2

Γ

4
LΓ(ω − ω0) , (1.72)

where we defined the Lorentzian profile as,

Lβ(∆) ≡ β

2π

1

∆2 + (β/2)2
with

∫ ∞

−∞
Lβ(∆)d∆ = 1 . (1.73)

The total power P absorbed by a two-level atom with resonance frequency ω0

from a radiation field with the spectral intensity distribution I(ω) and with the total
intensity of the laser beam Ī =

∫
I(ω)dω can now be expressed as the integral,

P =

∫
σ(ω)I(ω)dω , (1.74)

Example 2 (Limiting cases): Let us analyze the two limiting cases when
either one of the spectral distributions I(ω) or σ(ω) is much narrower than the
other.
For a narrow laser, we may assume a δ-peaked spectral intensity distribution,

I(ω) = Īδ(ω − ωlas) . (1.75)

When it drives a broad transition described by an optical cross section given by
(1.72), the scattered power is,

P = Īσ(ωlas) . (1.76)

For a narrow transition, we may substitute the Lorentzian in (1.72) by a Dirac
δ-function,

σ(ω)
Γ→0−→ g2

g1
λ2Γ

4
δ(∆) . (1.77)

When it is driven by a broad laser, for which we assume a spectral intensity
distribution,

I(ω) = ĪLβ(ω − ωlas) with Ī =

∫
I(ω)dω =

I(ωlas)

Lβ(0)
=
πβ

2
I(ωlas) (1.78)

we obtain for the scattered power,

P =

∫
g2
g1
λ2Γ

4
δ(ω − ω0)ĪLβ(ω − ωlas)dω =

g2
g1
λ2Γ

4
ĪLβ(ω0 − ωlas) . (1.79)

8At low saturation.
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1.2.6.1 Broad laser driving a broad transition

Until now we assumed a fixed laser frequency ωlas (with finite emission bandwidth)
driving a fixed resonance frequency ω0. What we call absorption spectrum is what
we obtain when we tune either the laser frequency or when we (somehow) vary the
resonance frequency, such that ∆ ≡ ωlas−ω0 is ramped. Assuming Lorentzian profiles
with finite linewidths for both, Ī and σ, we get,

P (∆) = P (ωlas − ω0) =

∫
σ(ω)I(ω)dω =

∫
g2
g1

λ2Γ

4
LΓ(ω − ωlas)ĪLβ(ω − ω0)dω

=
g2
g1

λ2Γ

4
Ī

∫
LΓ(ω

′ + ω0 − ωlas)Lβ(ω′)dω′ . (1.80)

That is, the absorption spectrum is obtained as a convolution of both profiles,

P (∆) =
g2
g1

λ2ΓĪ

4
(LΓ ⋆ Lβ)(∆) . (1.81)

Figure 1.11: Absorption spectrum (blue) and spectral energy distribution of the source (red).

This result reproduces the two limiting cases discussed in the above example, since
for narrow transitions, Γ → 0, that is LΓ → δ, we recover the results (1.79), and for
narrow lasers, β → 0, that is, Lβ → δ, we recover (1.76). Obviously, this formula holds
for other line profiles e.g. when the resonance is broadened by some perturbations 9.

1.2.6.2 Two-level atom in a blackbody radiation field

When considering a two-level atom interacting with a blackbody a radiation field, we
describe the spectral intensity distribution by (1.61),

I(ω) =
ω2

π2c2
ℏω

eℏω/kBT − 1
(1.82)

with Ī =

∫
I(ω)dω =

ℏ
π2c2

(
kBT

ℏ

)4 ∫ ∞

0

x3dx

ex − 1
=

π2

15c2ℏ3
(kBT )

4 .

9Let us here remind the following identities holding for Lorentzian and Gaussian line profiles:

(Lγ ⋆ Lβ)(∆) = Lγ+β(∆) and (GΓ ⋆ Gβ)(∆) = G√
γ2+β2 (∆) .
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Since the width of the transition is negligibly small in comparison with the blackbody
spectrum, Γ→ 0, we may evaluate the scattered power as,

P =

∫
g2
g1

λ2Γ

4
LΓ(ω − ω0)

ω2

π2c2
ℏω

eℏω/kBT − 1
dω (1.83)

Γ→0−→ g2
g1

λ2Γ

4

ω2
0

π2c2
ℏω0

eℏω0/kBT − 1
.

1.2.7 Absorption in a gas

We are often interested in the attenuation of the intensity of a beam of light traversing
a dilute gas of resonant scattering atoms. The Einstein rate equation yields the
temporal transition rates, but does not say how they relate to the spatial attenuation
length of the light beam. Let us now generalize the previous results to a gas of two-
level atoms. As long as the transition linewidth is narrow [case (1.77)], the power
is removed from the system only by spontaneous emission; absorption only converts
radiation into atomic excitation which, subsequently, can be returned to the radiation
field by stimulated emission. At steady-state the Einstein rate equation (1.65) reads,

0 = −N1B12u(ω0) +N2B21u(ω0) +N2A21 . (1.84)

Using the result (1.69), we can write the amount of power removed from the system
by spontaneous emission as,

P = N2A21ℏω0 = u(ω0)B12(N1 − g1
g2
N2)ℏω0 . (1.85)

The second part of the equation describes the energy loss of the beam, i.e. the dif-
ference between energy removed by absorption and energy returned to the beam by
stimulated emission.

On the other hand, the power absorbed from the radiation field u(ω0) by atoms
whose transition is described by the cross section (1.72), is given by,

P =

∫
(N1 − g1

g2
N2)σ(ω)I(ω)dω . (1.86)

Remembering I(ω) = cu(ω) and assuming a large radiation spectrum, I(ω) ≃ I(ω0),
a comparison of equations (1.85) and (1.86) yields,

B12 =
c

ℏω0

∫
σ(ω)dω . (1.87)

1.2.7.1 Lambert-Beer law

In the expression (1.86) the absorption probability distribution σ(ω) is convoluted
with the spectral energy distribution of the light source, u(ω) = dū/dω, which in turn
is related to the energy density via, Ū = V ū, where V is the mode volume of the light
field. Considering a thin slab of the absorber with volume ∆V , we have dŪ = ∆V dū.
Assuming that the light propagates in z-direction across the absorber and converting
the time dependence into a spatial dependence, we have on one hand,

P = −dŪ
dt

= −dū
dt

∆V = −cdū
dz

∆V = −dĪ
dz

∆V . (1.88)
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On the other hand, assuming that the light field be a laser with narrow emission
bandwidth, I(ω) = Īδ(ω − ωlas), we get from (1.86),

P =

∫
(N1 − g1

g2
N2)σ(ω)I(ω)dω = Ī(N1 − g1

g2
N2)σ(ωlas) , (1.89)

Now comparing both results,

dĪ

Ī
= −

N1 − g1
g2
N2

∆V
σ(ωlas)dz ≃ −nσ(ωlas)dz , (1.90)

where the approximation holds for low saturation, that it, if N1 ≫ N2. The solution
of this differential equation is,

Ī = Ī0e
−σ(ωlas)nz . (1.91)

Here, z is the total distance, over which absorption takes place. The last equation
is the Lambert-Beer law for light absorption. It is very useful for measuring atomic
densities in gas cells or of atomic beams [560, 530, 859]. Solve the Excs. 1.2.9.9 to
1.2.9.11.

1.2.8 Saturation

Strong driving of a transition leads to its saturation and causes line broadening. To
see this, we go back to Einstein’s rate equations in steady-state (1.65) additionally
simplified by assuming g1 = 1 = g2, such that B12 = B21. Resolving these equations
by N1 and N2 and using N1 +N2 = N and N1 −N2 ≡ ∆N , we get,

N1 = N
B21u(ω) +A21

2B21u(ω) +A21
and N2 = N

B12u(ω)

2B21u(ω) +A21
. (1.92)

For vanishing pump rate we expect, N1
u→0−→ N and N2

u→0−→ 0. In contrast, when
the pump rate becomes much larger than the relaxation rates, N1, N2

u→∞−→ 1
2 . This

means that the absorption coefficient α = σ(N1 −N2) goes to zero, and the medium
becomes completely transparent. The difference in the populations of the ground and
excited states,

∆N = N
A21

2B21u(ω) +A21
=

N

1 + s(ω)
, (1.93)

can be expressed via a saturation parameter

s(ω) ≡ 2B12u(ω)

A21
, (1.94)

which represents the ratio of pump rate to the relaxation rate. The pump rate due to
a monochromatic wave with intensity Ī is obtained by comparing (1.85) with (1.89),

B12u(ω) =
σ(ω)Ī

ℏω
. (1.95)

We obtain for the saturation parameter,

s(ω) =
2σ(ω)Ī

ℏωA21
. (1.96)
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According to (1.85) and (1.93) the power absorbed per unit volume on the transition
by atoms with the populations N1,2 in a radiation field with a broad spectral profile
and spectral energy density u(ω) is,

P = ℏωB12u(ω)∆N = ℏωB12u(ω)
N

1 + s(ω)
. (1.97)

With (1.94) this can be written as,

P = ℏω
A21

2

N

1 + s(ω)−1
. (1.98)

Let us now remember that the absorption cross section (1.72) of a homogeneously
broadened line is Lorentzian. This means that the saturation parameter (1.96) itself
becomes Lorentzian. We can assume that the relaxation rate A21 is independent of
ω within the frequency range of the line profile,

s(ω) = s(ω0)
(Γ/2)2

∆2 + (Γ/2)2
. (1.99)

Substituting this into (1.98) yields the frequency dependence of the absorbed radiation
power per unit frequency interval dω,

P = ℏω
A21N

2

s(ω0)(Γ/2)
2

(ω − ω0)2 + (Γ/2)2[1 + s(ω0)]
= NĪσ(ω0)

(Γ/2)2

∆2 + (γsat/2)2
, (1.100)

where we introduced the increased halfwidth of the Lorentzian profile,

γsat ≡ Γ
√
1 + s(ω0) . (1.101)

Apparently, the halfwidth of the saturation-broadened line increases with the resonant
saturation parameter s(ω0). If according to (1.94) the induced transition rate at
resonance equals the total relaxation rate A21/2, the resonant saturation parameter
becomes s(ω0) = 1, which increases the linewidth by a factor

√
2, compared to the

unsaturated linewidth Γ for weak radiation fields. Starting from (1.100) we can define
a saturated absorption cross section,

σsat(ω) = σsat(ω0)
(γsat/2)

2

∆2 + (γsat/2)2
= σ(ω0)

(Γ/2)2

∆2 + (γsat/2)2
= σ(ω)

1

1 + s(ω)
,

(1.102)
where the unsaturated absorption profile is,

σ(ω) = σ(ω0)
(Γ/2)2

∆2 + (Γ/2)2
. (1.103)

This shows that the saturation decreases the absorption coefficient by the factor
1 + s(ω). At the line center, this factor has its maximum value 1 + s(ω0), while it
decreases to 1 for increasing |∆|, see (1.101), see Fig. 1.12. This is the reason why the
line broadens.
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From (1.96) we see, that unity saturation, s(ω0) = 1, corresponds to a light
intensity of,

Īsat ≡
ℏω

2σ(ω0)
Γ =

2π2cℏ
3λ3

Γ . (1.104)

This intensity is called saturation intensity. Taking account of the degeneracies gj of
the levels the saturation intensity becomes 10,

Isat =
g1
g2

2π2cℏ
3λ30

Γ . (1.105)
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Figure 1.12: (code) Optical cross section for absorption at various saturation parameters.

The reduction of absorption is understood by considerable depletion of the ground state at

the profit of the excited state, N1, N2
s→∞−→ 1

2
, in which case absorption is totally compensated

by stimulated emission.

Finally, we anticipate that the resonant saturation parameter is basically a mea-
sure for the ratio between the stimulated population transfer rate, given by a quantity
called Rabi frequency Ω, which will be thoroughly introduced in Secs. 5.4.3 and 16.3.2,
and the spontaneous decay rate Γ,

s(ω0) =
2Ω2

Γ2
. (1.106)

We thus obtain the important relationship between laser intensity and Rabi frequency,

Ω2 = σ(ω0)
Ī

ℏω0
Γ . (1.107)

1.2.9 Exercises

1.2.9.1 Ex: Resistance of vacuum

Show that
√
µ0/ε0 has the dimension of a resistance and the value of 376.7Ω.

10Some authors define the saturation for s = 2, as happens when Ω = Γ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Fundaments_SaturatedCrossSection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Fundaments_SaturatedCrossSection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Fundaments_SaturatedCrossSection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Fundaments_SaturatedCrossSection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ResistenciaVacuo.pdf
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1.2.9.2 Ex: The laws of Planck and Rayleigh-Jeans

Show that Planck’s law reproduces the Rayleigh-Jeans law in the low-frequency limit.

1.2.9.3 Ex: The laws of Wien and Stefan-Boltzmann

a. Derive the parametrization of Planck’s law in terms of frequency ν and wavelength
λ.
b. Derive the law of Stefan-Boltzmann according to which the total power radiated
per unit surface area of a black body across all wavelengths (also known as the black-
body radiant emittance) is given by σT 4, where σ ≡ π2k4B/60c

2ℏ3 is called the Stefan-
Boltzmann constant.
c. Derive Wien’s displacement law according to which the maximum emission of a
blackbody spectrum occurs at λmaxT = 2.898×10−3 Km in the wavelength parametriza-
tion and νmax/T = 0.0588THz/K in the frequency parametrization. Determine the
frequency of the maximum emission for the 2.7K background radiation of the uni-
verse.

1.2.9.4 Ex: Radiometric thermometry

Modern radiometric thermometers measure the blackbody radiation emitted by a hot
body. Calculate the variation of the blackbody radiant emittance of a person having
fever (40◦ instead of 37◦ body temperature). How much does the maximum emission
wavelength change? In which spectral range should the thermometer be sensitive?

1.2.9.5 Ex: Photons in a resonator

a. The light power emitted by a laser (λ = 633 nm) be P = 1nW. How many photons
does the laser emit per second? How many photons of the emitted laser beam are in
a mode volume of L = 10 cm length?
b. How many photons on average are inside an optical cavity having the same mode
volume at ambient temperature, when there is no incident light?

1.2.9.6 Ex: Number of modes in a cavity

a. How many modes do fit into a cubical box of 10 cm size for a frequency interval of
1000Hz centered at a wavelength of 500 nm?
b. How many photons are in the box supposing it has a temperature of T = 300K,
respectively, T = 6000K?

1.2.9.7 Ex: Number of photons emitted from lasers and blackbodies

a. Calculate the total number of photons per area per unit time emitted by a black-
body at temperature T .
b. The linewidth of a helium-neon laser is ∆ν = 1000Hz. The operating wavelength
is λ = 632.8 nm, the power is P = 1mW, and the beam size w0 = 1mm. How many
photons are emitted per second?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_RayleighJeans.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_StefanBoltzmann.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_StefanBoltzmann02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CavityPhotons01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CavityPhotons02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CavityPhotons03.pdf
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c. What would be the temperature of a blackbody radiator emitting the same number
of photons from an equal area and over the same frequency interval as the laser?

1.2.9.8 Ex: Number of photons per radiation mode

Assume the isotropic emission of a pulsed flashlamp with spectral bandwidth ∆λ =
100 nm around λ = 400 nm amounts to P0 = 100W peak power out of a volume
of 1 cm3. Calculate the spectral power density u(ν) and the spectral intensity I(ν)
through a spherical surface r = 2 cm away from the center of the emitting sphere.
How many photons per mode are contained in the radiation field?

1.2.9.9 Ex: Atoms in an optical cavity

a. Consider a closed optical cavity at T = 600◦ C. The cavity has the shape of a
L = 1m-long and d = 3 cm-diameter tube. Calculate the total energy of the black-
body radiation inside the cavity.
b. Inside the cavity there is a gas with strontium atoms (1 fundamental level and
3 degenerate excited levels, λ = 461 nm). Using the expression (1.67), assuming
thermal equilibrium, calculate the number of excited atoms for a partial pressure of
the strontium gas of 10−3 mbar.
c. Calculate the optical density for a laser in resonance with the transition traversing
the cavity along the symmetry axis.

1.2.9.10 Ex: Sodium atoms in an optical cavity

A sodium atom is placed in a cavity of volume V = 1 cm3 with walls at the temper-
ature T , producing a thermal radiation field with spectral energy density uP (ν). At
what temperature T are the spontaneous and induced transition probabilities equal
a. for the transition 3P → 3S with the transition wavelength λ = 589 nm and the
excited state lifetime τ3P = 16ns;
b. for the hyperfine transition 3S (F = 3 → F = 2) with the transition frequency
ν = 1772MHz and the excited state lifetime τ3F ≃ 1 s?

1.2.9.11 Ex: Applying the Lambert-Beer law

The beam of a monochromatic laser passes through an absorbing atomic vapor with
path length L = 5 cm. If the laser frequency is tuned to the center of an absorbing
transition |i⟩ → |k⟩ with absorption cross section σ0 = 10−14 cm2, the attenuation
of the transmitted intensity is 10%. Assuming low saturation calculate the atomic
density ni in the absorbing level |i⟩.

1.3 Basic notions

As we have seen in the precedent section, the important message of quantum mechan-
ics is that matter propagates as a wave and light, when localized, only changes its
energy in discrete units. Once we understand (or at least accept) this fact, a large part
of quantum mechanics follows just as a corollary. The idea expressed by de Brogie,
that matter would be a wave led to the first quantization. Interestingly, the concept

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CavityPhotons04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_AtomsCavity.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CavityPhotons05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CavityPhotons06.pdf
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of light underwent a reverse evolution. Classically described as a wave, it was divided
by Planck and Einstein into quantized corpuscles, today called ’photons’.

Figure 1.13: Illustration of particle-wave duality for matter and light.

In this chapter, we will introduce step by step the formalism of quantum mechanics
by gradually increasing the degree of abstraction. Applications of the formalism will
be shown in consecutive chapters (watch talk).

The aim of this section is to give ’feeling’ for the new concepts introduced and used
by quantum mechanics. We will first motivate the fundamental quantum equations
of motion by linking them to classical dispersion relations and then spend some time
to discuss the probabilistic concept proposed by Max Born.

1.3.1 Dispersion relation and Schrödinger equation

A fundamental problem in physics is the issue of the propagation of physical entities.
On one hand, we have the light, whose propagation in the vacuum is described by the
dispersion relation ω = ck or,

ω2 − c2k2 = 0 . (1.108)

Since light is a wave, in the most general form, assuming the validity of the superpo-
sition principle, it can be described by a wave packet, A(r, t) =

∫
eı(k·r−ωt)a(k)d3k.

It is easy to verify that the wave equation,

∂2

∂t2
A− c2∇2A = 0 , (1.109)

reproduces the dispersion relation.
On the other hand, we have slow massive particles possessing kinetic energy,

E =
p2

2m
. (1.110)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumMechanics
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With the hypothesis of de Broglie that even a massive particle has wave quality, we
can try an ansatz 11 of a wave equation satisfying the dispersion relation (1.110). From
Planck’s formula, E = ℏω, and the formula of Louis de Broglie, p = ℏk, describing
the particle by a wave packet ψ(r, t) =

∫
eı(k·r−ωt)φ(k)d3k not subject to external

forces, it is easy to verify that the equation,

ıℏ
∂

∂t
ψ =

(
− ℏ2

2m
∇2

)
ψ , (1.111)

reproduces the dispersion relation. If the particle is subject to a potential, its total
energy is E = p2/2m + V (r, t). This dispersion relation corresponds to the famous
Schrödinger equation,

ıℏ
∂

∂t
ψ =

(
− ℏ2

2m
∇2 + V (r, t)

)
ψ . (1.112)

1.3.2 Relativistic particle waves

Despite the similarities between light particles and material particles, there are no-
table differences: The photon is a relativistic particle with no rest mass. How can we
establish a relationship between such different objects?

To clarify this relationship we now consider particles that are similar to light
in the sense that they have high velocities, that is, relativistic particles. From the
relativistic principle of the equivalence of mass and energy, we obtain for a massive
particle E2 = m2c4 + c2p2 or,

ω2 − c2k2 =
m2c4

ℏ2
. (1.113)

This dispersion relation can be obtained from the differential equation,

∂2

∂t2
A− c2∇2A = −m

2c4

ℏ2
A , (1.114)

inserting, for example, the already proposed wave packetA(r, t) =
∫
eı(k·r−ωt)a(k)d3k,

supposed not to be subject to external forces. The equation (1.114) is a wave equa-
tion called Klein-Gordon equation. For particles without rest mass, as in the case of
photons, the equation is reduced to the wave equation of light (1.109).

Now, making the transition to non-relativistic velocities, v ≪ c, we can expand
the dispersion relation,

E =
√
m2c4 + c2m2v2 = mc2

(
1 +

v2

2c2
+ ..

)
or ℏω ≃ mc2 + ℏ2k2

2m
. (1.115)

In analogy with the Klein-Gordon equation we can derive the approximate dispersion
relation (1.115) from a wave equation,

ıℏ
∂

∂t
A =

(
mc2 − ℏ2

2m
∇2

)
A . (1.116)

11Trial, working hypothesis.
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With the transformation ψ = e−ımc
2t/ℏA, we rediscover the Schrödinger equation

(1.111),

ıℏ
∂

∂t
ψ = − ℏ2

2m
∇2ψ (1.117)

as the non-relativistic limit of the Klein-Gordon equation.
It is interesting to note that in all cases discussed, obviously the dispersion relations

and the differential equations can be interconverted by the substitutions,

E −→ ıℏ
∂

∂t
and p −→ −ıℏ∇ . (1.118)

We will discuss this later in the context of Ehrenfest’s theorem in Secs. 1.3.6, 1.3.7,
and 1.6.6.

Example 3 (Demystifying Quantum Mechanics 1.0): The essence of quan-

tum mechanics can be boiled down to the particle-wave duality. That is the fact

that the building blocks of matter must be considered as de Broglie waves. Once

this fact is understood and assimilated, quantum mechanics loses much of its

mystery. For example delocalization of an atom, that is, the fact that it can be

at two locations at the same time irritates us only as long as we try to imagine

it as an indivisible solid block. In contrast we are not surprised to encounter

the same ocean wave or tsunami in different continents.

The misconception is already rooted in the statement that a quantum particle

can be simultaneously in two places. What we really mean when we say a particle

is delocalized is, that the way it is embedded in space-time (which is the frame

in which we can (or cannot) attribute locations and velocities to it) resembles

a wave, and that the way this wave evolves or propagates in space is wave-like

and described by a Schrödinger equation. Note that position-velocity is just

one property that a particle can have. Spin is another one, and the appropriate

space in which a spin is embedded is not necessarily position space, but can be

an abstract configuration space. An atom can have an internal structure, whose

dynamics is totally independent of how the atom moves as a whole. Thus, a

particle IS not a wave, but PROPAGATES like one in space-time. Still, its

evolution will follow a Schrödinger-type equation.

At first the Schrödinger equation seems weird, because it is complex and thus

rules the behavior of an unphysical quantity, the wave function. But we should

keep in mind the Schrödinger equation is the non-relativistic approximation of

the Klein-Gordon equation, which resembles much more a classical wave equa-

tion, and applies also to particles propagating at velocities nearly as fast as light.

With regard to these facts, a terminology that suits much better the features of

quantum mechanics is simply wave mechanics, how Schrödinger termed it. This

terminology also has the advantage of avoiding confusion with light wave effects

erroneously attributed to quantum mechanics, such as light tunneling which is

totally understood within Maxwell’s theory.

We must however be aware that the simple wave picture is not sufficient to

understand all of quantum mechanics. As we will see in the next sections, it is

necessary to complement wave mechanics with a measurement theory, and phe-

nomena genuine to what today is called Quantum Mechanics 2.0, in particular,

entanglement are difficult to understand in wave mechanics.
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1.3.3 Born’s interpretation

The first part of this script is devoted to individual particles or systems of distin-
guishable massive particles, and we will only turn our attention to light and indistin-
guishable particles when discussing the (second) quantization of fields.

According to our current conviction, the complete reality (neglecting relativis-
tic effects) on any system is contained in the Schrödinger equation (1.112). That
statement does not make us smarter without having to explain the meaning of the
wavefunction ψ. In an attempt to marry the concepts of particles and waves, Max
Born proposed in 1926 the interpretation of the quantity

∫

V

|ψ(r, t)|2d3r (1.119)

as probability of finding the particle inside the volume V .
If |ψ(r, t)|2 has the meaning of a probability density or probability distribution, the

square of the wavefunction must be integrable,

∥ψ(r, t)∥2 ≡
∫

R3

|ψ(r, t)|2d3r <∞ . (1.120)

This allows us to proceed to a normalization of the wave function,

ψ̃(r, t) ≡ ψ(r, t)√∫
R3 |ψ(r, t)|2d3r

, (1.121)

such that ∥ψ̃(r, t)∥ = 1.

1.3.4 Continuity equation

In quantum mechanics we associate the wavefunction that describes a quantum system
to a probability wave. As the Schrödinger equation describes a time evolution, in
order to be useful, the wavefunction must allow for probability flows. We define the
probability density and the probability flow by,

ρ(r, t) ≡ ψ∗(r, t)ψ(r, t) , (1.122)

j(r, t) ≡ ℏ
2mı

[ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] .

Starting from the Schrödinger equation we can easily derive the continuity equation
(see Exc. 1.3.8.1),

ρ̇(r, t) +∇ · j(r, t) = 0 , (1.123)

or in the integral form,

− d

dt

∫

V

ρd3r =

∫

V

∇ · jd3r =
∮

∂V

j · dS , (1.124)

using Gauß’ law. With I ≡
∫
S
j · dS, the probability current which flows through the

surface S delimiting the probability charge Q ≡
∫
V
ρ(r, t)d3r, we obtain,

−Q̇ = I . (1.125)

The continuity equation is obviously similar to that of electromagnetism.
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1.3.5 Distributions in space and time

So far we only spoke of spatial distributions, ψ(r, t). But we could also consider ve-
locity or moment distributions. In classical mechanics, a particle has a well-defined
position and velocity. Knowing the position and velocity, Newton’s equations al-
low predicting its coordinates at future times. Let us now investigate whether the
Schrödinger equation allows this as well.

In the absence of an external potential the most general solution of the Schrödinger
equation can be written as a superposition of plane waves eı(r·k−ωt) with frequencies
ω = p2/2ℏm and wave vectors k = p/ℏ. Each plane wave has an individual amplitude
φ(p), such that,

ψ(r, t) = 1
h3/2

∫
d3pφ(p)eı(r·k−ωt) =

∫
d3p 1

h3/2φ(p)e
ı(r·p/ℏ−p2t/2mℏ) , (1.126)

with h ≡ 2πℏ. At time t = 0, this expansion is nothing more than a Fourier transform,

ψ(r, 0) = 1
h3/2

∫
d3pφ(p)eır·k , (1.127)

that we can reverse,

φ(p) = 1
h3/2

∫
d3rψ(r, 0)e−ır·k . (1.128)

In the absence of forces the momentum distribution becomes stationary. We can now
use the momentum distribution φ(p) as coefficients of the expansion of the temporal
wavefunction ψ(r, t), as shown above. Thus, the expansion represents a general solu-
tion of the Schrödinger equation. The magnitude |φ(p)|2 is the probability density in
momentum space.

Example 4 (Normalization of the wave function in momentum space): It
is easy to show that the probability density in momentum space is also normal-
ized:∫

|φ(p)|2d3p = 1
h3

∫
d3p

∫
d3rψ∗(r)eır·k

∫
d3r′ψ(r′)e−ır

′·k

=

∫
d3r

∫
d3r′ψ∗(r)ψ(r′) 1

(2π)3

∫
d3keık·(r−r′)

=

∫
d3r

∫
d3r′ψ∗(r)ψ(r′)δ3(r− r′) =

∫
|ψ(r)|2d3r = 1 ,

knowing that the Fourier transform of a plane wave is nothing more than the

Dirac distribution.

Since the probability distributions |ψ(r)|2 and |φ(p)|2 are interconnected by Fourier
transform, we already know that we can not localize 12 both simultaneously. If one
is well localized, the other is necessarily delocalized. Do the Exc. 1.3.8.2.

12Localize: Restrict the distribution volume indefinitely.
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1.3.6 Eigenvalues

We have already seen that the position and momentum distributions of a particle are
spread. We calculate the mean values of these distributions, denoted by ⟨r⟩ and ⟨p⟩,
as first moments of the respective distributions:

⟨r⟩ =
∫
d3r|ψ(r, t)|2r and ⟨p⟩ =

∫
d3p|φ(p, t)|2p . (1.129)

Using the expansions (1.126) and (1.127), we can calculate,

⟨p⟩ =
∫
φ∗(p)pφ(p)d3p =

∫
1

h3/2

∫
ψ∗(r)eık·rd3rpφ(p)d3p

= 1
h3/2

∫
ψ∗(r)

∫
φ(p)peık·rd3pd3r

= 1
h3/2

∫
ψ∗(r)ℏı∇

∫
φ(p)eık·rd3pd3r =

∫
ψ∗(r)ℏı∇ψ(r)d3r .

This calculation shows that the expectation value, called eigenvalue, of the momen-
tum can be expressed through an operator p̂ ≡ (ℏ/ı)∇ acting on the wavefunction
13,14.

More generally, we can compute the eigenvalue of a function in r and p via,

⟨f(r̂, p̂)⟩ =
∫
d3rψ∗(r)f(r, p̂)ψ(r) . (1.130)

However, it is important to note that the operators r̂ and p̂ do not necessarily com-
mute.

Example 5 (Non-commutation of space and momentum): Considering a
one-dimensional motion, we verify,

p̂xxψ =
ℏ
ı

d

dx
xψ =

ℏ
ı
ψ + x

ℏ
ı

d

dx
ψ ̸= x

ℏ
ı

d

dx
ψ = xp̂xψ .

1.3.7 Temporal evolution of eigenvalues

We now consider the temporal evolution of the position of a particle. We will use in
the following the partial integration rule

∫
V
ψ∇ξ =

∮
∂V

ψξ −
∫
V
∇ψξ = −

∫
V
(∇ψ)ξ,

assuming that at least one of the functions, ψ or ξ, disappears at the edge of the
volume, which can be guaranteed by choosing the volume large enough. To begin
with, we will concentrate on the x-component of the position, the time derivative of
which is computed using the continuity equation (1.123),

d

dt
⟨x̂⟩ =

∫
d3r

d

dt
|ψ|2x = −

∫
d3r x∇ · j = −

∫
dS · j x

0
+

∫
d3r j · ∇x =

∫
d3r jx ,

(1.131)

13From now on, the hat over a physical magnitude will denote quantum operators.
14We note here that the rules ⟨ψ|x̂|ψ⟩ ↔ ⟨ϕ| − ℏ

ı
∇p|ϕ⟩ and ⟨ψ| ℏ

ı
∇r|ψ⟩ ↔ ⟨ϕ|p̂|ϕ⟩ from the

Fourier transformation are useful for numerical simulations of the Schrödinger equation: Instead of

calculating the spatial derivative
(

ℏ
ı
∇
)2

of the wavefunction, one makes a Fast Fourier Transform

(FFT) to momentum space, multiplies with p, and transforms back.
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Generalizing to three dimensions, we can write,

d

dt
⟨mr̂⟩ = m

∫
d3r j = m

∫
d3r

ℏ
2mı

[ψ∗∇ψ − ψ∇ψ∗] (1.132)

= 1
2

∫
d3r[ψ∗p̂ψ + ψp̂ψ∗] =

∫
d3rψ∗p̂ψ = ⟨p̂⟩ ,

since the eigenvalue of p̂ is a real quantity.
Now, we define the abbreviation:

Ĥ ≡ − ℏ2

2m
∇2 + V (r̂, t) , (1.133)

called the Hamilton operator or Hamiltonian and we calculate the second derivative
of the position using the Schrödinger equation (1.112),

d

dt
⟨p̂⟩ =

∫
d3r

[(
1
ıℏĤψ

)∗
p̂ψ + ψ∗p̂ 1

ıℏĤψ
]
= ı

ℏ

∫
d3r ψ∗(Ĥp̂− p̂Ĥ)ψ = ı

ℏ ⟨[Ĥ, p̂]⟩ ,
(1.134)

introducing the commutator [â, b̂] ≡ âb̂− b̂â as an abbreviation. After that,

ı
ℏ ⟨[Ĥ, p̂]⟩ = ı

ℏ ⟨[V̂ , p̂]⟩ = ı
ℏ

∫
d3rψ∗

[
V̂ ℏ
ı∇ψ − ℏ

ı∇(V ψ)
]
= −

∫
d3rψ∗ψ∇V = ⟨F̂⟩ .

(1.135)
In summary, we found a law,

⟨F̂⟩ = d2

dt2
⟨mr̂⟩ , (1.136)

much like Newton’s law, but instead of applying to localized particles, the law applies
to the eigenvalues of probability distributions. Similar laws can be derived for angular
momentum and energy conservation.

The observation made by Paul Ehrenfest, that in quantum mechanics the mean
values follow the same laws of classical mechanics, is called Ehrenfest theorem.

1.3.8 Exercises

1.3.8.1 Ex: Conservation of probability

Demonstrate the conservation of local probability through the definitions of proba-
bility densities, ρ(r, t), and probability current j(r, t).

1.3.8.2 Ex: Fourier theorem

The spatial distribution of a particle is given by a Gaussian function with the width
∆x. Calculate the momentum distribution and its width ∆p. Just consider one
spatial dimension. Show that ∆x∆p = ℏ using the rms definition for the widths.

1.4 Postulates of quantum mechanics

In this section we will introduce the fundamentals and main methods of quantum
mechanics. We will learn what are observables and get to know the postulates which
establish the foundation of quantum mechanics, as well as Heisenberg’s famous prin-
ciple of uncertainty.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_BasicnotionContinuity.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_TeoremaFourier.pdf
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1.4.1 Superposition principle (1. postulate)

A physical system can be found in several states. For example, a particle may be at
rest or in motion, an atom may be excited or deexcited. In quantum mechanics, every
possible state is described by a wavefunction ψ. Wavefunctions can be functions of
various types of coordinates, for example, of position ψ = ψ(r), of momentum ψ =
ψ(p), or of energy ψ = ψ(E). The choice of the coordinates is called representation.

One peculiarity of quantum systems is that they may be in a superposition of
states. That is, if ψ1, ψ2, ..., ψk are possible states with amplitudes ck, automatically
the functions,

ψ =
∑

k

ckψk or ψ =

∫
dk c(k)ϕ(k) (1.137)

are possible states as well. This is called superposition principle, and means, for
example, that a particle may be simultaneously in several places or that an atom may
be at the same time excited and deexcited.

There are systems that can only exist in a restricted number of states, such as
the two-level atom. Others may exist in an infinite number of states or even in a
continuous distribution of states.

1.4.2 Interpretation of the wavefunction (2. postulate)

A state function (or wavefunction) characterizes a system of which we may calculate
various properties. The function can adopt complex values devoid of immediate phys-
ical interpretation. In fact, the wavefunction is above all a mathematical construct.
On the other hand, the norm |ψ|2 has the meaning of a probability of the system to
be in the state ψ. This is the famous interpretation of Max Born of the wave function
(see Sec. 1.3.3).

If ψk with k = 1, 2, . . . are all possible states of a system, the interpretation as a
probability requires, ∑

k

|ψk|2 = 1 . (1.138)

Analogically, for a continuous distribution, for example, in spatial representation,

∫ ∞

−∞
|ψ(x)|2dx = 1 . (1.139)

That is, the probability needs normalization.

1.4.3 Dirac bra-ket notation and vector representation

In order to distinguish more easily the amplitudes (which are complex numbers) and
the wavefunctions we will now use the Bra-Ket notation introduced by Paul Dirac.
The functions are represented by kets,

|ψ⟩ =
∑

k

ck|k⟩ . (1.140)
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The complex transpositions of these states are represented by bras,

⟨ψ| = |ψ⟩† =
∑

k

c∗k⟨k| . (1.141)

But the notation has other advantages. For example, let us suppose that we know
the three possible states of a system, |1⟩, |2⟩, and |3⟩, which are linearly independent.
Then we can define the states as vectors:

|1⟩ =



1

0

0


 , |2⟩ =



0

1

0


 , |3⟩ =



0

0

1


 . (1.142)

These three states can be interpreted as the basis of a vector space representing the
system. Now, each wavefunction can be expanded on this basis and expressed by a
vector. An arbitrary ket state of this system will then be,

|ψ⟩ =



c1
c2
c3


 . (1.143)

The corresponding bra state will be,

⟨ψ| =
(
c∗1 c∗2 c∗3

)
. (1.144)

Now we can easily calculate the probability for a system to be in a state |ψ⟩,

||ψ⟩|2 = ⟨ψ|ψ⟩ =
(
c∗1 c∗2 c∗3

)
·



c1
c2
c3


 = |c1|2 + |c2|2 + |c3|2 . (1.145)

1.4.4 Observables (3. postulate)

The only way to get information about a system is to measure the values of character-
istic quantities of the system, e.g. energy or linear momentum. In classical mechanics
we have learned that a system can be completely characterized by a set of measurable
physical quantities. For example, the motion of a rigid body of mass m and inertial
moment I is defined by its position r, its moment p, and its angular momentum L. In
quantum mechanics we describe observable physical quantities by operators acting on
the Hilbert space of wavefunctions, |ψ⟩ 7→ p̂|ψ⟩, where p̂ would be the operator of the
linear momentum. To better distinguish the observables, we decorate their symbols
with a hat. We will see more ahead (see Sec. 1.5.5) that every quantum system is
completely described by a complete set of observables.

To find the current values aψ of any observable Â in a specific situation given by
a wave function ψ, we need to solve an equation of eigenvalues,

Â|ψ⟩ = aψ|ψ⟩ . (1.146)

We can rewrite the equation as aψ = ⟨ψ|Â|ψ⟩. The values an are real numbers, if the
observable is a Hermitian operator, that is,

Â = Â† =⇒ aψ = a∗ψ . (1.147)
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We leave proof of this for the Exc. 1.4.9.1.
Thus, we postulate the substitution of the dynamic variables characterizing a clas-

sical system by abstract objects called operators. These operators can be understood
as mathematical prescriptions, e.g., differential operators acting on a state of the
system. The expectation value of any operator Â characterizing a system in a state
|ψ⟩ is aψ ≡ ⟨Â⟩ψ ≡ ⟨ψ|Â|ψ⟩/⟨ψ|ψ⟩. Such operators are specific for a system, but
independent of its state. The dynamical variables for a specific state are obtained as
eigenvalues of the respective variable in that specific state. The temporal evolution
of the operators or of the states is governed by equations of motion (see Sec. 1.6) 15.

1.4.5 Representation of operators as matrices

In the same way as we already represented wavefunctions by vectors, we can also
represent operators by matrices,

Â ≡
∑

i,j

|i⟩aij⟨j| =




:

.. aij ..

:


 =




:

.. ⟨j|Â|i⟩ ..

:


 . (1.148)

To extract components from a matrix we do, ⟨i|Â|j⟩, for example,

⟨1|Â|1⟩ =
(
1 0 ..

)
· Â ·



1

0

:


 = a11 . (1.149)

Projectors are particular operators defined by,

P̂k ≡ |k⟩⟨k| =



0 : 0

.. 1 ..

0 : 0


 . (1.150)

The eigenvalue of a projector, ⟨P̂k⟩ = ⟨ψ|P̂k|ψ⟩ = |⟨k|ψ⟩|2, is nothing more than the
probability of finding a system, whose general state is |ψ⟩, in the particular state,
since expanding as done in (1.140), we have,

⟨P̂k⟩ =
∑

m,n

c∗mcn⟨m|k⟩⟨k|n⟩ = |ck|2 . (1.151)

Using the matrix formalism we can define other interesting operators and verify
their properties. For example, choosing the basis,

|1⟩ =
(
1

0

)
, |2⟩ =

(
0

1

)
, (1.152)

we find,

|1⟩⟨1| =

(
1 0

0 0

)
, |2⟩⟨2| =

(
0 0

0 1

)

|1⟩⟨2| =

(
0 1

0 0

)
, |2⟩⟨1| =

(
0 0

1 0

) . (1.153)

15Note that there are theoretical attempts to generalize the concept of observables to non-
Hermitian operators [66, 67] only displaying PT -symmetry.
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Obviously, these matrices can be used to expand any 2× 2 matrix. An equivalent set
of matrices are the Pauli spin matrices,

I ≡
(
1 0

0 1

)
, σ̂x ≡

(
0 1

1 0

)
, σ̂y ≡

(
0 ı

−ı 0

)
, σ̂z ≡

(−1 0

0 1

)
. (1.154)

An important property of the Pauli matrices is their behavior under commutation
and anti-commutation,

[σ̂k, σ̂m]− ≡ σ̂kσ̂m − σ̂kσ̂m = 2ıϵkmnσ̂n (1.155)

[σ̂k, σ̂m]+ ≡ σ̂kσ̂m + σ̂kσ̂m = 2δkm ,

with x, y, x = m,n.

Defining so-called ladder operators or rising, respectively, lowering operators, de-
pending on the arrangement of the level system via,

σ̂± = 1
2 (σ̂x ± ıσ̂y) , (1.156)

we may represent the matrices as,

|1⟩⟨1| = 1
2 (I2 − σ̂z) = σ̂−σ̂+ , |2⟩⟨2| = 1

2 (I2 + σ̂z) = σ̂+σ̂−

|2⟩⟨1| = 1
2 (σ̂x + ıσ̂y) = σ̂+ , |1⟩⟨2| = 1

2 (σ̂x − ıσ̂y) = σ̂−
, (1.157)

and write down the Pauli vector 16,

ˆ⃗σ ≡



σ̂x
σ̂y
σ̂z


 =




σ̂− + σ̂+

ı(σ̂− − σ̂+)

[σ̂+, σ̂−]


 (1.158)

and the vector

ρ⃗ ≡



⟨σ̂x⟩
⟨σ̂y⟩
⟨σ̂z⟩


 , (1.159)

which is called Bloch vector 17,18. The eigenvalue of the Bloch vector has a fixed
length (see Exc. 1.4.9.2).

The representation of physical quantities by matrices is essential for the description
of quantum superposition states.

16Note that other definitions of the Pauli matrices, e.g. σ̂y → −σ̂y and σ̂z → −σ̂z are also found
in literature. They simply correspond to a change of basis |1⟩ ↔ |2⟩.

17The Bloch vector is widely used in describing the interaction of a two-level system with a light
field.

18Schrödinger invented the wave mechanics when he derived his wave equation from the dispersion
relation for massive particles. Heisenberg invented a mechanics (detailed in later sections), which he
called mechanics of matrices. Later, he showed the formal equivalence of both theories.
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1.4.6 Correspondence principle (4. postulate)

Operators do not necessarily commute. We have already seen in Sec. 1.3.6, that in
one dimension the position and the momentum operators do not commute. We can
generalize to three dimensions via,

[p̂j , x̂k] = −ıℏδjk and [p̂j , p̂k] = 0 = [x̂j , x̂k] , (1.160)

which is easily verified by replacing the operators with x̂k = xk and p̂k = ℏ
ı∇ and

allowing the commutators to act on a wavefunction ψ(x).
Conversely, quantum mechanics follows from classical mechanics with the prescrip-

tion, A(qk, pk, t) −→ A(q̂k, p̂k, t) = Â. Letting the smallest amount of energy possible
go to zero, ℏ −→ 0, the commutator disappears and, as we will see later, discrete en-
ergy spectra become continuous, quantum noise disappears, and we recover classical
mechanics.

1.4.7 Schrödinger equation and quantummeasurements (5. pos-
tulate)

The time evolution is given by the Schrödinger equation,

ıℏ
∂

∂t
|ψ⟩ = Ĥ|ψ⟩ . (1.161)

A closed system, disconnected from the rest of the world (we will now call the
rest of the world reservoir) is not subject to dissipation, i.e., it does not lose energy
to the reservoir. Such a system is always described by a hermitian Hamiltonian.
Unfortunately, this system also does not allow information leakage, that is, we can
not measure the system. This is reflected in the fact that the Schrödinger equation
does not allow to describe the process of a quantum measurement. This is because
before the measurement, the system can be in several states or even in a superposition
of states, while after the measurement we know exactly the state. This amounts to a
reduction of entropy, which is not allowed in a closed system.

The famous postulate of state reduction or projection of the wavefunction for-
mulated by John von Neumann describes the quantum measurement process as a
sequence of two distinct steps 19. In a first step, the measuring apparatus projects
the measured operator Â on an eigenvector basis. That is, if the measurement is
compatible with the operator 20, we obtain a distribution of probability amplitudes
of the results,

Â ↷ ⟨Â⟩ = ⟨ψ|Â|ψ⟩ = ⟨ψ|Â|
∑

k

ck|k⟩ =
∑

k

akck⟨ψ|k⟩ =
∑

k

ak|ck|2 , (1.162)

with ⟨ψ|ψ⟩ = ∑
k |ak|2 = 1. Therefore, we can understand |⟨k|ψ⟩|2 as the proba-

bility of the system to be in the eigenstate |k⟩. In other words, this first step of

19For simplicity, we only consider pure state, here.
20To understand the meaning of compatible, we must establish a more complete theory of mea-

surement including the reservoir in the quantum description.
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the measurement process removes in an irreversible manner all coherences from the
observable,

Â ↷
∑

k

|k⟩⟨k|Â|k⟩⟨k| . (1.163)

Figure 1.14: Superposition.

In a second step, the observing scientist will read the measuring device and note
the result, which will necessarily be one of the possible ak,

⟨Â⟩ ↷ ak . (1.164)

If the state is stationary, it will never change any more. That is, each subsequent
measurement will yield the same result. The Exc. 1.4.9.3 illustrates the process of
quantum measurement at the example of a measurement of the excitation energy of
a two-level atom.

1.4.8 Stationary Schrödinger equation

The general form of the Schrödinger equation in one dimension is,

ĤΨ(t, x) = ıℏ
∂

∂t
Ψ(t, x) , (1.165)

with Ĥ ≡ p̂2

2m + V (x, t) and p̂ ≡ −ıℏ ∂
∂x . If the potential is independent of time,

V (x, t) = V (x), we can do the following ansatz, Ψ(x, t) ≡ ψ(x)f(t). Insertion into
the Schrödinger equation yields,

1

ψ(x)

(
− ℏ2

2m

d2

dx2
+ V (x)

)
ψ(x) =

ıℏ
f(t)

d

dt
f(t) = const. ≡ E . (1.166)

The solution of the right-hand side of the equation is ıℏ(ln f − ln f0) = E(t − t0).
Hence,

f(t) = f(0)e−ıE(t−t0)/ℏ . (1.167)
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Obviously, |Ψ(x, t)|2 = |ψ(x)|2.
Now, we can see that the stationary Schrödinger equation,

Ĥψ(x) = Eψ(x) , (1.168)

is nothing more than an eigenvalue equation. This means that the Schrödinger wave
mechanics is equivalent to the mechanics of the Heisenberg matrices. The Excs. 1.4.9.4
and 1.4.9.5 are first simple calculations of the eigenvalues and eigenvectors of a two-
level system.

1.4.9 Exercises

1.4.9.1 Ex: Reality of eigenvalues

Show that the eigenvalues of an observable are real.

1.4.9.2 Ex: Normalization of the Bloch vector

Calculate the expectation value of the length of the Pauli vector and the length of
the Bloch vector (1.156).

1.4.9.3 Ex: Quantum measurement

Explain the idea of quantum measurement at the example of a measurement of the
excitation energy of a two-level atom.

1.4.9.4 Ex: Two-level atom

Consider a two-level atom. The Hamiltonian is given by,

Ĥ =

(
0 0

0 ℏω0

)
.

Using the stationary Schrödinger equation, calculate the eigenvalues and eigenvectors.

1.4.9.5 Ex: The ammonium molecule

Consider the two states |1⟩ and |2⟩ of the ammonium molecule outlined in the figure.
Suppose they are orthonormal, ⟨i|j⟩ = δij , and that only these two states are accessible
to the system, so that we can describe it using the basis formed by |1⟩ and |2⟩. On
this basis the Hamiltonian Ĥ of the system is given by,

Ĥ =

(
E0 −E1

−E1 E0

)
.

a. If the system is initially in state |1⟩, will it remain in that state at a later time?
How about if the initial state is |2⟩?
b. Obtain the eigenvalues EI and EII and the respective eigenvectors |I⟩ and |II⟩ of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_RealidadeAutovalor.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_VetorBloch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_MedidaQuantica.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_AtomoDoisniveis.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_MoleculaAmonia.pdf
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Ĥ, expressing them in terms of |1⟩ and |2⟩.
c. What is the probability of measuring an energy EI in the following state,

|ψ⟩ = 1√
5
|1⟩ − 2√

5
|2⟩ ?

d. Based on the above result, we can predict at least one possible electromagnetic
radiation emission frequency for an ammonia sample. What is this frequency?

EUF 2014, 1 Semestre, Mecânica Quântica - Q1 1

(a) Não, já que estes estados não são autoestados do hamiltoniano. A evolução temporal do sistema 
mistura os dois e temos duas combinações específicas com energia bem definida, os autoestados de 
H. Começando em |1> ou |2> teremos a possibilidade de medir qualquer uma das duas energias 
possíveis dependendo do tempo esperado.

|1> |2>

(b)

Figure 1.15: The two states of the ammonium molecule.

1.5 Abstract formalism of quantum mechanics

The formal development of quantum mechanics will be the subject of this section. We
will learn how to find a complete set of observables characterizing a system, discuss
the role of symmetries in quantum mechanics and show how to switch between several
representations of the same system.

1.5.1 Lie algebra

The quantum mechanical operators form a Lie algebra L2. This means that L2 is
at the same time a complex and linear vector space with respect to addition and
scalar multiplication and a non-commutative ring with scalar internal product. In
particular, L2 is unitary, normalized, and complete and acts on a Hilbert space of
quantum states,

(Â+ B̂)|ψ⟩ = Â|ψ⟩+ B̂|ψ⟩, (1.169)

(αÂ)|ψ⟩ = α(Â|ψ⟩) ,
(ÂB̂)|ψ⟩ = Â(B̂|ψ⟩) .

The properties of the Hilbert space are,

Â|ψ + φ⟩ = Â|ψ⟩+ Â|φ⟩ , (1.170)

Â|aψ⟩ = aÂ|ψ⟩ .

For a Hermitian operator, Â = Â†, we have ⟨ψ|Â|ψ⟩ = ⟨Âψ|ψ⟩ or ⟨Â⟩ ≡ ⟨ψ|Â|ψ⟩ =
⟨Â⟩∗, using the Dirac bra-ket notation,

⟨ψ|† ≡ |ψ⟩ . (1.171)



46 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL FORMALISM

There are identity and nullity operators,

I|ψ⟩ = |ψ⟩ and 0̂|ψ⟩ = 0 . (1.172)

We define the (anti-)commutator as,

[Â, B̂]∓ ≡ ÂB̂ ± B̂Â , (1.173)

which can be ̸= 0. The sum of two Hermitian operators is Hermitian, but the product
is not, since,

(Â+ B̂)† = Â† + B̂† = Â+ B̂ but (ÂB̂)† = B̂†Â† = B̂Â ̸= ÂB̂ . (1.174)

On the other hand, the following relations of Hermitian operators are always Hermi-
tian,

ÂB̂ + B̂Â and ı(ÂB̂ − B̂Â) . (1.175)

We define the scalar product as,

⟨ψ|φ⟩ . (1.176)

Two states are called orthogonal, if ⟨ψ|φ⟩ = 0. The norm is written as,

|ψ|2 = ⟨ψ|ψ⟩ , (1.177)

the deviation is,

∆A ≡
√
⟨Â2⟩ − ⟨Â⟩2 . (1.178)

A unitary operator is defined by,

Â−1 = Â† . (1.179)

1.5.2 Complete bases

If it is impossible to find a set of amplitudes cn,

∄{cn} such that
∑

n

cn|n⟩ = 0 , (1.180)

the functions are called linearly independent. A set of linearly independent functions
may form a basis. The space opened by a set of linearly independent functions is
called Hilbert space.

An operator Â is completely characterized by its eigenvalues and eigenfunctions.
If a set of eigenfunctions |n⟩ is complete, every allowed state of the system can be
expanded in these eigenfunctions,

|ψ⟩ =
∑

n

cn|n⟩ and Â|n⟩ = an|n⟩ . (1.181)

To calculate properties of a specific system, we often want to find a matrix repre-
sentation for the operator Â. For this, we solve the stationary Schrödinger equation,
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that is, we calculate the eigenvalues and eigenvectors. When all eigenvalues are differ-
ent, an ̸= am, we know that the corresponding eigenvectors are orthogonal, ⟨n|m⟩ = 0,

Â|n⟩ = an|n⟩ , Â|m⟩ = an|m⟩ , ∀{n,m} an ̸= am (1.182)

=⇒ ∀{n,m} ⟨n|m⟩ = δm,n .

Exc. 1.5.9.1 asks for demonstrating this.
Frequently, for example, in the case of a particle confined to a potential, there

exist discrete eigenvalues (for E < 0) simultaneously with continuous eigenvalues (for
E > 0). Assuming ⟨m|m′⟩ = δm,m′ , ⟨m|k⟩ = 0 and ⟨k|k′⟩ = δ(3)(k − k′), with a
complete base, ∑

m

|m⟩⟨m|+
∫
d3k|k⟩⟨k| = I , (1.183)

an arbitrary vector can be expanded on an orthogonal basis,

|ψ⟩ =
∑

m

|m⟩⟨m|ψ⟩+
∫
d3k |k⟩⟨k|ψ⟩ . (1.184)

This also applies to observables,

Â =
∑

m,n

|m⟩⟨m|Â|n⟩⟨n|+
∫
d3kd3l |k⟩⟨k|Â|l⟩⟨l| , (1.185)

and functions of observables,

f(Â) =
∑

m,n

|m⟩f(⟨m|Â|n⟩)⟨n|+
∫
d3kd3l |k⟩f(⟨k|Â|l⟩)⟨l| . (1.186)

1.5.3 Degeneracy

The eigenvectors form a natural basis for the Hilbert space. However, a problem arises
in the case of degeneracy, that is, when some eigenvalues are equal, an = am. In this
case, the eigenvectors that correspond to degenerate eigenvalues are not completely
defined, and we have to construct a basis verifying that all constructed eigenvectors are
orthogonal. For this, there exists the method of orthogonalization by Schmidt, which
works like this: We assume that we have already solved the eigenvalue equation, that
we found a degenerate eigenvalue, Â|ak⟩ = a|ak⟩ for every k = 1, .., gk, where gk is
the degree of degeneracy, and that we also found a complete basis of eigenvalues |am⟩,
but which is not orthogonal, that is, ∃{m,n} with ⟨an|am⟩ ̸= 0. The task is to build
another basis |bm⟩ satisfying ⟨bn|bm⟩ = δn,m.

The first vector of the orthogonal base can be chosen freely, e.g.,

|b1⟩ ≡ |a1⟩ . (1.187)

Since the basis {|ak⟩} is assumed to be complete, the second vector is necessarily a
linear combination of vectors |ak⟩, that is, |b2⟩ = |a2⟩ + λ|b1⟩. With the condition
⟨b1|b2⟩ = 0 = ⟨b1|a2⟩+λ⟨b1|b1⟩ we can determine the parameter λ, and obtain for the
second vector,

|b2⟩ ≡ |a2⟩ − |b1⟩
⟨b1|a2⟩
⟨b1|b1⟩

. (1.188)
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In the same way, we can derive for a third vector, |b3⟩ = |a3⟩ + µ|b1⟩ + ν|b2⟩, the
conditions, ⟨b1|b3⟩ = 0 = ⟨b1|a3⟩ + µ⟨b1|b1⟩ and ⟨b2|b3⟩ = 0 = ⟨b2|a3⟩ + ν⟨b2|b2⟩, and
obtain,

|b3⟩ ≡ |a3⟩ − |b1⟩
⟨b1|a3⟩
⟨b1|b1⟩

− |b2⟩
⟨b2|a3⟩
⟨b2|b2⟩

. (1.189)

An overall way of writing this down is,

|bk⟩ ≡
(
1− |b1⟩⟨b1|⟨b1|b1⟩

− |b2⟩⟨b2|⟨b2|b2⟩
− ...− |bk−1⟩⟨bk−1|

⟨bk−1|bk−1⟩

)
|ak⟩ . (1.190)

In the Exc. 1.5.9.2 we practice the orthogonalization of a set of three linearly indepen-
dent but non-orthogonal vectors, and in the Exc. 1.5.9.3 we find an orthogonal basis
for a partially degenerate three-level system.

1.5.4 Bases as unitary operators

One way to formulate the eigenvalue problem is as follows: Let |n⟩ be an orthonormal
basis with the respective eigenvalues an of an operator Â:

Â|n⟩ = an|n⟩ with ⟨n|m⟩ = δmn . (1.191)

We construct the matrices,

U ≡
(
|1⟩ |2⟩ · · ·

)
and Ê ≡



a1 0 · · ·
0 a2
...

. . .


 . (1.192)

With the definition of U† we have,

U† =



⟨1|
⟨2|
...


 and U†U =



⟨1|1⟩ ⟨1|2⟩ · · ·
⟨2|1⟩ ⟨2|2⟩ · · ·
...

...
. . .


 = I . (1.193)

Therefore,

U†U = I =⇒ U†UU−1 = IU−1 =⇒ U† = U−1 (1.194)

U†U = I =⇒ UU†UU−1 = UIU−1 =⇒ UU† = I .

An important property of unitary matrices is,

|detU| = 1 . (1.195)

Also,

Â|n⟩ = Ê|n⟩ and ÂU = UÊ . (1.196)

That is, by knowing the unitary matrix (or transformation matrix) U , we can solve
the eigenvalue problem simply by Ê = U−1ÂU .

Note, that this does not apply to a non-orthonormal basis. In this case, we need
to do a Schmidt orthogonalization and use the condition detU = 1. We apply the
technique detailed in this section to solve Excs. 1.5.9.4, 1.5.9.5, and 1.5.9.6.



1.5. ABSTRACT FORMALISM OF QUANTUM MECHANICS 49

1.5.5 Complete set of commuting operators

Even for simple systems, we can ask various types of questions (measurements). Con-
sidering, for example, a particle flying freely in space, we can gather its position
or its velocity. Let a be the result of a measurement of the observable Â, that is,
a = ⟨ψa|Â|ψa⟩. Due to the measurement we know that the system is in the state
|ψa⟩. Immediately after this first measurement we perform another measurement of
another observable B̂ giving ⟨ψa|B̂|ψa⟩. The result of this measurement can only
yield an eigenstate, b = ⟨ψa|B̂|ψa⟩, if the operators commute, [Â, B̂] = 0. That is, if
two operators Â and B̂ commute, and if |ψ⟩ is an eigenvector of Â, then B̂|ψ⟩ is also
an eigenvector of Â with the same eigenvalue:

[Â, B̂] = 0 , a = ⟨ψ|Â|ψ⟩ (1.197)

=⇒ Â(B̂|ψ⟩) = a(B̂|ψ⟩) and ⟨ψ|B̂|ψ⟩ ∈ R .

In addition, we observe that, if two operators commute, the orthonormal basis
constructed for one of the operators is also orthonormal for the other. That is, if
two operators Â and B̂ commute and if |ψ1⟩ and |ψ2⟩ are two eigenvectors of Â with
different eigenvalues, then the matrix element ⟨ψ1|B̂|ψ2⟩ is equal to zero:

[Â, B̂] = 0 , a1 = ⟨ψ1|Â|ψ1⟩ ≠ ⟨ψ2|Â|ψ2⟩ = a2 (1.198)

=⇒ ⟨ψ1|B̂|ψ2⟩ = 0 .

Finally, we affirm that, if two operators Â and B̂ commute, we can construct an
orthonormal basis {|ψa,b⟩} with common eigenvectors of Â and B̂:

[Â, B̂] = 0 (1.199)

=⇒ ∃ {|ψa,b⟩} tal que Â|ψa,b⟩ = a|ψa,b⟩ and B̂|ψa,b⟩ = b|ψa,b⟩ .

The statements (1.197) to (1.199) are verified in Exc. 1.5.9.7.

The fact that commuting operators have a common system of eigenvectors autho-
rizing sharp eigenvalues can be used to construct and characterize a state.

Example 6 (Measuring momenta in orthogonal directions): For example,
the obvious solutions of the eigenvalue equations,

p̂x|ψpx⟩ =
ℏ
ı

d

dx
|ψpx⟩ = px|ψpx⟩ and p̂y|ψpy ⟩ =

ℏ
ı

d

dy
|ψpy ⟩ = py|ψpy ⟩

are the plane waves eıpxx/ℏ and eıpyy/ℏ. Therefore, the total state of the particle
can be described by,

|ψpx,py,pz ⟩ = |ψpx⟩|ψpy ⟩ = e(ı/ℏ)(pxx+pyy)f(z) .

However, these eigenfunctions are infinitely degenerate, since the linear momen-
tum in z-direction is not specified. A third operator p̂z|ψ⟩ = pz|ψ⟩ commutes
with the others,

[p̂k, p̂m] = 0 .

Hence,
|ψpx,py,pz ⟩ = e(ı/ℏ)(pxx+pyy+pzz) ,
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is a possible state of the system.

On the other hand, choosing p̂2z = −ℏ2 ∂2

∂z2
as the third operator, giving the

eigenvalues p2z, the state would have been,

|ψpx,py,p2z ⟩ = e(ı/ℏ)(pxx+pyy) cos pzzℏ or |ψpx,py,p2z ⟩ = e(ı/ℏ)(pxx+pyy) sin pzz
ℏ .

(1.200)

Therefore, there are two solutions with the same eigenvalues, px, py, p
2
z. To lift

this degeneracy, we need to introduce yet another observable. This observable

can be, for example, the parity P̂ , that is, the behavior of the wave function

upon mirroring z −→ −z in the x-y plane. The fact that the set of operators

px, py, pz on one hand and px, py, p
2
z, P̂ on the other are equivalent, shows that

the required number of observables for a complete characterization depends on

their judicious choice.

Also, the number needed for a complete set of commuting operators (CSCO) de-
pends on the number of degrees of freedom and the symmetry of the system. In the
case of the free particle in one dimension it is enough to consider one observable only,
for example, x̂ or p̂. In three dimensions, we already need at least three commuting
observables. In Exc. 1.5.9.8 we will try to find a CSCO for a matrix with partially
degenerate eigenvalues.

1.5.6 Uncertainty relation

We have already learned that observables that do not commute can not be measured
with arbitrary precision. This principle can be quantified as follows: If Â and B̂ are
two observables, then,

∆Â∆B̂ ≥ 1
2 |⟨[Â, B̂]⟩| . (1.201)

This is Heisenberg’s famous uncertainty principle. For example, [p̂, x̂] = −ıℏ,
and hence, ∆p∆x ≥ ℏ/2. We will see later (see Sec. 3.3.1), that [l̂x, l̂y] = ıℏl̂z such
that ∆lx∆ly ≥ ℏ|⟨lz⟩|/2. More difficult to show, since time has no simple quantum
operator, is ∆E∆t ≥ ℏ/2. In the Exc. 1.5.9.9 we will show the Schwartz inequality,
and in the Exc. 1.5.9.10 we ask for a formal derivation of Heisenberg’s uncertainty
principle.

1.5.7 Representations

1.5.7.1 Spatial representation

A Hilbert space can be discrete or, as in the case of the momentum of a free particle,
continuous. In this latter case, the eigenvalues are continuously distributed, since the
equation,

−ıℏ∇rψ(r) = pψ(r) , (1.202)

has solutions for each value of E. The eigenfunctions are ψ(r) = aeıp·r/ℏ. Eq. (1.202)
clearly has the form of an eigenvalue equation, for which we have already introduced
the Heisenberg matrix formalism. The question now is how these descriptions com-
bine.
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Observables that do not commute correspond to expansions on different bases
and generate alternative representations. For example, we can represent quantum
mechanics in position space or linear momentum space. If |r⟩ is a basis of the space
of the particles’ state,

r̂|r⟩ = r|r⟩ , ⟨r′|r⟩ = δ3(r′ − r) ,

∫

R3

|r⟩⟨r|d3r = I , (1.203)

we can expand the position operator on a position basis as,

r̂ =

∫

R3

r|r⟩⟨r|d3r , (1.204)

and any state vector as,

|ψ(t)⟩ =
∫

R3

|r⟩ψ(t, r)d3r . (1.205)

The quantities ⟨r|ψ(t)⟩ = ψ(t, r) Schrödinger wave functions. We can also say that the
wavefunctions are the coordinates of the state in the particular base |r⟩. Consequently,

⟨r|̂r|r′⟩ = rδ3(r− r′) (1.206)

⟨r|f(r̂)|r′⟩ = f(r)δ3(r− r′) .

It is also true that,

⟨r|Â|ψ(t)⟩ =
∫

R3

A(r, r′)ψ(t, r′)d3r′ , (1.207)

where the quantity A(r, r′) ≡ ⟨r|Â|r′⟩ is called kernel of the operator. The transition
from Heisenberg’s abstract mechanics to Schrödinger’s wave mechanics is done by the
substitutions |ψ(t)⟩ → ψ(t, r) and Â→ A(r, r′).

1.5.7.2 Momentum representation

The uncertainty relation is symmetric in r̂ and p̂. Nothing prevents us from choosing
as a basis,

p̂|p⟩ = p|p⟩ , ⟨p′|p⟩ = δ3(p′ − p) ,

∫

R3

|p⟩⟨p|d3p = I , (1.208)

in which we can expand the momentum operator on a momentum basis as,

p̂ =

∫

R3

p|p⟩⟨p|d3p , (1.209)

with the wavefunctions,

|ψ(t)⟩ =
∫

R3

|p⟩φ(p, t)d3p , (1.210)
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where ⟨p|ψ(t)⟩ = φ(t,p). The formulas are analogous to the ones in the spatial
representation. In particular, in the momentum representation the position operator
is r = ıℏ∇p.

The representations follow from one another by Fourier transformation. Since
−ıℏ∇r⟨r|p⟩ = p⟨r|p⟩, we know,

⟨r|p⟩ = 1
h3/2 exp(

ı
ℏr · p) , (1.211)

where the prefactor ℏ−3/2 is introduced to take account of the unit of the states 21.
ψ and φ are different representations of the same quantum state related by,

⟨r|ψ(t)⟩ =
∫

R3

⟨r|p⟩⟨p|ψ(t)⟩d3p = 1
h3/2

∫

R3

eır·p/ℏφ(p, t)d3p = ψ(r, t) (1.212)

⟨p|ψ(t)⟩ =
∫

R3

⟨p|r⟩⟨r|ψ(t)⟩d3r = 1
h3/2

∫

R3

e−ır·p/ℏψ(r, t)d3r = φ(p, t) .

Normalization ensures that ψ = F−1Fψ with the relation,

δ(x) = lim
t→∞

1
2π

∫ t

−t
eıkxdk . (1.213)

Using the wavevector ℏk = p we can also write,

ψ(r) = 1
(2π)3/2

∫

R3

eır·kφ̃(k)d3k and φ̃(k) = 1
(2π)3/2

∫

R3

e−ır·kψ(r)d3r , (1.214)

defining the function φ̃(k) ≡ ℏ3/2φ(p). Applying the Fourier transform to functions
of operator we can calculate,

⟨r|G(p̂)|r′⟩ =
∫
d3p⟨r|G(p̂)|p⟩⟨p|r′⟩ =

∫
d3pG(p)⟨r|p⟩⟨p|r′⟩ (1.215)

= 1
ℏ3/2

∫
d3pG(p)eık·(r−r′) = 1

ℏ3 (FG)(r− r′) .

In Exc. 1.5.9.11 we will show ⟨r|p̂|ψ⟩ = (ℏ/ı)∇r⟨r|ψ⟩, thus justifying that we can
understand an operator as a rule to determine what happens to a function. For
example, the rule p̂x asks for a derivation of the wavefunction by x.

1.5.8 Spanning a Hilbert space with several degrees of freedom

All systems analyzed up to this point were characterized by a single degree of freedom
(e.g., energy, momentum, or angular momentum), which could have a continuous
or discrete spectrum. Even when we treated systems exhibiting various degrees of
freedom (motion of a particle in 3D space, electron orbitals in the hydrogen atom),
we always found a way to separate the degrees of freedom into orthogonal Hilbert

21Note that the units of the wavefunctions are defined by normalization: ⟨r′|r⟩ = δ3(r − r′).
Introducing the parenthesis [...] to extract the unit of a physical quantity, we find, [|r⟩] = [ψ(r)] =
[r−3/2] and [|p⟩] = [φ(p)] = [p−3/2]. We do not assign a unit to the abstract state |ψ⟩, that is,
[|ψ⟩] = 1.
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spaces, which allowed us to treat the dynamics of the degrees of freedom separately.
In this chapter, we will establish the theoretical foundations allowing us to analyze
systems, where degrees of freedom can not be separated because they are entangled
or interact. In particular, we will consider the system of two spins and the coupling
of angular momenta in general.

1.5.8.1 Projection and internal sum

A projector is an operator which reduces the domain of an operator, originally acting
on a Hilbert space H to the subspace defined by the projector. We consider an operator
Â with the matrix representation,

Â ≡
∑

i,j
|i⟩,|j⟩∈H

|i⟩Aij⟨j| =




:

.. Aij ..

:


 , (1.216)

acting on wavefunctions |ψ⟩ ∈ H which can be expanded on a basis |i⟩ of H. Now, we
consider a subspace R ⊂ H defined by the base |k⟩. Then the projector P̂R can be
represented by,

P̂R ≡
∑

k
|k⟩∈R

|k⟩⟨k| =




0 0 0

0



1

..

1


 0

0 0 0




. (1.217)

Applied to the operator Â,

ÂR ≡ P̂RÂ = P̂RÂR =
∑

k,l

|k⟩Akl⟨l| =




0 0 0

0




:

.. Akl ..

:


 0

0 0 0




. (1.218)

Applied to a state |i⟩,

|ψ⟩R = P̂R|ψ⟩ = P̂R|ψ⟩R =
∑

k

ck|k⟩ =




0


:

ck
:




0




. (1.219)

We study an example in Exc. 1.5.9.12.
Consequently, we can understand the Hilbert space as the sum of its subspaces,

Â =
⊕

R
ÂR and

⊕

R
P̂R = I . (1.220)



54 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL FORMALISM

The dimensions of the subspaces are additive,

dim Â =
∑

R
dim ÂR .

Example 7 (Projection for a three-level atom): The Hamiltonian of a
three-level atom with excitation of two transitions is given by,

Ĥ =

 ω1 Ω12 0

Ω12 ω2 Ω23

0 Ω23 ω3

 .

The projector,

P̂ =

1 0 0

0 1 0

0 0 0


reduces the Hamiltonian to a two-level transition,

ĤR =

 ω1 Ω12 0

Ω12 ω2 0

0 0 0

 .

As another example we can cite the Jaynes-Cummings model introduced in

Sec. 17.1.2 and describing the interaction between a single atom and a single

light mode. In this model the total Hilbert space is constructed as a sum of

orthogonal subspaces characterized by different fixed excitation numbers.

Obviously, the concatenation (1.220) only serves to increase the Hilbert space of
a given degree of freedom described by a given observable, e.g., when we add one
more level of energy to the spectrum of an atom described by a Hamiltonian. If, in
contrast, we want to add another degree of freedom, we need the external sum or
external product discussed below.

1.5.8.2 Tensorial product

We have previously worked with systems exhibiting more than one degree of freedom
and therefore having to be characterized by more than one observable with its spec-
trum of eigenstates. One example are the electronic orbitals of the hydrogen atom
|nℓm⟩, which need three quantum numbers to be labeled unambiguously. Obviously,
each quantum number increases the dimensionality of the Hilbert space. Another
example is the system |αβ⟩ of two particles with spin 1

2 , each spin being defined on
its respective space,

|α⟩ =
(
α1

α2

)
= (αi)i ∈ HA and |β⟩ =

(
β1
β2

)
= (βk)k ∈ HB . (1.221)

The combined state is,

|αβ⟩ ∈ HA ⊗HB with dim HA ⊗HB = dim HA dim HB . (1.222)



1.5. ABSTRACT FORMALISM OF QUANTUM MECHANICS 55

The symbol ⊗ denotes the outer tensorial product of two vectors (states) 22. Now, in
order to represent the multidimensional space HA ⊗HB by a matrix, we use the fact
that it is isomorphic to the space HI⊗HA⊗B , that is, we proceed to a reorganization
of the quantum numbers identifying,

|γ⟩ ≡ |α⟩|β⟩ = |α⟩ ⊗ |β⟩ = |αβ⟩ =
(
α1|β⟩
α2|β⟩

)
=




α1β1
α1β2
α2β1
α2β2


 = (γm)m ∈ HA ⊗HB ,

(1.223)
wherem = 1, 2, 3, 4 is identified with (i, k) = (1, 1), (1, 2), (2, 1), (2, 2). The new vector
is element of the 4-dimensional vector space HA⊗HB. If {|α⟩i} and {|β⟩k} are bases
in their respective spaces HA and HB, then {|γ⟩m} is a basis of the product space
HA ⊗HB.

Figure 1.16: Illustration of the isomorphism between HA ⊗HB and HI ⊗HA⊗B for matrices
of rank 2.

For observables we proceed in the same way: The external product of two com-
mutators spans a Hilbert product space with the dimension corresponding to product
of the dimensions of the sub-spaces. Assuming that,

Â ≡
∑

i,j
|i⟩Aij⟨j| and B̂ ≡

∑
k,l
|k⟩Bkl⟨l| . (1.224)

22The tensorial product of two states should not be confused with other definitions of products,
such as the inner (or scalar) product of two states,

⟨α|β⟩ ≡ α1β1 + α2β2 ,

the outer product,

|α⟩⟨β| ≡
(
α1β1 α1β2
α2β1 α2β2

)

A11

A12

A21

A22



B11

B12

B21

B22


†

=


A11B11 A11B12 A11B21 A11B22

A12B11 A12B12 A12B21 A12B22

A21B11 A21B12 A21B21 A21B22

A22B11 A22B12 A22B21 A22B22

 ,

the exterior (cross) product,

|α⟩ × |β⟩ =

α2β3 − α3β2
α3β1 − α1β3
α1β2 − α2β1

 ,

nor the point-wise or Hadamard product,

Â ◦ B̂ ≡
(
A11 A12

A21 A22

)
◦
(
B11 B12

B21 B22

)
=

(
A11B11 A12B12

A21B21 A22B22

)
.
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then

Â⊗ B̂ ≡
∑

(ik)(jl)

|ik⟩AijBkl⟨jl| , (1.225)

such that

dim Â⊗ B̂ = dim Âdim B̂ .

For example, |i⟩⟨j| ⊗ |k⟩⟨l| = |ik⟩⟨jl|.
For two two-dimensional operators Â and B̂, the tensorial external product is

defined by,

Â⊗ B̂ =




A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22


 , (1.226)

and can be decomposed as,

Â⊗ B̂ = (Â⊗ I)(I⊗ B̂) =




A11 A12

A11 A12

A21 A22

A21 A22







B11 B12

B21 B22

B11 B12

B21 B22


 .

(1.227)

The concept (1.225) can be generalized to more degrees of freedom like,

Â⊗ B̂ ⊗ Ĉ ≡
∑

(ikm)(jln)

|ikm⟩AijBklCmn⟨jln| , (1.228)

Obviously, the external product is associative (Â ⊗ B̂) ⊗ C = Â ⊗ (B̂ ⊗ C), but
does not commute, even though the operators acting on different spaces do commute,
[Â, B̂] = 0. Nevertheless, we can reverse the order of the product of two operators
using,

Â⊗ B̂ = S(B̂ ⊗ Â)S with S ≡




1

0 1

1 0

1


 . (1.229)

The operator S is also called SWAP-gate.

We note, that it is important to distinguish from what space the vector came
from. In our notation, the vector before the symbol of the tensorial product (⊗) is
belongs to the space HA, and the one after the ⊗ belongs to the space HB. With the
definition (1.224) we can verify that the operators only act on their respective states:

(A⊗B)(|α⟩ ⊗ |β⟩) = A|α⟩ ⊗B|β⟩ . (1.230)

Example 8 (Tensorial product): We can check the relationship (1.230) by
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the definitions (1.223) and (1.226) of the external product,[(
A11 A12

A21 A22

)
⊗
(
B11 B12

B21 B22

)][(
α1

α2

)
⊗
(
β1
β2

)]
(1.231)

=


A11B11 A11B12 A12B11 A11B12

A11B21 A11B22 A12B21 A11B22

A21B11 A11B12 A22B11 A22B12

A21B21 A11B22 A22B21 A22B22



α11β11
α11β21
α21β11
α21β21



=


A11B11α11β11 +A11B12α11β21 +A12B11α21β11 +A11B12α21β21
A11B21α11β11 +A11B22α11β21 +A12B21α21β11 +A11B22α21β21
A21B11α11β11 +A11B12α11β21 +A22B11α21β11 +A22B12α21β21
A21B21α11β11 +A11B22α11β21 +A22B21α21β11 +A22B22α21β21



=


(A11α1 +A12α2)(B11β1 +B12β2)

(A11α1 +A12α2)(B21β1 +B22β2)

(A21α1 +A22α2)(B11β1 +B12β2)

(A21α1 +A22α2)(B21β1 +B22β2)


=

(
A11α1 +A12α2

A21α1 +A22α2

)
⊗
(
B11β1 +B12β2
B21β1 +B22β2

)
=

(
A11 A12

A21 A22

)(
α1

α2

)
⊗
(
B11 B12

B21 B22

)(
β1
β2

)
.

Example 9 (Mathematical definition of the tensor product): If α belongs
to the Hilbert space Hα and β belongs to Hβ , then the equivalence class of (α, β)
is denoted by α⊗β and called the tensor product of α with β. This use of the ⊗-
symbol refers specifically to the outer product operation. An element of Hα⊗Hβ
that can be written in the form α ⊗ β is called a pure tensor. In general, an
element of the tensor product space is not a pure tensor, but rather a finite linear
combination of pure tensors. For example, if α1 and α2 are linearly independent,
and β1 and β2 are also linearly independent, then α1 ⊗ β1 + α2 ⊗ β2 cannot be
written as a pure tensor. The number of pure tensors required to express an
element of a tensor product is called the tensor rank. The rank should not be
confused with the tensor order, which is the number of spaces one has taken the
product of (in this case two), and which corresponds to the number of indices.
For linear operators or matrices, thought of as (1, 1) tensors (elements of the
space Hα ⊗H∗

α), the tensor rank agrees with matrix rank.
Given bases {αi} and {βj} for Hα and Hβ respectively, the tensors {αi ⊗ βj}
form a basis for Hα ⊗ Hβ . Therefore, if Hα and Hβ are finite-dimensional, the
dimension of the tensor product is the product of dimensions of the original
spaces; for instance Rm ⊗ Rn is isomorphic to Rnm.
The tensor product also operates on linear maps (called operators in quantum
mechanics) between vector spaces. Specifically, given two linear maps Â : Hα →
H′
α and B̂ : Hβ → H′

β between vector spaces, the tensor product of the two

linear maps Â and B̂ is a linear map,

Â⊗ B̂ : Hα ⊗Hβ → H′
α ⊗H′

β ,

defined by,
(Â⊗ B̂)(α⊗ β) = Â(α)⊗ B̂(β) .

In this way, the tensor product becomes a bifunctor from the category of vector
spaces to itself, covariant in both arguments. If Â and B̂ are both injective,
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surjective or (in the case that Hα, H′
α, Hβ , and H′

β are normed vector spaces

or topological vector spaces) continuous, then Â ⊗B̂ is injective, surjective or
continuous, respectively.
By choosing bases of all vector spaces involved, the linear maps Â and B̂ can be
represented by matrices. Then, depending on how the tensor α⊗β is vectorized,
the matrix describing the tensor product Â ⊗B̂ is the Kronecker product of the
two matrices. For example, if Hα, H′

α, Hβ , and H′
β above are all two-dimensional

and bases have been fixed for all of them, and Â and B̂ are given by the matrices,

Â =

(
A11 A12

A21 A22

)
, B̂ =

(
B11 B12

B21 B22

)

respectively, then the tensor product of these two matrices is,

(
A11 A12

A21 A22

)
⊗
(
B11 B12

B21 B22

)
=


A11

(
B11 B12

B21 B22

)
A12

(
B11 B12

B21 B22

)

A21

(
B11 B12

B21 B22

)
A22

(
B11 B12

B21 B22

)
 .

The resultant rank is at most 4, and thus the resultant dimension is 4. Note that

rank here denotes the tensor rank i.e. the number of requisite indices (while the

matrix rank counts the number of degrees of freedom in the resulting array).

Note Tr Â⊗ B̂ = Tr Â× Tr B̂.

A dyadic product is the special case of the tensor product between two vectors

of the same dimension.

1.5.8.3 Direct external sum

Using the nomenclature (1.224) we define the external direct sum by,

Â⊕ B̂ ≡
∑

(ik)(jl)

|ik⟩(Aij +Bkl)⟨jl| , (1.232)

that is,

Â⊕ B̂ =




A11 +B11 A11 +B12 A12 +B11 A12 +B12

A11 +B21 A11 +B22 A12 +B21 A12 +B22

A21 +B11 A21 +B12 A22 +B11 A22 +B12

A21 +B21 A21 +B22 A22 +B21 A22 +B22


 . (1.233)

It can be decomposed as,

Â⊕ B̂ = Â⊕O+O⊕ B̂ = Â⊗
(
1 1

1 1

)
+

(
1 1

1 1

)
⊗ Â . (1.234)

Again, using the definition (1.229) of the unitary operator S, we can reverse the order
of the operator by,

Â⊕ B̂ = S(B̂ ⊕ Â)S . (1.235)
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Example 10 (Direct external sum of two diagonal Hamiltonians): As
an example we consider a two-level atom excited by radiation and trapped in
an external harmonic potential. We assume that the degrees of freedom do not
interact. As the Hamiltonian of the HO is diagonal, the total Hamiltonian is
organized into a diagonal matrix of quadratic subspaces,

Ĥ = ℏω(n+ 1
2
)⊕
(

0 ℏΩ
ℏΩ ℏ∆

)
=



ℏω
2

ℏω
2

+ ℏΩ 0 0
...

ℏω
2

+ ℏΩ ℏω
2

+ ℏ∆ 0 0
...

0 0 3ℏω
2

3ℏω
2

+ ℏΩ
...

0 0 3ℏω
2

+ ℏΩ 3ℏω
2

+ ℏ∆
...

· · · · · · · · · · · ·
. . .


.

It acts on the product state |n⟩|i⟩, where the first ket denotes the vibrational

level and the second ket the electronic excitation of the atom.

Other examples are studied in Excs. 1.5.9.13 and 1.5.9.14.

1.5.8.4 Collective spins

Two spins Â and B̂ sum up according to the rule,

Â⊗ I+ I⊗ B̂ =




A11 +B11 B12 A12 +B12

B21 A11 +B22 A12

A21 A22 +B11 B12

A21 B21 A22 +B22


 . (1.236)

The procedure can be arbitrary extended to several spins, Â⊗I⊗I+I⊗B̂⊗I+I⊗I⊗Ĉ.

1.5.8.5 Trace

The trace of an operator over a subspace reduces its domain to the remaining dimen-
sions (the · -symbol is a place holder for the dimension over which we do NOT want
to trace):

TrBÂ⊗ B̂ =
∑

(ik)(jl)(·m)

⟨· m|ik⟩AijBkl⟨jl| ·m⟩ =
∑

(ik)(jl)(·m)

|i⟩AijBkl⟨j|δkmδlm

(1.237)

=
∑

(i)(j)(m)

|i⟩AijBmm⟨j| = Â
∑

m

Bmm = Â TrBB̂ .

For example, TrρÂ⊗ ρ̂ = Â. See the Excs. 1.5.9.15 and 1.5.9.16.

It can be shown,

Tr ÂB̂ = Tr B̂Â . (1.238)
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1.5.9 Exercises

1.5.9.1 Ex: Orthogonality

Show that two eigenvectors of a Hermitian operator associated with two different
eigenvalues are orthogonal.

1.5.9.2 Ex: Orthonormalization

Orthonormalize the base ⟨a1| =
(
1 −1 0

)
, ⟨a2| =

(
0 1 0

)
, ⟨a3| =

(
0 1 1

)
.

1.5.9.3 Ex: Orthonormal base

Construct an orthonormal basis for the following operator describing a partially de-
generate three-level system,

Â =



1 1 1

1 1 1

1 1 1


 .

1.5.9.4 Ex: Eigenvalue equation

Calculate the unitary matrix U transforming the Hamiltonian Ĥ =

(
1 −ı
ı 1

)
into a

diagonal matrix E = U†ĤU .

1.5.9.5 Ex: Spin rotation operators

Prove the following relations for the spin rotation operator: e−ıπσ̂x/4σ̂ze
ıπσ̂x/4 = −σ̂y

and e−ıπσ̂x/4σ̂ye
ıπσ̂x/4 = σ̂z.

1.5.9.6 Ex: Eigenvalues and eigenvectors

Find the eigenvalues and -vectors of the operator Â =



1 1 1

1 1 1

1 1 1


 and construct the

unitary matrix which transforms this operator into a diagonal matrix.

1.5.9.7 Ex: Commuting operators

a. Show that if two operators Â and B̂ commute and if |ψ⟩ is an eigenvector of Â,
B̂|ψ⟩ also is an eigenvector of Â with the same eigenvalue.
b. Show that if two operators Â and B̂ commute and if |ψ1⟩ and |ψ2⟩ are two eigen-
vector of Â with different eigenvalues, the matrix element ⟨ψ1|B̂|ψ2⟩ is equal to zero.
c. Show that if two operators Â and B̂ commute, we can construct an orthonormal
basis of eigenvectors common to Â and B̂.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_OrtogonalidadeAutovetores.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_OrtonormalizacaoBase1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_OrtonormalizacaoBase2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EquacaoAutovalores1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EquacaoAutovalores4.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EquacaoAutovalores2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_OperadoresComutandos.pdf
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1.5.9.8 Ex: Eigenvalues

a. Find the eigenvalues and eigenvectors of the operator,

Â =



1 0 1

0 µ 0

1 0 1


 for 0 < µ < 2 .

b. Write down the unitary matrix U satisfying the eigenvalue equation: ÂU = UEA,
where EA is the matrix that has all eigenvalues of Â in its diagonal.
c. Now consider the case µ = 0. Find a complete set of commuting operators (CSCO).
That is, calculate the components of a second operator B̂, which commutes with Â,
as a function of its eigenvalues λ1, λ2, and λ3, and verify [Â, B̂] = 0. Find the most
general form of operator B̂.

1.5.9.9 Ex: Schwartz inequality

Demonstrate the Schwartz inequality |⟨u|v⟩|2 ≤ ⟨u|u⟩⟨v|v⟩.

1.5.9.10 Ex: Heisenberg’s uncertainty principle

Develop the formal derivation of Heisenberg’s uncertainty principle.

1.5.9.11 Ex: Fourier transform

Show that ⟨r|P̂|ψ⟩ = ℏ
ı∇⟨r|ψ⟩ reproduces the Schrödinger equation in position rep-

resentation.

1.5.9.12 Ex: Projection of the motion of a particle

Project the Hamiltonian of the motion of a free particle onto the plane x-y at the
position z = z0 using the projection operator P̂ = |z0⟩⟨z0| and the trace defined in
(1.232) generalized to continuous variables.

1.5.9.13 Ex: Complete system of commuting operators

Construct the Hilbert space of two independent two-level systems a and b. Consider
observables X̂a and Ŷb acting on their respective systems. What will be their shapes
X̂ab, respectively Ŷab, in the total Hilbert space? Construct the expanded state |ψab⟩
from the basis of the individual systems. Verify [X̂ab, Ŷab] = 0. Verify that the
expanded observables obey the same eigenvalue equations as the original ones.

1.5.9.14 Ex: Liouville equation

Show that

(
1 0

0 0

)
⊗ Â+

(
0 0

0 1

)
⊗ B̂ = Â⊕ B̂.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EquacaoAutovalores3.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_InigualdadeSchwartzense.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_IncertezaHeisenbergense.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_TransformacaoFourier.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EspacoHilbert01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EspacoHilbert02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EspacoHilbert03.pdf
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1.5.9.15 Ex: Liouville equation

Show at the example of a two-level system that the von Neumann equation, ˙̂ρ =
− ı

ℏ [Ĥ, ρ̂], can be written, ˙⃗ρ = − ı
ℏ (Ĥ⊗I−I⊗Ĥ)ρ⃗, using the definition of the external

product and ρ⃗ ≡


ρ11
ρ12
ρ21
ρ22

. Help: For this exercise the physical interpretation of ρ̂ as

the density operator does not matter. It may be regarded as a common observable.

1.5.9.16 Ex: Unitary transformation of singlet states

Consider two spins a and b that do not interact. Applying to each spin the same
transformation to another base, show that the singlet state has in each base the
following form: |ψ⟩ = 1√

2
(| ↑⟩a| ↓⟩b − | ↓⟩a| ↑⟩b).

1.6 Time evolutions

Quantum systems may evolve in time, as predicted by the time-dependent Schrödinger
equation (1.161). In this section we show different equivalent but complementary
descriptions of the temporal evolution of quantum systems depending on whether the
time dependence is attributed to the state function of to observables.

1.6.1 Unitary transformations

The best we can do to characterize a system is, obviously, to measure all its observ-
ables. However, neither the state functions nor the observables are fixed unambigu-
ously, since defining a unitary operator, U† = U−1, we can do,

⟨ψ|Â|ψ⟩ = ⟨ψ|U†UÂU†U |ψ⟩ = ⟨Uψ|UÂU†|Uψ⟩ . (1.239)

That is, exchanging |ψ⟩ by U|ψ⟩ and at the same time Â by UÂU†, we obtain quantities
describing the same physical reality, since the eigenvalues are unchanged. This allows
us to choose the best mathematical representation for a specific problem. As an
example, we will apply the temporal unitary transformation to solve the dynamics of
a coupled two-level system in Exc. 1.6.7.1.

1.6.2 Schrödinger picture

Important examples of how the same system can be represented in different ways
(related by unitary transformations) are the Heisenberg, Schrödinger, and interaction
pictures.

The Schrödinger picture, denoted by the subscript S, is defined by the choice of a
Hamiltonian,

ĤS = Ĥ(t, p̂S, r̂S) with
d

dt
p̂S =

d

dt
r̂S = 0 . (1.240)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EspacoHilbert04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EspacoHilbert05.pdf
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That is, the observables of the system ÂS(t, p̂S, r̂S) can only depend explicitly on time,
but not via other operators, for instance p̂S and r̂S, which are stationary,

d

dt
ÂS =

∂ÂS

∂t
+ ˙̂pS

0∂ÂS

∂pS
+ ˙̂rS

0∂ÂS

∂rS
. (1.241)

This is,

d

dt
ÂS(t) =

∂

∂t
ÂS(t) . (1.242)

In the context of a moving particle, this means that the Hamiltonian 1
2m p̂

2
S + V (r̂S)

is time-independent (unless the potential V (r̂S, t) is itself time-dependent). In this
case, the formal solution of the Schrödinger equation,

ıℏ
d

dt
|ψS(t)⟩ = ĤS|ψS(t)⟩ , (1.243)

can be written,

|ψS(t)⟩ = e−(ı/ℏ)ĤSt|ψS(0)⟩ ≡ U(t)|ψS(0)⟩ . (1.244)

Apparently, the temporal dynamics is completely within the wave functions.

Example 11 (The time evolution operator): Generalizing to an arbitrary
initial time t0 we write the temporal translation operator,

U(t, t0)|ψ(t0)⟩ = |ψ(t)⟩ . (1.245)

By the expression (1.244) we find immediately, with t0 < t1 < t2,

U(t2, t0) = U(t2, t1)U(t1, t0) and U(t0, t) = U†(t, t0) = U−1(t, t0) = U(t, t0)−1 .

The conjugate operator of time evolution acts on the vector ’bra’,

⟨ψ(t)| = ⟨ψ(t0)|U†(t, t0) .

1.6.3 Heisenberg picture

As unitary transformations do not change the physics, the system described by,

|ψS(t)⟩ −→ U(t)†|ψS(t)⟩ ≡ |ψH⟩ and ÂS(t) −→ U(t)†ÂS(t)U(t) ≡ ÂH(t) (1.246)

with the transformation defined by equation (1.244), is equivalent. The subscript H
means the Heisenberg picture. In particular, we obviously have,

ĤS = ĤH ≡ Ĥ . (1.247)

Thus, the matrix element of the operator ÂS in Schrödinger’s picture with the time-
dependent base {|ψS⟩} is equal to the matrix element of the operator ÂH = U†ÂSU
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in Heisenberg’s picture with the time-independent base {|ψH⟩}. In this picture the
wavefunctions are independent of time,

d

dt
|ψH⟩ =

d

dt
|ψS(0)⟩ = 0 , (1.248)

but the operators depend im- and explicitly on time,

d

dt
ÂH(t) =

d

dt

(
U(t)†ÂS(t)U(t)

)
=
dU†

dt
ÂS(t)U(t) + U(t)†ÂS(t)

dU
dt

+ U(t)† ∂ÂS(t)

∂t
U(t)

=
ı

ℏ
Ĥ†U(t)†ÂSU(t) + U(t)†ÂS

−ı
ℏ
ĤU(t) + U†(t)

∂ÂS(t)

∂t
U(t) . (1.249)

That is,

d

dt
ÂH(t) =

ı

ℏ
[Ĥ, ÂH(t)] +

∂ÂH(t)

∂t
. (1.250)

This so-called Heisenberg equation, which describes the temporal evolution of an op-
erator acting on time-independent states in the Heisenberg picture, is equivalent to
the Schrödinger equation, which expresses the temporal evolution of a quantum state
in Schrödinger’s picture.

According to equation (1.250), the rate of temporal variation of an operator in
the Heisenberg representation is given by the commutator of that operator with the
total Hamiltonian of the system. Note that if an operator representing a dynamic
variable commutes with the Hamiltonian in the Schrödinger representation, it will
also commute with the Hamiltonian in the Heisenberg representation and thus with
the complete set of commutating observables,

[Ĥ, ÂS] = 0 ⇐⇒ [Ĥ, ÂH] = 0 . (1.251)

We will show this in the Exc. 1.6.7.2. Note that we could interpret Eq. (1.248) as a
Schrödinger equation with a Hamiltonian H̃H = 0. That is, the Hamiltonian used in
the Schrödinger equation differs from the one used in the Heisenberg equation. We
will study this in more detail in Secs. 1.6.4 and 1.6.5.

Example 12 (Position and momentum operators in the Heisenberg pic-
ture): We know that in Schrödinger’s picture (1.240), the operators p̂S and r̂S
are stationary. Using this fact in derivation (1.249), we can show for example
for the momentum operator,

∂

∂t
p̂S = 0 =⇒ ∂

∂t
p̂H = 0 =⇒ d

dt
p̂H =

ı

ℏ
[Ĥ, p̂H] .

In the Exc. 1.6.7.3 we will use the Heisenberg picture to derive the equations of
motion for a particle confined to a potential.
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1.6.4 Interaction picture

The interaction picture deals with problems where the total Hamiltonian is composed
of a time-independent part and a time-dependent part,

Ĥ = Ĥ0 + V̂ (t) . (1.252)

Analogously to Eq. (1.244), we define a time evolution operator in terms of the time-
independent part of the total Hamiltonian,

|ψI(t)⟩ = eıĤ0t/ℏ|ψS(t)⟩ and ÂI(t) = eıĤ0t/ℏÂSe
−ıĤ0t/ℏ . (1.253)

Now we are interested in the temporal dependence of quantum states and operators

in the interaction picture. Replacing the inverse function |ψS(t)⟩ = e−ıĤ0t/ℏ|ψI(t)⟩ in
the Schrödinger equation (1.243) we immediately see,

V̂ (t)|ψI(t)⟩ = ıℏ
∂

∂t
|ψI(t)⟩ . (1.254)

Apparently, in the interaction picture, only the perturbative term in Hamiltonian
controls the temporal evolution. Taking the time derivative of both sides of the
equation (1.253) transforming an operator from the Schrödinger to the interaction
picture results in,

dÂI

dt
=
ı

ℏ
[Ĥ0, ÂI] +

∂ÂI

∂t
. (1.255)

Therefore, we see that the time derivative can be expressed in the form of a commu-
tator, resembling the Heisenberg equation (1.250), except that only the unperturbed
term of the Hamiltonian appears in the argument of the commutation operator. As
already state in Sec. 1.6.3, different Hamiltonians are used in the Schrödinger and in
the Heisenberg equation.

Example 13 (Schrieffer-Wolff transformation): The Schrieffer-Wolff trans-
formation is a unitary transformation used to perturbatively diagonalize the sys-
tem Hamiltonian to first order in the interaction. As such, the Schrieffer-Wolff
transformation is an operator version of second-order perturbation theory. The
Schrieffer-Wolff transformation is often used to project out the high energy ex-
citations of a given quantum many-body Hamiltonian in order to obtain an
effective low energy model. The Schrieffer-Wolff transformation thus provides
a controlled perturbative way to study the strong coupling regime of quantum-
many body Hamiltonians.
Consider a quantum system evolving under the time-independent Hamiltonian
operator Ĥ of the form Ĥ = Ĥ0 + V̂ , where H0 is a Hamiltonian with known
eigenstates |m⟩ and corresponding eigenvalues Em, and where V is a small per-
turbation. Moreover, it is assumed without loss of generality that V̂ is purely
off-diagonal in the eigenbasis of Ĥ0, i.e.,

⟨m|V̂ |m⟩ = 0 (1.256)

for all m. Indeed, this situation can always be arranged by absorbing the diag-
onal elements of V̂ into Ĥ0, thus modifying its eigenvalues to,

E′
m = Em + ⟨m|V̂ |m⟩ . (1.257)
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The Schrieffer-Wolff transformation is a unitary transformation which expresses
the Hamiltonian in a basis (the ’dressed’ basis) where it is diagonal to first order
in the perturbation V̂ . This unitary transformation is conventionally written
as:

Ĥ ′ = eıSĤe−ıS . (1.258)

When V̂ is small, the generator S of the transformation will likewise be small.
The transformation can then be expanded in S using the Baker-Campbell-
Haussdorf formula,

Ĥ ′ = Ĥ + [ıS, Ĥ] + 1
2
[ıS, [ıS, Ĥ]] + . . . . (1.259)

In terms of Ĥ0 and V̂ , the transformation becomes,

Ĥ ′ = Ĥ0 + V̂ + [ıS, Ĥ0] + [ıS, V̂ ] + 1
2
[ıS, [ıS, Ĥ0]] +

1
2
[ıS, [ıS, V̂ ]] + . . . . (1.260)

The Hamiltonian can be made diagonal to first order in V̂ by choosing the
generator S such that,

[Ĥ0, ıS] = V̂ . (1.261)

This equation always has a definite solution under the assumption that V̂ is
off-diagonal in the eigenbasis of Ĥ0. Substituting this choice in the previous
transformation yields:

Ĥ ′ = Ĥ0 +
1
2
[ıS, V̂ ] +O(V̂ 3) . (1.262)

This expression is the standard form of the Schrieffer-Wolff transformation. Note

that all the operators on the right-hand side are now expressed in a new basis

’dressed’ by the interaction V̂ to first order.

In the general case, the difficult step of the transformation is to find an explicit

expression for the generator S. Once this is done, it is straightforward to com-

pute the Schrieffer-Wolff Hamiltonian by computing the commutator [S, V̂ ]. The

Hamiltonian can then be projected on any subspace of interest to obtain an ef-

fective projected Hamiltonian for that subspace. In order for the transformation

to be accurate, the eliminated subspaces must be energetically well separated

from the subspace of interest, meaning that the strength of the interaction V̂

must be much smaller than the energy difference between the subspaces. This

is the same regime of validity as in standard second-order perturbation theory.

1.6.5 Hamiltonian under arbitrary unitary transformation

In the preceding section we have studied particular unitary transformations between
the Schrödinger, Heisenberg, and interaction pictures. Let us now have a look at
arbitrary unitary transformations.

We have seen that the unitary transformation,

|ψU ⟩ = U†|ψ⟩ , ÂU = U†ÂU , (1.263)

leaves the physics of a system unchanged. The question is now, how the Schrödinger
equation,

Ĥ|ψ⟩ = ıℏ
d

dt
|ψ⟩ (1.264)
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transforms into the new system, that is, what will the Hamiltonian ĤU look like in
the transformed equation,

ĤU |ψU ⟩ ?
= ıℏ

d

dt
|ψU ⟩ . (1.265)

We calculate,

ıℏ
d

dt
|ψU ⟩ = ıℏU† d

dt
|ψ⟩+ ıℏU̇†|ψ⟩ = (U†Ĥ + ıℏU̇†)|ψ⟩ (1.266)

= (U†Ĥ + ıℏU̇†)U|ψU ⟩ = (U†ĤU + ıℏU̇†U)|ψU ⟩ = ĤU |ψU ⟩ .

Hence,

ĤU = U†ĤU + ıℏU̇†U . (1.267)

We will apply this concept in Exc. 1.7.6.2 to a particle in the field of gravity.

Example 14 (Interaction picture): The above derivation is general and
holds for any unitary transformation. We will now apply it to transform the
Hamiltonian Ĥ = Ĥ0 + V̂ (t) into the interaction picture via the transformation

U = e−(ı/ℏ)Ĥ0t. From

U̇† =
ı

ℏ
Ĥ0e

(ı/ℏ)Ĥ0t =
ı

ℏ
Ĥ0U† (1.268)

we calculate,

ĤU = U†ĤU + ıℏU̇†U = U†[Ĥ0 + V̂ (t)]U + ıℏ ı
ℏ
Ĥ0U

†U (1.269)

= U†[Ĥ0 + V̂ (t)]U − Ĥ0 = U†V̂ (t)U ,

which confirms the validity of the Schrödinger equation (1.254) in the interaction
picture, provided the Hamiltonian is taken to be the perturbation part V̂ (t),
only. In the Heisenberg picture V̂ (t) = 0, such that,

ĤU = 0 , (1.270)

which confirms Eq. (1.248).

1.6.6 Ehrenfest’s theorem

For linear operators satisfying [Â, B̂] = ı we can give a generalization of the commu-
tation relation:

[Â, F (Â, B̂)] = ı
δF (Â, B̂)

δB̂
. (1.271)

This can be verified by a Taylor expansion of F (Â, B̂) by B̂ around B̂ = 0, as will be
shown in Exc. 1.6.7.4. An immediate consequence of [p̂, r̂] = −ıℏ is,

[p̂, F (r̂)] = −ıℏδF (r̂)
δr̂

. (1.272)

The momentum observable is not singularly defined by the commutation rela-
tion, because each unitarily transformed operator satisfies the relation as well. We
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can expand a unitarily equivalent momentum as p̃ = UpU† = eıF (r)pe−ıF (r) =
p+ ı[F (r), p] + 1

2! [F (r), [F (r), p]] + ... using the relation (1.272).

The observables in the Heisenberg picture follow the same equations of motion as
the corresponding classical quantities. This correspondence principle is called Ehren-
fest theorem. For example, when working with position and momentum variables

[r̂, k̂] = ı and Ĥ = ℏ2

2m k̂
2 + V (r̂), we obtain,

[r̂, Ĥ] = ıℏ
δĤ

δp̂
and [p̂, Ĥ] = −ıℏδĤ

δr̂
, (1.273)

and using the Heisenberg equation (1.250),

˙̂r =
δĤ

δp̂
and ˙̂p = −δĤ

δr̂
. (1.274)

We will demonstrate this in Exc. 1.6.7.5 for the case of a harmonic potential.
In the Schrödinger picture the equation of motion for the eigenvalues of the ob-

servables takes the form,

d

dt
⟨ÂS⟩ = ⟨∂tψ|ÂS|ψ⟩+ ⟨ψ|∂tÂS|ψ⟩+ ⟨ψ|ÂS|∂tψ⟩ =

∂

∂t
⟨ÂS⟩+

ı

ℏ
⟨[Ĥ, ÂS]⟩ . (1.275)

The eigenvalues behave as Heisenberg observables in Eq. (1.249), that is, they follow
the laws of Hamilton’s and Newton’s mechanics.

The important result now is that the equations that govern the eigenvalues of the
observables are identical in the both pictures, since from the Heisenberg picture we
obtain with Eq. (1.249),

d

dt
⟨ÂH⟩ =

∂

∂t
⟨ÂH⟩+

ı

ℏ
⟨[Ĥ, ÂH]⟩ . (1.276)

1.6.7 Exercises

1.6.7.1 Ex: Coupled two-level atom

Calculate the time evolution of an atom with two levels coupled by a light field using
the Hamiltonian,

Ĥ =

(
0 1

2ℏΩ
1
2ℏΩ −ℏ∆

)
,

where ∆ = ω−ω0 is the detuning between the frequency of the light and the frequency
of the transition and Ω the Rabi frequency. Help: Determine the matrix of the
eigenvalues Ê and the unitary transformation U given by U†ĤU = Ê and use the

formal solution of the Schrödinger equation: |ψ(t)⟩ = e−ıĤt/ℏ|ψ0⟩ = e−ıU
†ÊUt/ℏ|ψ0⟩ =

U†e−ıÊt/ℏU|ψ0⟩.

1.6.7.2 Ex: Commutator in Schrödinger’s and Heisenberg’s picture

Show that operators which commute with the Hamiltonian in the Schrödinger picture
also do it in the Heisenberg picture. Use the rule [Ĥ, ÂB̂] = Â[Ĥ, B̂] + [Ĥ, Â]B̂.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_AtomoExcitado.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ImagemHeisenberg1.pdf
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1.6.7.3 Ex: Motion in Heisenberg’s picture

Consider the Hamiltonian Ĥ = p̂2

2m + m
2 ω

2r̂2. Using the relation [p̂, r̂] = −ıℏ calculate
in the Heisenberg picture the equations of motion for the observables p̂, r̂, and p̂r̂.

1.6.7.4 Ex: Commutator of a function of operators

Prove the relationship (1.271).

1.6.7.5 Ex: Ehrenfest’s theorem

Compare the equations of Ehrenfest’s theorem with those of Hamilton-Jacobi for a
classical particle subject to a time-independent potential. Discuss the classical limit,
that is, when the Hamilton-Jacobi equations approach those of Ehrenfest.

1.7 Symmetries in quantum mechanics

We already saw in Sec. 1.5.4 that, beyond observables, there is another category of
operators that does not correspond to measurable physical quantities, but is very
useful in the quantum formalism. These are the unitary transformations. In this
section we will encounter some interesting examples.

1.7.1 Translation, rotation and momentum kick

1.7.1.1 Temporal translation operator

The temporal evolution of a system is described by the Schrödinger equation whose
formal solution can be written as follows,

|ψ(t)⟩ = e−ıĤt/ℏ|ψ(0)⟩ . (1.277)

With this we can define an evolution operator or temporal translation,

Utp(τ) ≡ e−ıĤt/ℏ such that Utp(τ)|ψ(t)⟩ = |ψ(t+ τ)⟩ . (1.278)

The temporal evolution has already been discussed extensively in Sec. 1.6.

1.7.1.2 Spatial translation operator

In this section we look for a unitary translation operator,

Ttrr ≡ a+ r . (1.279)

Before this, we need to derive the following calculation rule for commutators, which
will be done in Exc. 1.7.6.1:

eÂB̂e−Â = B̂ + [Â, B̂] + 1
2! [Â, [Â, B̂]] + ... . (1.280)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ImagemHeisenberg2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_TeoremaEhrenfestense1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_TeoremaEhrenfestense2.pdf
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Applying this formula to the two operators p̂ and r̂ related by the commutation
rule (1.160), we obtain,

e(ı/ℏ)a·p̂r̂e(−ı/ℏ)a·p̂ = r̂+ [(ı/ℏ)a · p̂, r̂] + 1
2! [(ı/ℏ)a · p̂,a]

0
+ ... = r̂+ a . (1.281)

That is, the operator

Utr(a) ≡ e(−ı/ℏ)a·p̂ (1.282)

performs a spatial translation of the position operator. The operator is unitary,

Utr(a)−1 = Utr(a)† , (1.283)

and forms a group since Utr(a)Utr(b) = Utr(a + b). Summarizing the impact of the
translation on the operators of space,

U†
tr(a)r̂Utr(a) = r̂+ a , U†

tr(a)p̂Utr(a) = p̂ , (1.284)

where the second relation is obvious.
To demonstrate how the translation acts on a state, let us calculate,

r̂e(−ı/ℏ)a·p̂|r⟩ = e(−ı/ℏ)a·p̂(r̂+ a)|r⟩ = (r+ a)e(−ı/ℏ)a·p̂|r⟩ . (1.285)

Hence,

Utr(a)|r⟩ = e(−ı/ℏ)a·p̂|r⟩ = |r+ a⟩ . (1.286)

Therefore, if a particle is in an eigenstate |r⟩ of the position operator (i.e. located
exactly at the position r), then after Utr(a) acts on it, the particle is at the position
r+a: The translation operator Utr(a) hence moves particles and fields by the distance
a.

Finally, we want to describe, how the translation operator acts on an arbitrary
state |ψ⟩ represented in position-space, remembering that the position-space wave-
function is obtained via ψ(r) ≡ ⟨r|ψ⟩, as already mentioned in Sec. 1.5.7. We get,

ψ′(r) ≡ Ttrψ(r) ≡ ⟨r|Utr(a)|ψ⟩ = ⟨U†
tr(a)r|ψ⟩ = ⟨r− a|ψ⟩ = ψ(r− a) . (1.287)

This relation is easier to remember as ψ′(r + a) = ψ(r), which can be read as: The
value of the new wavefunction at the new point equals the value of the old wavefunction
at the old point.

Example 15 (Translation of spatial wavefunctions): Here is an example

showing that these two descriptions (1.286) and (1.287) are equivalent. The

state |x⟩ corresponds to the wavefunction ψ(r) = δ3(r − x), while the state

Utr(a)|x⟩ = |x + a⟩ corresponds to the wavefunction ψ′(r) = δ3(r − (x + a)).

These indeed satisfy ψ′(r) = ψ(r− a).

Comparing the expansion of the translation operator,

⟨r|Utr(a)|ψ⟩ = ⟨e(ı/ℏ)a·p̂r|ψ⟩ =
(
1 +

ı

ℏ
a · p̂− 1

ℏ2
(a · p̂)2

2!
+ ..

)
⟨r|ψ⟩ , (1.288)



1.7. SYMMETRIES IN QUANTUM MECHANICS 71

with the Taylor expansion of the wavefunction,

⟨r+ a|ψ⟩ = ψ(r+ a) =

(
1 + a · ∇+

(a · ∇)2
2!

+ ..

)
ψ(r) . (1.289)

we obtain

p̂|r⟩ = ℏ
ı
∇|r⟩ . (1.290)

Finally, we note that the momentum operator can be defined via the translation
operator,

p̂ = ıℏ ∇aUtr(a)|a=0 . (1.291)

1.7.1.3 Momentum kick operator

In this section we look for the unitary transformation into a frame moving a constant
velocity v,

Tkcp ≡ p+mv . (1.292)

As this transformation corresponds to a ’translation’ in momentum space, the form of
the unitary transformation operator and the way it acts on operators and states are
easy to derive by analogy to the spatial translation operator, simply interchanging the
roles of the conjugate operators of space and momentum. The corresponding unitary
operator in the so-called kick operator,

Ukc(mv) = e(ı/ℏ)mv·r̂ . (1.293)

where mv = p = ℏk is the gain in momentum due to the kick.
A common situation where such a kick occurs is the photonic recoil that an

atom receives upon absorption of a photon. Using the relationship (1.280) derived in
Exc. 1.7.6.1 it is easy to verify the following expressions of the left-hand panel,

eık·r̂|r⟩ = eık·r|r⟩
eık·r̂|p⟩ = |p+ ℏk⟩

e−ık·r̂r̂eık·r̂ = r̂

e−ık·r̂p̂eık·r̂ = p̂+ ℏk

e−ık·r̂
p̂2

2m
eık·r̂ =

(p̂+ ℏk)2

2m

,

e−ıb·p̂/ℏ|r⟩ = |r+ b⟩
e−ıb·p̂/ℏ|p⟩ = e−ıb·p/ℏ|p⟩

eıb·p̂/ℏr̂e−ıb·p̂/ℏ = r̂+ b

eıb·p̂/ℏp̂e−ıb·p̂/ℏ = p̂

eıb·p̂/ℏV (r̂)e−ıb·p̂/ℏ = V (r̂+ b)

(1.294)
The rule implies [eık·r̂, p̂] ̸= 0 ̸= [eık·r̂, Ĥ]. That is, we describe the kick by simply
adding the corresponding momentum ℏk to the system and adjusting the kinetic
energy accordingly.

The right-hand panel of Eq. (1.294) summarizes rules for calculating with the
spatial displacement operator, Utr(b) = e−ıb·p̂/ℏ, introduced in Sec. 1.7.1. By analogy
we find [e−ıb·p̂/ℏ, r̂] ̸= 0 ̸= [e−ıb·p̂/ℏ, Ĥ] when the particle is subject to a potential.
The (complex) eigenstates of the translation operator e(−ı/ℏ)a·p̂ are the momentum
states |p⟩, and the eigenvalues e(−ı/ℏ)a·p are unitary. The (complex) eigenstates of
the kick operator eık·̂r are the position states |r⟩, and the eigenvalues eık·r are unitary.
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The ’kick’ will play a prominent role in the discussion of photonic recoil (see
Sec. 2.6.2). Of course the assumption of an infinitely fast transition is an idealization
and the ultimate reason for the non-conservation of momentum and energy by the
system. In real situations, such as in the case of photonic recoil, the dynamics should
be described by a collision process which conserves momentum and energy.

1.7.1.4 Periodic systems, quasi-momentum

Systems with potentials are generally not translationally invariant, since according to
Eq. (1.294),

e(ı/ℏ)a·p̂V (r̂)e(−ı/ℏ)a·p̂ = V (r̂+ a) ̸= V (r̂) . (1.295)

An exception are precisely those potentials satisfying V (r̂ + a) = V (r̂), which are
called periodic. The (complex) eigenstates |q⟩ of the translation operator, given by,

Utr(a)|q⟩ = e(−ı/ℏ)a·q|q⟩ , (1.296)

are called quasi-momenta. In contrast to the continuous symmetries of homogeneity or
isotropy, periodicity and parity represent discrete symmetries. We will study periodic
systems state in detail in Chp. 4.

1.7.1.5 Rotation operator

In this section we look for the unitary transformation corresponding to the rotation
operator [813],

Trtr ≡ eα⃗×r . (1.297)

We calculate,

eα⃗×r =
∑

n

(α⃗×)n
n!

r = r+ α⃗× r+ 1
2 α⃗× (α⃗× r) + .. (1.298)

= êα(êα · r) + êα × r sinα− êα × (êα × r) cosα ,

as we will see in Exc. 1.7.6.4. We define the unitary rotational transformation by,

U†
rt(α⃗)r̂Urt(α⃗) = eα⃗×r̂ , Urt(α⃗)|r⟩ = |eα⃗×r⟩ . (1.299)

To derive the explicit form of the rotation operator, we consider two rotations
about the same axis α⃗ = λ1êα + λ2êα, such that

Urt(λ1êα)Urt(λ2êα) = Urt(λ1êα + λ2êα) . (1.300)

Calculating the derivative of this equation by λ1 and then setting λ1 = 0, we have,

dUrt(λ1êα)
dλ1

∣∣∣
λ1=0

Urt(λ2êα) = dUrt(λ1êα+λ2êα)
d(λ1+λ2)

∣∣∣
λ1=0

d(λ1+λ2)
dλ1

∣∣∣
λ1=0

=⇒ dλ1êα

dλ1

∣∣∣
λ1=0

· ∇α⃗Urt(α⃗)|α⃗=0 Urt(λ2êα) = dUrt(λ2êα)
dλ2

=⇒ êα · L̂
ıℏ Urt(λ2êα) = dUrt(λ2êα)

dλ2

(1.301)
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where we define the angular momentum operator,

L̂ ≡ ıℏ ∇α⃗Urt(α⃗)|α⃗=0 . (1.302)

The solution of the last differential equation (1.301) is, with λ2êα = α⃗|λ1=0,

Urt(α⃗) = e(−ı/ℏ)L̂·α⃗ . (1.303)

The explicit form of L̂ follows from its action on a state |ψ⟩ projected into position
space. In analogy with the derivation of the result (1.290), comparing the expansion
of the operator (1.303),

⟨r|Urt(α⃗)|ψ⟩ = ⟨e(ı/ℏ)α⃗·L̂r|ψ⟩ =
(
1 +

ı

ℏ
α⃗ · L̂+ ..

)
⟨r|ψ⟩ , (1.304)

with the Taylor expansion of the wavefunction,

⟨eα⃗×r|ψ⟩ = ψ(r+ α⃗× r+ ..) = [1 + (α⃗× r) · ∇r + ..]ψ(r) , (1.305)

we find,
ı

ℏ
α⃗ · L̂ = (α⃗× r) · ∇r = α⃗ · (r×∇r) =

ı

ℏ
α⃗ · (r× p̂) , (1.306)

that is,

L̂ = r̂× p̂ . (1.307)

Therefore, the observable L̂ is the orbital angular momentum of the particle producing
the rotations.

Inserting the angular momentum expression (1.307) into the rotation operator
(1.303) and using the rule (1.280) as well as the commutation relations for position and
momentum operators, we can now verify the expression directly. Note also that the
rotation transformation acts on the momentum operators and states in the same way
as on position operators and states. This is not surprising, as the angular momentum
operator is symmetric in r and p.

1.7.2 Transformation to accelerated and rotating frames

1.7.2.1 Transformation to an accelerated frame

Transformation into a accelerated frame with acceleration g adds a homogeneous
force term to the Hamiltonian. At non-relativistic velocities, the transformation can
be performed via a unitary kick into a system instantaneously moving at velocity gt,

Uac(g) = e(ı/ℏ)mgt·r̂ , |ψac⟩ = Uac(g)|ψ⟩ . (1.308)

This operator removes the force field from the Hamiltonian, since the Schrödinger
equation,

ıℏ
d

dt
|ψ⟩ = Ĥ|ψ⟩ with Ĥ =

p̂2

2m
+mg · r̂ , (1.309)
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transforms into the Schrödiner equation,

ıℏ
d

dt
|ψac⟩ = ıℏ

d

dt

(
e(ı/ℏ)mgt·r̂|ψ⟩

)
(1.310)

= ıℏe(ı/ℏ)mgt·r̂ d
dt
|ψ⟩+ ıℏ|ψ⟩ d

dt
e(ı/ℏ)mgt·r̂

= e(ı/ℏ)mgt·r̂
(

p̂2

2m
+mg · r̂

)
|ψ⟩ −mg · r̂e(ı/ℏ)mgt·r̂|ψ⟩ = p̂2

2m
|ψac⟩ .

1.7.2.2 Transformation to a rotating frame

Transformation into a frame rotating at angular velocity ω⃗ adds ... to the Hamilto-
nian. At non-relativistic velocities, the transformation can be performed via a unitary
rotation transformation into a system rotated by an angle ω⃗t,

Uar(ω⃗) = e(ı/ℏ)mω⃗t·L̂ , |ψar⟩ = Uar(ω⃗)|ψ⟩ . (1.311)

1.7.3 Composite transformations, Galilei boost

Some transformations are generated by several operators. The Galilei transform of a
system into a moving frame, the displacement operator for coherent states (2.130), or
the squeezing operator (14.104) are prominent examples. These transformations can
be handled using Glauber’s formula, which will be introduced below, before we turn
our attention to the Galilei transform.

1.7.3.1 Glauber’s and Baker-Campbell-Hausdorff’s formulas

The Baker-Campbell-Hausdorff formula for operators Â and B̂ reads,

ln(eÂeB̂) = Â+ B̂ + 1
2 [Â, B̂] + 1

12 [Â, [Â, B̂]]− 1
12 [B̂, [Â, B̂]] + ... . (1.312)

A useful special case called Glauber’s formula follows when Â and B̂ commute with
their commutator, i.e. [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0,

e[B̂,Â]/2eÂeB̂ = eÂ+B̂ = e[Â,B̂]/2eB̂eÂ . (1.313)

Example 16 (The Baker-Hausdorff formula): In order to prove the Baker-
Hausdorff formula, we consider the operator,

Ĝ(τ) ≡ eτ(Â+B̂)e−τB̂e−τÂ .

The derivative is,

Ĝ′(τ) = (Â+ B̂)eτ(Â+B̂)e−τB̂e−τÂ − eτ(Â+B̂)B̂e−τB̂e−τÂ − eτ(Â+B̂)e−τB̂Âe−τÂ

= eτ(Â+B̂)
[
Âe−τB̂ − e−τB̂Â

]
e−τÂ = eτ(Â+B̂)

[
Â− e−τB̂ÂeτB̂

]
e−τB̂e−τÂ

= eτ(Â+B̂)
[
Â−

(
Â+ [−τB̂, Â] + 1

2!
[−τB̂, [−τB̂, Â]] + ..

)]
e−τB̂e−τÂ ,

using the formula (1.280). If now [Â, [Â, B̂]] = 0 = [B̂, [Â, B̂]], then,

Ĝ′(τ) = eτ(Â+B̂)τ [B̂, Â]e−τB̂e−τÂ = −τ [Â, B̂]eτ(Â+B̂)e−τB̂e−τÂ = −τ [Â, B̂]Ĝ(τ) .
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The solution of this differential equation is,

Ĝ(τ) ≡ e−(τ2/2)[Â,B̂]Ĝ(0) .

With Ĝ(0) = 1 we obtain at the point τ = 1,

eÂ+B̂e−B̂e−Â = e−(1/2)[Â,B̂] .

1.7.3.2 Galilei and Lorentz boosts

The Galilei transform (or Galilei boost) is defined by,

TGr = r+ vt and TGp = p+mv . (1.314)

It describes the transformation of a system into a moving frame. Obviously, the
Galilei transform must satisfy Tv1

Tv2
= Tv1+v2

, while this certainly does not hold for
relativistic velocities.

In quantum mechanics we define,

Ĝ = p̂t− r̂m = ıℏ∇vUG(v)|v=0 , (1.315)

with the Galilei boost,

UG(v) = e(−ı/ℏ)v·Ĝ . (1.316)

We can simplify this unitary transform using Glauber’s formula (1.313). To this end
we first calculate the commutator,

[v · p̂,v · r̂] = −ıℏv2 , (1.317)

which does not depend on p̂ nor r̂, but may contribute a phase factors. With this we
can rewrite the expression (1.316),

UG(v) = e(−ı/ℏ)vt·p̂+(ı/ℏ)vm·̂r (1.318)

= e(−ı/ℏ)mtv
2/2e(ı/ℏ)vm·̂re(−ı/ℏ)vt·p̂ = e(ı/ℏ)mtv

2/2e(−ı/ℏ)vt·p̂e(ı/ℏ)vm·̂r

U†
G(v) = e(ı/ℏ)vt·p̂−(ı/ℏ)vm·̂r

= e(−ı/ℏ)mtv
2/2e(−ı/ℏ)vm·̂re(ı/ℏ)vt·p̂ = e(ı/ℏ)mtv

2/2e(ı/ℏ)vt·p̂e(−ı/ℏ)vm·̂r .

We apply these expressions to transform the position and momentum operators,

U†
G(v)r̂UG(v) = e(ı/ℏ)vt·p̂r̂e(−ı/ℏ)vt·p̂ = r̂+ vt

U†
G(v)p̂UG(v) = e(−ı/ℏ)vm·̂rp̂e(ı/ℏ)vm·̂r = p̂+mv

, (1.319)

and consequently,

U†
G(v)

p̂2

2m
UG(v) =

[U†
G(v)p̂UG(v)]

2

2m
=

(p̂+mv)
2

2m
(1.320)

U†
G(v)V (r̂)UG(v) = V (U†

G[v)r̂UG(v)] = V (r̂+ vt) .
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Settingm = 0 the Galilei boost simply reproduces a spatial translation by a vector vt,
and setting t = 0 the Galilei boost simply becomes the prescription for the momentum
kick by an amount mv.

Applying the Galilei boost expressions (1.318) to states, we find,

UG(v)|r⟩ = e(ı/ℏ)mv·(r̂+vt/2)|r+ vt⟩

UG(v)|p⟩ = e−(ı/ℏ)tv·(p̂+mv/2)|p+mv⟩
. (1.321)

The prefactors do not shift the states, but only contribute irrelevant phase factors.
Finally, knowing the commutator of p̂ and r̂ we derive,

[G · a,G · b] = 0 , (1.322)

for any vectors a and b, and with that, using Glauber’s formula (1.313), we verify,

UG(v1)UG(v2) = e(−ı/ℏ)(v1+v2)·G−[v1·G,v2·G]/2ℏ2

= UG(v1 + v2) . (1.323)

Obviously, for very high velocities, the Galilei-boost should be replaced by the
Lorentz transform (or Lorentz boost) [425]. Here, we only note, that the additivity
of velocities expressed by equation (1.323) does not hold for non-collinear relativistic
velocities 23.

1.7.4 Gauge transformations

We learn in electrodynamics 24, that the motion of a particle carrying the charge q
and interacting with an electrical potential Φ(r, t) and a magnetic vector potential
A(r, t) is governed by the electric and the magnetic field,

E⃗(r, t) = −∇Φ− ∂tA and B⃗(r, t) = ∇×A . (1.324)

Also, we know that the fields are invariant under the substitution,

Φ→ Φ′ ≡ Φ− ∂tχ and A→ A′ ≡ A+∇χ , (1.325)

where χ(r, t) is a scalar field called gauge field.
In quantum mechanics the gauge transform defined by,

Ugg(χ) = e−ıqχ(r,t)/ℏ (1.326)

obviously must keep the Schrödinger equation invariant. However, since the gauge
field may depend on time, as shown in Sec. 1.6.5, the Hamiltonian is different in the
transformed system. Transforming operators and wave functions as,

Ĥ → UggĤU−1
gg ≡ ĤU and |ψ⟩ → Ugg|ψ⟩ ≡ |ψU ⟩ , (1.327)

23See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 9.1.6.
24See script on Electrodynamics: Electricity, Magnetism and Radiation (2025).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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we calculate for the energy,

ĤU |ψU ⟩ = Uggıℏ d
dtU−1

gg |ψU ⟩ = UggıℏU−1
gg

d
dt |ψU ⟩+ Uggıℏ

(
−ıq
ℏ U−1

gg
dχ
dt

)
|ψU ⟩

= ıℏ
(
d
dt −

ıq
ℏ
dχ
dt

)
|ψU ⟩ , (1.328)

in accordance with the transformation rule (1.267) for time-dependent unitary trans-
formations. For the momentum, we get analogously,

p̂U |ψU ⟩ = Ugg(−ıℏ∇)U−1
gg |ψU ⟩ = Ugg(−ıℏ)U−1

gg (∇|ψU ⟩) + Ugg(−ıℏ)
(−ıq

ℏ U−1
gg ∇χ

)
|ψU ⟩

= (−ıℏ)
[
∇− ıq

ℏ (∇χ)
]
|ψU ⟩ , (1.329)

This corresponds to the substitutions 25,

Uggıℏ
d

dt
U−1
gg = ıℏ

d

dt
+ q

dχ

dt
and Uggp̂U−1

gg = p̂− q∇χ . (1.330)

This shows that the gauge transformation applies to the minimal coupling rule (see
Sec. 10.1.2),

Ĥ = Ĥkin+qΦ
Ugg↷ Ĥkin+qΦ+q∂tχ and mv̂ = p̂−qA Ugg↷ p̂−qA−q∇χ , (1.331)

confirming the rules (1.325). That is, the Hamiltonian of a particle carrying the
charge q and interacting with an electric potential Φ and a magnetic vector potential
A is,

Ĥ = 1
2m (p̂− qA− q∇χ)2 + qΦ+ q∂tχ . (1.332)

1.7.5 Noether’s theorem and conservation laws

The fundamental laws of physics are often expressed as symmetries. The knowledge
of symmetries allows the characterization of a system and its behavior without the
need to know its details. We can often deduce the differential equation of motion
from the symmetries. The fundamental symmetries define the fundamental laws of
physics. Following Noether’s theorem each symmetry corresponds to a conserved
quantity, that is, a quantities that remains invariant for all time. The invariance of a
system under symmetry transformation represents a conservation law. For example,
the homogeneity of space corresponds to the conservation of linear momentum.

In quantum mechanics, a symmetry transformation is defined by,

|ψ⟩ −→ U|ψ⟩ and Q̂ −→ UQ̂U† . (1.333)

Therefore, to find a conservation law, i.e., an invariable observable (also called con-
stant of motion), we must verify that the observable and the transformed wavefunc-
tions simultaneously satisfy the same fundamental equations (that is, Schrödinger’s
or Heisenberg’s equation) as the original observable and wavefunctions. For example,

25In quadrivetorial notation ıℏ∂µ −→ ıℏ∂µ + q∂µχ.
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if the wavefunction |ψ⟩ satisfies the Schrödinger equation, the wave function U|ψ⟩
must do this too,

ĤU|ψ⟩ !
= ıℏ

d

dt
U|ψ⟩ = ıℏ

dU
dt
|ψ⟩+ ıℏU d

dt
|ψ⟩ = ıℏ

dU
dt
|ψ⟩+ UĤ|ψ⟩ . (1.334)

Consequently, we obtain the relation,

[Ĥ,U ] = ıℏU̇ . (1.335)

As shown in (1.275) and (1.276), an operator that commutes with the Hamiltonian
does not explicitly depend on time, that is, it is conserved.

1.7.5.1 Temporal homogeneity

Temporal homogeneity means invariance under translation in time by a fixed time
interval τ , that is, under the unitary temporal transformation,

U(τ) ≡ |ψ(τ)⟩⟨ψ(0)| = e(ı/ℏ)Êτ . (1.336)

Since d
dte

(ı/ℏ)Êτ = 0, this means [e(ı/ℏ)Êτ , Ĥ] = 0, which implies conservation of

energy [Ê, Ĥ] = 0. This will be verified in the Exc. 1.7.6.5.

Example 17 (Homogeneity of time): We imagine the following mental ex-

periment or Gedankenexperiment: We consider two attractive bodies that move

away from each other until they reach the perihelia. At this point, before the

bodies reapproach, we change the laws, for example, by modifying the force of

attraction. As a consequence, when the bodies arrive at the initial point, the

total energy is non-zero. Therefore, the conservation of energy indicates that

the laws are invariant.

1.7.5.2 Temporal isotropy

The fundamental laws of classical physics and quantum mechanics are all symmetrical
under time reversal. That is, they are remain invariant when we change the arrow of
time, t→ −t.

1.7.5.3 Spatial homogeneity

Spatial homogeneity means invariance under spatial translation, that is, under the
unitary translational transformation,

Utr(a) ≡
∫
|r+ a⟩⟨r|d3r = e(−ı/ℏ)p̂·a . (1.337)

This is equivalent to momentum conservation [p̂, Ĥ] = 0 26.

26Imagine that the forces attracting two bodies to each other are not equal: Contrary to Newton’s
third law, body A attracts body B, more than the body B attracts the body A. In that case after a
while the two bodies have different momenta. With the unitary transformation Utr(a) = e−ıp̂·a/ℏ ≃
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Example 18 (Homogeneity of space): Ehrenfest’s theorem says [p̂, H] =

−ıℏ ∂H
∂p̂

. Therefore, the commutator is not zero when there is a potential, Ĥ =

p̂2/2m + V (r̂). This is obvious, because the potential introduces an energy

inhomogeneity to a particle interacting with the potential. However, this does

not mean that the space itself is inhomogeneous, because in order to verify the

translational invariance of space, we must displace the entire system, that is, the

particle together with the potential. For example, if the potential is generated

by another particle we must consider the Hamiltonian Ĥ = p̂2
1/2m1+ p̂2

2/2m2+

V (r̂1 − r̂2).

1.7.5.4 Spatial isotropy

Spatial isotropy means invariance under rotation, that is, under rotational unitary
transformation,

Urt(ϕ) ≡ e(−ı/ℏ)L̂ϕ . (1.338)

This is equivalent to the conservation of angular momentum [L̂, Ĥ] = 0.

1.7.5.5 Parity conservation

Besides continuous symmetry transformations there exist discrete transformations.
Discrete symmetries are important in elementary particle physics. The parity con-
servation means invariance to spatial reflection: r→ −r. A parity transformation is
defined by the mirroring of the wavefunction through a point in space, for example
r = 0,

P̂ |ψ(r)⟩ ≡ |ψ(−r)⟩ . (1.339)

with

P̂ 2 = P̂ . (1.340)

We talk about even parity when P̂ |ψ(r)⟩ = |ψ(r)⟩ and odd parity when P̂ |ψ(r)⟩ =
−|ψ(r)⟩. See Exc. 1.7.6.6.

1.7.5.6 Invariance to the velocity of the inertial system

The Galilei boost asks for Galilei invariance regarding the transformation,

UG(v) ≡
x
|r+ vt,p+mv⟩⟨r,p|d3rd3p , (1.341)

that is, the equations of motion ruling the dynamics of the inertial system under
consideration should not dependent on its velocity v.

1− ıϵp · a/ℏ+ ... we have,

UtrH|ψ⟩ = UtrEψ |ψ⟩ = EψU|ψ⟩ = H|ψ(r+ a)⟩ =? = H|ψ(r⟩ .

Since, [H, p̂] = 0, Heisenberg’s equation yields,

∂

∂t
⟨ψ|p̂ · a|ψ⟩ = 1

ıℏ
⟨ψ|[p̂ · a, Ĥ]|ψ⟩ = 0 .
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1.7.5.7 Charge conservation

Let us consider again the gauge transform (1.325). We know that the Lagrangian
density in free space is given in terms of the potentials by,

L(xµ) = 1
4µ0

FµνFµν −Aµjµ = ε0
2 E⃗2 − 1

2µ0
B⃗2 −Aµjµ (1.342)

= ε0
2 [∇Φ+ ∂tA]2 − 1

2µ0
[∇×A]2 − Φρ+A · j ,

and the action is simply the four-dimensional integral,

S =

∫
L(xµ)dV dt . (1.343)

From the Lagrangian formulation, Maxwell’s equations can be derived by requiring
the action to be minimal, δS = 0, which yields the Euler-Lagrange equations. As
the field equations do not change under gauge transformation, this implies that the
action is also unchanged.

To find the relation with charge conservation, we simply have to compare the
actions in different gauges. First, we express the Lagrangian transformed into the old
gauge,

L′(xµ) = ε0
2 {∇[Φ− ∂tχ ] + ∂t[A+ ∇χ ]}2 − 1

2µ0
{∇ × [A+ ∇χ 0

]}2 (1.344)

− [Φ− ∂tχ]ρ+ [A+∇χ] · j
= L+ (∂tχ)ρ+∇χ · j .

With this result, we can calculate the difference between the actions under gauge
transformation and recall, that they can not be different:

0
!
= S′ − S =

∫
[(∂tχ)ρ+∇χ · j]dV dt = −

∫
χ[∂tρ+∇ · j]dV dt , (1.345)

using partial integration 27 and choosing volumes so large, that every charge is inside.
This is the continuity equation derived from the global gauge invariance of the action.
The calculation really is nothing more than an application of Noether’s theorem from
which we could have derived directly the continuity equation, ∂µj

µ = 0.
In summary, the conservation of charge means invariance with respect to gauge

transformations,
Ucl(χ) ≡ e−ıqχ(r,t)/ℏ , (1.346)

where χ is the gauge field. We note that q and χ are conjugated observables. There-
fore, if [χ, Ĥ] = 0, then the charge q is a conserved quantity.

Transformations can be combined. For example, we believe that nowadays all laws
are invariant with respect to CPT transformation, that is, a combination of charge
conjugation, parity inversion, and θ-transform.

1.7.6 Exercises

1.7.6.1 Ex: Calculus with commutator

Derive the rule (1.280) via a Taylor expansion of the operator Ĝ(τ) ≡ eτÂB̂e−τÂ.
27Think about the argument, because

∫
∂t|χρdt = 0!

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CalculoComutadores.pdf
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1.7.6.2 Ex: Particle in a homogenous gravitational field

a. Consider a particle free to move along the axis of gravity. Derive the time-dependent
unitary operator describing the transformation into the particle’s rest frame and
check, whether the transformation satisfies the expression (1.267).
b. Solve the Schrödinger equation and derive the Heisenberg equations for x̂ and p̂.
c. Calculate the phase shift due to gravity from the solution of the Schrödinger equa-
tion.

1.7.6.3 Ex: Phase shift in a Ramsey-Bordé interferometer

a. Calculate the time dependence of the dynamical phase accumulated by an atom in
the field of gravity as a function of its initial momentum.
b. Derive the phase difference of a particle wavefunction passing through a Ramsey-
Bordé interferometer 28.
c. Assuming that both free evolution periods of the Ramsey cycle have the same
duration τ , generalize the result obtained under (b) allowing for an arbitrary initial
velocity.

1.7.6.4 Ex: Rotation operator

Derive the rule eα⃗×r =
∑
n

(α⃗×)n

n! r = êα(êα · r) + êα × r sinα− êα × (êα × r) cosα.

1.7.6.5 Ex: Constants of motion

Show at the example of energy conservation using the relation (1.335), that energy
commutes with the Hamiltonian if Ė = 0.

1.7.6.6 Ex: Parity

Show that the eigenfunctions of the Hamiltonian Ĥ = −(ℏ/2m)(d2/dx2)+V (x) have
well-defined parity, i.e., parity is a good quantum number in cases where the energy is
an even function of position, V (x) = V (−x).

1.8 Further reading

W. Demtröder, Atoms, Molecules and Photons: An Introduction to Atomic, Molec-
ular, and Quantum Physics [ISBN]

J. Weiner et al., Light-matter interaction, Fundamentals and applications [DOI]

R. Loudon, Oxford Science Publications, Oxford (1982), The quantum theory of light
[ISBN]

Ph.W. Courteille (2020), Script on Optical spectroscopy: A practical course [http]

28A Ramsey-Bordé interferometer consists of a π/2-π-π/2 laser pulse sequence (similar to photon
echo in NMR) of Bragg diffraction pulses leading to a splitting and recombination of an atomic
wavefunction in momentum space. Assume that every pulse transfers one unit of photonic recoil,
ℏk, to the atomic center-of-mass, where k is the wavevector of the laser light.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ImagemHeisenberg3.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ImagemHeisenberg4.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CalculoRotacoes.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ConstanteMovimento.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ParidadeAutofuncoes.pdf
http://isbnsearch.org/isbn/978-3-642-10298-1
http://doi.org/10.1002/9783527617883
http://isbnsearch.org/isbn/978-0-198-50176-3
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumOpticsLab.pdf
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Ph.W. Courteille (2020), Script on Electrodynamics: Electricity, magnetism, and
radiation [http]

Ph.W. Courteille (2020), Script on Quantum mechanics applied to atomic and molec-
ular physics [http]

W.R. Theis, Teubner (1985), Grundzüge der Quantentheorie [ISBN]

C. Cohen-Tannoudji, B. Diu, F. Laloe, Wiley Interscience, Quantum mechanics,
vol. 1,2 [ISBN]

L.I. Schiff, McGraw-Hill Book Company (1968), Quantum mechanics [ISBN]

J.J. Sakurai, J.J. Napolitano, 2nd ed. Springer (2011), Modern Quantum Mechanics
[ISBN]

H.A. Bethe, R. Jackiw, 3rd ed. Taylor & Francis (1997), Intermediate Quantum
Mechanics [ISBN]

D.J. Griffiths, Introduction to Quantum Mechanics [ISBN]

Photonics101, How the Gauge Invariance of the Action implies Charge Conservation
[http]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
http://isbnsearch.org/isbn/978-3-322-84835-2
http://isbnsearch.org/isbn/978-0-471-56952-7
http://isbnsearch.org/isbn/978-0-070-85643-1
http://isbnsearch.org/isbn/978-1-108-47322-4
http://isbnsearch.org/isbn/978-0-201-32831-8
http://isbnsearch.org/isbn/978-1-107-17986-8
http://photonics101.com/relativistic-electrodynamics/gauge-invariance-action-charge-conservation#show-solution


Chapter 2

Linear motion / Separable
potentials

We have seen in the last chapter that the motion of a particle is ruled by an interplay
of kinetic and potential energy and can be characterized by solving the Schrödinger
equation. For arbitrary potential landscapes the solution can be difficult to obtain. In
contrast, the existence of symmetries can dramatically simplify the task. The present
chapter is devoted to, potentials with separable Cartesian dimensions, the subsequent
Chp. 3 to potentials with cylindrical or spherical symmetries, and Chp. 4 to periodic
potentials. More specifically, we will analyze in the present chapter the translational
and vibrational motion of a quantum particle and give special consideration to the
rectangular potential and the harmonic oscillator.

2.1 Translational motion

In one dimension the Hamiltonian of a free particle is,

Ĥ = − ℏ2

2m

d2

dx2
. (2.1)

Therefore, the general solution of the Schrödinger stationary equation,

Ĥψ(x) = Eψ(x) , (2.2)

is,

ψ(x) = Aeıkx +Be−ıkx with k =
√

2mE
ℏ2 . (2.3)

Note that the eıkx functions are not quadratically integrable, since
∫∞
−∞ |eıkx|2dx =∫∞

−∞ dx → ∞. On the other side, they do not represent actual physical systems. In
practice, we need to consider wave packets or specify a finite volume for the particle.
Note also that the spectrum of eigenvalues is continuous. Do the Exc. 2.1.4.1.

2.1.1 Quadratic integrability

To allow for an interpretation as probability density we need to ask for quadratic
integrability, ∫

|ψ|2d3r = 1 . (2.4)

83



84 CHAPTER 2. LINEAR MOTION / SEPARABLE POTENTIALS

This means that the wavefunction can not be infinite inside a finite volume. But it
can be infinite within an infinitely small volume. Also, since the Schrödinger equation
contains the second derivative by position, the wavefunction must be continuous and
have a continuous derivative.

2.1.2 Separation of dimensions

Frequently, a 3D potential can be written in the way,

V (x, y, z) = Vx(x) + Vy(y) + Vz(z) . (2.5)

This is the case, for example, for a rectangular well with Vx(x) = Vy(y) = Vz(z) =
V0/3 inside the well and V (x, y, z) = 0 outside. It also holds for a harmonic potential,

V (r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (2.6)

In these cases, the following ansatz for the wavefunction is generally useful,

ψ(r) = ψx(x)ψy(y)ψz(z) , (2.7)

since inserting the ansatz into the Schrödinger equation,

[
− ℏ2

2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
+ Vx(x) + Vy(y) + Vz(z)

]
ψx(x)ψy(y)ψz(z) (2.8)

= Eψx(x)ψy(y)ψz(z) ,

the equation separates into three independent one-dimensional equations,

− ℏ2

2m

ψ′′
x(x)

ψx(x)
+ Vx(x) = const. ≡ Ex , (2.9)

and the same for y and z. Since, E = Ex + Ey + Ez may have the same value
for different combinations of Ex, Ey and Ez, multidimensional systems are often
degenerate.

2.1.3 Homogeneous force fields, gravity

The behavior of a wavefunction in a homogeneous force field has been studied in
Excs. 1.7.6.2 and 1.7.6.3.

2.1.4 Exercises

2.1.4.1 Ex: Trapped particle

Consider the problem of a particle of mass m forced to move in x-direction and
completely confined to a box, with walls placed at the positions x = 0 and x = a.
a. The particle be in the ground state, what is its energy and its wavefunction?
b. Suppose the particle has the following wavefunction:

ψI(x) =
1√
7a

[
2 cos

(
π
2a (6x− a)

)
− 3ı sin

(
2π
a x
)
+ cos

(
π
2a (2x− a)

)]
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_TrappedParticle.pdf
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what is the probability that a measurement of the energy yields the result E = 2π2ℏ2

ma2 ?
c. Considering again the ground state of item (a), what is the probability distribution
for the momentum of the particle in this state?
d. Still starting from the ground state, suppose we remove (instantaneously) the walls,
leaving the particle free (Ĥ = p̂2/2m). What is the energy of this free particle?
Formulae:

∫ L

0

eıBx sin
(nπx
L

)
dx =

nπL[1− (−1)neıBL]
n2π2 −B2L2

for n = 1, 2, 3, ...

∫ ∞

−∞

x2

(1− x2)2 cos2 πx2 dx = π2

4

2.2 Rectangular potentials

The continuity equation (1.123) teaches us that the probability flux of a moving
particle cannot make abrupt changes. That is, even if the particle encounters an
obstacle represented by a smooth or abrupt variation of the potential depth, the
wavefunction and its derivative must remain continuous, unless the potential step is
infinitely high.

2.2.1 Box potential

Let us now place the particle into a rectangular potential well, such that the Hamil-
tonian is,

Ĥ = − ℏ2

2m

d2

dx2
+ V (x) with V (x) =

{
0 for x ∈ [0, L]

∞ for x /∈ [0, L]
. (2.10)

As the potential barriers are high, the walls are hard, that is, the particle, even being
a quantum particle, can not penetrate. The wavefunction and the possible energy
values are,

ψ(x) =

√
2

L
sin

nπx

L
and En =

n2ℏ2π2

2mL2
. (2.11)

The Exc. 2.2.5.1 asks to demonstrate the result (2.11) illustrated in Fig. 2.1.
Obviously the spectrum of eigenvalues is now discrete. They can be enumerated by

an integer n called quantum number. Note that the energy levels are not equidistant.

Example 19 (Localization energy): There is a minimal energy E1 = ℏ2π2

2mL2

which is called zero point energy or localization energy. This energy can be
understood as a consequence of Heisenberg’s uncertainty principle. We can make
the following gross estimation of the zero point energy. Obviously, the particle
is localized with an uncertainty lower than ∆x < L. Hence, ∆p > ℏ/∆x > ℏ/L.
The average kinetic energy is,

⟨p2⟩
2m

=
⟨p⟩2 +∆p2

2m
=

∆p2

2m
>

ℏ2

2mL2
.

The fact that the numerical value is different from the value calculated by the

formula (2.11) comes from the particular geometry of the box potential.
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Figure 2.1: (code) (a) Wavefunctions and energies in the box potential. (b) The rectangular

potential well with the reference energy set to the height of the well.

2.2.2 Multidimensional box potential

In a multidimensional well there can be degeneracy if the well exhibits symmetries. In
the case of a 2D quadratic well Lx = Ly, the eigenenergies are doubly degenerate, since
Enx,ny = Eny,nx . In the case of a 3D cubic well Lx = Ly = Lz, the eigenenergies
are 6-fold degenerate, because Enx,ny,nz

= Eny,nz,nx
= Enz,nx,ny

= Enz,ny,nx
=

Eny,nx,nz
= Enx,nz,ny

. The states and energies of the 2D well are calculated in
Exc. 2.2.5.2.

2.2.3 Potentials with several sections of constant depths

To find the global wavefunction in potentials with several sections of constant depths,
we solve Schrödinger’s equations separately for each section labeled by a = 1, 2, ..,

(
− ℏ2

2m

d2

dx2
+ Va

)
ψa(x) = Eψa(x) . (2.12)

The general solution for a section a with potential energy Va is,

ψa(x) = Aae
ıkax +Bae

−ıkax , (2.13)

where ka = 1
ℏ
√
2m(E − Va). If E > Va, the wave is propagating. ka is the Broglie

wavevector of the wave. If E < Va, the wave is evanescent. That is, the wave decays
within a distance κa = −ıka.

If the particle is confined, that is, if E < V (x → ±∞), the possible energy levels
are quantized and the spectrum is discrete.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareWell.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareWell.m


2.2. RECTANGULAR POTENTIALS 87

For every transition between two sections a = 1 and a = 2 we require the boundary
conditions,

ψ1(x) = ψ2(x) and ψ′
1(x) = ψ′

2(x) . (2.14)

Together with the normalization, 1 =
∫∞
−∞ |ψ|2dx, these conditions are sufficient to

determine the wavefunction unambiguously.

Figure 2.2: Scheme of a potential with several sections of constant depths.

2.2.4 Potential well

Consider a particle with energy E and a potential well of finite depth such that
V (x) = V0 < 0 for −L/2 > x > L/2 and V (x) = 0 otherwise, as illustrated in
Fig. 2.3(a). The particle be confined, E < 0.

Figure 2.3: (a) Scheme of a two-sided and (b) one-sided potential well.

The wavevectors are

k1 = k3 = 1
ℏ

√
2mE = ı 1ℏ

√
2m|E| = ıκ1 and k2 = 1

ℏ

√
2m(E − V0) . (2.15)

with κ1 ∈ R+. The boundary conditions yield,

A1e
−ık1L/2 +B1e

ık1L/2 = A2e
−ık2L/2 +B2e

ık2L/2 (2.16)

−ık1A1e
−ık1L/2 + ık1B1e

ık1L/2 = −ık2A2e
−ık2L/2 + ık2B2e

ık2L/2

A2e
ık2L/2 +B2e

−ık2L/2 = A3e
ık1L/2 +B3e

−ık1L/2

ık2A2e
ık2L/2 − ık2B2e

−ık2L/2 = ık1A3e
ık1L/2 − ık1B3e

−ık1L/2 .

For confined particles, E < 0, the problem is totally symmetric. In addition, the
wavefunction must disappear for x→ ±∞. Therefore, we can simplify,

A1 = 0 = B3 and A3 = B1 . (2.17)
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The first two equations (2.16) now give,

B1e
ık1L/2 = A2e

−ık2L/2 +B2e
ık2L/2 =

k2
k1

(
−A2e

−ık2L/2 +B2e
ık2L/2

)
. (2.18)

We now consider the quotient B2/A2. Using the right part of equation (2.18),

B2

A2
=
e−ık2L/2(k2 + k1)

eık2L/2(k2 − k1)
=
e−ık2L(k2 + ıκ1)

2

k22 + κ21
. (2.19)

Since the amplitudes are real, the imaginary part of the quotient (2.19) should dis-
appear, which is the case when,

0 = Im e−ık2L(k2 + ıκ1)
2 = 2κ1k2 cos k2L+ (κ21 − k22) sin k2L (2.20)

=⇒ tan k2L =
2κ1k2
−κ21 + k22

.

In order to construct graphically the values of the momenta k2 of the particle
associated with the allowed energy levels, we introduce a constant β ≡ ℏ/(L

√
2m|V0|).

Hence,

tan k2L = tan
1

β

√
1− |E/V0| =

2
√
|E/V0|

√
1− |E/V0|

1− 2|E/V0|
=

2κ1k2
−κ21 + k22

. (2.21)
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Figure 2.4: (code) Graphical solution for a finite bilateral potential well. The red dotted

curves represent the tangents (left side of the equation (2.21)), the solid green curves the

hyperbolas (right side of the equation), the circles in cyan are the eigenenergies. When

0 < E−V0 ≪ E, they converge to the eigenenergies of the infinitely deep well (black crosses

and vertical black line).

At the bottom of deep potentials, that is, when 0 < E − V0 ≪ E, or equivalently,
E ≃ V0, we have k2 ≪ κ1 and hence, tan k2L → 0 =⇒ k2L = nπ. The energies are

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
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then,

E − V0 =
ℏ2

k22
2m =

ℏ2π2

2mL2
n2 . (2.22)

Apply the notions obtained in this section to solve Excs. 2.2.5.3 and 2.2.5.4.

2.2.5 Exercises

2.2.5.1 Ex: Particle in a box

Obtain the wavefunctions and associated energy levels of a particle confined in a box,
where V (x) = 0 for 0 ≤ x ≤ l and V (x) =∞ outside.

2.2.5.2 Ex: Particle in a two-dimensional box

Obtain the wavefunctions and associated energy levels of a particle trapped in a two-
dimensional box inside which the particle is confined to a rectangular surface with
dimensions L1 in x-direction and L2 in y-direction, V (x, y) = 0 for 0 ≤ x ≤ L1 and
0 ≤ y ≤ L2 and V (x, y) =∞ else.

2.2.5.3 Ex: Particle in a well

Obtain the energies of the bound states of a particle in the potential well in which
V (x) = ∞ for x < 0, V (x) = −V0 for 0 ≤ x ≤ L/2 and V (x) = 0 to x > L/2.
Compare the obtained values with those of the symmetrical well discussed in Sec. 2.2.4
and the well with infinitely high walls discussed in Sec. 2.2.1.

2.2.5.4 Ex: Least bound states and localization energy

Calculate, based on the discussion in Sec. 2.2.4, the minimum required potential depth
V0 of a three-dimensional finite rectangular well potential of size L to have a bound
state capable of trapping an 87Rb atom. Assuming a trap volume of L = 10nm, how
deep should the trap be?

2.3 Potential barrier

The linear momentum of a particle described by ψ(x, t) = Aeıkx is,

⟨ψ|p̂|ψ⟩ = ⟨ψ|ℏ
ı

d

dx
|ψ⟩ = ℏk . (2.23)

Therefore, this particle propagates towards +∞. On the contrary, the particle Be−ıkx

propagates towards −∞. Thus, the two solutions (2.13) of the Schrödinger equation
(2.12) correspond to propagating particle waves. From here on we will use the letter
A (B) to denote the amplitudes of waves propagating in direction ∞ (−∞).

In locations where the potential changes abruptly, the particle can be partially
reflected.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_ParticulaCaixa.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_CaixaBidimensional.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_ParticulaPoco1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_ParticulaPoco2.pdf
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2.3.1 T -scattering matrix

As we have already shown in the previous section, we can write the transformation
of the amplitudes due to a potential step at position L as,

A2e
ık2L +B2e

−ık2L = A1e
ık1L +B1e

−ık1L (2.24)

ık2A2e
ık2L − ık2B2e

−ık2L = ık1A1e
ık1L − ık1B1e

−ık1L .

We can summarize these two equations in a matrix formalism,

(
A2

B2

)
= T

(
A1

B1

)
, (2.25)

with the scattering matrix T for a particle with energy E (see Fig. 2.2),

T = 1
2



(
1 + k1

k2

)
eı(k1−k2)L

(
1− k1

k2

)
eı(−k1−k2)L(

1− k1
k2

)
eı(k1+k2)L

(
1 + k1

k2

)
eı(−k1+k2)L


 (2.26)

= 1
2

(
e−ık2L 0

0 eık2L

)(
1 + k1

k2
1− k1

k2

1− k1
k2

1 + k1
k2

)(
eık1L 0

0 e−ık1L

)
.

If there are more zones with different depths, we may concatenate the scattering
matrices. Denoting by Tm→n the scattering matrix describing a transition at position
Lm,n of a potential of the depth Vm to another potential Vn, we write,

T = T2→3T1→2 . (2.27)

2.3.2 S-scattering matrix

Another common definition is the scattering matrix S,
(
A2

B1

)
= S

(
B2

A1

)
. (2.28)

To see how the scattering matrices are interconnected, we start with

(
A2

B2

)
= T

(
A1

B1

)
=

(T11A1 + T12B1

T21A1 + T22B1

)
, (2.29)

Multiplying the first line with T22 and the second with −T12 and adding them,

T22A2 − T12B2 = (T11T22 − T12T21)A1 . (2.30)

This equation resolved by A2 along with the second equation (2.29) resolved by B1

give, (
A2

B1

)
= S

(
B2

A1

)
=

(T12/T22 T11 − T12T21/T22
1/T22 −T21/T22

)(
B2

A1

)
. (2.31)
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The matrix S describes the causality of scattering process more adequately: The
amplitude A2 in region (2) results from the superposition of a wave B2 being reflected
by the barrier and a wave A1 being transmitted by the barrier. The amplitude B1 in
region (1) results from the superposition of a wave A1 being reflected by the barrier
and a wave B2 being transmitted by the barrier. Therefore, the matrix S is more
appropriate for the description of the quantum reflection, as we will discuss in the
next section. However, it has the disadvantage that it can not be concatenated in the
same way as the T matrices.

Unlike the T matrix the S matrix is unitary, since

detS = S11S22 − S12S21 = −T11T22
= −e2ık1L . (2.32)

Also, it is possible to show,

S†S =

(S∗11 S∗21
S∗12 S∗22

)(S11 S12
S21 S22

)
=

(
1 0

0 1

)
. (2.33)

2.3.3 Quantum reflection at a potential step

The quantum reflection is a non-classical property of the motion of a particle. An
example is the reflection of a quantum particle by an attractive potential. To study
this effect, we consider a plane wave eık1x propagating in region (1) (E1 > V1) en-
countering a potential step up or down at position x = 0 leading to another region
(2). Using the S matrix formalism introduced in the previous section,

S =
1

k1 + k2

(
k2 − k1 2k1
2k2 k1 − k2

)
, (2.34)

we find that one part of the wave is reflected into the region (1), another is transmitted
into the region (2),

(
A2

B1

)
= S

(
0

1

)
=

(T11 − T12T21/T22
−T21/T22

)
=

(
(1+k1/k2)

2−(1−k1/k2)2
2(1+k1/k2)

− 1−k1/k2
1+k1/k2

)
(2.35)

=
1

k1 + k2

(
2k1

k1 − k2

)
.

We use B2 = 0, since no wave comes from the side of region (2), and A1 = 1,
because it simplifies the formulas and does not affect the generality of the results.
The interesting results are:

• Even when E2 < V2, the particle enters the classically prohibited region: ψ2(x) ∝
e−κ2x with κ2 = 1

ℏ
√

2m(V2 − E2), i.e. the transmission is non-zero, |A2| > 0.

• Even with E2 > V2, the particle has a probability of being reflected at the step,
|B1| > 0.

Example 20 (Contrast of a partially reflected wave): Defining K± ≡
1
2

(
max |ψ1|2 ±min |ψ1|2

)
, the contrast of the wavefunction in region (1) is given
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by K−/K+. Writing the function as ψ1 = eık1x + B1e
−ık1x it is easy to show,

that

|B1| =
√
K+ +K− −

√
K+ −K−√

K+ +K− +
√
K+ −K−

≃ K−

2K+
. (2.36)

This formula can be understood as an analogue of Fresnel formula for matter

waves 1.

In Exc. 2.3.7.1 we calculate the behavior of a Broglie wave passing through a
potential step and entering a classically forbidden region. In Exc. 2.3.7.2 we investigate
a model describing the collision between attracting or repelling particles via a partial
reflection at a potential step.

2.3.4 Continuity of probability flow

The continuity equation (1.123) requires that the probability flux be preserved in
stationary situations,

0 =
dj

dx
=

d

dx

ℏ
2mı

[
ψ∗
(
d

dx
ψ

)
−
(
d

dx
ψ∗
)
ψ

]
. (2.37)

Applying this to a potential step separating the regions n = 1, 2, we find,

jn =
ℏ

2mı

[
ψ∗ d
dx
ψ − ψ d

dx
ψ∗
]

(2.38)

=
ℏ

2mı

[
(A∗

ne
−ıknx +B∗

ne
ıknx)(ıknAne

ıknx − ıknBne−ıknx)

− (Ane
ıknx +Bne

−ıknx)(−ıknA∗
ne

−ıknx + ıkB∗
ne
ıkx)

]

=
ℏkn
m

(|An|2 − |Bn|2) .

Hence, j1 = j2 implies k1|A1|2 − k1|B1|2 = k2|A2|2 − k2|B2|2. Assuming that the
particle comes from side 1 and B2 = 0, we have,

1 = |B1|2 + k2
k1
|A2|2 = R+ T , (2.39)

defining the transmission T and the reflection R as,

T ≡ k2
k1
|S12|2 = k2

k1
|A2|2 and R ≡ |S22|2 = |B1|2 . (2.40)

2.3.5 Tunneling and quantum reflection at a potential well

Particles thrown with a kinetic energy E against potential barriers can cross them
even if V0 > E or be reflected even when V0 < E, as illustrated in Fig. 2.5(a). This
can be verified by considering a particle propagating from x = −∞ towards x = +∞
through a potential well located at x ∈ [0, a]. We determine the concatenation T =
T2→3T1→2. Then we find the S matrix that corresponds to the T matrix and solve the

1In this sense light reflection at an optical interface (with typical losses of 4% for glass) can be
interpreted as quantum reflection of light
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problem in the same way as in the previous section. For example, we can calculate
the transmission and reflection probabilities. The formula is derived in Exc. 2.3.7.3,

R = 1− T =

(
1 +

16E/V0(1− E/V0)
(eκL − e−κL)2

)−1

, (2.41)

and sketched in Fig. 2.5(b). The phenomenon is called tunneling. Do the Exc. 2.3.7.4.

0 0.5 1
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0.5

1
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3
E
/V
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0 0.5 1

T

0

0.5

1

1.5

2

2.5

3

E
/V

0

β = 3

β = 10

(b)

Figure 2.5: (code) (a) Tunnel effect and quantum transmission and reflection at a
potential barrier. (b) Coefficients of transmission and reflection (horizontal) through
the shown potential barrier as a function of the energy normalized to the height of the
barrier E/V0. The dashed red curve corresponds to a low barrier, β ≡ 1

ℏL
√
2mV0 = 3,

the blue solid curve corresponds to a deep barrier β = 10.

2.3.6 The delta-potential

In quantum mechanics the δ-potential can be used to simulate situations, where a
particle is free to move in two regions of space with a barrier in between. For example,
an electron can move almost freely in a conducting material, but when two conducting
surfaces are put close together, the interface between them acts as a barrier for the
electron that can be approximated by a δ-potential. The δ-potential is a limiting
case of the finite potential well when we decrease its width while maintained the
product of its width and its depth constant. Here, for simplicity, we only consider a
one-dimensional potential well, but the analysis can be expanded to more dimensions.

The time-independent Schrödinger equation for the wavefunction ψ(x) of a particle
in one dimension is,

− ℏ2

2m

d2ψ(x)

dx2
+ αδ(x)ψ(x) = Eψ(x) , (2.42)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_Reflection.m
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The potential is called a δ-potential well if α is negative and a δ-potential barrier if
α is positive.

The potential splits the space in two parts (x < 0 and x > 0). In each of these
parts the potential energy is zero, and the Schrödinger equation reduces to,

d2ψ

dx2
= −2mE

ℏ2
ψ . (2.43)

The solutions of this differential equation are linear combinations of eıkx and e−ıkx,
where the wavenumber k is related to the energy by k =

√
2mE
ℏ . In general, due to

the presence of the δ-potential in the origin, the coefficients of the solution need not
be the same in both half-spaces:

ψ(x) =

{
ψ1(x) = A1e

ıkx +B1e
−ıkx for x < 0

ψ2(x) = A2e
ıkx +B2e

−ıkx for x > 0
, (2.44)

where, in the case of positive energies (real k), eıkx represents a wave traveling to
the right, and e−ıkx one traveling to the left. One obtains a relation between the
coefficients by imposing that the wavefunction be continuous at the origin,

ψ(0) = ψ1(0) = ψ2(0) = A1 +B1 = A2 +B2 . (2.45)

A second relation can be found by studying the derivative of the wavefunction.
Normally, we could also impose differentiability at the origin, but this is not possible
because of the δ-potential. However, if we integrate the Schrödinger equation around
x = 0 over an interval [−ϵ,+ϵ]:

− ℏ2

2m

∫ +ϵ

−ϵ
ψ′′(x)dx+

∫ +ϵ

−ϵ
V (x)ψ(x)dx = E

∫ +ϵ

−ϵ
ψ(x)dx . (2.46)

In the limit ϵ→ 0 the right-hand side of this equation vanishes,

− ℏ2

2m
[ψ′

2(0)− ψ′
1(0)] + αψ(0) = 0 . (2.47)

Substituting the definition of ψ into this expression, we obtain,

− ℏ2

2m
ık(A1 −B1 −A2 +B2) + α(A1 +B1) = 0 . (2.48)

The boundary conditions thus give the following restrictions on the coefficients,

A1 +B1 −A2 −B2 = 0

A1 −B1 −A2 +B2 =
2mα

ıkℏ2
(A1 +B1)

. (2.49)
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Figure 2.6: (a) The δ-potential (green) and the bound state wavefunction (blue). (b) Double
δ-potential (green).

2.3.6.1 Bound states

The bound state wavefunction solution to the δ-function potential is continuous ev-
erywhere, but its derivative is not defined at x = 0.

In any one-dimensional attractive potential there will be a bound state. To find its
energy, note that for negative energies, E < 0, the wavenumber k = ı

√
2m|E|/ℏ = ıκ

is imaginary and the wavefunctions are exponentially increasing or decreasing func-
tions of x (see above). Requiring that the wavefunctions do not diverge at infinity
eliminates half of the terms: A2 = B1 = 0. The wavefunction is then an evanescent
wave,

ψ(x) =

{
ψ1(x) = A1e

κx for x < 0

ψ2(x) = B2e
−κx for x > 0

. (2.50)

From the boundary conditions and normalization conditions, it follows that,

A1 = B2 =
√
κ and κ = −mα

ℏ2
, (2.51)

from which follows that α must be negative, that is the bound state only exists for
the well, and not for the barrier. The Fourier transform of this wavefunction is a
Lorentzian function. The energy of the bound state is then,

Eb = −ℏ2κ2

2m
= −mα

2

2ℏ2
. (2.52)

The δ-potential well and its wavefunction are exhibited in Fig. 2.6(a).

2.3.6.2 Scattering

For positive energies, the wavefunctions are oscillating functions of x. That is, the
particle is free to move in either half-space: x < 0 or x > 0, but it may be scattered at
the δ-potential. The quantum case can be studied in the following situation: a particle
incident on the barrier from the left side (A1) may be reflected (B1) or transmitted
(A2). To find the amplitudes for reflection and transmission for incidence from the
left, we set in the equations (2.49) A1 = 1 (incoming particle), B1 = r (reflection),
B2 = 0 (no incoming particle from the right), and A2 = t (transmission), and solve
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for r and t,

t =
1

1− mα

ıℏ2k

, r =
1

ıℏ2k
mα
− 1

. (2.53)

Due to the mirror symmetry of the model, the amplitudes for incidence from the right
are the same as those from the left. The result is that there is a non-zero probability,

R = |r|2 =
1

1 +
ℏ4k2

m2α2

=
1

1 +
2ℏ2E
mα2

. (2.54)

for the particle to be reflected. This does not depend on the sign of α, that is, a
barrier has the same probability of reflecting the particle as a well. This is a significant
difference from classical mechanics, where the reflection probability would be 1 for
the barrier (the particle simply bounces back), and 0 for the well (the particle passes
through the well undisturbed). The probability for transmission is,

T = |t|2 = 1−R =
1

1 +
m2α2

ℏ4k2

=
1

1 +
mα2

2ℏ2E

. (2.55)

0 0.5 1
R , T

0
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E
/E

b

Figure 2.7: (code) Transmission (red) and reflection (blue) probability of a δ-potential well.

The energy E > 0 is in units of Eb = mα2/2ℏ2.

An application example regards the interfaces between two conducting materials.
In the bulk of the materials, the motion of the electrons is quasi-free and can be
described by the kinetic term in the above Hamiltonian with an effective mass m.
Often, the surfaces of such materials are covered with oxide layers or are not ideal
for other reasons. This thin, non-conducting layer may then be modeled by a local
δ-function potential. Electrons may then tunnel from one material to the other giving
rise to a current.

Example 21 (Double delta-potential): The δ-function model is actually a
one-dimensional version of the hydrogen atom. The model becomes particularly
useful when applied to the hydrogen molecule ion, as shown in the following.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_DeltaTunneling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_DeltaTunneling.m
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The double-well δ-function models a diatomic hydrogen molecule by the corre-
sponding Schrödinger equation:

− ℏ2

2m

d2ψ

dx2
(x) + V (x)ψ(x) = Eψ(x) ,

where the potential is now:

V (x) = −qλ
[
δ
(
x+ R

2

)
+ δ

(
x− R

2

)]
where 0 < R <∞ is the ’internuclear’ distance with δ-function (negative) peaks
located at x = ±R/2 (shown in brown in the diagram). Keeping in mind the
relationship of this model with its three-dimensional molecular counterpart, we
use atomic units and set ℏ = m = 1. Here 0 < λ < 1 is a formally adjustable
parameter. From the single well case, we can infer the ’ansatz’ for the solution
to be:

ψ(x) = Ae−d|x+R
2 | +Be−d|x−R

2 | .
Matching of the wavefunction at the δ-function peaks yields the determinant:∣∣∣∣∣ q − d qe−dR

qλe−dR qλ− d

∣∣∣∣∣ = 0 where E = −d
2

2
.

Thus, d is found to be governed by the pseudo-quadratic equation:

d±(λ) =
1
2
q(λ+ 1)± 1

2

{
q2(1 + λ)2 − 4λq2[1− e−2d±(λ)R]

}1/2

,

which has two solutions d = d±. For the case of equal charges (symmetric
homonuclear case), λ = 1 and the pseudo-quadratic reduces to:

d± = q[1± e−d±R] .

The ’+’ case corresponds to a wave function symmetric about the midpoint
(shown in red in the diagram) where A = B and is called gerade. Corre-
spondingly, the ’-’ case is the wavefunction that is anti-symmetric about the
midpoint where A = −B is called ungerade (shown in green in the diagram).
They represent an approximation of the two lowest discrete energy states of the
three-dimensional H+

2 and are useful in its analysis. Analytical solutions for the
energy eigenvalues for the case of symmetric charges are given by:

d± = q +W (±qRe−qR)/R ,

where W is the standard Lambert function. Note that the lowest energy corre-

sponds to the symmetric solution d+. In the case of unequal charges, and for

that matter the three-dimensional molecular problem, the solutions are given

by a generalization of the Lambert function (see section on generalization of

Lambert function and references herein).

One of the most interesting cases is when qR ≤ 1, which results in d− = 0.

Thus, one has a non-trivial bound state solution with E = 0. For these specific

parameters, there are many interesting properties that occur, one of which is

the unusual effect that the transmission coefficient is unity at zero energy.



98 CHAPTER 2. LINEAR MOTION / SEPARABLE POTENTIALS

2.3.7 Exercises

2.3.7.1 Ex: Tunneling

A rubidium-87 atom moves in free space (region 0) with velocity v = 1 cm/s (see
diagram). Suddenly it encounters a gap with depth V1 = −kB · 1µK.
a. What is the particle’s Broglie wavelength in region 1?
b. Now the atom encounters a barrier of height V2 = −V1. What is the probability
that the particle will enter region 2?
c. What is the probability of finding the particle inside region 2 up to a depth of
x2 = 10nm?

Figure 2.8: Particle in a potential landscape.

2.3.7.2 Ex: Collisions

A collision between attractive or repulsive particles can be described by the Schrödinger
equation as a one-dimensional scattering,

− ℏ2

2m
ψ′′(x) + αδ(x)ψ(x) = Eψ(x) .

The energy spectrum may be a discrete spectrum of bound states and a continuum
of free states.
a. Calculate the transmission coefficient for the case of a particle with energy E thrown
against the potential energy barrier V (x) = αδ(x). Does the result change for the
case when V (x) = −αδ(x), with α > 0?
b. For this last potential, find the energy of the bound state and its corresponding
wavefunction.

2.3.7.3 Ex: Energy barrier

Consider a particle with energy E thrown (in the direction êx) against a potential
energy barrier of finite height and width, such that V (x) = 0 for x < 0 or x > L and
V (x) = V0 for 0 ≤ x ≤ L.
a. Obtain the reflection and transmission coefficients R and T for the case E > V0.
Discuss the result.
b. Do the same for the case E < V0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_TunelamentoAtomico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_ColisoesInterparticulas.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_BarreiraEnergetica.pdf
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2.3.7.4 Ex: Wavepacket reflected at a potential barrier

Simulate the reflection of a Gaussian wavepacket at a potential barrier for various
kinetic energies using the Julia programming language.

2.4 Numerical approaches for arbitrary potentials

In practice, many potentials are not box-shaped or harmonic, which renders an ana-
lytic treatment difficult or impossible. To some extend approximation methods can
be used, as will be discussed in Sec. 5.5, but many problems can only be solved nu-
merically. In Sec. 2.4.1 we will first show at the example of arbitrary one-dimensional
potentials, how the Schrödinger equation can be solved numerically and how this
allows one to determine the eigenenergies of bound states. In Sec. 2.4.2 we will intro-
duce the very efficient Fourier grid method for calculating bound state energies and
wavefunctions.

2.4.1 Calculation of free and bound states wavefunctions

Numerical routines or packages are available for solving ordinary differential equations
(ODE). Generally it is advantageous to convert the one-dimensional second-order
Schrödinger equation into two first-order differential equations via,

φ′(x) =
2m

ℏ2
[E − V (x)]ψ(x) and ψ′(x) = φ(x) . (2.56)

For free states, E > V (x), we just solve equation (2.56) specifying the kinetic
energy of the particle. The magenta curve in Fig 2.9(a) is an example of a collisional
wavefunction in a Morse-type interatomic potential.

For bound states, we must additional satisfy the eigenvalue problem, since only
specific discrete eigenenergies E are permitted. A possible procedure consists in
guessing an eigenvalue E, calculating the associated wavefunction ψ(x) using an ODE
solver, check whether it diverges for x → ±∞, and vary E until ψ(x) no longer
diverges. Then we repeat the procedure for are bound state energies, until we got
them all. The red curve in Fig 2.9(a) shows the wavefunction of a vibrational state in
a Morse-type potential obtained by solving the Schrödinger equation and adjusting
the energy until the function stops diverging in the classically forbidden range. In this
example the iteration process was stopped when the wavefunction diverged at around
R ≈ 19aB. In Exc. 2.4.4.1 we will practice this technique at the example of Hermite’s
differential equation, and in Exc. 2.4.4.2 we will study the case of a potential whose
depth linearly increases with the distance from origin.

2.4.2 The Fourier grid method for bound states

The objective of the Fourier grid method is to analytically solve the 1D Schrödinger
equation with an arbitrary potential V (r) on a grid of 2N + 1 equally spaced spatial
points ri, where i = 0,±1, ...,±N . That is, we assume the potential V (ri) to be given
at these points. Skaling by the spatial coordinate r by r/L = x/2π, we get for the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PotentialBarrier01.pdf
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Figure 2.9: (code) (a) Free particle (magenta) and bound state wavefunction (red) calculated

using a MATLAB ODE solver. (b) Bound state wavefunction of the harmonic oscillator cal-

culated using a MATLAB ODE solver. For the red curve the eigenvalue has been slightly

overestimated and for the blue curve underestimated. (c) Calculation of the harmonic oscil-

lator energies and wave functions using the Fourier grid method.

dimensionless coordinate x the Schrödinger equation,

[
− h2

2mL2

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) , (2.57)

with the grid given by,

xi ≡
2πi

2N + 1
. (2.58)

The main difficulty for numerically solving such eigenvalue equations is obviously
the derivative. Numerical differentiation schemes can be cast into the following general
form [575],

f ′(xi) =
N∑

j=−N
Dijf(xj) , (2.59)

that is, they can be expressed as a multiplication of the discretized wavefunction
represented as a vector f(xj) and a matrix Dij . These schemes are usually based on
interpolation polynomials and are the more accurate, the higher the order of these
polynomials is chosen to be.

Example 22 (Newton’s derivation matrix): For example the Newton method,
which represents the lowest order interpolation polynomial, consists in approx-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
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imating the differentiation matrix by,

Dijf(xj) ≃ 1

∆x



. . .
. . .

−1 1

−1
. . .

. . .




...

fj−1

fj
...

 =


...

fj−fj−1

∆x
fj+1−fj

∆x

...

 ≃


...

f ′
j−1

f ′
j

...

 .

Instead of using interpolation polynomials, one may consider over-all approxima-
tion of a function f(x) by a Fourier series of N -th order, i.e. to assume,

f(x) =

∞∑

k=−∞
cke

ıkx ≃
N∑

k=−N
cke

ıkx . (2.60)

The highest harmonics of the Fourier expansion N is set by the distance between two
grid points. The expansion coefficients are,

ck =
1

2π

∫ 2π

0

f(x)e−ıkxdx −→ 1

2π

N∑

j=−N
f(xj)e

−ıkxj∆x =
1

2N + 1

N∑

j=−N
f(xj)e

−ıkxj .

(2.61)
Now, substituting x by the discrete variable xi, we take the derivative f ′(xi) of the
function (2.60), insert the expansion coefficients (2.61), and compare the resulting
expression to the linear combination (2.59) of the functional values f(xj),

f ′(xi) =
N∑

k=−N
ıkcke

ıkxi =
ı

2N + 1

N∑

k=−N
k

N∑

j=−N
f(xj)e

ık(xi−xj) (2.62)

=
2

2N + 1

N∑

k=1

k

N∑

j=−N
f(xj) sin k(xj − xi) ≡

N∑

j=−N
Dijf(xj) .

From this we see, that the matrix elements Dij are given by,

Dij =
2

2N + 1

N∑

k=1

k sin k(xj − xi) =
2

2N + 1

N∑

k=1

k sin
2πk(i− j)
2N + 1

. (2.63)

The sum can be evaluated analytically, as shown in Exc. 2.4.4.3 [785],

Dii = 0 and Di ̸=j =
(−1)i−j

2 sin
xi−xj

2

=
(−1)i−j

2 sin π(i−j)
2N+1

. (2.64)

We may proceed similarly for the second derivative,

f ′′(xi) = −
N∑

k=−N
k2cke

ıkxi =
−1

2N + 1

N∑

k=−N
k2

N∑

j=−N
f(xj)e

ık(xi−xj) (2.65)

=
−2

2N + 1

N∑

k=1

k2
N∑

j=−N
f(xj) cos k(xj − xi) ≡

N∑

j=−N
(D2)ijf(xj) ,
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yielding,

(D2)ij =
−2

2N + 1

N∑

k=1

k2 cos k(xj − xi) =
−2

2N + 1

N∑

k=1

k2 cos
2πk(i− j)
2N + 1

. (2.66)

Again, the sum can be evaluated analytically, as shown in Exc. 2.4.4.3 [785],

(D2)ii = −
N2 + 2

12
and (D2)i̸=j = −

(−1)i−j

2 sin2 π(i−j)2N+1

. (2.67)

With this scheme of differentiation, the set of difference equations representing
the problem (2.67) is readily found to be [550, 250, 785],

Ĥψ = Eψ with Ĥij = −
h2

2mL2
(D2)ij + V (xj)δij . (2.68)

This eigenvalue problem can easily be solved on a computer, see Fig 2.9(b).

2.4.2.1 Mapping coordinate grids to potentials

To properly describe the wavefunction of a particle it obviously takes a minimum
number of points per de Broglie wavelength. Now, if the particle moves in a potential
characterized by shallow and deep areas, the de Broglie wavelength suffers large vari-
ations. Numerical procedures evaluating the wavefunction on a grid of points then
benefit from a flexible distribution of the points along the propagation axis: Where
the potential is shallow less points are needed, while in deeper areas the grid is more
dense.

The general procedure consists in rescaling the Schrödinger equation
[
− ℏ2

2m

d2

dr2
+ V (r)

]
ψ(r) = Eψ(r) (2.69)

by transforming the r-axis into an x-axis according to [477],

r = f(x) , dr = J(x)dx , Vx(x) = V (r) , ψx(x) = ψ(r) . (2.70)

The function f−1(r) must now be designed as a function of the local potential depth
such as to produce less grid points x in shallow areas of the potential. Applying the
transform we find,

[
− ℏ2

2m

(
1

J(x)2
d2

dx2
− J ′(x)
J(x)3

d

dx

)
+ Vx(x)

]
ψx(x) = Eψx(x) . (2.71)

Introducing a new wavefunction via,

ψx(x) = J−1/2(x)ϕ(x) (2.72)

we get,
[
− ℏ2

2mJ2

d2

dx2
+

ℏ2J ′

mJ3

d

dx
+ Vx +

ℏ2

2m

(
1

2

J ′′

J3
− 5

4

J ′2

J4

)]
ϕ = Eϕ , (2.73)
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or introducing an effective potential,

V̄x ≡ Vx +
ℏ2

2m

(
7

4

J ′2

J4
− 1

2

J ′′

J3

)
, (2.74)

we get, [
− ℏ2

4m

(
1

J(x)2
d2

dx2
+

d2

dx2
1

J(x)2

)
+ V̄x(x)

]
ϕ(x) = Eϕ(x) . (2.75)

Finally, we apply the Fourier grid method to the mapped coordinate grid in the
same way as in (2.68), however with the modified matrices,

(D2)ii = −N2+2
12

1
J2
i

and (D2)i̸=j = − (−1)i−j

2 sin2 π(i−j)
N

(
1

2J2
i
+ 1

2J2
j

)

V̄ (xj) = V (xj) +
1

2m

(
7
4
J′2

J4 − 1
2
J′′

J3

) , (2.76)

where J(x) = f ′(x), J ′(x) and J ′(x) are calculated numerically on the grid xj .
In practice, to adapt the mapped grid to the rapidity of the de Broglie wave

oscillations, we define an equidistant grid x and set,

x = f−1(r) ≡ 1

π

∫ r

ri

k(r′)dr′ with k(R) =
√

2m
ℏ2 [0− V (r)] . (2.77)

Inverting this function we obtain the desired mapped grid,

r = f(x) . (2.78)

Do the Exc. 2.4.4.4.

2.4.3 Steepest descent ot the ground state

The softwares ’Maple’ or ’Mathematics’ are useful for analytical calculations, that
is, multiplying matrices or determining eigenvalues. For numerical calculations the
softwares ’Matlab’ or ’Python’ are more adapted. For example, the time evolution of
a Schrödinger equation,

|ψ(t)⟩ = e−ıĤt/ℏ|ψ(0)⟩ , (2.79)

can be calculated in a single command line using the Matlab expm function.
When the system varies temporally, Ĥ(t), we may divide time into small units dt

and propagate the wavefunction as,

|ψ(t+ dt)⟩ = e−ıĤ(t)dt/ℏ|ψ(t)⟩ ≃ |ψ(t)⟩
(
1− ı Ĥ(t)

ℏ dt
)
, (2.80)

continuously reinserting the solution into the equation. This Newton method does not
converge quickly (dt should be chosen small enough, when Ĥ(t) varies rapidly), but
there are other more sophisticated methods like the Runge-Kutta method.

A variation of this method is called steepest descent method. This method is
similar to the Newton Eq. (2.80), but replaces the time dt with an imaginary time.
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Thus, the coherent temporal evolution of the Schrödinger equation is replaced by a
dissipative evolution. The loss of energy automatically takes the system to the ground
state. However, in order to preserve the normalization of the wavefunction, it must
be renormalized at each iteration step,

|ψ(t+ dt)⟩ → |ψ(t+ dt)⟩√
⟨ψ(t+ dt)|ψ(t+ dt)⟩

. (2.81)

The method also applies to more complicated equations than the Schrödinger equa-
tion, for example, the Gross-Pitaevskii equation. We will deepen this technique in
Sec. 27.3.3.

As an example Fig. 2.10 shows the splitting of a quantum mechanical function (in
this case a Bose-Einstein condensate with repulsive interatomic interactions) in the
ground state of a quartic double-well potential calculated from the steepest descent
method. In Exc. 2.4.4.5, using the Fourier grid method, we study the splitting of
bound state energy levels due to tunneling in a double-well potential.
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Figure 2.10: (code) Condensate wavefunction (red) in a double-well potential (blue) numer-

ically calculated using the steepest descent method. Also shown is the chemical potential

(green).

Another numerical method often used in quantum mechanics is the method called
the quantum Monte Carlo simulation of the wavefunction [594]. This method sim-
ulates trajectories of quantum systems treating intrinsic quantum noise as random
processes disrupting the uniformity of the trajectory. The advantage of this method
is that it also applies to dissipative systems.

2.4.4 Exercises

2.4.4.1 Ex: Numerical resolution of the Hermite differential equation

Solve the Hermite differential equation (2.102) numerically for n = 8, e.g. using the
ode45 ordinary differential equation solver of Matlab, or similar. Plot the wavefunc-
tion of the 8-th vibrational level of a harmonic oscillator.

2.4.4.2 Ex: Numerical resolution of the Schrödinger equation

Paramagnetic atoms, such as rubidium, can be confined in quadrupolar magnetic
traps, which are characterized by a linear increase of the magnetic field in any

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_NumericODE01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_NumericQuadrupole01.pdf
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direction of space. Let us consider one dimension of such a potential, given by
V (x) = µB∂xB |x| − V0 wherever V (x) is negative and V (x) = 0 else. Here µB is the
Bohr magneton. Be ∂xB = 200G/cm the magnetic field gradient and V0 = h 15 kHz
the potential depth.
a. Calculate the energy and wavefunction of the lowest bound state of this potential
by numerical integration of the stationary Schrödinger equation using Matlab or an-
other software.
b. Obtain all bound state energies and wavefunctions using the Fourier grid method.

2.4.4.3 Ex: The Fourier grid method

Derive (a) the formula (2.64) and (b) the formula (2.67) for N ≫ 1 using the formula
(1.352) from [334].

2.4.4.4 Ex: Derivation of the Fourier grid method from the FFT

The Fast Fourier Transform (FFT) is defined by,

Hn =

N−1∑

k=0

e−2πınk/Nhk

=

N−1∑

k=0

e−2πınk/(N/2)h2k + e−2πık/N

N/2−1∑

k=0

e−2πınk/(N/2)h2k+1 = even+ odd .

the inverse transform is,

hk =
1

N

∑N−1

k=0
e2πınk/NHn .

The sinus transform of a real vector sk is,

Sn =
2

N

∑N−1

k=1
sk sinπnk/N .

Calculate the inverse transform of the matrix Trs = k2rδrs.

2.4.4.5 Ex: Infinite rectangular double-well potential

a. Consider the rectangular double-well potential sketched in Fig. 2.11 and calculate
the energy levels according to the procedure taught in Sec. 2.3.5.
b. For the same type of potential as in (a) prepare a numerical calculation of the
wavefunctions, e.g. using the Fourier grid method introduced in Sec. 12.2.5, for 87Rb
using the following dimensions of the potential: V0 = h × 15MHz, L = 40nm, and
b = 3nm.

2.5 Harmonic oscillator

Many systems oscillate. Common examples are vibrations of atoms bound in a
molecule or in a crystalline lattice, of particles trapped in applied electric or magnetic

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PaintedGrid01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PaintedGrid02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PotentialBarrier02.pdf
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Figure 2.11: Scheme of the rectangular double-well potential.

fields, or light in an electromagnetic mode. Most periodic movements are approxi-
mately harmonic for small amplitude vibrations and can be treated in a way that we
will detail now.

We start with the unidimensional harmonic oscillator (OH),

[−ℏ2
2m

d2

dx2
+ V (x)− E

]
ψ(x) = 0 where V (x) =

m

2
ω2x2 . (2.82)

2.5.1 Factorization of the Hamiltonian and Fock states

Respecting the fact that the operators p̂ and x̂ do not commute, ı
ℏ [p̂, x̂] = 1, we can

rewrite the Hamiltonian of the harmonic oscillator in the following way,

Ĥ = − ℏ2

2m

d2

dx2
+
m

2
ω2x̂2 = ℏω

[(√
mω
2ℏ x̂− ı

√
1

2mℏω p̂

)(√
mω
2ℏ x̂+ ı

√
1

2mℏω p̂

)
+ 1

2

]

= ℏω
(
â†â+ 1

2

)
, (2.83)

with the abbreviation

â ≡
√
mω

2ℏ
x̂+ ı

√
1

2mℏω
p̂ (2.84)

and its Hermitian transposition â†. Now let’s try to find out the properties of the
operators â† and â. First of all, the commutator is,

[â, â†] =

[√
mω

2ℏ
x̂+ ı

√
1

2mℏω
p̂,

√
mω

2ℏ
x̂− ı

√
1

2mℏω
p̂

]
=

ı

2ℏ
[x̂+ p̂, x̂− p̂]

= ı
ℏ [p̂, x̂] = 1 . (2.85)

Knowing Ĥ|ψ⟩ = E|ψ⟩ is it clear that â†â is an observable with the eigenvalue
n ≡ E

ℏω − 1
2 ,

â†â|ψ⟩ =
(
E
ℏω − 1

2

)
|ψ⟩ ≡ n|ψ⟩ =⇒ |ψ⟩ = |n⟩ . (2.86)
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Now, we show that the states â|ψ⟩ are eigenstates of the operator defined as n̂ ≡ â†â,
since,

â†ââ|ψ⟩ = (ââ† − [â, â†])â|ψ⟩ = (ââ†â− â)|ψ⟩ = â(â†â− 1)|ψ⟩ = (n− 1)â|ψ⟩
=⇒ â|ψ⟩ ∝ |n− 1⟩ ≡ C|n− 1⟩
=⇒ n = ⟨n|â†â|n⟩ = C2⟨n− 1|n− 1⟩
=⇒ C =

√
n . (2.87)

We note that the quantum number of the new |n − 1⟩ is decreased by 1. Similarly,
we show for the state â†|ψ⟩,

â†ââ†|ψ⟩ = â†([â, â†] + â†â)|ψ⟩ = â†(1 + â†â)|ψ⟩ = (n+ 1)â†|ψ⟩
=⇒ â†|ψ⟩ ∝ |n+ 1⟩ ≡ C|n+ 1⟩
=⇒ n+ 1 = ⟨n|â†â+ [â, â†]|n⟩ = C2⟨n+ 1|n+ 1⟩
=⇒ C =

√
n+ 1 . (2.88)

Therefore, this new state is also an eigenvector |n + 1⟩, with a quantum number
increased by one unit. â† and â are creation and annihilation operators of an energy
packet,

â†|n⟩ =
√
n+ 1|n+ 1⟩ and â|n⟩ = √n|n− 1⟩ . (2.89)

Figure 2.12: Equidistant ladder of vibrational levels showing the actions of the creation and
the annihilation operator.

The matrix representation of the field operators is,

â† =
∑

n

√
n+ 1|n+ 1⟩⟨n| and â =

∑

n

√
n|n− 1⟩⟨n| , (2.90)

from which we deduce,

n̂ = â†â =
∑

n

n|n⟩⟨n| and Ĥ = ℏω
(
n̂+ 1

2

)
. (2.91)

Now it is clear, that n̂ can be understood as a number operator 2. The energy
spectrum of the harmonic oscillator is equidistant,

En = ℏω
(
n+ 1

2

)
. (2.92)

2Also, we can define phase operators by êxp(∓ıϕ) = ∑
n |n∓ 1⟩⟨n|.
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The state with n quanta can be created from the vacuum,

|n⟩ = â†√
n
|n− 1⟩ = â†n√

n!
|0⟩ . (2.93)

The state |n⟩ is called number state or Fock state.

2.5.1.1 Uncertainty in Fock states

We consider an OH of mass m and angular frequency ω prepared in the stationary
state |n⟩ which is an eigenstate of the Hamiltonian Ĥ with eigenvalue (n + 1

2 )ℏω.
Defining the characteristic size of the OH, aho =

√
ℏ/mω, the annihilation and cre-

ation operators can be written,

â =
1√
2

(
x̂

aho
+ ı

aho
ℏ
p̂

)
and â† =

1√
2

(
x̂

aho
− ıaho

ℏ
p̂

)
. (2.94)

Therefore, the position and momentum operators are,

√
2

1

aho
x̂ = â+ â† and

√
2ı
aho
ℏ
p̂ = â− â† . (2.95)

The mean squared deviations of the position x̂ and the momentum p̂ are,

∆x2 = ⟨n|x̂2|n⟩ = a2ho
2
⟨n|ââ+ ââ† + â†â+ â†â†|n⟩ = a2ho

2
⟨n|2n̂+ 1|n⟩

=
a2ho
2

(2n+ 1) (2.96)

∆p2 = ⟨n|p̂2|n⟩ = −ℏ
2

2a2ho
⟨n|ââ− ââ† − â†â+ â†â†|n⟩ = −ℏ

2

2a2ho
⟨n| − 2n̂− 1|n⟩

=
ℏ2

2a2ho
(2n+ 1) .

From the results of the previous item we obtain the uncertainty relation ∆x∆p
for the OH in the state |n⟩,

∆p∆x = ℏ
2 (2n+ 1) . (2.97)

Example 23 (Localization energy): The non-vanishing energy of the funda-
mental state of the harmonic oscillator, E0 = ℏω/2, is an immediate consequence
of the Heisenberg principle ∆x∆p ≥ ℏ, because in analogy with example 19 we
calculate,

⟨p2⟩
2m

=
∆p2

2m
>

ℏ2

2m∆x2
>

ℏ2

2ma2ho
=

ℏω
2

.

In the case of an electromagnetic field this energy is called vacuum fluctuation.

2.5.2 Harmonic oscillator in spatial representation

To simplify the Schrödinger equation in spatial representation,
[
− ℏ2

2m

d2

dx2
+
m

2
ω2x2

]
ψ(x) = ℏω(n+ 1

2 )ψ(x) , (2.98)
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we use the scale x̃ ≡ x/aho, where aho =
√

ℏ/mω is the spatial extent of the ground
state. Therefore,

2

ℏω

[
− ℏ2

2m

d2

d(ahox̃)2
+
m

2
ω2(ahox̃)

2

]
ψ̃(x̃) =

2

ℏω

[
−ℏω

2

d2

dx̃2
+

ℏω
2
x̃2
]
ψ̃(x̃)

=

[
− d2

dx̃2
+ x̃2

]
ψ̃(x̃) = (2n+ 1)ψ̃(x̃) .

Now we start looking for asymptotic solutions. For x̃ → ±∞, that is, when the
particle enters the classically forbidden region, we can neglect the total energy of the
particle, [

− d2

dx̃2
+ x̃2

]
ψ̃∞(x̃) ≃ 0 . (2.99)

The solution of this equation is ψ̃∞(x̃) = Ce−x̃
2/2, since

[
− d2

dx̃2
+ x̃2

]
e−x̃

2/2 = − d

dx̃
(−x̃)e−x̃2/2 + x̃2e−x̃

2/2 (2.100)

= −x̃2e−x̃2/2 + e−x̃
2/2 + x̃2e−x̃

2/2 = e−x̃
2/2 ≃ 0 .

This motivates the ansatz ψ̃(x̃) ≡ e−x̃2/2H(x̃) for the complete differential equation
(2.98),[
− d2

dx̃2
+ x̃2

]
e−x̃

2/2H(x̃) = −e−x̃2/2 d
2H(x̃)

dx̃2
− 2

de−x̃
2/2

dx̃

dH(x̃)

dx̃
− d2e−x̃

2/2

dx̃2
H(x̃) + x̃2e−x̃

2/2H(x̃)

= −e−x̃2/2 d
2H(x̃)

dx̃2
− 2(−x)e−x̃2/2 dH(x̃)

dx̃
+
[
−x̃2e−x̃2/2 + e−x̃

2/2
]
H(x̃) + x̃2e−x̃

2/2H(x̃)

≡ (2n+ 1)e−x̃
2/2H(x̃) . (2.101)

Thus, the functions H(x̃) must satisfy the differential equation,

H ′′(x̃) = 2x̃H ′(x̃)− 2nH(x̃) . (2.102)

We can verify that the Hermite polynomials defined by,

Hn(x̃) = (−1)nex̃2 dn

dx̃n
e−x̃

2

, (2.103)

transform the differential equation into a recursion formula,

Hn+1(x̃) = 2x̃Hn(x̃)− 2nHn−1(x̃) , (2.104)

which allows us to easily calculate the polynomials,

H0(x̃) = 1 , H1(x̃) = 2x , H2(x̃) = 4x2 − 2 , ... (2.105)

In summary, the eigenfunction of a harmonic oscillator in the state of excitation
n is,

⟨x|n⟩ = ψn(x) = Cne
−x2/2a2hoHn(x/aho) , (2.106)
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where the constant Cn is determined by the normalization condition (6.24), ⟨ψm|ψn⟩ =
δm,n,

Cn =
1√

aho
√
π2nn!

. (2.107)

The Hermite functions, Hn, are found in mathematical tables, see Sec. 6.3. The spatial
and momentum wavefunctions for the vibrational ground state are,

⟨x|0⟩ = 1

π1/4
√
aho

e−x
2/2a2ho and ⟨p|0⟩ = 1

π1/4

√
aho
ℏ
e−a

2
hop

2/2ℏ2

. (2.108)

Here we will only show the graphical representation of |ψ|2 in Fig. 2.13. The Exc. 2.5.6.1
asks to evaluate HO in a classically forbidden region and in Exc. 2.5.6.2 we will cal-
culate the spectrum of a semi-harmonic HO.
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Figure 2.13: (code) Wavefunctions and energies for a harmonic potential.

2.5.3 Properties of the harmonic oscillator

We note that there are regions where ψ(x̃) ̸= 0 even though V (x) > E. This effect is
purely quantum. Classically, we can not find a particle in regions where its energy is
below the potential.

We also note that for high quantum numbers, n → ∞, we expect to recover the
classical predictions, i.e.,

lim
n→∞

|ψ(x)|2 = PE(x) , (2.109)

where PE is the probability density of finding the oscillating particle at position x.
The probability of finding the particle in a range dx close to the location x is easily
calculated,

E =
m

2
v2 +

m

2
ω2x2 (2.110)

⇒ PE(x)dx =
t(x+ dx)− t(x)

T
=
dx

vT
=
dx

T

1√
2E/m− ω2x2

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_Harmonic.m
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We see that for high energy values the wavefunction approaches the classical expec-
tation.

We already mentioned that there exist solutions only for certain energies En =
ℏω(2n + 1). Consequently, the energy levels are equidistant, En+1 − En = ℏω, as if
there were a box into which we add, one after the other, particles with the energy ℏω
until we have accumulated n portions of energy. These particles are called phonons
in the case of vibrations of massive particles, and photons in the case of a radiation
field.

The fact that the energy distribution is the same as the one proposed by Planck
for the black-body radiation suggests the use of the harmonic oscillator to describe
the second quantization.

2.5.4 Time evolution of the unperturbed harmonic oscillator

Here we study the temporal evolution of a population distribution in a harmonic
oscillator. The formal solution of the Schrödinger equation is,

|ψ(t)⟩ = e−ıĤt/ℏ|ψ(0)⟩ . (2.111)

As the Hamiltonian is diagonal in the basis |n⟩,

Ĥ = ℏω(n̂+ 1
2 ) . (2.112)

we can write,

e−ıĤt/ℏ =
∑

n

|n⟩e−ıωt(n+1/2)⟨n| . (2.113)

If the initial state is |ψ(0)⟩ = ∑
m cm|m⟩, the final state and the eigenvalue of any

observable will be,

|ψ(t)⟩ =
∑

n

|n⟩e−ıωt(n+1/2)⟨n|ψ(0)⟩ =
∑

n

e−ıωt(n+1/2)cn|n⟩ (2.114)

⟨ψ(t)|Â|ψ(t)⟩ =
∑

m

⟨m|eıωt(m+1/2)c∗m|Â|
∑

n

e−ıωt(n+1/2)cn|n⟩ =
∑

m,n

c∗mcne
ıωt(m−n)⟨m|Â|n⟩ .

If the oscillator is initially in an eigenstate, |ψ(0)⟩ = |k⟩, we obtain,

|ψ(t)⟩ = e−ıωt(k+1/2)|k⟩ and ⟨ψ(t)|Â|ψ(t)⟩ = ⟨k|Â|k⟩ , (2.115)

that is, the state remains stationary. Motion needs non-diagonal elements of Â.
Another observation is that the populations do not change, even in the case of an

initial superposition, since,

Pk(t) = |⟨k|ψ(t)⟩|2 = |e−ıωt(k+1/2)ck|2 = |ck|2 . (2.116)

We conclude that

• movement of an observable Â is possible, but only due to variations of the phase
factors;
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• to carry out transitions between the vibrational states is necessary to perturb
the oscillator, e.g. by applying fields of electromagnetic radiation.

Example 24 (Motion of a harmonic oscillator): We now consider some
specific examples. If the studied observable is the Hamiltonian and the initial
state an arbitrary superposition, then

⟨ψ(t)|Ĥ|ψ(t)⟩ = ℏω
∑
m,n

c∗mcne
ıωt(m−n)⟨m|n̂+ 1

2
|n⟩ = ℏω

∑
n

|cn|2(n+ 1
2
) .

That is, the total energy of the oscillator is the sum of the energies of the
states weighted with the populations of those states. In the case of the position
operator,

⟨ψ(t)|x̂|ψ(t)⟩ = aho√
2

∑
m,n

c∗mcne
ıωt(m−n)⟨m|â+ â†|n⟩

= aho√
2

∑
n

(
c∗n−1cne

−ıωt√n+ c∗n+1cne
ıωt
√
n+ 1

)
m,n→∞−→ aho

√
2
∑
n

√
n|cn|2 cosωt .

That is, the particle can only oscillate, if there are populations in consecutive

states. If this is not the case, ⟨ψ(t)|x̂|ψ(t)⟩ = 0. The oscillation frequency

is always ω, independent of the energy of the particle. We will study this

in Excs. 2.5.6.3, leaving the discussion of the temporal evolution of perturbed

oscillators to later sections.

2.5.5 Multidimensional harmonic oscillator

The 3D harmonic potential is given by

Vho(r) =
m

2
ω2
xx

2 +
m

2
ω2
yy

2 +
m

2
ω2
zz

2 . (2.117)

Making the ansatz
ψ(r) = ψx(x)ψy(y)ψz(z) , (2.118)

we can separate the spatial directions and obtain a one-dimensional equation for each
coordinate, such that the coordinates can be considered separately. Each function
ψk(xk) is of the form (2.106) and the energies are,

Ek = ℏωk(nk + 1
2 ) , (2.119)

where k = x, y, z.

2.5.6 Exercises

2.5.6.1 Ex: Ground state of a harmonic oscillator

Equating the ground state energy of quantum HO to that of its classical analog, obtain
the maximum elongation xm. Now, knowing that the ground state wavefunction is
proportional to the Gaussian ψ0 ∝ e−x

2/2x2
m , obtain the expression for the probability

of finding the HO outside the classical limits and estimate its value.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico01.pdf
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2.5.6.2 Ex: Particle in a semi-harmonic well

Find the energy levels of a particle in a potential energy well of the form V (x) = ∞
for x < 0 and V (x) = mω2x2

2 for x > 0. What is the parity of the allowed states?

2.5.6.3 Ex: Vibration of a harmonic oscillator

Consider a HO of mass m and angular frequency ω. At time t = 0 the oscillator’s
state is |ψ(0)⟩ =∑n cn|n⟩, where |n⟩ are the stationary states of the HO with energy
(n+ 1/2)ℏω.
a. What is the probability P for measuring, at an arbitrary time t > 0, an energy of
the HO higher than 2ℏω? For the case when P = 0, what are the non-zero coefficients
cn?
b. From now on, we assume that only c0 and c1 are nonzero. Write down the normal-
ization condition for |ψ(0)⟩ and the mean value ⟨Ĥ⟩ of energy in terms of c0 and c1.
With the additional requirement ⟨Ĥ⟩ = ℏω, calculate |c0|2 and |c1|2.
c. Given that the normalized state vector |ψ(0)⟩ is defined to less than an overall
phase factor, we determine this factor by choosing the real and positive coefficients
c0 and c1 = |c1|eıθ. Assuming ⟨Ĥ⟩ = ℏω and ⟨x̂⟩ = 1

2

√
ℏ/mω, calculate θ.

d. With |ψ(0)⟩ determined (according to the previous item), write down |ψ(t)⟩ for
t > 0 and calculate the value θ at this time t. Deduce the average value ⟨x̂⟩(t) of the
position at time t.

2.6 Superposition states of a harmonic oscillator

As any other quantum system, a harmonic oscillator does not need to be in a par-
ticular vibrational eigenstate. In fact, it is much more common to encounter them
in superpositions of many states. In a system in thermal equilibrium, the energetic
distribution of occupied states reflects the temperature of the system.

2.6.1 Coherent states

The most common superposition for a harmonic oscillation is a Poissonian probability
distribution of occupied vibrational (Fock) states. This state, called coherent or
Glauber state, has particular features that we will discuss in the following sections.

2.6.1.1 Displacement operator

We now consider the so-called displacement operator,

D(α) ≡ eαâ†−α∗â , (2.120)

which acts on the phase space of a harmonic oscillator spanned by the operators â
and â†, that is, x̂ ∝ Re â and p̂ ∝ Im â, and try to discovers its features.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico03.pdf
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D(α) is a unitary operator, since using Glauber’s formula (1.313) we get,

D†(α)D(α) = eα
∗â−αâ†eαâ

†−α∗â = eα
∗â−αâ†+αâ†−α∗â+[α∗â−αâ†,αâ†−α∗â]/2 (2.121)

= e[α
∗â−αâ†,αâ†−α∗â]/2 = e[α

∗â,αâ†]/2+[−αâ†,αâ†]/2+[α∗â,−α∗â]/2+[−αâ†,−α∗â]/2

= e|α|
2[â,â†]/2+|α|2[â†,â]/2 = e0 = 1̂ .

We can rewrite the displacement operator using Glauber’s formula:

D(α) = eαâ
†−α∗â = eαâ

†
e−α

∗âe−[αâ†,−α∗â]/2 = eαâ
†
e−α

∗âe|α|
2[â†,â]/2

= eαâ
†
e−α

∗âe−|α|2/2 . (2.122)

The state resulting from the action of the operator D(α) onto the ground state of
the HO is,

|α⟩ ≡ D(α)|0⟩ = e−|α|2/2eαâ
†
e−α

∗â|0⟩ = e−|α|2/2
∞∑

n=0

(αâ†)n

n!
|0⟩ (2.123)

= e−|α|2/2
(
1 + αâ† +

(αâ†)2

2!
+ ..

)
|0⟩

= e−|α|2/2
(
|0⟩+ α

1!

√
1|1⟩+ α2

2!

√
2!|2⟩+ ..

)
,

that is, the state |α⟩ is a superposition distributed according to the Poisson distri-
bution,

|α⟩ = e−|α|2/2
∞∑

n=0

αn√
n!
|n⟩ . (2.124)

Applying the step-down operator â onto the state |α⟩, we find,

â|α⟩ = e−|α|2/2
∞∑

n=0

αn√
n!
â|n⟩ = e−|α|2/2

∞∑

n=0

αn√
n!

√
n|n− 1⟩

= e−|α|2/2
∞∑

n=0

αn√
(n− 1)!

|n− 1⟩ , (2.125)

that is,

â|α⟩ = α|α⟩ . (2.126)

We can also write,
⟨α|â† = (â|α⟩)† = (α|α⟩)† = ⟨α|α∗ . (2.127)

The state |α⟩ is called coherent state or Glauber state 3. We note that, in spite of
its appearance, the equation (2.126) is not an eigenvalue equation, since â is not
observable.

Using the formula (1.280), we verify immediately,

3We can also define a Bargmann state as the eigenstate corresponding to the step-up operator
using the notation â†||α⟩ = α||α⟩.
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Figure 2.14: Illustration of the action of displacement operators D(α) and D(β) on Glauber
states in the phase space spanned by α = Reα + ı Imα = |α|eıϕ. The uncertainty of
Glauber states ∆x and ∆p is represented by a finite distribution of the amplitude α in the
phase space.

D†(α)âD(α) = â+ α . (2.128)

Furthermore, the product of two displacement operators is, apart from a phase factor,
another displacement operator satisfying,

D(α)D(β) = e(αβ
∗−α∗β)/2D(α+ β) , (2.129)

as will be verified in Exc. 2.6.6.1. When acting on an eigenket, the phase factor
e(αβ

∗−α∗β)/2 appears in each term of the resulting state, which makes it physically
irrelevant.

2.6.1.2 Rotation operator

Another interesting operator is the rotation operator defined by,

R(φ) ≡ eıφâ†â . (2.130)

Its properties are easily derived,

R(φ)|n⟩ = eıφn|n⟩ and R(φ)|α⟩ = |eıφα⟩ . (2.131)

With the abbreviation Â ≡ ıφâ†â, we can show,

R†(φ)âR(φ) = eÂâe−Â = â+ [Â, â] + 1
2!

[
Â, [Â, â]

]
+ 1

3!

[
Â,
[
Â, [Â, â]

]]
+ ...

= â+ ıφâ+ (ıφ)2

2! â+ (ıφ)3

3! â+ ... = eıφâ . (2.132)

In other words, the phase factor eıφ is the eigenvalue of the operator âR(φ),

R†(φ)âR(φ) = eıφâ . (2.133)

Note also that,
R(φ)D(α) ̸= D(α)R(φ) . (2.134)
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Do the Exc. 2.6.6.2.

Example 25 (Operators acting on harmonic oscillators): Other operators

acting on single harmonic oscillator modes are the Kerr operator K studied in

Exc. 14.3.5.15 and the squeezing operator S studied in Sec. 14.4.1. Tab. 2.1 lists

the most common operators. Operators can also be designed to simultaneously

manipulate different modes, thus establishing a coupling between them. Exam-

ples are the beam splitter B or the two-mode squeezer S2 studied in Sec. 14.5

or the Schrieffer-Wolff transform coupling a light mode and a collective atomic

spin and studied in Exc. 23.2.4.12.

Table 2.1: List of basic transformation for harmonic oscillators.

unitary operation action on field operators action on field states

D(β) = eβâ
†−β∗â D†âD = â+ β D|n⟩ = 1√

n!
(â† − α∗)n|α⟩

D|α⟩ = e(α
∗β−αβ∗)/2|α+ β⟩

R(φ) = eıφâ
†â R†âR = eıφâ R|n⟩ = eıφn|n⟩

R|α⟩ = eıφα|α⟩
S(ξ) = eξ

∗â2/2−ξâ†2/2 S†âS = â cosh r − â†eıφ sinh r SâS†|α, ξ⟩ = (α cosh r + α∗eıφ sinh r)|α, ξ⟩
K(τ) = eıτâ

†2â2/2 K†âK = eıτn̂â K|n⟩ = e(ıτ/2)n(n−1)|n⟩
K|α⟩ = eı(τ/2)α

2â†2 |α⟩
B(θ) = eθ(â

† b̂−âb̂†) B†(â
b̂

)
B =

(â
b̂

)
cos θ +

( b̂
−â

)
sin θ

S2(θ) = eξ
∗âb̂/2−â† b̂†/2

2.6.1.3 Uncertainty in Glauber states

Consider a HO prepared in a state |α⟩. The eigenvalues of the observables x̂ ≡
aho√

2
(â† + â) and p̂ ≡ ıℏ

aho

√
2
(â† − â) are,
√
2

aho
⟨α|x̂|α⟩ = ⟨α|â+ â†|α⟩ = α+ α∗ (2.135)

ıaho

√
2

ℏ ⟨α|p̂|α⟩ = ⟨α|â− â†|α⟩ = α− α∗.

With this the eigenvalues of the quadratures become,

2
a2ho
⟨α|x̂2|α⟩ = ⟨α|(â+ â†)2|α⟩ = ⟨α|ââ+ 1 + 2â†â+ â†â†|α⟩ (2.136)

= α2 + 1 + 2|α|2 + α∗2 = 1 + (α+ α∗)2 = 1 + 2
a2ho
⟨α|x̂|α⟩2

−a2ho2
ℏ2 ⟨α|p̂2|α⟩ = ⟨α|(â− â†)2|α⟩ = ⟨α|ââ− 1− 2â†â+ â†â†|α⟩

= α2 − 1− 2|α|2 + α∗2 = −1 + (α− α∗)2 = −1− 2a2ho
ℏ2 ⟨α|p̂|α⟩2 .

The uncertainties defined in (1.178) become,

∆x2 = ⟨α|x̂2|α⟩ − ⟨α|x̂|α⟩2 =
a2ho
2 (2.137)

∆p2 = ⟨α|p̂2|α⟩ − ⟨α|p̂|α⟩2 = ℏ2

2a2ho
.
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And finally, we find the Heisenberg relation,

∆p∆x = ℏ
2 . (2.138)

Comparing with the uncertainty relation (2.97) derived for Fock states, we con-
clude that the uncertainty is always smallest for Glauber states. In this sense, the
Glauber states are the ones which are closest to classical states characterized by the
absence of uncertainty.

Example 26 (Quantum fluctuations): We have seen that the displacement
operator (2.120) can be used to generate any coherent state â from the vacuum
state, which we will now call δâ,

δâ ≡ D(α)âD(α)† = â− ⟨â⟩ . (2.139)

The uncertainty of the vacuum state is, obviously, the same,

∆(δâ)2 = ⟨δâ2⟩ − ⟨δâ⟩2 = ⟨(â− α)2⟩ − ⟨â− α⟩2 = ⟨â2⟩ − α2 = ∆â2 . (2.140)

The procedure of separating quantum noise from an operator can be applied to

other quantities than harmonic oscillators.

2.6.1.4 Orthogonality and completeness of Glauber states

Glauber are not orthogonal, since,

|⟨α|β⟩|2 = e−|α−β|2 . (2.141)

We leave the demonstration for Exc. 2.6.6.3, but we note here already that for |α−β| ≫
0 the states are approximately orthogonal. The reason for this is, that the respective
population distributions through the Fock states, |⟨n|α⟩|2 and |⟨n|β⟩|2, do not overlap
and hence do not interfere. Some more useful relationships are studied in Exc. 2.6.6.4.
In Exc. 2.6.6.5 we show that the coherent state basis is not only complete,

1
π

∫
|α⟩⟨α|d2α = I , (2.142)

but it is overcomplete. The state |α⟩ + | − α⟩ is sometimes called Schrödinger cat
state. In Exc. 2.6.6.6 we will show why such states are very difficult to detect.

2.6.2 Kicking a harmonic oscillator

Let us now study the dynamics of a harmonic oscillator subject to a kick or a dis-
location or both in the same time. For this we need to remember the Galilei boost
introduced in Sec. 1.7.3 and the unitary transformations corresponding to a spatial
displacement (1.282) and to a kick (1.293),

Utr(b) = e(−ı/ℏ)bp̂ and Ukc(k) = eıkx̂ , (2.143)

where we restrict to one dimension. The crucial point is that for a harmonic oscillator
we know how to expand the operators x̂ and p̂ into linear combinations of the field
operators â and â†, which allows us to apply the whole formalism developed in the
last sections to these transformation operators.
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2.6.2.1 Transitions between vibrational states via momentum kick and
dislocation

With the formalism developed in the last sections the displacement operator (2.123)
can be decomposed in a combination of a spatial displacement and a kick operator
(2.143). We can see this by simply substituting the field operators â and â† by linear
combinations of position and momentum operators using (2.94),

αâ† − α∗â =
α√
2

(
x̂

aho
− ıahop̂

ℏ

)
− α∗
√
2

(
x̂

aho
+ ı

ahop̂

ℏ

)
(2.144)

= −ı
√
2ahoReα

ℏ
p̂+ ı

√
2Imα

aho
x̂ .

Using Glauber’s rule,

D(α) = eαâ
†−α∗â = eı ReαImαe(−ıaho

√
2/ℏ)Reα p̂e(ı

√
2/aho)Imα x̂ . (2.145)

Hence, similarly to the Galilei boost in time and space, the displacement operator
D(α) transforms the state of a harmonic oscillator, for example the ground state,
|α⟩ = D(α)|0⟩, by kicking its momentum by an amount,

ℏk =
ℏ
√
2

aho
Imα , (2.146)

and/or displacing its position suddenly by an amount,

b =
√
2ahoReα , (2.147)

such that,

α =
b√
2aho

+ ı
kaho√

2
. (2.148)

The real and imaginary parts of α decide which contribution predominates, the kick
or the dislocation,

D(α) = eı ReαImα Utr(
√
2ahoReα) Ukc(ℏ

√
2

aho
Imα) . (2.149)

For example, if α is imaginary the operation describes a pure momentum kick by an
amount ℏk, which puts the harmonic oscillator into a coherent state with the mean
occupation number,

n = |α|2 = |Imα|2 = 1
2k

2a2ho , (2.150)

On the other hand, if α is real the operation describes a pure dislocation by an amount
b, which puts the harmonic oscillator into a coherent state with the mean occupation
number,

n = |α|2 = |Reα|2 =
b2

2a2ho
. (2.151)
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Now, let us focus on the kick operator and study how it acts on Fock states,

⟨n|eıkx̂|0⟩ = ⟨n|α⟩ = ⟨n|e−|α|2/2
∞∑

m=0

αm√
m!
|m⟩ (2.152)

= e−|α|2/2 α
n

√
n!

= e−|kaho|2/4 (ıkaho)
n

√
2nn!

,

using (2.148). This formula tells us that for small α, transitions may only occur to
the vibrational states |0⟩ and |1⟩, since,

⟨n|eıkx̂|0⟩ kaho→0−→ αn√
n!
≃ δn,0 + αδn,1 . (2.153)

On the other hand for very large α, the exponential in (2.152) pulls the transition
rate to a particular vibrational state |n⟩ to zero, but this is simply due to the fact
that the population is redistributed over many states, since,

∑

n

|⟨n|eıkx̂|0⟩|2 = e−(kaho)
2/2

∞∑

n=0

|α|2n
n!

= e−(kaho)
2/2e|α|

2

= 1 . (2.154)
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Figure 2.15: (code) Transition matrix element |⟨n|eıkx̂|0⟩|2 as a function of kaho. The curves

are Poisson distributions of photon numbers in coherent states.

For small momentum kicks we may approximate the transition matrix elements
by,

⟨m|eıkx̂|n⟩ ≃ ⟨m|1 + ık aho√
2
(â+ â†)|n⟩ (2.155)

= δm,n + ıkaho√
2
(
√
nδm,n−1 +

√
n+ 1δm,n+1) ,

such that, ∑

m̸=n

|⟨m|eıkx̂|n⟩|2 ≃ k2a2ho(n+ 1
2 ) . (2.156)

Formula (2.156) tell us that the probability for a transition between vibrational
states depends on the parameter kaho, which we will discuss in the next section.
For small kaho it gets increasingly more difficult for the system to leave the original

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_LambDickeVibra.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_LambDickeVibra.m
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vibrational state |n⟩ and to form a coherent state. After a momentum kick, the
population is coherently distributed over several vibrational states in a way to fulfill
momentum and energy conservation. Let us consider, for simplicity, an initial state
|0⟩. If the kick is weak or the trap strong (i.e. if |α| < 1), the atom will stay in |0⟩ with
a high probability amplitude and go to |1⟩ only with a small probability amplitude.
We will derive in Exc. 2.6.6.7 the general expression for the transition matrix element
for arbitrary values of α 4,

⟨m|eıkx̂|n⟩ = e|α|
2/2

n∑

k=0

√(
n

k

)(
m

k

)
⟨n− k|α⟩⟨m− k|α⟩ . (2.157)

The formula satisfies,

∑

m

|⟨m|eıkx̂|n⟩|2 =
∑

m

⟨n|eıkx|m⟩⟨m|e−ıkx|n⟩ = ⟨n|eıkxe−ıkx|n⟩ = 1 . (2.158)

Kicking a harmonic oscillator initially in state |0⟩ we obtain for the expectation
value of position and momentum,

⟨α|p̂|α⟩ = ⟨0|D(α)†p̂D(α)|0⟩ = ⟨0|eıkx̂p̂e−ıkx̂|0⟩ = ⟨0|p̂|0⟩+ ℏk

⟨α|x̂|α⟩ = ⟨0|x̂|0⟩
.

2.6.2.2 Lamb-Dicke regime

We already introduced |α| as the amplitude (2.151) of the coherent vibrational state
created by kicking a harmonic oscillator. Defined as,

η ≡ |α| = 1√
2
kaho with aho ≡

√
ℏ

mωho
. (2.159)

the so-called Lamb-Dicke parameter measures the degree of confinement of a particle
in a harmonic trap with respect to the momentum kick. We say that we are in the
Lamb-Dicke regime, when η < 1, that is when the particle is localized to a volume
smaller than the wavelength, 2πx0 ≪ λ = 2π/k, corresponding to the momentum
change.

Figure 2.16: Illustration of the Lamb-Dicke parameter.

4See also 14.3.3.
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We can also rewrite the Lamb-Dicke parameter in terms of the trap’s secular
frequency, ωho, and the recoil-shift,

η =

√
ωrec

ωho
with ωrec ≡

ℏk2

2m
, (2.160)

where we understand the recoil-energy ℏωrec as the kinetic energy gained through
the recoil acceleration. In this form the Lamb-Dicke parameter tells us that, in the
Lamb-Dicke regime, the energy of the momentum kick is not sufficient to efficiently
excite vibrational states,

(2n+ 1)ℏk2/m≪ ωho . (2.161)

That is, cold particles in low vibrational states n can not accommodate the recoil
shift within the vibrational spectrum of the trap. Consequently, the recoil cannot be
transferred to the particle itself, but must be absorbed by the entire trap. This is the
case of the strong binding regime in ion traps, which is analogous to the Mößbauer
effect discussed later in Sec. 20.3.3.

Finally, the Lamb-Dicke parameter can be rewritten in terms of the inverse Doppler
modulation index,

η =
kvmax

2ωho
with

m

2
v2max = ℏωho . (2.162)

Accelerated by the momentum kick, the atom will execute harmonic oscillations with
frequency ωho and with the maximum velocity-excursions vmax. Hence, any quantity
depending on the atomic velocity, e.g. the Doppler-shift of light scattered from the
atom, will be modulated. We will see in Sec. 20.3.3 that the modulation generates
a spectrum of frequency sidebands which, in case of small η < 1, are restricted to
first-order sidebands located at ±ωho of the light frequency. Do the Exc. 2.6.6.8.

Example 27 (Absorption of recoil by a molecular dimer): To be able to
discuss the validity of energy and momentum conservation in a kicked system,
let us consider a molecule made of two atoms with masses m1 and m2 bound
by a force obeying Hooke’s law. Then we kick atom 1 via the momentum shift
operator eıkx̂1 (e.g. during a photon absorption process with the associated
recoil) and analyze the motional dynamics of the whole system 5. (We restrict
ourselves to one dimension.)
The first step is to write down the Hamiltonian,

Figure 2.17: Illustration of a heteronuclear dimer kicked by photonic recoil.

Ĥ = − ℏ2

2m1

d2

dx21
− ℏ2

2m2

d2

dx22
+
µ

2
ω2
ho(x1 − x2)2 ,

5The selective kicking is realistic if we image both atoms being of different species with different
transitions responding differently to incident radiation.



122 CHAPTER 2. LINEAR MOTION / SEPARABLE POTENTIALS

We transform in the center-of-mass system via,

M ≡ m1 +m2 and
1

µ
≡ 1

m1
+

1

m2

R =
m1x1 +m2x2

M
and r = x1 − x2 .

Applying the separation ansatz ψ(x1, x2) = Θ(R)ϕ(r) to the Schrödinger equa-
tion,[

− ℏ2

2m1

d2

dx21
− ℏ2

2m2

d2

dx22
+
µ

2
ω2
ho(x̂1 − x̂2)2

]
ψ(x1, x2) = Etotψ(x1, x2) ,

we calculate for i = 1, 2,

d

dxi
=
dR

dxi

d

dR
+

dr

dxi

d

dr
=
mi

M

d

dR
± d

dr

d2

dx2i
=
m2
i

M2

d2

dR2
± 2

mi

M

d

dR

d

dr
+

d2

dr2

− ℏ2

2m1

d2

dx21
− ℏ2

2m2

d2

dx22
= − ℏ2

2M

d2

dR2
− ℏ2

2µ

d2

dr2
.

Hence, we get,

− ℏ2

2M

d2

dR2
Θ(R) = (Etot−E)Θ(R) ,

[
− ℏ2

2µ

d2

dr2
+
µ

2
ω2
hor̂

2

]
ϕ(r) = Eϕ(r) ,

with the vibrational energy E and the energy of the center-of-mass motion
Etot − E.
Now, we analyze the kick operator eıkx̂1 with x̂1 = R̂ − m2

M
r̂. We find that,

because of [R̂, r̂] = 0,

eıkx̂1 = eıkR̂e−ık
m2
M
r̂ .

This means that the kick operator simultaneously acts on both: the center-of-
mass receives a recoil accelerating it by an amount pcm = ℏk, and the vibrational
relative motion receives a kick of an amount prel = ℏkm2/M following the dy-
namics described in Sec. 2.6.2.
Obviously, the total system conserves momentum, which is imparted to the
center-of-mass motion. Whether the kick also excites the relative motion de-
pends on mass ratio. In the limit m1 ≪ m2 we find prel = ℏk, while in the limit
m1 ≫ m2 we get prel → 0. In terms of the Lamb-Dicke parameter, we find,

η =
prelaho

ℏ
√
2

=
km2

M
√
2

√
ℏ

µωho
=

km2

m1 +m2

√
ℏ

2ωho

(
1

m1
+

1

m2

)
.

Hence, in the limit m1 ≪ m2 we expect a much larger Lamb-Dicke parameter
than for m1 ≫ m2. In particular, considering the limit m2 → ∞, we recover
the formula (2.160) holding for an atom confined in a harmonic potential,

η
m2→∞−→

√
ℏk2

ωho2m1
=

√
ωrec

ωho
.

We find that the energy transferred to the relative motion quadratically de-
creases with the Lamb-Dicke parameter for η < 1 and quadratically increases
for η > 1,

Erel =
p2rel
2µ

=
1

2µ

2ℏ2η2

a2ho
= ℏωhoη

2 .
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2.6.3 Shaking a harmonic oscillator

As we mentioned below the formulae (1.294), the transformation in momentum space
is not a realistic concept for a kick. In practice, a kick will always be the results of
a collision, which is understood here as a scattering of a free (massive or massless)
particle at our harmonically trapped particle. And the scattering process will take a
finite amount of time, e.g. the duration of a radiative π-pulse required to excite an
atomic transition.

More realistic is to expose the harmonic oscillator to periodic forcing,

Ĥ(t) = Ĥ(0) + Ĥ(1) = − ℏ2

2m

d2

dx2
+
m

2
ω2
hox̂

2 +
ℏΩ
2

(âeıνt + â†e−ıνt) . (2.163)

To study its time evolution we calculate,

|ψ(t)⟩ = e−(ı/ℏ)Ĥt
∑

n

an|n⟩
an=δn,0−→ e−(ı/ℏ)Ĥt|0⟩ , (2.164)

when the oscillator is initially in the state |0⟩. We rewrite the time evolution propa-
gator as,

e−(ı/ℏ)Ĥt = e−ıωhot(n̂+1/2)−(ıΩt/2)(âeıνt+â†e−ıνt) . (2.165)

To simplify the propagator, we first have a closer look at the terms âeıωhot and
â†e−ıωhot, which we evaluate through their action on the complete system of un-
perturbed eigenfunctions,

e−(ı/ℏ)Ĥ(0)tâe(ı/ℏ)Ĥ
(0)t|n⟩ = e−(ı/ℏ)Ĥ(0)tâe(ı/ℏ)E

(0)
n t|n⟩ (2.166)

= e−(ı/ℏ)E(0)
n−1te(ı/ℏ)E

(0)
n tâ|n⟩ = eıωhotâ|n⟩ .

Hence, defining the detuning ∆ ≡ ν − ωho,

âeıνt = eıωhotâeı∆t = e−ıωhot(n̂+1/2)âeı∆teıωhot(n̂+1/2)

â†e−ıνt = e−ıωhotâ†e−ı∆t = e−ıωhot(n̂+1/2)â†e−ı∆teıωhot(n̂+1/2)

n̂ = e−ıωhot(n̂+1/2)n̂eıωhot(n̂+1/2)

. (2.167)

Substituting these expression into the propagator (2.165) we get,

e−(ı/ℏ)Ĥt = ee
−ıωhot(n̂+1/2)[−ıωhot(n̂+1/2)−(ıΩt/2)âeı∆t−(ıΩt/2)â†e−ı∆t]eıωhot(n̂+1/2)

.
(2.168)

Now, making use of the relationship,

ee
−ÂB̂eÂ =

∑

n

(e−ÂB̂eÂ)n

n!
=
∑

n

e−ÂB̂neÂ

n!
= e−ÂeB̂eÂ , (2.169)

which is easy to show by expansion of eB̂ , we find 6,

e−(ı/ℏ)Ĥt = e−ıωhot(n̂+1/2)e−ıωhot(n̂+1/2)−(ıΩt/2)(âeı∆t+â†e−ı∆t)eıωhot(n̂+1/2) . (2.170)

6Note, that this formula can not be simplified using Glauber’s formula, because [n̂, [n̂, â]] ̸= 0.
Note also, that the unitary transformation corresponds to a transformation into Dirac’s interaction
picture, which will be studied in the context of quantized radiation fields in Sec. 17.2.
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In particular, for ∆ = 0,

⟨n|e−(ı/ℏ)Ĥt|0⟩ = e−nıωhot⟨n|e−ıωhot(n̂+1/2)−(ıΩt/2)(â+â†)|0⟩ . (2.171)

The dynamics is illustrated in Fig. 2.18. Again, we notice that the state generated
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Figure 2.18: (code) (a) Populations of the vibrational states after a given interaction time.

(b) Time evolution of the lowest populations.

is a coherent state. In Exc. 2.6.6.9 we will study how to generalize the problem to
non-resonant excitation, ∆ ̸= 0.

2.6.4 Forcing a harmonic oscillator

In Secs. 2.6.2 and 2.6.3 we studied two ways of exciting a harmonic oscillator. We
found that the energy and momentum imparted to a harmonic oscillator upon ex-
citation are determined by conservation laws. On the other hand, the excitation
probability depends on the shape of the perturbation: While an abrupt kick always
results in an excitation, a monochromatic excitation needs to satisfy a resonance
condition. We will study this in more detail in Sec.5.4.2.

Figure 2.19: Illustration of possible shapes of an excitation field.

The transfer of momentum is the result of a (generally) constant force applied for
a certain amount of time,

ℏk =

∫ ∞

−∞
mg Θ[0,∆t](t) dt , (2.172)

where g denotes the acceleration. That is, we expect that a harmonic oscillator,

Ĥ(t) = − ℏ2

2m

d2

dx2
+
m

2
ω2
hox̂

2 −mgx̂ Θ[0,∆t](t) , (2.173)

forced for a period of time ∆t should have suffered a kick.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_ShakedOscillator.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_ShakedOscillator.m
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2.6.4.1 Displaced harmonic oscillator

To begin with, we will derive the dynamics of a harmonic oscillator suddenly exposed
to a homogeneous constant force F (t) = mg Θ[0,∞](t). It is easy to see, that the
above perturbed Hamiltonian can be cast into the form,

Ĥ(t) = − ℏ2

2m

d2

dx2
+
m

2
ω2
ho

(
x̂− g

ω2
ho

)2

− mg2

2ω2
ho

, (2.174)

where the last constant term plays no role in the dynamics. That is, as we know
from classical physics, the essential impact of a homogeneous force (e.g. gravity) on
a harmonic oscillator consists in displacing its equilibrium position. Knowing the
eigenvalues and -states of the unperturbed Hamiltonian, the obvious solution of the
perturbed eigenvalue problem is,

Ĥ|ψ(1)
n ⟩ = E(1)

n |ψ(1)
n ⟩ (2.175)

with E(1)
n = En −

mg2

2ω2
ho

and ⟨x|ψ(1)
n ⟩ = ψ(1)

n (x) = ψn(x− g
ω2

ho
) = ⟨x− g

ω2
ho
|n⟩ .

Using the properties (1.282) and (1.284) we may write,

⟨x− g
ω2

ho
|n⟩ = ⟨x|U†

tr(− g
ω2

ho
)|n⟩ = ⟨x|e−(ı/ℏ)(g/ω2

ho)p̂|n⟩ , (2.176)

and using the representation (2.95) of the momentum operator by the field operators
and introducing the abbreviation β ≡ g

ω2
hoaho

√
2
we can rewrite,

⟨x− g
ω2

ho
|n⟩ = e−β(â−â

†)⟨x|n⟩ . (2.177)

Note, that the transition from (2.173) to (2.175) can also be obtained by a redefinition
of the field operators according to,

b̂ ≡ â− mgaho
ℏωho

√
2
, (2.178)

since,

Ĥ = ℏωho(â
†â+ 1

2 )−
mgaho√

2
(â+ â†) = ℏωho(b̂

†b̂+ 1
2 )−

mg2

2ω2
ho

(2.179)

and â− â† = b̂− b̂†.
The temporal evolution is given by the time-dependent Schrödinger equation.

Since the jump is finite, the solution must be well behaved at time t = 0,

⟨x|ψ(1)
n (t)⟩ = ⟨x|e−(ı/ℏ)Ĥt|ψ(1)

n (0)⟩ (2.180)

= ⟨x|e−(ı/ℏ)Ĥte−β(â−â
†)|n⟩

= ⟨x|e−(ı/ℏ)Ĥte−β(â−â
†)e(ı/ℏ)Ĥte−(ı/ℏ)Ĥt|n⟩ .
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To simplify the first three exponential functions, we use the relationships (2.169) and
(2.166) 7,

e−(ı/ℏ)Ĥte−β(â−â
†)e(ı/ℏ)Ĥt = e−βe

−(ı/ℏ)Ĥt(â−â†)e(ı/ℏ)Ĥt

= e−β(e
ıωhotâ−e−ıωhotâ†) ,

(2.181)
and write the temporal solution,

ψ(1)
n (x, t) = e−β(âe

ıωhot−â†e−ıωhot)e−(ı/ℏ)Ĥtψn(x) (2.182)

= e−β(â−â
†) cosωhot−ıβ(â+â†) sinωhote−(ı/ℏ)E(0)

n tψn(x) .

Using Glauber’s formula (1.313) we find,

ψ(1)
n (x, t) = e−ıβ(â+â

†) sinωhote−β(â−â
†) cosωhoteıβ

2 sinωhot cosωhote−(ı/ℏ)E(0)
n tψn(x)

= e−ı(mg/ℏωho)x̂ sinωhote−(ı/ℏ)(g/ω2
ho)p̂ cosωhoteıβ

2 sinωhot cosωhote−(ı/ℏ)E(0)
n tψn(x)

= e−ıβ(â+â
†) sinωhoteıβ

2 sinωhot cosωhote−(ı/ℏ)E(0)
n tψn(x− b cosωhot) . (2.183)

Finally,

|ψ(1)
n (x, t)|2 = |ψn(x− x̄(t))|2 where x̄(t) ≡ g

ω2
ho

cosωhot . (2.184)

This means that the spatial distribution of ψ
(1)
n around x̄(t) is the same as of ψn

around x̄ = 0. The entire distribution oscillates without deformation. The momentum
distribution follows from the Fourier transform,

ϕ(1)n (p, t) =
1√
2πℏ

∫
dxe−(ı/ℏ)pxψ(1)

n (x, t) (2.185)

=
1√
2πℏ

∫
du e−(ı/ℏ)pue

−(ı/ℏ)umωho
g
ω2

ho
sinωhot

eıγ(p,t)ψn

= eıγ(p,t)ϕn(p+mωho
g
ω2

ho
sinωhot) ,

where the abbreviation γ = γ∗ contains all unitary transformations of (2.183), that
do not depend on x. We obtain,

|ϕ(1)n (p, t)|2 = |ϕn(p− p̄(t))|2 where p̄(t) ≡ −m g
ωho

sinωhot . (2.186)

2.6.4.2 Discussion of the kick dynamics

For the acceleration of the harmonic oscillator to resemble a ’kick’, the time during
which the perturbation is active must be much smaller than a trap oscillation period,
ωho∆t≪ 1. In this case, we may expand the oscillatory motion (2.184) and (2.186),

x̄ =
g

ω2
ho

and p̄ = −mg∆t ≡ −ℏk , (2.187)

7We can use (2.166), because the shifted harmonic oscillator has, except from a constant offset
the same eigenenergies.
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which is consistent with the initial request (2.172). It is also clear that, for a given
force mg, the maximum momentum that can be transmitted is limited, ℏk < mg/ωho.

As long as the kick-approximation ωho∆t≪ 1 holds, we may simply describe the
dynamics during the application of the force, via a time-dependent kick operator,

eık(t)x̂ = D(α(t)) , (2.188)

where the acquired momentum increases linearly with time according to k(t) =

kmax(min(t,∆t),0)
∆t . I.e. the populations of the vibrational states evolve like (2.152)

into a coherent state with increasing amplitude |α(t)|2. At the end of the kick, on
a much slower time-scale ω−1

ho , the wavefunctions will start to oscillate all in phase,
according to (2.184).

The time-dependence of the states |α(t)⟩, as shown in Exc. 2.6.6.10 is given by,

|α(t)⟩ = e−(ı/ℏ)Ĥt|α(0)⟩ =
∑

n

e−(ı/ℏ)Ente−|α(0)|2/2α(0)
n

√
n!
|n⟩ (2.189)

= e−ıωhot/2
∑

n

e−|α(0)|2/2 (α(0)e
−ıωhot)n√
n!

|n⟩ = e−ıωhot/2|α(0)e−ıωhot⟩ .

With (2.166) we find,

x̂(t) = e−(ı/ℏ)Ĥtx̂(0)e(ı/ℏ)Ĥt = x̂(0) cosωhot+
p̂(0)
mωho

sinωhot and (2.190)

p̂(t) = e−(ı/ℏ)Ĥtp̂(0)e(ı/ℏ)Ĥt = mωhox̂(0) sinωhot+ p̂(0) cosωhot ,

or with (2.189),

⟨α(t)|x̂|α(t)⟩ = ⟨α(0)|x̂|α(0)⟩ cosωhot+
1

mωho
⟨α(0)|p̂|α(0)⟩ sinωhot

⟨α(t)|p̂|α(t)⟩ = mωho⟨α(0)|x̂|α(0)⟩ sinωhot+ ⟨α(0)|p̂|α(0)⟩ cosωhot
. (2.191)

We note, that the position and momentum wavefunctions ⟨x|n⟩ and ⟨p|n⟩ of the
excited vibrational states are complicated Hermite polynomials, but we don’t have
to write them down explicitly to get to the last result. We will derive some further
properties in Exc. 2.6.6.11.

2.6.4.3 Simulation of the displacement of a harmonic oscillator

The Hamiltonian of a harmonic oscillator subject to an external force can be cast into
the form,

Ĥ(t) = − ℏ2

2m

d2

dx2
+
m

2
ω2
hox̂

2 +mgx̂ = ℏωho(â
†â+ 1

2 ) +mg aho√
2
(â+ â†)

=




. . .
. . . 0

. . . (n+ 1
2 )ℏωho mg aho√

2

√
n+ 1

mg aho√
2

√
n+ 1 (n+ 3

2 )ℏωho
. . .

0
. . .

. . .




. (2.192)
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The temporal evolution of the state is given by,

|ψ(t)⟩ = e−(ı/ℏ)Ĥt|ψ(0)⟩ = e−(ı/ℏ)Ĥt
∑

n

an|n⟩
an=δn,0−→ e−(ı/ℏ)Ĥt|0⟩ , (2.193)

when the oscillator is initially in the state |0⟩. Note that, without perturbation,
|ψ(t)⟩ =∑n e

−ıωho(n̂+1/2)tan|n⟩.
Various quantities now are interesting to plot as a function of time. Firstly, we

calculate the populations |⟨n|ψ(t)⟩|2 of the various states and the total energy from,

⟨n|ψ(t)⟩ = ⟨n|e−(ı/ℏ)Ĥt
∑

m

am|m⟩

Etot(t) =
∑

n

ℏωho(n+ 1
2 )|⟨n|ψ(t)⟩|2

. (2.194)

Secondly, we get for the temporal evolution of the spatial wavefunction,

⟨x|ψ(t)⟩ =
∑

n

⟨x|n⟩⟨n|ψ(t)⟩ =
∑

n

⟨x|n⟩⟨n|e−(ı/ℏ)Ĥt
∑

m

am|m⟩ , (2.195)

where |⟨x|n⟩⟨n|ψ(t)⟩|2 is the spatial representation of the wavefunction of the n-th
eigenstate derived in (2.106),

⟨x|n⟩ = e−x
2/2a2hoHn(x/aho)√
aho
√
π2nn!

, (2.196)

weighed with instantaneous population (2.194) of this state. We thus obtain for the
total wavefunction,

⟨x|ψ(t)⟩ =
∑

n

e−x
2/2a2hoHn(x/aho)√
aho
√
π2nn!

⟨n|e−(ı/ℏ)Ĥt|n⟩ . (2.197)

Furthermore, we may calculate the expectation values of the position and the
momentum of the harmonic oscillator from the total wavefunction ⟨x|ψ(t)⟩,

⟨ψ(t)|x̂|ψ(t)⟩ =
∫
⟨ψ(t)|x̂|x⟩⟨x|ψ(t)⟩dx =

∫
x|ψ(x, t)|2dx (2.198)

⟨ψ(t)|p̂|ψ(t)⟩ =
∫
⟨ψ(t)|p̂|p⟩⟨p|ψ(t)⟩dp =

∫
p|ϕ(p, t)|2dp ,

where ϕ(p, t) is the Fourier transform of ψ(x, t) according to (1.212). In practice, it
is however easier to calculate them from the populations ⟨n|ψ(t)⟩,

⟨ψ(t)|x̂|ψ(t)⟩ = aho√
2

∑

n

⟨ψ(t)|â+ â†|n⟩⟨n|ψ(t)⟩

⟨ψ(t)|p̂|ψ(t)⟩ = ℏ
ıaho

√
2

∑

n

⟨ψ(t)|â− â†|n⟩⟨n|ψ(t)⟩
. (2.199)
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The temporal evolution of the forced harmonic oscillator defined by (2.193) can
be numerically propagated. In cases where the force varies in time, the propagation
can be done iteratively by subdividing time in intervals tk− tk−1 for k ∈ N sufficiently
small that the force can be considered constant within them,

|ψ(tk)⟩ = e−(ı/ℏ)Ĥ(tk−tk−1)|ψ(tk−1)⟩ . (2.200)

The results of such a simulation are illustrated in Fig. 2.20.
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Figure 2.20: (code) Evolution of a harmonic oscillator subject to time-dependent forcing.

(a) Histogram of the final population of the vibrational states. (b) Time evolution of the

vibrational state populations. (c) Time evolution of the applied force (black) and of the

expectation values of position (red) and momentum (brown). (d) Spatial wavefunctions

⟨n|ψ(x)⟩|2 (Hermite polynomials) (blue) of the lowest vibrational states of the harmonic

potential (black). The green Gaussian is the coherent sum of the spatial wavefunctions

|∑n⟨n|ψ(x)⟩|2, and the cyan Gaussian the coherent sum of the momentum wavefunctions

|∑n⟨n|ψ(p)⟩|2. The horizontal yellow line is the total energy of the system. You may also

run a movie of the simulation clicking on (watch movie)! Furthermore, a presentation about

the topic of recoil on trapped atoms is available at (watch talk)!

2.6.5 Quantization of the electromagnetic field

The quantization of light (also called second quantization) triggered by Max Planck’s
treatments of black-body radiation in 1905 resolved the problem of the ultraviolet

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_ForcedOscillator.m
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divergence and explained the photoelectric effect. Twenty years later the quantiza-
tion of the atom by Niels Bohr (also called first quantization) explained the internal
structure of the atom.

The operator for the electric field of a laser mode is given by,

Ê = ıE1[âeık·r−ıωt − â†e−ık·r+ıωt] , (2.201)

where E1 =
√

ℏω/2ε0V is the electric field generated by a single photon in the mode

volume V . Exc. 2.6.6.12 asks to calculate the eigenvalues ⟨Ê⟩ and ∆Ê .
It is sometimes convenient to represent the light field by its quadratures. With the

definition â ≡ x̂1 + ıx̂2, where x̂1,2 are non-commuting observables ([x̂1, x̂2] = ı/2),
we can write the field as,

Ê = −2E1[x̂1 sin(k · r− ωt) + x̂2 cos(k · r− ωt)] . (2.202)

Heisenberg’s uncertainty relations requires,

∆x1∆x2 ≥ 1
4 . (2.203)

For coherent states, ∆x1 = ∆x2 = 1
2 .

2.6.6 Exercises

2.6.6.1 Ex: Sum of displacements operators

Prove formula (2.129). Find a geometric interpretation of the phase factor (αβ∗ −
α∗β)/2 in the complex plane of Glauber states.

2.6.6.2 Ex: Rotation operator

Calculate D†(α)R(φ)D(α) and R†(φ)D(α)R(φ) where R(φ) = eıφâ
†â and D(α) =

eαâ
†−α∗â.

2.6.6.3 Ex: Harmonic oscillator and coherent states

a. Verify whether the Glauber states of a harmonic oscillator are orthogonal.
b. Show that ⟨α|n̂|α⟩ = |α|2, ⟨α|n̂2|α⟩ = |α|4 + |α|2, and ∆n̂ = |α|.
c. Now calculate the energy uncertainty ∆Ĥ for a Glauber state.
d. What is the population of the state |n⟩ of a harmonic oscillator in a Glauber state?

2.6.6.4 Ex: Annihilation operator acting on Fock and Glauber states

Show that the annihilation operator â does not reduce the photon number of a Glauber
state in contrast to a Fock state.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico04b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico035.pdf
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2.6.6.5 Ex: Completeness of coherent states

a. Show,

1
π

∫
|α⟩⟨α|d2α =

∞∑

n=0

|n⟩⟨n| = I .

b. Show that coherent states can be expanded in terms of other coherent states and
that, consequently, the coherent state basis is overcomplete.

2.6.6.6 Ex: Schrödinger cat state

Calculate the probability of finding n photons in Schrödinger’s cat state |ψ⟩ = 2−1/2(|α⟩±
| − α⟩).

2.6.6.7 Ex: Transition elements for arbitrary Lamb-Dicke parameters

Calculate the general expression for ⟨m|eıkx̂|n⟩ with the abbreviation α ≡ ıkaho/
√
2

for arbitrary values of the Lamb-Dicke parameter using the following results of the

discussion of the displacement operator D(α) = eαâ
†−α∗â = e−|α|2/2eαâ

†
e−α

∗â for
Glauber states. The relations

|n⟩ = (â†)n√
n!
|0⟩ and ⟨n|α⟩ = e−|α|2/2 α

n

√
n!

describe the relation between Fock and Glauber states. Furthermore,

D(−α) = D†(α) and D†(α)â†D(α) = â† + α∗ .

2.6.6.8 Ex: Lamb-Dicke regime

A rubidium atom is trapped in an isotropic harmonic trap with secular frequency
ωho = (2π) 1 kHz. Determine whether, driven on its D2 line, it is within the Lamb-
Dicke regime.

2.6.6.9 Ex: Resonantly excited harmonic oscillator

Write down the Hamiltonian of a harmonic oscillator subject to an oscillating homoge-
nous force, and numerically simulate the evolution of the vibrational states starting
from the ground state.

2.6.6.10 Ex: Shifted harmonic oscillator

Consider a HO of mass m, angular frequency ω, and electric charge q immersed in a
uniform electric field oriented parallel to the axis êx of the oscillator.
a. Get the energies of the stationary states of the HO and show how to get the
corresponding eigenstates.
b. Calculate the expectation values ⟨x⟩ and ⟨p⟩ for the displaced oscillator now using
Glauber states (or arbitrary superpositions of states) and taking advantage of the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico037.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico09.pdf
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formulas (2.95), (2.128), and (1.280).
c. Now, the electric field is suddenly turned off. Calculate the time evolution of the
oscillator.

2.6.6.11 Ex: Spatial wavefunction of a particle in a coherent state

a. Derive the following relations for the harmonic oscillator having received a recoil
momentum,

⟨ψ(1)
n |x̂|ψ(1)

n ⟩ = 0 and ⟨ψ(1)
n |p̂|ψ(1)

n ⟩ = ℏk .

b. Calculate the temporal evolution of the oscillator after having received the recoil
via,

⟨x|e−ıĤt/ℏe−ıkx̂|n⟩ .

c. Calculate the spatial wavefunction of a particle in a coherent state,

⟨x|α⟩ =
∑

n

e−|α|2/2 α
n

√
n!
⟨x|n⟩ .

2.6.6.12 Ex: Electric field amplitude and fluctuation

Calculate ⟨Ê⟩ and ∆Ê for a coherent state.

2.6.6.13 Ex: Beam splitting a Fock state

A beam splitter is a device dividing an input mode (e.g. a laser beam) into two output
modes 1 and 2. Assuming that a beam splitter sends every single photon with equal
probability to one of the two output modes and that the input mode be a Fock state,
what would be the photon statistics in the output mode? Help: Create the total
output state |n1, n2⟩ from vacuum by successive application of the photon creation

operator â†1 + â†2.

2.6.6.14 Ex: Wavefunction of a harmonic oscillator in a Glauber state

Derive the wavefunction for a harmonic oscillator in a coherent state using the expo-
nential generating function of Hermite polynomials,

e2xt−t
2

=

∞∑

n=0

tn

n!
Hn(x) .

2.7 Further reading

A. Görlitz et al., Observing the Position Spread of Atomic Wave Packets [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico13.pdf
http://doi.org/10.1103/PhysRevLett.78.2096
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2.7.1 on the Fourier grid method

R. Meyer, Trigonometric Interpolation Method for One-Dimensional Quantum-Mechanical
Problems [DOI]

O. Dulieu, Coupled channel bound states calculations for alkali dimers using the
Fourier grid method [DOI]

J. Stare et al., Fourier Grid Hamiltonian Method for Solving the Vibrational Schroedinger
Equation in Internal Coordinates Theory and Test Applications [DOI]

C. Clay Marston et al., The Fourier grid Hamiltonian method for bound state eigen-
values and eigenfunctions [DOI]

2.7.2 on the harmonic oscillator

I. Bouchoule et al., Neutral atoms prepared in Fock states of a one-dimensional
harmonic potential [DOI]

M.O. Scully and M.S. Zubairy, Cambridge University Press, Quantum Optics [ISBN]

http://doi.org/10.1063/1.1673259
http://doi.org/10.1063/1.469622
http://doi.org/10.1021/jp034440z
http://doi.org/10.1063/1.456888
http://doi.org/10.1063/1.1673259
http://isbnsearch.org/isbn/978-0-524-23595-9
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Chapter 3

Rotations / Central potentials

Rotations are, on the same rights as translations, symmetry operations in space. They
are of fundamental importance for the discussion of composite particles, such as atoms
because they help us to formulate appropriate boundary conditions facilitating the
solution of the three-dimensional Schrödinger equation.

3.1 Particle in a central potential

Many potentials do not have Cartesian symmetry, but fortunately, many problems
have some kind of symmetry, cylindrical, spherical or periodic. Those with cylindrical
or spherical symmetry can be solved by separating the curvilinear coordinates, as we
will show in the following. Particularly important are spherical potentials caused by
central forces, for example, the Coulomb force between the proton and the electron
in the hydrogen atom.

3.1.1 Transformation to relative coordinates

The hydrogen atom represents a two-body problem. We consider the two masses m1,2

of a proton and an electron separated by a distance r and interacting through a
potential V (r). The Hamiltonian is

Ĥ =
−ℏ2
2m1
∇2
r1 +

−ℏ2
2m2
∇2
r2 + V (r1 − r2) , (3.1)

where r1,2 are the positions of the proton and the electron. With the ansatz Ξ(t, r1, r2) =
Ξ(r1, r2)e

−ıEtott/ℏ, the time-dependent Schrödinger equation

ĤΞ(t, r1, r2) = ıℏ
d

dt
Ξ(t, r1, r2) , (3.2)

becomes stationary,

[−ℏ2
2m1
∇2
r1 +

−ℏ2
2m2
∇2
r2 + V (r1 − r2)

]
Ξ(r1, r2) = EtotΞ(r1, r2) . (3.3)

Now we transform into the center-of-mass system making for the total wavefunction
the ansatz Ξ(r1, r2) = e−ıP·R/ℏΨ(r) with R ≡ m1

M r1 + m2

M r2 and r ≡ r1 − r2 and
introducing the abbreviationM = m1+m2. This corresponds to a product of a plane

135
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wave, describing the linear motion of the center of the masses, and a radial wave
function, which describes the relative motion of the atom. The kinetic energy of one
mass is:

−ℏ2
2m1
∇2
r1e

−ıP·R/ℏΨ(r) (3.4)

=
−ℏ2
2m1

[
e−ıP·R/ℏ∇2

r1Ψ(r) + 2(− ım1P
ℏM )e−ıP·R/ℏ∇r1Ψ(r) + Ψ(r)(− ım1

ℏ2MP)2e−ıP·R/ℏ
]

= e−ıP·R/ℏ
[−ℏ2
2m1
∇2
r1Ψ(r) +

ıℏP
M
∇r1Ψ(r)− m1P

2

2M2
Ψ(r)

]
.

Hence, for two atoms,

EtotΞ(r1, r2)− V (r)Ξ(r1, r2) (3.5)

= e−ıP·R/ℏ
[−ℏ2
2m1
∇2
r1Ψ(r) +

−ℏ2
2m2
∇2
r2Ψ(r) +

ıℏP
M

(∇r1 +∇r2)Ψ(r) +
P2

2M
Ψ(r)

]
.

Using ∇r1 = −∇r2 = ∇r, we see that the third term cancels, such that,

P 2

2M
Ψ(r) +

−ℏ2
2m1
∇2
rΨ(r) +

−ℏ2
2m2
∇2
rΨ(r) + V (r)Ψ(r) = EtotΨ(r) . (3.6)

Subtracting the energy of the center-of-mass motion with E = Etot − P 2

2M and intro-

ducing the abbreviation m−1 = m−1
1 +m−1

2 , we finally get,

[−ℏ2
2m
∇2
r + V (r)

]
Ψ(r) = EΨ(r) . (3.7)

3.1.2 Particle in a cylindrical potential

The equation (3.7) is three-dimensional because Ψ(r) is a scalar field and the mo-
mentum operator in Cartesian coordinates is given by,

∇2
r =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (3.8)

However, in some situations, the symmetry of the system allows to reduce dimension-
ality similarly to the cases of the box potential and the three-dimensional harmonic
oscillator. Let us now discuss the cases of cylindrical and spherical symmetry.

Electrons in magnetic fields are subject to the Lorentz force, which keeps them in
a rotating motion. We can rewrite the momentum operator in cylindrical coordinates,

x = ρ cosφ , y = ρ sinφ , z = z , (3.9)

as

∇2
r =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2
. (3.10)

Now, with the assumption that the potential only depends on ρ, V (r) = V (ρ), we can
try the ansatz,

Ψ(r) = R(ρ)ξ(φ)ζ(z) , (3.11)
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and obtain,

1

R(ρ)

[
− ℏ2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+ V (ρ)

)]
R(ρ)− ℏ2

2m

1

ζ(z)

∂2

∂z2
ζ(z)− ℏ2

2mρ2
1

ξ(φ)

∂2

∂φ2
ξ(φ) = E .

(3.12)
First, we separate the axial motion,

−ζ
′′

ζ
= const ≡ 2mEz

ℏ2
≡ k2z , (3.13)

the solution of this equation being a superposition of two plane waves counterprop-
agating along the axis z, ζ(z) = Aeıkzz + Be−ıkzz. Now, we separate the azimuthal
motion,

ρ2

R(ρ)

∂R2(ρ)

∂ρ2
+

ρ

R(ρ)

∂R(ρ)

∂ρ
+

2mρ2

ℏ2
[E−V (ρ)]−ρ2k2z = −ξ

′′

ξ
= const ≡ m2

φ . (3.14)

The solution of the right-hand part of the equation is ξ(φ) = Ceımφφ + De−ımφφ.
Finally, we have the radial equation,

1

R(ρ)

∂R(ρ)2

∂ρ2
+

1

ρR(ρ)

∂R(ρ)

∂ρ
− 2m

ℏ2
[E − V (ρ)]− k2z −

m2
φ

ρ2
= 0 , (3.15)

with the effective potential Veff = V (ρ)+
ℏ2m2

φ

2mρ2 . For a homogeneous potential, V (ρ) =
V0, the solution will be a superposition of Bessel functions.

Example 28 (Rigid rotor in cylindrical coordinates): As an example, we
disregard the potential, V (ρ) = 0, and we consider for the particle an orbit
with constant radius, ρ = const such that R(ρ) = δ(ρ − ρ0). In this case, we
only need to treat the orbital motion described by the right part of Eq. (3.14).
For the solution of this equation, ξ(φ) = Aeımφφ, to be well-defined, we need
ξ(φ) = ξ(φ+ 2π). This implies,

mφ = 0,±1,±2, ..
and

Eφ =
ℏ2m2

φ

2mρ2
.

The allowed energies Emφ = Eφ can be obtained by letting the Hamiltonian

Ĥ = −ℏ2

2I

∂2

∂φ2
,

with the moment of inertia I = mρ2 actuate on the azimuthal wavefunction
ξ(φ). We now define the operator,

l̂z =
ℏ
ı

∂

∂φ
.

This operator acts on the wavefunction ξ as follows,

l̂zξ(φ) = ℏmφξ(φ) .

It is easy to show that wavefunctions with different values ml are orthogonal.

Note: 1. The state mφ = 0 has zero energy. That is, it has no zero-point energy,

which is due to the absence of a confining potential. 2. The particle is delocalized

within a ring of radius r: ∆lz∆sinφ ≥ ℏ
2
|⟨cosφ⟩|.
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3.1.3 Hamiltonian in spherical coordinates

We can rewrite the momentum operator in spherical coordinates,

x = r sinϑ cosφ , y = r sinϑ sinφ , z = r cosϑ , (3.16)

as 1,

∇2
r =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
L̂2

ℏ2
where

L̂2

ℏ2
≡ 1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂φ2
,

(3.17)
is an abbreviation called Legendre operator. For an isotropic potential, V (r) = V (r),
we can try the ansatz,

Ψ(r) = R(r)Y (ϑ, φ) (3.18)

to solve the Schrödinger equation (1.168),

r2

R(r)

[
− ℏ2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+ V (r)− E

]
R(r) =

−1
2m

L̂2Y (ϑ, φ)

Y (ϑ, φ)
= const ≡ − ℏ2

2m
ℓ(ℓ+1) ,

(3.19)
where we choose a separation constant, ℓ(ℓ + 1), the significance of which we shall
soon learn. Considering only the angular part,

L̂2Y (ϑ, φ) = ℏ2ℓ(ℓ+ 1)Y (ϑ, φ) , (3.20)

and making another separation ansatz,

Y (ϑ, φ) = Θ(ϑ)Φ(φ) , (3.21)

we obtain,

sin2 ϑ

(
1

Θ(ϑ)

1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
Θ(ϑ) + ℓ(ℓ+ 1)

)
= − 1

Φ(φ)

∂2

∂φ2
Φ(φ) = const ≡ m2 ,

(3.22)
where we choose a separation constant, m2. Introducing another abbreviation,

L̂z ≡
ℏ
ı

∂

∂φ
, (3.23)

the azimuthal equation takes the form

L̂zΦ(φ) = ℏmΦ(φ) . (3.24)

As in the case of the cylindrical potential, the solution of the azimuthal equation is,
using the normalization,

Φ(φ) = 1√
2π
eımφ , (3.25)

with the magnetic quantum number m = 0,±1,±2, ...
1We may also write: p2 = (êr · p)2 + (êr × p)2 = p2r + L2

r2
, where p2r is the radial part of the

Laplace operator and L2

r2
the angular part.
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The polar equation,

1

Θ(ϑ)

1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
Θ(ϑ) + ℓ(ℓ+ 1) =

m2

sin2 ϑ
, (3.26)

is called Legendre’s differential equation and can be solved by a power series in cosk ϑ.
For m = 0, the solutions are the Legendre polynomials, Pℓ(cosϑ) with

Pℓ(z) =
1

2ℓℓ!

dℓ

dzℓ
[(z2 − 1)ℓ] . (3.27)

The first polynomials are,

P0(z) = 1 , P1(z) = z , P2(z) =
1
2 (3z

2 − 1) , P3(z) =
1
2 (5z

3 − 3z) . (3.28)

For m > 0, the solutions are the associated polynomials,

Pmℓ (z) = (−1)m(1− z2)m/2 d
m

dzm
Pℓ(z) =

(−1)m
2ℓℓ!

(1− z2)m/2 d
ℓ+m

dzℓ+m
[(z2 − 1)ℓ]

(3.29)

P−m
ℓ (z) = (−1)m (ℓ−m)!

(ℓ+m)!
Pmℓ (z) .

The polar function must still be normalized,

Θmℓ (ϑ) = Pmℓ (cosϑ)

√
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!
. (3.30)

The functions Yℓm(ϑ, φ) are the spherical harmonics. They form an orthonormal
system, ∫ π

0

∫ 2π

0

Y ∗
ℓ′m′(ϑ, φ)Yℓm(ϑ, φ) sinϑdϑdφ = δℓ′ℓδm′m . (3.31)

Finite solutions only exist when the angular momentum quantum number is ℓ = 0, 1, ..
and for |m| ≤ ℓ.
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Figure 3.1: (code) Angular wavefunctions. Shown are the Legendre polynomials Pmℓ (cosϑ)

for ℓ = 0, 1, 2, 3 and m = 0, .., ℓ. Red: m = 0, green: |m| = 1, blue: |m| = 2, and magenta:

|m| = 3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Legendre.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Legendre.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Legendre.m
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The solutions of the angular part of the Schrödinger equation for the hydrogen
atom are finally,

Yℓm(ϑ, φ) =
1√
2π

Pmℓ (cosϑ)

√
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!
eımφ . (3.32)

The spherical harmonics are simultaneously eigenfunctions of the operators L2, as can
be seen from Eq. (3.20), and of the operator Lz according to Eq. (3.24). The quanti-
ties represented by the quantum operators Ĥ, L̂2, L̂z are conserved in the hydrogen
system. The conservation of the angular momentum is due to the spherical symmetry
of the Coulomb potential.

We will verify the parity of the spherical harmonics in Exc. 3.1.5.1.

3.1.4 Separation of radial motion

In Sec. 3.1.3 we derived, after having separated the motion of the center-of-mass (that
is, of the heavy nucleus) and the angular coordinates, the radial equation (3.19)
describing the radial component of the electronic motion,

1

R(r)

[
− ℏ2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+ V (r)− E

]
R(r) = − L̂2

2mr2
, (3.33)

Now, we make the substitution R(r) = u(r)/r and the radial equation becomes,

[
− ℏ2

2m

∂2

∂r2
+

L̂2

2mr2
+ V (r)

]
u(r) = Eu(r) . (3.34)

This equation is very similar to a one-dimensional Schrödinger equation, but there is
an additional potential term called centrifugal potential,

Vℓ(r) ≡
L̂2

2mr2
. (3.35)

For example, for the potential of an electron orbiting a proton, we have,

[
− ℏ2

2m

∂2

∂r2
− Ze2

4πε0r
+

ℏ2ℓ(ℓ+ 1)

2mr2
− E

]
uEℓ(r) = 0 . (3.36)

We will discuss this equation intensely in the context of the hydrogen atom.
In Exc. 3.1.5.2 we derive the radial Gross-Pitaevskii equation for a Bose-Einstein

condensate trapped in a spherical potential. In the Exc. 3.1.5.3 we will study particles
inside a central potential of zero depth, in the Excs. 3.1.5.4 and 3.1.5.5 we consider
3D spherical box potentials and in Exc. 3.1.5.6 a spherical harmonic potential.

Example 29 (Rigid rotor in spherical coordinates): We continue the dis-
cussion of the rigid rotor, now in spherical coordinates. In the case that the
orbit of the particle is fixed to a radius R, we can neglect the kinetic energy due
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Figure 3.2: (code) Sum of a Coulomb potential and centrifugal potential for ℓ = 0 (lower

curve), ℓ = 1 (center curve), and ℓ = 2 (upper curve).

to the radial motion and the potential, both being constant. In this case the
radial Schrödinger equation is,[

ℏ2ℓ(ℓ+ 1)

2mr2

]
uEℓ = EℓuEℓ .

The energies of the rigid rotor are

Eℓ =
ℏ2ℓ(ℓ+ 1)

2I
,

with the momentum of inertia I = mR2.

3.1.5 Exercises

3.1.5.1 Ex: Parity of the spherical harmonic functions

We consider the parity transformation P with (x, y, z)
P−→ (−x,−y,−z). Use spheri-

cal coordinates to show that Yℓm
P−→ (−1)ℓYℓm, and therefore that a spherical surface

function has even parity when ℓ is even, and odd parity, when ℓ is odd.

3.1.5.2 Ex: Bose-Einstein condensate in an isotropic potential

The time-dependent Gross-Pitaevskii equation describing the wavefunction of a Bose-
Einstein condensate reads,

ıℏ
∂ψ(r, t)

∂t
=

(
− ℏ2

2m
∇2 + Vtrp(r) + g|ψ(r, t)|2

)
ψ(r, t) ,

where the factor g depends on the force of the interatomic interaction and Vtrp is the
potential trapping the atoms. Derive the stationary Gross-Pitaevskii equation via the
transform ψ(r, t) = ψ(r)e−ıµt/ℏ, where the constant µ is called the chemical potential.

For V (r) = V (r) the wavefunction will have radial symmetry, ψ(r) = ϕ(r)
r . Rewrite

the Gross-Pitaevskii equation for the function ϕ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Centrifugal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Centrifugal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ParidadeHarmonica.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_CondensadoConfinado.pdf


142 CHAPTER 3. ROTATIONS / CENTRAL POTENTIALS

3.1.5.3 Ex: Motion of a free particle in spherical coordinates

Obtain the eigenfunctions of a free particle as the limiting case of its motion in a
central force field with V (r) → 0. Compare the derived eigenfunctions – associated
with the complete set of observables Ĥ, L̂2, and L̂z – to those described by plane
waves – associated with the motion characterized by the observables p̂x, p̂y, p̂z, and

Ĥ = P̂2/2m –, which also constitute a complete set of observables.

3.1.5.4 Ex: Particle in a spherical box

Find the energy levels and wavefunctions of a particle confined in a spherical box
described by potential energy, V (r) = 0 for r < a and V (r) =∞ for r ≥ a considering
the angular momentum ℓ = 0.

3.1.5.5 Ex: Finite spherical 3D potential well

a. Derive the possible energy levels and associated wavefunctions for a particle trapped
in a spherical 3D potential well of depth V0 and radius a. Note that this problem is
analogous to Mie scattering of scalar waves.
b. Discuss the case of a well surrounded by infinitely high walls.

3.1.5.6 Ex: Particle in a spherical harmonic potential

A quantum particle of mass m is subject to a potential

V = 1
2mω

2(x2 + y2 + z2) .

a. Obtain the energy levels of this particle. That is, determine the eigenvalues of

− ℏ2

2m
∇2ψ + V ψ = Eψ .

b. Consider the fundamental level and the first two excited levels. Set up a table
showing for each of these three levels the energy value, the degeneracy, and the re-
spective states in terms of the quantum numbers.
c. Using

∇2ψ =

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

ℏ2r2

]
ψ

and remembering L̂2Yℓm(θ, ϕ) = ℏ2ℓ(ℓ + 1)Yℓm, write down the differential equation
of item (a) for the radial part of the wavefunction (it is not necessary to solve it).
Identify in this equation the effective potential Veff(r).
d. Solve the differential equation of the previous item for the case where ℓ = 0 and
determine the corresponding eigenvalue. To do this, allow for a solution of the type
e−αr

2

and determine α.

3.2 Quantum treatment of hydrogen

According to Rutherford’s and Bohr’s planetary atomic model we may imagine an
atom as a very heavy nucleus having a positive electric charge surrounded by a very

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_MovimentoCentral.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_CaixaEsferica1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_CaixaEsferica2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_HarmonicoEsferico.pdf
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light negatively charged charge electronic cloud. Since the nucleus is very small com-
pared to the electronic cloud, we treat it as an entity with mass M and charge Ze,
where Z is the number of protons and corresponds to the order of the element in the
periodic system.

The canonical procedure for calculating all properties of an atom is to establish
its Hamiltonian, that is, to determine the kinetic energies of all components and all
interaction energies between them, and to solve the Schrödinger equation. For each
component we write the kinetic energy,

Tncl =
P 2

2M
and Tele =

Z∑

i=1

p2i
2m

. (3.37)

Here, (R,P) are the nuclear coordinates and (ri,pi) those of the electrons. The ener-
gies that corresponds to the interactions, that is, Coulombian attraction or repulsion,
between the components of the atom are,

Vncl:ele = −
Z∑

i=1

Ze2

4πε0|R− ri|
and Vele:ele =

Z∑

i ̸=j=1

e2

4πε0|ri − rj |
. (3.38)

There are also interactions due to the spin of the particles, which we will deal with
later.

Obviously, the solution to this many-body problem is very complicated. For this
reason, we will in this chapter, based on the Schrödinger equation, calculate the
complete spectrum of the simplest possible atom, hydrogen. This atom consists of a
proton and an electron, only.

Figure 3.3: The hydrogen model applies to other atoms having a single valence electron
occupying a sufficiently large space, that it sees the nucleus together with rest of the electrons
shielding the nucleus as a single positive charge.

3.2.1 Bohr’s model

Let us now turn our attention to the radial part of the Schrödinger equation describing
a particle in a radial potential. We expect that the quantum solutions for the hydrogen
atom are similar to the predictions of Bohr’s model. Following this model, the orbit
is stable when the attraction force is equal to the centrifugal force. But in addition,
Bohr postulated, that only certain energies are allowed. For the hydrogen atom he
found,

En = −1

2

Ze2

4πε0

1

rn
= − Z

2ℏ2

2ma2B

1

n2
= −Z

2e2

4πε0

1

2aBn2
= −Z

2

n2
13.6 eV , (3.39)



144 CHAPTER 3. ROTATIONS / CENTRAL POTENTIALS

with the Bohr radius

aB ≡ 4πε0
ℏ2

me2
. (3.40)

With this equation he was able to explain the spectral observations. Electrons can
only jump from one level to another, while emitting or absorbing a photon. The series
observed in the hydrogen spectrum (En−Em)/ℏ are the Lyman (m = 1), the Balmer
(m = 2), the Paschen (m = 3) an the Brackett series (m = 4).
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Figure 3.4: The hydrogen transitions.

The discussion of the hydrogen atom within quantum mechanics can start from
the radial Schrödinger equation (3.36) with the Coulomb attraction potential,

[
− ℏ2

2m

∂2

∂r2
− Ze2

4πε0r
+

ℏ2ℓ(ℓ+ 1)

2mr2
− E

]
uEℓ(r) = 0 . (3.41)

In order to facilitate comparison with Bohr’s classical model, let us express the energy
in terms of Bohr’s energy, E ≡ En = E1/n

2, and write the radius in units of aB, that
is, r̃ ≡ Zr/aB. This yields,

u′′nℓ(r̃) +

(
−ℓ(ℓ+ 1)

r̃2
+

2

r̃
− 1

n2

)
unℓ(r̃) = 0 . (3.42)

To ensure that for large radii, r → ∞, the solution is finite, we need an asymptotic
behavior like unℓ(r̃ → ∞) = e−r̃/n. To ensure that for small radii, r → 0, the
solution is finite, we need unℓ(r̃ → 0) = r̃ℓ+1. We derive the asymptotic solutions in
Exc. 3.2.3.1. The resulting differential equation only has solutions for an integer and
positive main quantum number n and when ℓ = 0, 1, .., n− 1. That is, in the relation
E = E1/n

2 the parameter n is integer and positive, such that energy levels remain
degenerate in ℓ and m. This means that Bohr’s postulate of discrete (i.e. quantized)
energy levels is valid (uff!)

Substituting the ansatz,

unℓ(r̃) = Dnℓr̃
ℓ+1e−r̃/nL(r̃) , (3.43)

it’s easy to show (see Exc. 3.2.3.2), that the differential equation (3.42) reduces to,

r̃L′′(r̃) + 2
[
(ℓ+ 1)− 1

n r̃
]
L′(r̃) + 2

[
1− 1

n (ℓ+ 1)
]
L(r̃) = 0 . (3.44)
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Figure 3.5: Level scheme.

Still with the abbreviation ρ ≡ 2r̃/n = 2Zr/naB the ansatz

unℓ(ρ) = Dnℓρ
ℓ+1e−ρ/2L(ρ) , (3.45)

leads to the differential equation 2

ρL′′(ρ) + [2(ℓ+ 1)− ρ]L′(ρ) + [n− ℓ− 1]L(ρ) = 0 . (3.46)

The solutions of this differential equation, L
(2ℓ+1)
n−ℓ−1(ρ), are the Laguerre polynomials.

These polynomials are listed in mathematical tables. Using the properties of these
polynomials it is possible to show that the radial functions are orthogonal and can be
normalized (see Exc. 3.2.3.3). Fig. 3.6 shows the curves for the lowest orbitals.

Finally, we can write the complete solutions of the Schrödinger equation Ĥψ =
Eψ,

ψnℓm(r, θ, ϕ) =
unℓ(r)

r
Yℓm(θ, ϕ) and En = − ℏ2

2ma2B

Z2

n2
, (3.47)

where n = 1, 2, 3, .. and ℓ = 0, 1, .., n − 1 and m = −ℓ,−ℓ + 1, .., ℓ. Of course, each
energy level n is,

n−1∑

ℓ=0

(2ℓ+ 1) = n2 (3.48)

2Laguerre’s associated differential equation is,

ρ∂2ρL
(α)
ν + (α+ 1− ρ)∂ρL

(α)
ν + νL

(α)
ν = 0 .

The Laguerre polynomials are generated by

L
(α)
ν (ρ) =

eρρ−α

α!

dν

dρν

(
e−ρρν+α

)
.
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Figure 3.6: (code) (a,c) Radial wavefunctions Rnℓ(r) and (b,d) square of the radial wave-

functions unℓ(r) for various quantum numbers n and ℓ.

times degenerate.

From the normalization condition,

1 =

∫

R3

|ψnℓm(r, θ, ϕ)|2d3r (3.49)

=

∫ ∞

0

|unℓ(r)|2dr
∫

R2

|Yℓm(θ, ϕ)|2 sin θdθdϕ =

∫ ∞

0

|unℓ(r)|2dr ,

we obtain the constants,

Dnℓ =

√(
2Z

naB

)3
(n− ℓ− 1)!

2n(n+ ℓ)!
, (3.50)

and the radial wavefunctions finally read,

Rnℓ(r) = Dnℓ

(
2r̃

n

)ℓ
e−r̃/nL(2ℓ+1)

n−ℓ−1(
2r̃
n ) = Dnℓρ

ℓe−ρ/2L(2ℓ+1)
n−ℓ−1(ρ) , (3.51)

using the previously introduced abbreviations.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Laguerre.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Laguerre.m
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Here is a list of the first wavefunctions of the hydrogen atom,

ψ100 = 1√
π

(
Z
aB

)3/2
e−r̃ (3.52)

ψ200 = 1
4
√
2π

(
Z
aB

)3/2
(2− r̃)e−r̃/2

ψ210 = 1
4
√
2π

(
Z
aB

)3/2
r̃e−r̃/2 cos θ

ψ21±1 = 1
8
√
π

(
Z
aB

)3/2
r̃e−r̃/2 sin θe±ıφ

ψ300 = 1
81

√
3π

(
Z
aB

)3/2
(27− 18r̃ + 2r̃2)e−r̃/3

ψ31±1 =
√
2

81
√
3π

(
Z
aB

)3/2
(6− r̃)r̃e−r̃/3 sin θe±ıφ

ψ320 = 1
81

√
6π

(
Z
aB

)3/2
r̃2e−r̃/3(3 cos2 θ − 1) ,

where we use the abbreviation r̃ ≡ Zr/aB. Using these wavefunctions we can now
calculate important eigenvalues such as, for example,

⟨1⟩nℓm = 1 (3.53)

⟨δ(3)(r̃)⟩nℓm =
δℓ,0
πn3

⟨r̃⟩nℓm = n2
[
1 +

1

2

(
1− ℓ(ℓ+ 1)

n2

)]

⟨r̃2⟩nℓm = n4
[
1 +

3

2

(
1− ℓ(ℓ+ 1)− 1

3

n2

)]

⟨r̃3⟩nℓm = n6
[
35

8
− 35

8n2
− 15

4n2
(ℓ+ 2)(ℓ− 1) +

3

8n4
(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)

]

⟨r̃4⟩nℓm = n8
[
63

8
+

35

8n2
(2ℓ2 + 2ℓ− 3) +

5

8n4
5ℓ(ℓ+ 1)(3ℓ2 + 3ℓ− 10) +

12

n8

]

〈
1

r̃

〉

nℓm

=
1

n2〈
1

r̃2

〉

nℓm

=
1

n3(ℓ+ 1
2 )〈

1

r̃3

〉

nℓm

=
n

n4ℓ(ℓ+ 1
2 )(ℓ+ 1)

〈
1

r̃4

〉

nℓm

=
3
2n

2 − 1
2ℓ(ℓ+ 1)

n5(ℓ+ 3
2 )(ℓ+ 1)(ℓ+ 1

2 )ℓ(ℓ− 1
2 )

.

These results will become important later. In Exc. 3.2.3.4 we will calculate the
eigenvalue ⟨r⟩ for several orbitals |ψnℓm⟩.
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3.2.2 The virial theorem

Originally derived for classical mechanics, the virial theorem also holds for quantum
mechanics, as shown for the first time by Fock. We evaluate the commutator between
the Hamiltonian

Ĥ = p̂2/2m+ V (r̂) , (3.54)

and the product of the position operator r̂ with the momentum operator p̂ = −ıℏ∇
of the particle:

[Ĥ, r̂ · p̂] = [Ĥ, r̂] · p̂+ r̂ · [Ĥ, p̂] = −ıℏ p̂
2

m
+ ıℏr̂ · ∇V , (3.55)

using the theorems of Ehrenfest. Therefore, we find for the operator Q̂ = r̂ · p̂ the
commutator,

ı

ℏ
[Ĥ, Q̂] = 2Ekin − r̂ · ∇V . (3.56)

The left side of this equation is precisely −dQ̂/dt, following the Heisenberg equation
of motion. The eigenvalue ⟨dQ̂/dt⟩ of the temporal derivative vanishes in steady state,
therefore we obtain the virial theorem,

2⟨Ekin⟩ = ⟨r̂ · ∇V ⟩ . (3.57)

Example 30 (Virial theorem applied to a central potential): For example,
for a central potential V (r) ∝ rs we obtain,

2⟨Ekin⟩ = ⟨r̂ · êr ∂V
∂r
⟩ = ⟨r ∂V

∂r
⟩ = s⟨V ⟩ .

In Exc. 3.2.3.5 we calculate the eigenvalues ⟨r−1⟩ and ⟨p2⟩ and we verify the virial
theorem. Finally, in Exc. 3.2.3.6 we calculate transition matrix elements between
different orbitals.

3.2.3 Exercises

3.2.3.1 Ex: Asymptotes of Laguerre’s polynomials

Derive the asymptotic solutions of equation (3.42).

3.2.3.2 Ex: Laguerre equation

Show that the equation (3.42) transforms with the ansatz (3.43) into equation (3.44).

3.2.3.3 Ex: Laguerre functions

Using the orthogonality relation of associated Laguerre polynomials,
∫ ∞

0

ραe−ρL(α)
n (ρ)L(α)

m (ρ)dρ =
Γ(n+ α+ 1)

n!
δn,m

∫ ∞

0

ρα+1e−ρL(α)
n ρ2dρ =

(n+ α)!

n!
(2n+ α+ 1) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_AssimptotasLaguerre.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_EquacaoLaguerre.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_FuncoesLaguerre.pdf
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and the recursion formula,

nL(α+1)
n (ρ) = (n− ρ)L(α+1)

n−1 (ρr) + (n+ α)L
(α)
n−1(ρ)

ρL(α+1)
n (ρ) = (n+ α)L

(α)
n−1(ρ)− (n− ρ)L(α)

n (ρ) ,

a. calculate the normalization constant Dn,l for a hydrogen-like atom with atomic
number Z;
b. calculate the mean value

⟨r⟩nlm =
n2aB
Z

[
1 +

1

2

(
1− ℓ(ℓ+ 1)

n2

)]
;

c. calculate the mean value 〈
1

r

〉

nℓm

=
Z

n2aB
.

3.2.3.4 Ex: Orbital radii in Bohr’s model

Using the results of 3.2.3.3, obtain the expectation values ⟨r⟩ for the states ψ100, ψ210

and ψ320 of the hydrogen atom. Compare the results with those of Bohr’s model.

3.2.3.5 Ex: The virial theorem and Bohr’s model

Calculate, for the state ψ320 of the hydrogen atom, the expectation values ⟨ 1r ⟩, ⟨L
2

r2 ⟩,
and ⟨p2⟩.
From the results, obtain the expectation values for the kinetic and potential energies,
⟨T ⟩ and ⟨V ⟩, and show that, consistent with the virial theorem, ⟨T ⟩ = −(1/2)⟨V ⟩.
Compare the results with Bohr’s model.

3.2.3.6 Ex: Transition matrix elements

Using the following (non-normalized) wavefunctions of hydrogen, ψ100(r) = e−r̃,
ψ210(r) = r̃e−r̃/2 cos θ and ψ21±1(r) = r̃e−r̃/2 sin θe±ıϕ, calculate the matrix elements
(a) ⟨ψ100|z̃|ψ210⟩, (b) ⟨ψ100|z̃|ψ211⟩, (c) ⟨ψ100|x̃− ıỹ|ψ210⟩, and (d) ⟨ψ100|x̃− ıỹ|ψ211⟩
using the formulae:

∫ ∞

0

x4e−3x/2dx = 256
81 ,

∫ π

0

sin3 xdx = 4
3 ,

∫ π

0

cosx sin2 xdx = 0 ,

∫ π

0

cos2 x sinxdx = 2
3 .

Try to interpret the results.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ModeloBohr1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ModeloBohr2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_TransicaoHidrogenio2.pdf
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3.3 Angular momentum

3.3.1 The orbital angular momentum operator

The definition of orbital angular momentum is adopted from classical mechanics:

L̂ = r̂× p̂ = −ıℏr̂× ∇̂ = −ıℏ

∣∣∣∣∣∣

êx êy êz
x y z

∂x ∂y ∂z

∣∣∣∣∣∣
. (3.58)

To better understand the properties of the angular momentum operator in quantum
mechanics we will derive in the Excs. 3.3.4.1 and 3.3.4.2 some of its properties.

Figure 3.7: Illustration of angular momentum in quantum mechanics.

3.3.1.1 Constants of motion

The preceding chapter dealt with the resolution of the radial and angular equations
for the case of a radial potential. The radial equation allowed to calculate the eigenen-
ergies of the Hamiltonian Ĥ,

Ĥ|ψ⟩ = Enℓ|ψ⟩ . (3.59)

We also found the common eigenvalues and eigenfunctions of operators L̂2 and L̂z
[see Eqs. (3.20) and (3.24)]. We now use the notation |ℓ,m⟩ ≡ Yℓm(θ, ϕ) for the
eigenfunctions,

L̂2|ℓ,m⟩ = ℏ2ℓ(ℓ+ 1)|ℓ,m⟩ and L̂z|ℓ,m⟩ = ℏm|ℓ,m⟩ . (3.60)

With this we have,

[Ĥ, L̂2]|ψ⟩ = Ĥℏ2ℓ(ℓ+ 1)|ψ⟩ − L̂2E|ψ⟩ = 0 (3.61)

and [Ĥ, L̂z]|ψ⟩ = Ĥℏm|ψ⟩ − L̂zE|ψ⟩ = 0 .

Therefore, the operators L̂2 and L̂z are constants of motion,

[Ĥ, L̂z] = 0 = [Ĥ, L̂2] . (3.62)

Exc. 3.3.4.3 asks to show explicitly, at the example of an isotropic three-dimensional
harmonic oscillator, that L̂2 and L̂z are constants of motion.
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3.3.2 SU(2) algebra of angular momentum and spin

So far, we have solved the angular eigenvalue equation in the spatial representation
for an orbital angular momentum, L̂ = r̂ × p̂. But it is not clear, whether every
angular momentum has this representation, which is derived from classical notions.
Using the orbital angular momentum expression (3.58) it is easy to verify,

L̂× L̂ = ıℏL̂ . (3.63)

However, it is not clear a priori, whether any quantity Ĵ satisfying

Ĵ× Ĵ = ıℏĴ or equivalently [Ĵm, Ĵn] = ıℏϵkmnĴk (3.64)

using the Levi-Civita symbol, can be represented like (3.58). In fact, we will see that
the electron has an intrinsic spin with no orbiting charges, and cannot be represented
as an orbital angular momentum. What needs to be done now is to show that (3.64)
generates a consistent algebra even in cases beyond the representation (3.58).

Since Ĵ2 and Ĵz commute (we show this from Eq. (3.64) in Exc. 3.3.4.4), they have
common eigenfunctions |j,m⟩. We can write the eigenvalues as,

Ĵ2|j,m⟩ = ℏ2j(j + 1)|j,m⟩ and Ĵz|j,m⟩ = ℏm|j,m⟩ , (3.65)

where, for now, we only know that m is real and j ≥ 0. But since ⟨j,m|Ĵ2|j,m⟩ ≥
⟨j,m|Ĵ2

z |j,m⟩, it is clear that j(j + 1) ≥ m2.

3.3.2.1 Rising and lowering operator

Now we introduce the rising operator Ĵ+ and the lowering operator Ĵ− via

Ĵ± ≡ Ĵx ± ıĴy such that Ĵ− = Ĵ†
+ . (3.66)

It is easy to check the following relationships

[Ĵz, Ĵ±] = ±ℏĴ± and [Ĵ2, Ĵ±] = 0 and Ĵ∓Ĵ± = Ĵ2 − Ĵ2
z ∓ ℏĴz . (3.67)

With this we find

ĴzĴ±|j,m⟩ = ([Ĵz, Ĵ±] + Ĵ±Jz)|j,m⟩ = ℏ(m± 1)Ĵ±|j,m⟩ (3.68)

and Ĵ2J±|j,m⟩ = Ĵ±Ĵ
2|j,m⟩ = ℏ2j(j + 1)Ĵ±|j,m⟩ .

That is, Ĵ±|j,m⟩ is a eigenstate of Ĵ2 and Ĵz with the eigenvalues j and m ± 1,
respectively, if J±|j,m⟩ ≠ 0. Hence,

Ĵ+|j,m⟩ ∝ |j,m+ 1⟩ . (3.69)

In order not to violate the condition m2 ≤ j(j + 1), we need to fix Ĵ±|j,±j⟩ = 0.
Therefore, for a specified j, the m can have only one of the 2j + 1 possible values
m = −j,−j+1, .., j. Since 2j+1 is an integer, j can only have values j = 0, 12 , 1,

3
2 , ...

Thus, the eigenvalue equation of the observables Ĵ2, Ĵ is solved, since we could have
chosen instead of Ĵz any one of the components of Ĵ, knowing that the others do not
commute with the chosen one.
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All spin components Ĵz and the scalar Ĵ2 can only have discrete eigenvalues. The
smallest unit is ℏ/2. With the normalization ⟨j,m|j′,m′⟩ = δj,j′δm,m′ we have,

⟨j,m|Ĵ∓Ĵ±|j,m⟩ = ⟨j,m|(Ĵ2 − Ĵ2
z ∓ ℏĴz)|j,m⟩ = ℏ2[j(j + 1)−m(m± 1)] , (3.70)

and

Ĵ±|j,m⟩ = ℏ
√
j(j + 1)−m(m± 1)|j,m± 1⟩ . (3.71)

In Exc. 3.3.4.5 we calculate the uncertainty of the angular momentum components,
in Exc. 3.3.4.6 we write the operator Ĵx in a matrix form, and in Excs. 3.3.4.7 and
3.3.4.8 we calculate projections of the spin of the electron in different directions of
the quantization axis.

3.3.3 The electron spin

Every angular momentum Ĵ generates a magnetic dipole moment µ⃗j ∝ Ĵ, which

interacts with external magnetic fields, V (B⃗) = µ⃗j · B⃗. Inhomogeneous magnetic fields

exert forces on dipole moments, F = −∇(µ⃗j · B⃗), which are detected by the Stern-
Gerlach experiment. This experiment reveals not only the quantization of angular
momentum, but also the presence of semi-integral values for the magnetic quantum
number.

In 1925 Uhlenbeck and Goudsmit proposed that the electron could have an intrin-
sic angular momentum with the quantum number s = 1/2. This angular momentum,
called spin, would not correspond to any orbiting mass or charge distribution within
the classical radius of the electron of the type L = r × p. The spin is a purely
quantum phenomenon because it disappears when ℏ → 0. It is believed nowadays
that the electron is actually point-like with no detectable deviation from Coulomb’s
law at any distance. The spin of the electron does not follow from the Schrödinger
equation, but can be included, ad hoc. On the other hand, it is interesting that it is
a necessary consequence of the stringent relativistic derivation of quantum mechanics
by Paul Dirac.

To characterize the spin, we can use the whole SU(2) formalism of the quantum
mechanics of angular momentum:

Ŝ× Ŝ = ıℏŜ , (3.72)

and

Ŝ2| 12 ,± 1
2 ⟩ = ℏ2 3

4 | 12 ,± 1
2 ⟩ , Ŝz| 12 ,± 1

2 ⟩ = ±ℏ
2 | 12 ,± 1

2 ⟩ , (3.73)

Ŝ± = ℏσ̂± = ℏ| 12 ,± 1
2 ⟩⟨| 12 ,∓ 1

2 | .
The operators σ̂± are the Pauli spin matrices defined in (1.154) for the basis chosen
as,

| 12 ,+ 1
2 ⟩ =

(
1

0

)
and | 12 ,− 1

2 ⟩ =
(
0

1

)
. (3.74)

3.3.4 Exercises

3.3.4.1 Ex: Properties of the angular orbital momentum

Show that L̂× L̂ = ıℏL̂ and [L̂x, L̂y] = ıℏL̂z.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_PropriedadeAngular1.pdf
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3.3.4.2 Ex: Levi-Civita tensor

a. Demonstrate [L̂k, r̂m] = ıℏr̂nϵkmn where the Levi-Civita tensor is defined by ϵkmn =
1 when (kmn) is an even permutation of (123), ϵkmn = −1 for an odd permutation,
and ϵkmn = 0 when two of the indices are equal.
b. Verify ĴmĴn = 1

4δmn + ı
2ϵkmnĴk.

3.3.4.3 Ex: Angular orbital momentum of a harmonic oscillator

Show for an isotropic three-dimensional harmonic oscillator: [Ĥ, L̂2] = [Ĥ, L̂z] = 0.
Make explicit calculations, that is, show

[
p̂2

2m , L̂z

]
= 0 =

[m
2
ω2r̂2, L̂z

]
and

[
p̂2

2m , L̂
2
]
= 0 =

[m
2
ω2r̂2, L̂2

]
.

3.3.4.4 Ex: Commutation of the absolute value and the components of
the orbital angular momentum

Show [Ĵ2, Ĵ] = 0.

3.3.4.5 Ex: Uncertainty of angular momentum components

Show that if Ĵz is precise, then Ĵx and Ĵy are imprecise.

3.3.4.6 Ex: Matrix representation of the components of the angular
momentum

Calculate the matrix elements of Ĵx and Ĵ2
x in the basis where Ĵz is observable. Give

the general formula and examples for j = 1
2 and j = 1.

3.3.4.7 Ex: Spin-1/2-particle in a magnetic field

Consider a spin-1/2-particle whose magnetic moment is µ⃗ = γS (where γ is a con-
stant). We can describe the quantum state of this particle in terms of the space
generated by the eigenvectors |+⟩ and |−⟩ of the operator Ŝz, which measures the
spin projection in z-direction:

Ŝz|+⟩ = ℏ
2 |+⟩ , Ŝz|−⟩ = −ℏ

2 |−⟩

Initially (t = 0) the particle is in the state ψ(t = 0)⟩ = |+⟩ and is subject to a uniform

magnetic field B⃗ = Bêy, so that:

Ĥ = −µ⃗ · B⃗ = −γBŜy .

a. What are the possible measurements of the spin projection on the y-axis?
b. Find the eigenvectors of Ŝy.
c. Get |ψ(t)⟩ at t > 0 in terms of the eigenvectors |+⟩ and |−⟩ defined above.
d. Obtain the mean expectation values of the observables Ŝx, Ŝy and Ŝz as a function
of time.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_TensorLeviCivita.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_InvariantesHarmonicas.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_PropriedadeAngular2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_PropriedadeAngular2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_IncertezaAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_MatricialAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_MatricialAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SpinOrientation.pdf
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3.3.4.8 Ex: Spin expectation value for a two-level system

Consider an arbitrary state of a two-level system |ϑ, φ⟩ = cos ϑ2 |+⟩+ eıφ sin ϑ
2 |−⟩ and

calculate the expectation values of the ladder operators Ŝ± and of the spin operator
Ŝ. Also calculate the expectation values of Ŝ2

±, Ŝ±Ŝ∓, Ŝ2
α with α = x, y, z. Finally,

calculate the uncertainties of ŝα and check the uncertainty relation.

3.4 Coupling of angular momenta

3.4.1 Singlet and triplet states with two electrons

In this section we first consider the spin states of two electrons, which can be combined
into two groups with well-defined total spin. With this we can understand the energy
spectrum of helium, which is very much dominated by Pauli’s principle and quantum
statistics. The introduced concepts can be extended to atoms with many electrons.

Angular momentum is an important quantum number in the treatment of the
internal structure of atoms. The two electrons in the helium electronic shell each
contribute a spin of s = 1

2 , which couple to a total angular momentum. Let us
consider, for simplicity, two free electrons. The state of the two-particle system is
an element of the product space of the two Hilbert spaces in which the individual
electrons are described. We will now apply the formalism of Sec. 1.5.8 explicitly to a
pair of electrons. The states that the two electrons can occupy are:

|γ1⟩ =
(
1

0

)
⊗
(
1

0

)
=




1

0

0

0


 ≡ | ↑↑⟩ , (3.75)

|γ2⟩ = | ↑↓⟩ , |γ3⟩ = | ↓↑⟩ , |γ4⟩ = | ↓↓⟩ .

The Pauli matrices act on the spin of the individual electrons. They can be extended
to the product Hilbert space as follows,

ℏ
2 σ̂x ⊗ I2 = ℏ

2

(
0 I2
I2 0

)
, ℏ

2 I2 ⊗ σ̂x = ℏ
2

(
σ̂x 0

0 σ̂x

)
(3.76)

ℏ
2 σ̂y ⊗ I2 = ℏ

2

(
0 ıI2
−ıI2 0

)
, ℏ

2 I2 ⊗ σ̂y = ℏ
2

(
σ̂y 0

0 σ̂y

)

ℏ
2 σ̂z ⊗ I2 = ℏ

2

(−I2 0

0 I2

)
, ℏ

2 I2 ⊗ σ̂z = ℏ
2

(
σ̂z 0

0 σ̂z

)
.

With these operators we can now build other operators. We first consider the three

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SpinExpectation01.pdf
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components of the total angular momentum,

Ŝk = ℏ
2 (σ̂k ⊗ I2 + I2 ⊗ σ̂k) such that (3.77)

Ŝx = ℏ
2




0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


 , Ŝy = ıℏ

2




0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0


 , Ŝz = ℏ




−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 .

The operator for the square of the absolute value of the total angular momentum is
calculated as follows:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = ℏ2




2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2


 . (3.78)

Now, we look for the eigenvalues of the total angular momentum. The equation for
the eigenvalues of Ŝz,

Ŝz|γk⟩ =MS |γk⟩ , (3.79)

is already diagonal in the introduced basis {γk} with the eigenvalues,

MS = −ℏ, 0, 0, ℏ . (3.80)

For Ŝ2 the situation is more interesting: The states |γ1⟩ and |γ4⟩ are eigenstates of
S2 for the eigenvalue 2ℏ2, but the states |γ2⟩ and |γ3⟩ are not eigenstates. On the
other hand, we know that the linear combination of two eigenstates with the same
eigenvalue is also a eigenstate. Therefore, the states

|γ̃1⟩ ≡ |γ1⟩ , |γ̃4⟩ ≡ |γ4⟩ , |γ̃a⟩ ≡ 1√
2
(|γ2⟩−|γ3⟩) , |γ̃s⟩ ≡ 1√

2
(|γ2⟩+|γ3⟩) , (3.81)

are still eigenstates of Ŝz, but they also are eigenstates of Ŝ2, since we can easily
verify,

Ŝ2|γs⟩ = 2ℏ2|γs⟩ and Ŝ2|γa⟩ = 0ℏ2|γa⟩ , (3.82)

using the matrices (3.77). In summary, for the eigenvalue ⟨Ŝ2⟩ = 2ℏ2 there exist the
following three states:

|γ1⟩ Ms = 1

|γ4⟩ Ms = −1
|γs⟩ Ms = 0



 triplet , S = 1 (3.83)

For ⟨S2⟩ = 0 there is only one state:

|γa⟩ Ms = 0 singlet , S = 0 . (3.84)

By exchanging the two electrons, the vectors |γ1⟩ and |γ4⟩ retain their shape, while
the mixed vectors change their shape: γ2 ↔ γ3. Under particle exchange |γa⟩ reverses
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its sign, that is, it is antisymmetric, while |γ1⟩, |γ4⟩ and |γc⟩ conserve their signs, that
is, they are symmetrical.

In summary, the triplet states have the quantum number of the total angular
momentum (with the expected value for Ŝ2 of ℏ2S(S + 1) = 2ℏ2), and they are
symmetrical about the exchange of particles. The singlet state has the quantum
number of the total angular momentum S = 0, and it is antisymmetric about the
exchange of particles. The transition from the original basis {|γ1⟩, |γ2⟩, |γ3⟩, |γ4⟩}
to the new basis {|γ̃1⟩, |γ̃s⟩, |γ̃a⟩, |γ̃4⟩} described by Eqs. (3.81) is done by a unitary
transformation,

|γ̃⟩ = UCGC|γ⟩ with UCGC =




1
1√
2

1√
2

1√
2
− 1√

2

1


 , (3.85)

whose components are known as Clebsch-Gordan coefficients. A similar treatment
can be done with bosons, as will be discussed in Sec. 11.1.

3.4.2 Coupling two spins

We now consider a perturbation of the system which, for some reason, only affects
the first spin. In the absence of the second atom we would have,

Ĥ1 =

(
0 Ω∗

Ω 0

)
. (3.86)

Including the second atom,

Ĥ = Ĥ1 ⊗ I =




Ω∗

Ω∗

Ω

Ω


 . (3.87)

In this case, the perturbation Hamiltonian does not commute with the total angular
momentum,

[Ŝ2, Ĥ] ̸= 0 . (3.88)

Another type of perturbation affects both spin symmetrically (e.g., Dicke superra-
diance with two atoms in the same radiative mode or two counterpropagating modes
in a ring cavity). The interaction Hamiltonian is now the sum of the individual
perturbations,

Ĥ = Ĥ1 ⊗ I+ I⊗ Ĥ1 =




Ω∗ Ω∗

Ω Ω∗

Ω Ω∗

Ω Ω


 . (3.89)

This Hamiltonian commutes with the total angular momentum,

[Ŝ2, Ĥ] = 0 . (3.90)
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S now is a good quantum number. Singlet states do not couple with triplets. This
is the idea behind Dicke’s superradiance. The absolute value of the total angular
momentum is conserved. The quantum number S is called Dicke cooperativity [229].

Example 31 (Two atoms interacting through their dipole moments): As
an example of a system exhibiting coupling of the type described in (3.89) we
consider two two-level atoms j = 1, 2. As long as the atoms do not interact, the
Hamiltonian will be,

Ĥ = ℏω0Ŝz , (3.91)

with Ŝz given by (3.77). Now, if the atoms interact via their dipole moments
with an electromagnetic field assumed to be the same for both atoms,

Ĥint =− q
m
A(r1) · (pxêxσ̂x ⊗ I+ pyêyσ̂y ⊗ I) (3.92)

− q
m
A(r2) · (pxêxI⊗ σ̂x + pyêyI⊗ σ̂y) ,

with r1 ≃ r2. By the rules (3.76) we find in matrix notation a Hamiltonian
equivalent to (3.89). Using the abbreviations Ωx ≡ q

m
Axpx, Ωy ≡ q

m
Aypy,

Ω± ≡ Ωx ± ıΩy, and Ω ≡
√

Ω2
x +Ω2

y,

Ĥ =


0 Ω− Ω− 0

Ω+ 0 0 Ω−

Ω+ 0 0 Ω−

0 Ω+ Ω+ 0

 . (3.93)

Using symbolic algebra software we find the eigenvector and eigenvalue matrices,

U =


Ω−
Ω+

−Ω−
Ω+

0
Ω−
Ω+

−
√

Ω−
Ω+

0 −1
√

Ω−
Ω+

−
√

Ω−
Ω+

0 1
√

Ω−
Ω+

1 1 0 1

 and Ê =


−2Ω 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2Ω

 .

(3.94)
Now, we get for the evolution of the various states,

UeıÊtU−1


0

1

1

0

 =


−
√

−Ω−
Ω+

sin 2Ωt

cos 2Ωt

cos 2Ωt√
Ω+

−Ω−
sin 2Ωt

 and UeıÊtU−1


0

1

−1
0

 =


0

1

−1
0

 .

(3.95)

That is, the Hamiltonian (3.92) does not mix antisymmetric singlet states and

symmetric triplet states.

3.4.3 Decoupled and coupled bases

Electrically charged orbiting particles produce a magnetic field. This field can in-
fluence the motion of other particles. In the same way, the spin of an electron can
influence its own orbital motion. That is, angular momenta can couple and interact in
a complicated way. Even to describe the behavior of an atom as simple as hydrogen in
an external field, we need to construct the eigenstates of the total angular momentum
resulting from a coupling of the electron’s intrinsic spin and its orbital motion.
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On the other side, we have hitherto considered predominantly hydrogen and
hydrogen-like atoms, that is, atoms with a nucleus and a single (valence) electron.
But in fact atoms can have more than 100 electrons, which complicates the exact de-
scription. In atoms with many electrons, one of the most common coupling schemes
is when the angular momenta of all electrons couple to a total angular momentum,
L̂ =

∑
k l̂k, which then couples to the total spin, Ŝ =

∑
k ŝk, to form the complete

total angular momentum, Ĵ = L̂ + Ŝ. We generally assign total momenta to capital
letters.

Adopting an unbiased notation we study some properties of the total angular
momentum, Ĵ ≡ ĵ1+ ĵ2. In Exc. 3.4.5.1 we find that the addition of angular momenta
produces a quantity which is also an angular momentum, but not the subtraction.

The angular momenta of two particles or two angular momenta of different origins
in a single particle represent independent degrees of freedom, [j1, j2] = 0. Without
interaction between angular momenta the Hilbert spaces are orthogonal:

H1 ⊗H2 =

(H1 0

0 H2

)
. (3.96)

The eigenfunctions act on a space of dimension, dimH1 · dimH2:

|j1,mj1; j2,mj2⟩ . (3.97)

That is, there is a complete set of commuting operators {̂j21, ĵ1z, ĵ22, ĵ2z}. Therefore,
we can specify quantum numbers j1, j2, mj1, and mj2 simultaneously. On the other

hand, the group {̂j21, ĵ22, Ĵ2, Ĵz} also represents a complete set of commuting operators,
as shown in Exc. 3.4.5.2. It has the basis

|(j1, j2)J,MJ⟩ . (3.98)

To describe the two angular momenta simultaneously, we must opt between the
decoupled picture |j1,mj1; j2,mj1⟩ and the coupled picture |(j1, j2)J,MJ⟩. For now,
the choice of the picture makes no difference, but we will see later that there may be
an energy associated with the coupling 3. In this case, as we will show, the choice
of the coupled base is more natural, because generally the energy commutes like
[Ĥ, Ĵ2] = 0 = [Ĥ, Ĵz] and [Ĥ, ĵ21] = 0 = [Ĥ, ĵ22], but [Ĥ, ĵ1z] ̸= 0 ̸= [Ĥ, ĵ2z].

Example 32 (Coupled basis): For example, using the Hamiltonian (3.94) it
is easy to see that,

[Ĥ, (σ̂x ⊗ I)2 + (σ̂y ⊗ I)2 + (σ̂z ⊗ I)2] = 0 = [Ĥ, (I⊗ σ̂x)2 + (I⊗ σ̂y)2 + (I⊗ σ̂z)2]
[Ĥ, σ̂z ⊗ I] ̸= 0 ̸= [Ĥ, I⊗ σ̂z] .

3That is, the Hamiltonian of the system does not contain terms of type ĵ1 · ĵ2, but may have
terms proportional to ĵ1 + ĵ2.
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Figure 3.8: Illustration of the coupling of two angular momenta.

3.4.3.1 Allowed values of total angular momentum

As long as we do not specify an interaction energy between the spins or between spins
and external fields, all states are energetically degenerate. In the decoupled image
the degeneracy is easily calculated,

# =

j1∑

mj1=−j1

j2∑

mj2=−j2
1 = (2j1 + 1)(2j2 + 1) . (3.99)

Now, we want to find the possible values of J and MJ in the coupled picture. The
values of MJ follow immediately from ĵ1 + ĵ2 = Ĵ,

MJ = mj1 +mj2 . (3.100)

With |mj1| ≤ j1 and |mj2| ≤ j2 the values of MJ are limited to

|MJ | ≤ j1 + j2 . (3.101)

We often know the two angular momenta j1 and j2 and all their projections in the
decoupled base,

|mj1| ≤ j1 and |mj2| ≤ j2 . (3.102)

To find the quantum numbers in the coupled base, we arrange the states ordering
them by their total magnetic quantum number MJ . We can, without loosing general-
ity, concentrate on the situation j1 ≥ j2. The following table reproduces the possible
combinations. The x-symbols represent Clebsch-Gordan coefficients:

J

mj1 +mj2 = MJ

J

J

J J − 1

J − 1 J − 1

J J − 1 J − 2

J − 2 J − 2 J − 2

J J − 1

−J + 1 −J + 1

J

−J
j1 j2 x

j1 j2 − 1

j1 − 1 j2

x x

x x

j1 j2 − 2

j1 − 1 j2 − 1

j1 − 2 j2

x x x

x x x

x x x

. . .

−j1 + 1 −j2
−j1 j2 + 1

x x

x x

−j1 −j2 x
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The possible values for J are all those allowing for J ≥ |MJ | = |mj1 +mj2|, that
is,

|j1 − j2| ≤ J ≤ j1 + j2 . (3.103)

Each value of J has the degeneracy 2J+1. Therefore, as will be verified in Exc. 3.4.5.3,
the total degeneracy is,

j1+j2∑

J=|j1−j2|
2J + 1 = (2j1 + 1)(2j2 + 1) . (3.104)

Example 33 (Spin states in the presence of L·S coupling): As an example

we consider two electrons occupying the (5p)2 orbital. That is, both electrons

have si = 1
2

and ℓi = 1. As illustrated in Fig. 3.9, the coupling first gives

S = s1 + s2 = 0, 1 and L = ℓ1 + ℓ2 = 0, 1, 2. Then we determine the possible

values of the total angular momentum J = L + S = 0, 1, 2 depending on the

values of L and S.

Figure 3.9: Possible spin states of two electrons occupying the (5p)2 orbital. Spin-orbit
coupling L · S leads to a splitting of the energy levels.

3.4.4 Clebsch-Gordan coefficients

Let us now describe how to add two angular momenta, ĵ1 and ĵ2. Since they act on
different degrees of freedom,

[α⃗1 · ĵ1, α⃗2 · ĵ2] = 0 (3.105)

for arbitrary vectors α⃗1 and α⃗2. We have a system of common eigenvectors, |η, j1, j2,m1,m2⟩,
where η are the eigenvalues of other observables commuting with ĵ1 and ĵ2. These
eigenvectors give the values ℏ2j1(j1 + 1) and ℏ2j2(j2 + 1) for the observables ĵ21 and
ĵ22, as well as ℏm1 and ℏm2 for the observables jz1 and jz2. The number of states
is (2j1 + 1)(2j2 + 1). Now we want to construct the eigenstates of the total angular
momentum Ĵ = ĵ1 + ĵ2. Since

[Ĵ, ĵ21] = 0 = [Ĵ, ĵ22] , (3.106)
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there exist common eigenstates |j1, j2, J,M⟩ for the set of observables ĵ21, ĵ
2
2, M̂

2 and
M̂z. These eigenstates are linear combinations of the individual states,

|(j1, j2)J,M⟩ =
∑

m1,m2

|j1, j2,m1,m2⟩⟨j1, j2,m1,m2|(j1, j2)J,M⟩ (3.107)

=
∑

m1,m2

|j1, j2,m1,m2⟩
(
j1 j2
m1 m2

∣∣∣∣
J

M

)
.

The matrix coefficient is called Clebsch-Gordan coefficient. The Clebsch-Gordans
disappear when the conditions 4

|j1 − j2| ≤ J ≤ j1 + j2 and M = −j1 − j2,−j1 − j2 + 1, .., j1 + j2 (3.108)

are not satisfied.
The unitary transformation matrices between decoupled and coupled bases,

|(j1, j2)J,M⟩ = UCGC|j1,m1; j2,m2⟩ , (3.109)

are listed in tables of the Clebsch-Gordan coefficients.

Example 34 (Clebsch-Gordans for the coupling of two spins 1
2
): For

example, for the system consisting of two 1
2
spins we have,

|( 1
2
, 1
2
)1,+1⟩

|( 1
2
, 1
2
)1, 0⟩

|( 1
2
, 1
2
)0, 0⟩

|( 1
2
, 1
2
)1,−1⟩

 =


1 0 0 0

0
√

1
2

√
1
2

0

0
√

1
2
−
√

1
2

0

0 0 0 1



| 1
2
,+ 1

2
; 1
2
,+ 1

2
⟩

| 1
2
,− 1

2
; 1
2
,+ 1

2
⟩

| 1
2
,+ 1

2
; 1
2
,− 1

2
⟩

| 1
2
,− 1

2
; 1
2
,− 1

2
⟩

 .

In the Excs. 3.4.5.4 and 3.4.5.5 we write all possible states of two angular mo-
menta in decoupled and coupled bases. In Excs. 3.4.5.6, 3.4.5.7, we derive the matrix
representation of two spins in the decoupled and the coupled base. In 3.4.5.8, and
3.4.5.9 we practice the transformation between decoupled and coupled bases, and
in Exc. 3.4.5.10 we verify a rule guaranteeing the unitarity of the Clebsch-Gordan
transformation. Finally in 3.4.5.11, 3.4.5.12, and 3.4.5.13 we study L · S-coupling.

3.4.4.1 Coupling of three angular moments

Three angular momenta can be coupled in three different configurations: First j1
with j2, then the total spin (j1, j2)j12 with the third one j3. We use the notation
|[(j1, j2)j12, j3]J⟩ or |[(j1, j3)j13, j2]J⟩ or |[(j2, j3)j23, j1]J⟩. The recoupling of three
spins

j1 + j2 = j12
+ +

j3 j3
= =

j13 + j2 = J

(3.110)

4The Clebsch-Gordans are related to the (3j) de Wigner symbols.
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is described by {6j} =
{
j1 j3 j13
J j12 j2

}
-symbols, for example,

|[(j1, j2)j12, j3]J⟩ =
∑

j13

{6j}|[(j1, j3)j13, j2]J⟩ . (3.111)

3.4.4.2 Notation for atomic states with LS-coupling

In an atom, the spins of the electrons often couple to a total spin, S =
∑
k sk,

and separately the orbital angular momenta to a total orbital angular momentum,
L =

∑
k lk. These two total spins now couple to a total angular momentum, J = L+S.

When this LS-coupling happens, the following notation is used to characterize the
electronic states in atoms:

2S+1LJ . (3.112)

For historical reasons the orbital angular momentum quantum number L = 0, 1, 2, 3, ...
is generally labeled by letters L = S, P,D, F, ....

3.4.4.3 jj-coupling

There is also the case that for each electron its spin couples to its own orbital angular
momentum, jk = lk + sk, before coupling to the total angular momenta of other
electrons, J =

∑
k jk. This is called jj-coupling. In the case of two electrons the

recoupling of the four involved spins

l1 + l2 = L

+ + +

s1 + s2 = S

= = =

j1 + j2 = J

(3.113)

is described by {9j} =





l1 l2 L

s1 s2 S

j1 j2 J



-symbols,

|[(l1, s1)j1, (l2, s2)j2]J⟩ =
∑

L,S

{9j}|[(l1, l2)L, (s1, s2)S]J⟩ . (3.114)

3.4.5 Exercises

3.4.5.1 Ex: Addition/subtraction of angular momenta

Show that ĵ1 + ĵ2 is an angular momentum, but not ĵ1 − ĵ2.

3.4.5.2 Ex: CSCO for coupled angular momenta

Be Ĵ = ĵ1 + ĵ2. Show that {̂j21, ĵ22, Ĵ2, Ĵz} is a CSCO; that is, show that
a. Ĵ2 commutes with ĵ21 and ĵ22;
b. Ĵ2 does not commute with ĵ1z or ĵ2z and that we can not specify mj1 or mj2

together with J .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SubtracaoAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_AdicaoAngular.pdf
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3.4.5.3 Ex: Multiplicity of coupled angular momenta

Verify # = (2j1 + 1)(2j2 + 1) within the coupled representation.

3.4.5.4 Ex: Possible states of two (de-)coupled angular momenta

Find all possible states with the angular momenta j1 = 1 and j2 = 1/2 in decoupled
and coupled pictures.

3.4.5.5 Ex: Fine and hyperfine structure of the rubidium atom 85Rb

1. The rubidium atom 85Rb has one valence electron. In the first excited state this
electron has the orbital angular momentum, L = 1. What are the possible states?
2. In the fundamental state of this atom the total electronic angular momentum J
couples with the spin of the nucleus, I = 5/2, to form the total angular momentum
F = J + I. Determine the possible values for the angular momentum F and the
magnetic quantum number mF .

3.4.5.6 Ex: Expansion of the hyperfine structure of the rubidium atom
87Rb

Determine for the states S1/2 and P3/2 of an atom with nuclear spin I = 3/2 and

hyperfine coupling Ĵ · Î how the eigenstates of the coupled base expand into the
decoupled base. Do not consider external magnetic fields.

3.4.5.7 Ex: Transition amplitudes between Zeeman sub-states

a. We consider the atom of 87Rb having the nuclear angular momentum I = 3/2.
What are the possible hyperfine states F resulting from a coupling of I with the total
electronic state angular momentum of the ground state 2S1/2? What are the possible
Zeeman sub-states of F?
b. What are the possible hyperfine states F ′ resulting from a coupling of I with the
total electronic angular momentum of the excited state 2P3/2, F

′ = 2? What are the
possible Zeeman sub-states of F ′?
c. A transition between a ground hyperfine state and an excited hyperfine state can
be described by a coupling of the total angular momentum F with the angular mo-
mentum of the photon κ forming the angular momentum of the excited state F ′. To
see this, we now consider the levels F = 1 and F ′ = 2. Expand the coupled angular
momentum |(F, κ)F ′,mF ′⟩ = |(1, 1)2,mF ′⟩ on a decoupled basis for every possible
value mF ′ . Use the table in Fig. 3.10 to determine the Clebsch-Gordan coefficients.
Note: The Clebsch-Gordans only compare the oscillator strengths of transitions be-
tween Zeeman sub-states of a given set (F, F ′). In order to compare the oscillator
strengths to other transitions (F, F ′) it is necessary to calculate 6j-coefficients.

3.4.5.8 Ex: Gymnastics of angular momentum operators

Consider the problem of adding angular momenta j1 = 1 and j2 = 1/2:
a. What are the possible values of M and J , in which Ĵ2|J,M⟩ = J(J + 1)ℏ2|J,M⟩
and Jz|j,m⟩ =Mℏ|J,M⟩?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_MultiplicidadeAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_StatesSpins.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_RubidioAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ExpansaoAcoplada.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ExpansaoAcoplada.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SelecaoClebsch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ExpansaoSpinorbit2.pdf


164 CHAPTER 3. ROTATIONS / CENTRAL POTENTIALS

b. What are the degeneracy gj1,j2(m)?
c. Find the base states {|J,M⟩}, which are common to the operators j21, j

2
2, J, Jz,

expanded in the base {|j1,m1⟩ ⊗ |j2,m2⟩} of the eigenstates of j21, j
2
2, j1z, j2z.

3.4.5.9 Ex: (Un-)coupled bases of the spherical harmonics

Expand the triplet state 3PJ of strontium in a decoupled basis and write down the
transformation matrix between the bases.

3.4.5.10 Ex: Properties of Clebsch-Gordan coefficients

Given the momenta j1 and j2, and Cm1,m2
denoting the Clebsch-Gordan coefficients,

prove that
∑
m1,m2

|Cm1,m2
|2 = 1.

3.4.5.11 Ex: Spin-orbit coupling

a. Show that the operator L̂ · Ŝ associated with the spin-orbit coupling, satisfies the
relation L̂ · Ŝ = L̂zŜz + (L̂+Ŝ− + L̂−Ŝ+)/2.
Obtain the matrix representation of the operator L · S, considering the bases:
b. {|mL⟩ ⊗ |mS⟩} of the eigenstates which are common to the operators L̂2, Ŝ2, L̂z,
Ŝz;
c. {|J,M⟩}, which is associated with the operators L̂2, Ŝ2, Ĵ2, Ĵz.
d. Give the explicit matrices for the case L = 1 and S = 1

2 in the representations (b)
and (c) and verify that the two representations yield the same eigenvalue spectrum.

3.4.5.12 Ex: Expansion of the spin-orbit coupling

Consider the problem of adding the orbital angular momentum ℓ and a spin 1/2.
Obtain the 2ℓ + 1 states |ℓ + 1/2,mj⟩, in addition to the 2ℓ states |ℓ − 1/2,mj⟩
(which constitute a common basis for the operators l21, s

2
2, j

2, jz), expanded in the
base |m1,m2⟩ of the eigenstates of the operators l2, s2, lz, sz. You can simplify
the procedure by deriving two recurrence relationships from which the desired states
follow 5.

3.4.5.13 Ex: External product of two spins

Derive the matrix representation of the spin-orbit coupling operator L · S for L = 1
and S = 1/2 from the definition of the outer product.

3.4.5.14 Ex: Coupling three spins

Express the states of three coupled 1
2 spins in the uncoupled basis using the Clebsch-

Gordan coefficients. Proceed by first coupling two spins and then coupling the result
to the third spin. Compare the dimensions of the Hilbert spaces in both basis and
discuss your findings.

5See Cohen-Tannoudji, Vol.2, Complement A X.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_GinasticaAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SomaClebsch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_AcoplamentoLS.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ExpansaoSpinorbit1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SpinOrbitMatrix01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ThreeCoupledSpins.pdf
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3.5 Further reading

C. Cohen-Tannoudji, B. Diu, F. Laloe, Wiley Interscience, Quantum mechanics,
vol. 1,2 [ISBN]

http://isbnsearch.org/isbn/978-0-471-56952-7
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36. CLEBSCH-GORDANCOEFFICIENTS, SPHERICALHARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√
8/15.
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Figure 36.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

Figure 3.10: Clebsch-Gordan coefficients.



Chapter 4

Periodic systems

Many physical systems treat quantum particles in periodic potential. Examples are
electrons in crystals or cold atoms in optical lattices. The periodicity gives rise to a
wealth of new phenomena, such as Bragg scattering, the formation of energy bands,
Mott insulators, or Bloch oscillations. Various theoretical approaches have been de-
veloped leading to a deep understanding of the features of crystals, metals, and optical
lattices for atomic gases.

In the following sections we will mainly focus on the Bloch model, which is based
on introducing periodic boundary conditions to the Schrödinger equation. In the
Secs. 4.1 we will give a brief introduction into the Bloch model for electrons in solids,
where the periodicity is imposed by the crystalline structure of the material. We
will, however, not go into details leaving a comprehensive treatment to specialized
textbooks [30, 469]. Then, in Sec. 4.2, we will dig deeper into the symmetries imposed
by periodic potentials. In order to keep the formalism simple, we will concentrate on
one-dimensional geometries and mostly on sinusoidal potentials. Such potentials are
realized, for example, by optical lattices formed by counterpropagating laser beams,
which under certain circumstances are capable of trapping atomic gases. The physical
realization of these lattices, which can be realized with nearly perfect periodicity,
have permitted the experimental observation of phenomena which had been elusive
in solid state physics. For this situation we will develop a powerful formalism capable
of computing energy spectra and quantum transport phenomena.

4.1 The Bloch model for electrons

The motion of an electron inside a crystal is ruled by a spatially periodic potential V (r)
originating from the positively charged crystal atoms and the mean field produced by
the quasi-free electrons,

V (r) = V (r+R) , (4.1)

where R is a vector connecting two arbitrarily chosen atoms of the lattice. With the
Hamiltonian

Ĥ = − ℏ2

2m
∇2 + V (r) (4.2)

we can write the Schrödinger equation,

Ĥψ(r) = Eψ(r) . (4.3)

167
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Since V and ∇ are invariant under translations Utr(R)ψ(r) ≡ ψ(r + R) by a fixed
distance R, where the translation operator has been defined in Eq. (1.282), we have,

ĤUtr(R)ψ(r) = EUtr(R)ψ(r) . (4.4)

That is, for a non-degenerate eigenvalue 1,

ψ(r+R) = f(R)ψ(r) . (4.5)

This relation holds for all vectors R of the lattice, such that,

f(R1 +R2)ψ(r) = ψ(r+R1 +R2) = f(R1)ψ(r+R2) = f(R1)f(R2)ψ(r) . (4.6)

The relationship f(R1 +R2) = f(R1)f(R2) is satisfied by the ansatz f(R) ≡ eık·R,
where k is an arbitrary vector of reciprocal space. We get the famous Bloch theorem,

ψk(r+R) = eık·Rψk(r) , (4.7)

which represents a necessary condition for any eigenfunction ψk of the Schrödinger
equation with periodic potential. Bloch’s theorem simply postulates that, apart from
a phase factor, the wavefunction has the same periodicity as the potential.

The Bloch function,

ψk(r) ≡ uk(r)eık·r with uk(r+R) = uk(r) , (4.8)

automatically satisfies Bloch’s theorem. That is, the wave function of the electron
ψ is a plane wave eık·r modulated by a function uk having the same periodicity as
the lattice [478]. Although the vector of the electronic wave is arbitrary, it is possible
(and useful) to restrict its value to the first Brillouin zone defined by k ∈ [−π/a, π/a],
where a is an elementary vector of the lattice. The reason is that we can reduce a
wavevector k in a wavefunction trespassing the first Brillouin zone by an appropriate
vector G of the reciprocal lattice,

k′ = k+G , (4.9)

yielding,

ψk(r) = uk(r)e
ık·r = uk(r)e

−ıG·reık
′·r . (4.10)

We now define another function uk′(r) ≡ uk(r)e−ıG·r, which also satisfies the require-
ment (4.8), knowing that G ·R = n2π, we see,

uk′(r+R) = uk(r+R)e−ıG·(r+R) = uk(r)e
−ıG·r = uk′(r) . (4.11)

Hence,

ψk(r) = uk′(r)eık
′·r = ψk+G(r) . (4.12)

1This also holds true for degenerate eigenvalues if we choose suitable basis of eigenvectors.
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4.1.1 Tight binding approximation for quasi-bound electrons

We now assume that the behavior of the electron near an atom is not influenced a
lot by atoms further away, so that it is pretty much localized. It is then sensible to
expand its wavefunction into states w(r) localized near atoms,

ψk(r) =
∑

j∈lattice

cj(k)w(r−Rj) . (4.13)

In other words, the electron is exposed to a potential Vat(r −Rj) in the vicinity of
the atom itself located at the position Rj , and it is described by the eigenfunction
w(r−Rj) with energy E0,

[
− ℏ2

2m
∇2 + Vat(r−Rj)

]
w(r−Rj) = E0w(r−Rj) . (4.14)

Even so, the function ψk(r) must satisfy Bloch’s theorem. This is the case when
cj(k) = eık·Rj and therefore,

ψk(r) =
1√
N

∑

j∈lattice

eık·Rjw(r−Rj) . (4.15)

The functions w(r−Rj) are called Wannier functions. Only, if the spatial extend of
w(r) is smaller than the lattice spacing, the electron becomes completely bound to a
particular atom.

Example 35 (Ansatz for a quasi-bound electron wavefunction): The
ansatz (4.15) satisfies Bloch’s theorem because,

ψk(r+Rj) =
∑
i

eık·Riw(r− (Ri −Rj))

= eık·Rj
∑
i

eık·(Ri−Rj)w(r− (Ri −Rj)) = eık·Rjψk(r) .

We now calculate the energy E(k) of an electron with the wavevector k inserting
the function ψk(r) of (4.15) in the Schrödinger equation (4.3) and obtain,

[
− ℏ2

2m
∇2 + V (r)

]∑

j

eık·Rjw(r−Rj) = E(k)
∑

j

eık·Rjw(r−Rj) . (4.16)

V (r) is the potential energy of the electron illustrated in Fig. 4.1 together with the
energy Vat(r−Rj) of a free electron.

Substituting the kinetic energy term of (4.16) by the kinetic energy of (4.14), we
calculate,

∑

j

eık·Rj [−Vat(r−Rj) + E0 + V (r)− E(k)]w(r−Rj) = 0 . (4.17)
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Figure 4.1: Potential energy V (r) of a crystal electron (red) and potential energy Vat(r−Rj)
of the electron of a free atom (blue).

Now, multiplying this equation with ψ∗
k(r) =

∑
i e

−ık·Riw∗(r −Ri) and integrating
over the volume of the crystal, we obtain,

[E(k)− E0]
∑

i,j

eık·(Rj−Ri)

∫
w∗(r−Ri)w(r−Rj)d

3r (4.18)

=
∑

i,j

eık·(Rj−Ri)

∫
w∗(r−Ri)[V (r)− Vat(r−Rj)]w(r−Rj)d

3r .

The Wannier functions w∗(r − Ri) and w(r − Rj) overlap only a little, even for
adjacent atoms. That is, they are nearly orthogonal, such that we can neglect the
terms i ̸= j on the left side. The sum then corresponds to the number N of sites
in the lattice. On the right side, we can not neglect the terms involving other sites,
because even if the wavefunctions of adjacent sites overlap little, the contribution
of the potential difference |V (r) − Vat(r − Rj)| is much lower for r = Rj than for
r = Ri. On the other hand, as the wavefunctions w(r−Rj) disappear quickly when
|r−Rj | > |Rm −Rj |, we can focus on adjacent sites (called Rm),

N [E(k)− E0] = N

∫
w∗(r−Rj)[V (r)− Vat(r−Rj)]w(r−Rj)d

3r (4.19)

+N
∑

m=adjacent

eık·(Rj−Rm)

∫
w∗(r−Rm)[V (r)− Vat(r−Rj)]w(r−Rj)d

3r .

Example 36 (Eigenenergies for s orbitals): Now we further suppose that
the eigenfunction w(r) exhibits radial symmetry corresponding to an s orbital.
We obtain for the eigenvalues from the Schrödinger equation,

E(k) = E0 − α−Gamma
∑

m adjacent of j

eık·(Rj−Rm) (4.20)

with α =

∫
w∗(r−Rj)[Vat(r−Rj)− V (r)]w(r−Rj)d

3r

and Gamma =

∫
w∗(r−Rm)[Vat(r−Rj)− V (r)]w(r−Rj)d

3r .

The interpretation is as follows: The combination of the atoms in a lattice

produces an energy displacement α. In addition, it generates a spitting into a

continuous band of energies as a function of reduced wavevector k.
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4.1.1.1 Wannier functions

Wannier functions have been defined in (4.15) as a new basis of states localized near
atoms in which the electronic wavefunction can be expanded. The transformation
(4.15) can be inverted,

w(r−Rj) =
1√
N

∑

k

e−ık·Rjψk(r) =
V

(2π)d

∫

BZ

e−ık·Rjψk(r)d
3k , (4.21)

which can be checked quickly for one dimension (Rj = ja) by inserting the expression
into one another,

1√
N

∑

j

eıkjawj(z) =
1
N

∑

k′

∑

j

eı(k−k
′)jaψk(z) =

∑

k′

δk,k′ψk(z) = ψk(z) . (4.22)

According to (4.21), Wannier functions of an isolated band are defined in terms
of Bloch functions (4.8) of the same band. Rj are lattice points and V the volume of
a unit cell. Wannier functions about different lattice points are orthonormal, as will
be verified in Exc. 4.1.5.1.

Example 37 (Wannier function in one dimension): For example, in one
dimension ψk(z) = N−1/2u0(z)e

ıkz for N atoms on a line of lattice constant a,
so that zj = ja,

w(z − zn) = 1√
N

∑
k∈[−a/2,a/2]

e−ıkzjψk(z) =
1

N

∑
k

eık(z−ja)u0(z)

−→ a

2π

∫ π/a

−π/a
eık(z−ja)u0(z)dk ≃ a

2π
u0(z)

eık(z−ja)

ı(z − ja)

∣∣∣∣π/a
−π/a

= u0(z)
sin π

a
(z − zj)

π
a
(z − zj)

.

4.1.2 Approximation for quasi-free electrons

Here we assume an essentially homogeneous potential acting on the free electrons
and consider the impact of the periodic lattice as a small perturbation. The periodic
potential can be decomposed into a Fourier series by the vectors G of the reciprocal
lattice,

V (r) =
∑

G

UGe
ıG·r . (4.23)

Consequently, we can make for Bloch functions (4.10) the following periodic ansatz,

ψk(r) = uk(r)e
ık·r with uk(r) =

1√
Vc

∑

G

uG(k)eıG·r , (4.24)

where Vc is the volume of the crystal.
Without periodic potential, the eigenfunctions would be those of a free particle,

ψk(r) =
1
Vc
eık·r (4.25)
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with the eigenenergies

E0(k) = V0 +
ℏ2k2

2m
. (4.26)

Inserting the functions (4.23) and (4.24) in the Schrödinger equation, we obtain,

[
− ℏ2

2m∇2 +
∑

G′′

UG′′eıG
′′·r
]

1√
Vc
eık·r

∑

G′

uG′(k)eıG
′·r = E(k) 1√

Vc
eık·r

∑

G

uG′(k)eıG
′·r ,

(4.27)
that is,

1√
Vc

∑

G′

[
− ℏ2

2m (k+G′)2 − E(k)
]
uG′(k)eı(k+G′)·r (4.28)

+ 1√
Vc

∑

G′′

UG′′eıG
′′·r∑

G′

uG′(k)eı(k+G′)·r = 0 .

Now multiplying with 1√
Vc
eı(k+G)·r and integrating over the volume of the crystal

(knowing 1
Vc

∫
Vc
eıG·rdV = δG,0), we obtain,

[
ℏ2

2m (k+G)2 − E(k)
]
uG(k) +

∑

G′

UG−G′uG′(k) = 0 , (4.29)

for any value of G.
To estimate the dependence of the Fourier components uG(k) for G ̸= 0 we insert

the unperturbed eigenenergies into the equation (4.29) only considering, in the sum
over G′, the terms of the first perturbative order, that is, those containing U0 or
u0(k),

ℏ2

2m
[(k+G)2 − k2]uG(k)− U0uG(k) + U0uG(k) + UGu0(k) = 0 (4.30)

=⇒ uG(k) =
UGu0(k)

ℏ2

2m [k2 − (k+G)2]
.

Since the Fourier coefficients UG have, for G ̸= 0, small values, the function uG(k)
is not negligible only for k2 ≃ (k+G)2 that is,

−2k ·G ≃ |G|2 . (4.31)

We now want to find out the meaning of this condition ...
For the coefficients u0(k) and uG(k) we obtain,

[
ℏ2

2mk
2 − E(k)

]
u0(k) + U0u0(k) + U−G(k)uG(k) = 0 (4.32)

[
ℏ2

2mk
2 − E(k)

]
uG(k) + UGu0(k) + U0(k)uG(k) = 0 .

From this follows,

[
ℏ2

2mk
2 + U0 − E(k)

]2
= UGU−G = 0 . (4.33)
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Since the potential U(r) is real, U−G = U∗
G. Therefore, introducing the eigenenergies

E0(k) of free electrons (4.26),

E(k) = E0(k)± |UG| . (4.34)

Under the influence of the periodic perturbation potential we find at the surfaces of
a Brillouin zone an energy splitting developing a forbidden gap in the spectrum. We
can understand this observation as follows: In the crystal all electronic waves with
wavevectors ending on a surface of a Brillouin zone are reflected by Bragg reflection.
In the example of a one-dimensional lattice we understand that the superposition
of an incident wave (k = nπ/a) with the reflected one (k = −nπ/a) produces a
standing electronic probability density wave ρ being proportional to ρ1 ∝ cos2 nπ/a
or ρ2 ∝ sin2 nπ/a. The charge density ρ1 is maximal at the location of the atom
in this site, which corresponds to an increased interaction energy; the density ρ2 is
minimal at the location of the atom. This explains the splitting.

The Bloch model can explain many properties of metals, semiconductors and
insulators.

4.1.3 The Kronig-Penney model

The Kronig-Penney model describes the band structure of a lattice. Let us assume a
periodic potential of rectangular wells with valleys of widths a and peaks of widths b,

V (x) = U0θmod(x,a+b)∈[a,a+b] . (4.35)

Inserting into the Schrödinger equation the plane wave ansatz ψ = AeıKx + Be−ıKx

for the wavefunction in the valley, 0 < x < a, and ψ = CeQx + De−Qx in the
peak, −b < x < 0, we obtain ε = ℏ2K2/2m and U0 − ε = ℏ2Q2/2m. Choosing the
constants A,B,C,D such that ψ and ψ̇ are continuous in x = 0, a, we derive, using
the periodicity of the Bloch wave ψ(a < x < a+ b) = ψ(−b < x < 0)eık(a+b),




1 1 −1 −1
ıK −ıK −Q Q

eıKa e−ıKa −e−Qb+ık(a+b) −eQb+ık(a+b)
ıKeıKa −ıKe−ıKa −Qe−Qb+ık(a+b) QeQb+ık(a+b)







A

B

C

D


 = 0 . (4.36)

The determinant of the matrix must be zero, or,

Q2 −K2

2QK
sinhQb sinKa+ coshQb cosKa = cos k(a+ b) . (4.37)

For δ-shaped peaks, we let b = 0 and U0 = ∞ such that Q2ba/2 = P , this simplifies
to,

P

Ka
sinKa+ cosKa = cos ka . (4.38)

The dispersion relation for light is different. According to [562],

−
√
ε+
√
ε
−1

2
sin(
√
εωa/c) sin(ωa/c) + cos(

√
εωa/c) cos(ωa/c) = cos ka . (4.39)

For ε = 1 the equation simplifies to ka = 2ωa/c.
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4.1.3.1 Photonic density of states

The photonic density of states in free space in three dimensions is evaluated from
[835],

dN = 2

(
L

2π

)3 ∫
d3k = 2

(
L

2π

)3

k2dk

∫
dϕd cos θ =

L3ω2

π2c3
dω ≡ D(ω)dω . (4.40)

In one dimension,

dN = 2
L

2π
dk =

L

πc
dω . (4.41)

The density is normalized
∫ πc/L
0

D(ω)dω = 1 and the total energy, if all states are

populated, is E ≡
∫ πc/L
0

ωD(ω)dω = πc/L. However, this applies only if ω = ck. If
the dispersion relation is more complicated, for example, inside a cavity or a forbidden
photonic band, ω = ω(k), we must generalize,

D(ω) =
L

π

dk

dω
. (4.42)

Assuming that the dispersion relation is given by the Kronig-Penney model, we obtain
gaps in the density-of-states for those values of ω which do not belong to any k.

Re θ

ω
0

ρ(ω)

ω
0

Figure 4.2: (code) Dispersion ratio and state density for a one-dimensional optical lattice.

4.1.4 Bloch oscillations

A Bloch oscillation is a phenomenon in solid state physics. It is the oscillation of a
particle (e.g., an electron) confined to a periodic potential (e.g. a crystal), when a con-
stant force (e.g., generated by a continuous electric field) acts on it. This phenomenon
is very difficult to observe in solid crystals because, due to electron scattering by de-
fects of the lattice [189, 645], the coherent evolution is limited to a small fraction
of the Brillouin zone. However, Bloch oscillations were observed in semiconducting
superlattices, in ultrathin Josephson junctions, and with cold atoms in optical lattices
[369, 553].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_DosKronigPenney.m
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Let us first show a simple treatment for electrons subject to a constant electric
field E . The one-dimensional equation of motion is,

ℏ
dk

dt
= −eE , (4.43)

with the solution,

k(t) = k(0)− eE
ℏ
t . (4.44)

The velocity v of the electron is given by,

v(k) =
1

ℏ
dE
dk

, (4.45)

where E(k) denotes the dispersion relation for a given energy band. We now assume
that it has the following form (tight-binding limit),

E = A cos ak , (4.46)

where a is the lattice parameter and A a constant. Then, v(k) is given by,

v(k) = −Aa
ℏ

sin ak , (4.47)

and the position of the electron by,

x(t) =

∫
v(k(t))dt = − A

eE cos

(
aeE
ℏ
t

)
. (4.48)

This shows, that the electron is oscillating in real space. The oscillation frequency,
called Bloch frequency is given by,

ωblo =
ae|E|
ℏ

. (4.49)

We will provide a deeper discussion in Sec. 4.2.2.

4.1.5 Exercises

4.1.5.1 Ex: Orthonomality of Wannier functions

Verify the orthonomality of Wannier functions.

4.1.5.2 Ex: Effective mass of particles in a lattice

The effective mass of particles in a lattice is defined as,

1

m∗ =
1

ℏ2
d2E(k)

dk2
.

Calculate the effective mass of a rubidium atom in a far-detuned optical standing
wave.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_Blochmodel01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_Kronigpenney01.pdf
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4.2 One-dimensional optical lattices

In Chp. 2 we studied the motion of particles in free space and inside a potential and
learned how to characterize it by states in position space |z⟩, in momentum space |k⟩,
or by its energy |E⟩. In free space the energy spectrum is continuous, while confined
in a potential it is discrete, so that it can be labeled by integer numbers |n⟩.

However, between the two opposite cases, totally free and totally confined, there
exist more complex potential landscapes, e.g. double-well potentials or periodic po-
tentials. The energy spectra of such potentials can be partially discrete and partially
continuous. Generally, low-energy states are almost bound, while high-energy states
are almost free. Periodic potentials are paradigmatic examples, as their symmetry
allows us to introduce a powerful mathematical formalism based on the Bloch wave
expansion 2

Periodic potentials for quantum particles can be realized artificially. A prominent
example are optical lattices formed by the interference patterns of intersecting laser
beams. Tuned sufficiently far away from atomic resonances the periodically structured
light field exerts optical forces on the atoms which can be derived from potentials
being proportional to the local light intensity. As these forces are relatively weak,
the kinetic energy of the atoms must be very low (typically µK) to allow for their
impact to be relevant. In many cases, the depth of the optical lattice only allows for a
small number of localized quantum states, so that the quantum nature of the atomic
motion becomes highly relevant. Famous examples are the Bloch oscillations and the
Mott insulating states.

We are not yet prepared to understand, how these potential arise from the light-
atom interaction, as this topic will only be treated in the Secs. 20.2 and in Chp. 25.8.2.
However, this is not necessary to understand many of the features of the atomic
dynamics in optical lattices. We will thus simply impose a known periodic potential
to a cold atomic cloud and study its energetic band structure and the atomic motion.
Various three-dimensional crystalline geometries have been realized and studied [437,
352, 89]. In the following, we will mainly focus on one-dimensional lattices, leaving a
discussion of phenomena specific to three-dimensional lattices to future sections.

In this section we will elaborate and deepen the formalism of the description of
atomic motion in periodic potentials, first recalling the notions of unitary spatial
translation, Bloch waves, and Wannier functions, and then applying them to under-
stand the phenomena of localization, Bloch oscillation, and tunneling.

4.2.1 Translations and accelerations in periodic potentials

4.2.1.1 Free particles

In Sec. 1.7.1 we studied the behavior of systems under unitary transformation, in
particular, translations and momentum kicks. Spatial translation by a distance a in
one dimension along the z-axis was described by the operator Utr(a), which acts on

2This is somewhat similar to the way in which the second-quantization formalism turned the
harmonic trap into an epitome for confining potentials.
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position and momentum states,

Utr(a) ≡ e−ık̂a , Utr(a)|z⟩ = |z + a⟩ , Utr(a)|k⟩ = e−ıka|k⟩ . (4.50)

Obviously, the free particle states |k⟩ are the eigenstates of Utr(a). Due to the fact
that the operator Utr(a) commutes with the free particle Hamiltonian,

[Utr, Ĥ] = 0 with Ĥ =
ℏ2k̂2

2m
, (4.51)

the free particle states |k⟩ are also eigenstates of the free particle Hamiltonian.
In Sec. 1.5.7 we showed, how the wavefunctions in position space ψ(z) ≡ ⟨z|ψ⟩ and

in momentum space ϕ(k) ≡ ⟨k|ψ⟩ are related via the Fourier theorem 3,

eıkz = 1√
2π
⟨z|k⟩ , (4.52)

yielding,

|z⟩ = 1√
2π

∫

R
|k⟩e−ıkzdk , |k⟩ = 1√

2π

∫

R
|z⟩eıkzdz , (4.53)

which allows us to expand any arbitrary state like,

|ψ⟩ =
∫ ∞

−∞
|z⟩ψ(z)dz =

∫ ∞

−∞
|k⟩ϕ(k)dk . (4.54)

The consistency of (4.53) can easily be checked using
∫
R e

ı(k−k′)zdz = 2πδ(k − k′).

An acceleration g accumulating within a time interval ∆t to a change in momen-
tum of ℏκ = mg∆t along the z-axis was described in Sec. 1.7.1 by the kick operator
Ukc, which acts on position and momentum states,

Ukc(κ) ≡ eıκẑ , Ukc(κ)|k⟩ = |k + κ⟩ , Ukc(κ)|z⟩ = eıκz|z⟩ . (4.55)

Obviously, the localized states |z⟩ are the eigenstates of Ukc(κ), and this holds even
in the presence of a potential V (z). However, the operator Ukc(κ) does not commute
with the Hamiltonian,

U†
kc(κ)ĤUkc(κ) = U

†
kc(κ)

ℏ2k̂2

2m
Ukc(κ) =

ℏ2(k̂ + κ)2

2m
̸= Ĥ , (4.56)

so that the eigenfunctions of the kick operator are NOT eigenfunctions of the Hamil-
tonian.

In the following, we will extend these thoughts to periodic potentials. In particular,
we will see that Bloch and Wannier states represent a natural extension of momentum
and position states |k⟩ and |z⟩, respectively. Also, we will use the kick operator
extensively in Sec. 4.2.2 in the context of Bloch oscillations.

3Or ⟨λ−1|z⟩ = e−2πız/λ.
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4.2.1.2 Periodic potentials

Let us now apply the translation operator (4.50) to particles subject to potentials,

Ĥ =
ℏ2k̂2

2m
+ V (ẑ) . (4.57)

In this case,

U†
tr(a)ĤUtr(a) =

ℏ2k̂2

2m
+ V (ẑ + a) ̸= Ĥ . (4.58)

We see that the translation operator only conserves energy if the potential is periodic,
V (ẑ) = V (ẑ + al) and if the distance of translation is a = al. Indeed, in periodic
systems,

[Ĥ,Utr(al)] = 0 with Utr(al) ≡ e−ık̂al . (4.59)

If the translation operator commutes with the Hamiltonian, then any eigenstate of Ĥ
is also an eigenstate of Utr(al), that is,

Ĥ|ψk⟩ = Ek|ψk⟩ =⇒ Utr(al)|ψk⟩ = e−ıkal |ψk⟩ , (4.60)

and we can calculate,

⟨z − al|ψk⟩ = ⟨z|Utr(al)|ψk⟩ = ⟨z|e−ık̂al |ψk⟩ = e−ıkal⟨z|ψk⟩ , (4.61)

or equivalently,

ψk(z − al) = e−ıkalψk(z) . (4.62)

4.2.1.3 Bloch waves

Let us study the kick operator (4.55) in a periodic potential. We define,

Ĥu ≡ U†
kc(k)ĤUkc(k) and |uk⟩ ≡ U†

kc(k)|ψk⟩ , (4.63)

so that, using the eigenvalue equation (4.60),

Ĥu|uk⟩ = Ek|uk⟩ . (4.64)

I.e. the defined functions |uk⟩ are eigenfunctions of the Hamiltonian (4.63). Further-
more, using (4.62), we calculate,

uk(z − al) = U†
kc(k)ψk(z − al) = U

†
kc(k)Utr(al)ψk(z) (4.65)

= U†
kc(k)Utr(al)Ukc(k)uk(z) = e−ık(z−al)e−ıkaleıkzuk(z) = uk(z) .

This leads us to the Bloch theorem [30],

ψk(z) = eıkzuk(z) with uk(z) = uk(z + al) = u∗k(z) , (4.66)

where we now label the wavefunction with the particle’s momentum k. The amplitude
uk(z), called Bloch wave, is periodic and can be chosen as real, since it doesn’t depend
on a phase factor any more. Do the Exc. 4.3.4.1.
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In other words, the wavefunction of a particle moving in an infinite periodic po-
tential is, apart from a phase factor eıkz, periodic and has the amplitude,

uk(z) ≡ |ψk(z)| . (4.67)

Since the Bloch wave is periodic and real, it can be expanded into a Fourier series,

uk(z) =
∑

j∈lattice

ckj e
2ıjklz . (4.68)

The expansion coefficients ckj are obtained by solving an eigenvalue problem derived
from the Schrödinger equation ruling the particle’s motion, i.e. they depend on the
depth and the shape of the periodic potential. We will see this in the next section.

4.2.2 Band structure in the Bloch state basis

As already pointed out, a sinusoidal periodic potential, V (z) = V (z + al), can be
generated exploiting the dipolar force of two counterpropagating plane wave laser
beams, e±ıklz, with wavevectors kl and −kl and tuned to the red side of an atomic
transition. In this situation the atoms are attracted to the maxima of the light
intensity, the antinodes,

V (z) = V0 cos
2 klz =

V0

4 |eıklz + e−ıklz|2 = V0

2 [1 + cos(2klz)] , (4.69)

with V0 < 0. If the periodic potential is more complicated, it can be expanded into a
Fourier series,

V (z) =
∑

kl

Ukle
2ıklz , (4.70)

but the procedure detailed in the following for the sinusoidal potential can be applied
analogously. For the sinusoidal potential the Fourier coefficients are simply U0 = V0

2

and U±kl =
V0

4 , so that,

V (z) = V0(
1
2 + 1

4e
2ıklz + 1

4e
−2ıklz) , (4.71)

where we suppressed the band index on the field operators for simplicity of notation,
when discussing single-band problems. The goal is obviously to solve the Schrödinger
equation,

Ĥ|ψ⟩ =
(
− ℏ2

2m

∂2

∂z2
+ V (z)

)
|ψ⟩ = E|ψ⟩ . (4.72)

4.2.2.1 Solving the Schrödinger equation

To solve the Schrödinger equation, we expand the wavefunction into plane waves,

ψ(z) =
∑

k

cke
ıkz , (4.73)

and insert this expansion into Schrödinger’s stationary equation (4.72),
(−ℏ2

2m

∂2

∂z2
+ V0(

1
2 + 1

4e
2ıklz + 1

4e
−2ıklz)

)∑

k

cke
ıkz = E

∑

k

cke
ıkz . (4.74)
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taking the potential from (4.71). We get,

(
ℏ2k2

2m
+
V0
2

)
ck +

V0
4
ck−2kl +

V0
4
ck+2kl = Eck . (4.75)

We now define two new parameters, the quasi-momentum q and the Bloch band n
such that,

k = q + 2jkl with q ∈ [−kl, kl] and j ∈ Z . (4.76)

Also, we define an abbreviation called recoil frequency ωrec and use it to scale the
energies 4,

ωrec =
ℏkl2

2m
, Ṽ0 ≡

V0
ℏωrec

, Ẽ ≡ E

ℏωrec
, q̃ ≡ q

kl
. (4.77)

With this, (4.75) reads,

[(2j + q̃)2 + 1
2 Ṽ0]c2jkl+q +

1
4 Ṽ0c2jkl+q−2kl +

1
4 Ṽ0c2jkl+q+2kl = Ẽc2jkl+q , (4.78)

or in matrix notation,

Ĥc = ℏωrecẼc . (4.79)

where the matrix is around j = ..,−1, 0,+1, ..:

Ĥ = ℏωrec



. . .

(q̃ − 2)2 + 1
2
Ṽ0

1
4
Ṽ0

1
4
Ṽ0 q̃2 + 1

2
Ṽ0

1
4
V0

1
4
Ṽ0 (q̃ + 2)2 + 1

2
Ṽ0

. . .


, c =



...

cq−2kl

cq
cq+2kl

...


.

(4.80)

The Hamiltonian in (4.80) is tridiagonal, i.e. it consists of only three diagonals, which
is due to the sinusoidal shape of the optical potential. For non-sinusoidal potentials,
whose Fourier expansion has more components, more side-diagonals will appear.

Solution of (4.80) yields a set of eigenenergies E and eigenvectors c, whose number
will be equal to the number of neighboring lattice sites j considered in the matrix of
(4.80). Hence, for a given k, or equivalently (n, q),

Ĥ|n, q⟩ = E(n)
q |n, q⟩ , (4.81)

4The reason for the terminology, which will become clear after a study of Sec. 20.2, is that the
ℏωrec is the kinetic energy of an atom having received two units of photonic momenta.
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and we can compute the particle’s wavefunction from (4.73) 5,6,

⟨z|n, q⟩ = ψ(n)
q (z) = 1√

2π

∑

j∈lattice

c
(n)
q+2jkl

eı(q+2jkl)z , (4.82)

where from now on we will call the particle state |ψ⟩ given in the Bloch basis a Bloch

state |n, q⟩. The eigenenergies E
(n)
q are shown in Fig. 4.3(a) as a function of q for the

lowest-lying Bloch bands, and Fig. 4.3(b) shows the spatial Bloch functions for the
lowest bands. Eq. (4.82) allows us to expand a Bloch state in a position basis,

|n, q⟩ =
∫

R
|z⟩⟨z|n, q⟩dz = 1√

2π

∑

j∈Z
c
(n)
q+2jkl

∫

R
|z⟩eı(q+2jkl)zdz . (4.83)

Fig. 4.3 shows the energy spectrum of optical lattices for different lattice depths.
Also shown in Fig. 4.3(a,c) is the level structure of a harmonic oscillator approximating
a lattice site. Also shown in Fig. 4.3(b,d) as black dashed and dotted lines is the free
particle dispersion relation corresponding to V0 = 0.

4.2.2.2 Band structure of the energy spectrum

The energy spectrum calculated in Fig. 4.3 displays a hybrid structure consisting of
partially bound and partially free states. The spectrum breaks down into energy
intervals called bands, where a quasi-momentum q can be found so that the energy
Eq is within this interval, and band gaps where no such quasi-momentum exists. At

low energies (Ẽ ≪ 0), the energy width of the bands converges toward a δ-function.
At very low energies near the bottom (E ≃ V0) where the standing wave potential
resembles a harmonic oscillator, the energy levels are equidistant. On the other hand,
closer to the threshold (Ẽ ≲ 0), the bands become larger, and this is due to the
possibility of tunneling between adjacent potential sites: the particles are not totally
localized, but not totally free neither. At high energies (ẼGg0), the bands join to a
continuum, while the band gaps disappear. The dispersion relation then resembles
that of a free particle.

The energy spectrum thus consists of a discrete sequence (labeled by an integer

number n ∈ N) of bands within which any energy state E
(n)
q can be reached via a

proper choice of the quasi-momentum q. It is not surprising that, unlike for states
of totally free particles |k⟩ and states of totally bound particles |n⟩, two quantum
numbers are necessary to label all possible states |n, q⟩ 7,8.

5The requirement that ψ(z) satisfies the Schrödinger equation is equivalent to the condition

that c satisfies an eigenvalue equation. Let U be the matrix of the eigenvectors of Ĥ and Ê the
diagonal matrix of eigenvalues: Ĥ = U−1ÊU gives ÊUc = EUc, such that Uc can be understood as
eigenvectors.

6Alternatively, we define d2jkl+k ≡ c2jkl+k+2kl/c2jkl+k, in which case Eq. (4.79) becomes,

d2jkl+k−2kl =
V0

ℏ2
m

(2jkl + k)2 − 2ε− V0(2 + d2jkl+k)
.

7This is intuitively clear, considering the fact that tunneling introduces a coupling between dif-
ferent potential sites.

8The necessity of two quantum numbers indicates that two commuting observables are required
to form a complete set for description of the system.
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Figure 4.3: (code) (a,c) Lattice potential and band structure for V0/ℏωrec = −10 and −40,
respectively. (b,d) Dispersion relation in momentum space and energy levels for the same

potential depths as in (a,c). The colors of the solid lines correspond to the energy bands in

(a,c).

To estimate the width of the forbidden band gap, we cut out a 2×2 matrix within
the matrix Ĥ and neglect its coupling with the others submatrices,

Ĥs = ℏωrec

(
(q̃ − 2)2 + 1

2 Ṽ0
1
4 Ṽ0

1
4 Ṽ0 q̃2 + 1

2 Ṽ0

)
. (4.84)

At the edges of the Brillouin zone, q = ±kl, we get the eigenvalues,

E =
2ℏ2kl2

m
+ V0 ± V0

2 = Erec

(
4 + Ṽ0 +

Ṽ0

2

)
, (4.85)

that is, the band gap is ∆E = V0.
Sufficiently large band gaps impede small forces to induce couplings to states with

very different energies located in different bands. Exceptions are observed near band
edges, where the bands approach each other and coupling may occur via Landau-Zener
tunneling transitions.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochBands.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochBands.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochBands.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochBands.m
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Figure 4.4: (code) Band structure as a function of potential depth. The colored areas are

allowed energy bands.

Example 38 (Very shallow and very deep potentials): For very shallow po-
tentials, |V0| ≪ ℏ2(2kl)2/2m, we can neglect the coefficients V0 in the Eq. (4.79)
and we find,

E ≃ ℏ2q2

2m
= Erec

q2

kl
2 , (4.86)

which corresponds to the dispersion relation for free particles.
On the other hand, looking at the bottom of very deep potentials, V0Ggℏ2(2kl)2/2m,
we can harmonically approximate the cosine potential by V (z) ≈ 2V0 +

m
2
ω2z2

with ω = 2kl
√
V0/m = ℏ−1

√
2|V0|Erec. For this case we expect,

E ≃ 2V0 + ℏω
(
n+ 1

2

)
. (4.87)

4.2.2.3 Momentum representation of Bloch states

Instead of projecting the Bloch state onto position space, as done in (4.82), we may
also project it on momentum space,

⟨k|n, q⟩ = ⟨k|
∫

R
|z⟩⟨z|n, q⟩dz (4.52)

= 1√
2π

∫

R
e−ıkz⟨z|n, q⟩(z)dz (4.88)

(4.82)
= 1

2π

∫

R
e−ıkz

∑

j∈Z
c
(n)
q+2jkl

eı(q+2jkl)zdz =
∑

j∈Z
c
(n)
q+2jkl

δ(q + 2jkl − k) .

Hence, we find, that,

⟨k|n, q⟩ = c
(n)
k , (4.89)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochSpectra.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochSpectra.m
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which allows us to expand a Bloch state in a momentum basis,

|n, q⟩ =
∫

R
|k⟩⟨k|n, q⟩dk =

∫

R
|k⟩c(n)k dk (4.90)

=

∫

R
|k⟩

∑

j∈lattice

c
(n)
q+2jkl

δ(q + 2jkl − k)dk =
∑

j

|q + 2jkl⟩c(n)q+2jkl
.

Apparently, each Bloch state with a given quasi-momentum consists of a comb of
real momenta, k = q, q ± 2kl, q ± 4kl, ....
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Figure 4.5: (code) (a) Bloch bands with a potential depth of V0 = −4ℏωrec and without

potential, V0 = 0 (black dash-dotted line). (b) Bloch waves for the same potential for the

lowest Bloch band n = 0 at various quasi-momenta q. (c) Bloch waves for the four lowest

Bloch bands at q = 0.3kl.

Being eigenstates of a Hermitian operator, the Bloch states form an orthonormal
basis,

⟨n′, q′|n, q⟩ =
∫

R
⟨n′, q′|z⟩⟨z|n, q⟩dz =

∫

R
⟨n′, q′|k⟩⟨k|n, q⟩dk = δn,n′δ(q − q′) ,

(4.91)
and therefore behave much like momentum eigenstates.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochWaves.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochWaves.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochWaves.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochWaves.m
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4.2.3 Localization and tunneling in the Wannier state basis

In Sec. 4.2.2 we outlined the Bloch representation, which provides a basis leaving the
optical lattice Hamiltonian diagonal,

Ĥ =
∑

n

∫ kl

−kl
|n, q⟩E(n)

q ⟨n, q|dq . (4.92)

Thus, the Bloch basis is the basis of choice to calculate the energy spectra. For a
given band, the Bloch states are (quasi-)momentum eigenstates q corresponding to
plane waves in position space. Nevertheless, other auxiliary basis sets can be useful,
e.g. for the description of transport phenomena. In the following, we will develop as
an alternative the Wannier representation, which provides a basis of states localized
in position space at lattice position sites j.

Table 4.1: Translation and kick acting on Bloch and Wannier states. Eigenvalue
equations are emphasized in blue color.

free space lattice

Hamiltonian Ĥ = ℏ2k2

2m Ĥ = ℏ2k2

2m + V0 cos
2 klz

potential V (z) = 0 V (z) = V (z + al)

translation Utr(a) = e−ıak̂ Utr(al) = e−ıalk̂

kick Ukc(κ) = eıκẑ Ukc(kl) = eıklẑ

symmetry U†
tr(a)ĤUtr(a) = Ĥ , ∀a U†

tr(jal)ĤÛtr(jal) = Ĥ , ∀j

U†
kc(a)ĤUkc(a) ̸= Ĥ U†

kc(jal)ĤÛkc(jal) ̸= Ĥ

eigenstates |k⟩ ↔ |z⟩ |n, q⟩ ↔ |n, zj⟩

Fourier ⟨k|z⟩ = 1√
2π
e−ıkz ⟨n, q|n, zj⟩ = 1√

2π
e−ıπjq̃

translation Utr(a)|z⟩ = |z + a⟩ Utr(al)|n, zj⟩ = |n, zj+1⟩

Utr(a)|k⟩ = e−ıka|k⟩ Utr(al)|n, q⟩ = e−ıqal |n, q⟩

kick Ukc(κ)|z⟩ = eıκz|z⟩ Ukc(kl)|n, zj⟩ = eıklz|n, zj⟩

Ukc(κ)|k⟩ = |k + κ⟩ Ukc(kl)|n, q⟩ = |n+ 1, q⟩

Tab. 4.1 provides an overview comparing Bloch and Wannier states. We see that
the Bloch states |n, q⟩ are eigenstates of the translation operator Utr(jal), and the
eigenvalues are labeled by phase factors. Similarly, the Wannier states are eigenstates
of the kick operator Ukc(kl), and the eigenvalues are labeled by phase factors.
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4.2.3.1 Localization

Let us for example consider a state perfectly localized at zc in position space near a
particular antinode of a standing wave, |ψc⟩ ≡ |zc⟩. According to (4.52), the wave-
functions of this in position and momentum space are,

⟨z|zc⟩ = δ(z − zc) and ⟨k|zc⟩ = 1√
2π
e−ıkzc , (4.93)

which corresponds to a plane wave. Hence, we can expand the wavefunction in mo-
mentum space like,

|ψc⟩ = 1√
2π

∫ ∞

−∞
|k⟩e−ıkzcdk ≡ 1√

2π

∫ ∞

−∞
|k⟩eıφ(k)dk . (4.94)

That is, to completely localize a particle, its momentum distribution must contain all
components k ∈ [−∞,∞] with equal amplitudes. For a particle in a single band of a
1D lattice, however, q ∈ [−kl, kl] remembering kl = 2π/λl = π/al, and the question
is, which phase distribution φ(q) can give optimal localization.

Example 39 (Localization without potential): The plane waves (4.93) are
eigenstates of the particle’s motion in the absence of a potential, V0 = 0. Nev-
ertheless, it is instructive to try localizing a particle within a single band,

|zc⟩ =
∫ kl

−kl
|q⟩eıφ(q)dq =⇒ ⟨z|zc⟩ = 2 sin kl(z − zc)

z − zc
= 2kl sinc

z − zc
al

.

(4.95)
It is now remarkable, that states |ψzc⟩ localized at discrete values of the position
coordinate, zc = jal with j ∈ Z, are orthogonal. Indeed, we find,

⟨z′c|zc⟩ =
∫ kl

−kl

∫ kl

−kl
⟨q′|q⟩eı(q′z′c−qzc)dqdq′ = 2 sin kl(z

′
c − zc)

z′c − zc
(4.96)

−→ 2 sin kl(j
′ − j)al

(j′ − j)al
= 2klδj′j .

4.2.3.2 Wannier functions for 1D optical lattices

In a (red-detuned) standing light wave generating a dipolar potential, we call ’lattice
sites’ the locations on the z-axis where the potential is minimized. For the cosine
potential (4.69) with V0 < 0 these locations are given by zj = jal. We define the
Wannier state localized near a lattice site as 9,

|n, j⟩ ≡ √al|n, zj⟩ =
√

al
2π

∫ kl

−kl
e−ıqzj |n, q⟩dq , (4.97)

9Remember that, with this definition, the Bloch states |n, q⟩ have units of cm1/2, the Wannier
states defined as |n, zj⟩ of cm-1/2, and the Wannier states defined as |n, j⟩ ≡ √

al|n, zj⟩ are dimen-
sionless. The normalization factor 2π appearing in the Fourier transform is symmetrically divided
with the inverse Fourier transform.
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where |n, q⟩ is the Bloch state. Applying the discrete translation operator (4.56) to
Bloch states,

Utr(al)|n, q⟩ = e−ıqal |n, q⟩ , (4.98)

we find that,

Utr(al)|n, zj⟩ = Utr(al)
∫ kl

−kl
|n, q⟩ e−ıqzj√

2π
dq =

∫ kl

−kl
e−ıqal e

−ıqjal√
2π
|n, q⟩dq = |n, zj+1⟩ .

(4.99)
Because of this, we can reference all Wannier functions |n, zj⟩ to the j = 0 one, so
that each band has a unique Wannier function |n, z0⟩. We have,

|n, zj⟩ = Utr(zj)|n, z0⟩ = e−ıqzj
∫ kl

−kl

1√
2π
|n, q⟩dq . (4.100)

The inverse relationship to the definition (4.97) is easily derived,

|n, q⟩ =
∫ kl

−kl
δ(q− q′)|n, q′⟩dq′ = al

2π

∫ kl

−kl

∑

j

eıj(q−q
′)al |n, q′⟩dq′ =

∑

j

al√
2π
eıqzj |n, zj⟩ .

(4.101)

Example 40 (Equivalence of Bloch and Wannier state basis): At first

glance, the equivalence of the continuous basis of Bloch states labeled by their

quasi-momentum q and the discrete basis of Wannier states labeled by their

lattice sites may be surprising. The equivalence is, however, due to an approx-

imation done by taking the continuum limit,
∑
q −→ al

∫
dq/2π. For finite

lattices extending over M sites, the allowed quasi-momenta are q = πj/Mal
with j = −M/2 + 1, ...,M/2.

The mechanism at the origin of the formation of energy bands in periodic poten-

tials is readily understood in a toy model. Fig. 4.6 shows numerically calculated

wavefunctions of bound states in a double-well potential. We observe that the

bound states split into a symmetric wavefunction with a large amplitude inside

the barrier and an anti-symmetric wavefunction with a small amplitude. The

energy distance decreases at larger barriers.

The spatial representation of a Wannier state is obtained by projecting onto
position space,

⟨z|n, zj⟩ = ⟨z|
∫ kl

−kl

e−ıqzj√
2π
|n, q⟩dq =

∫ kl

−kl

e−ıqzj√
2π
⟨z|n, q⟩dq . (4.102)

Again, because of ⟨z|n, zj⟩ = ⟨z−zj |n, zj⟩, there is a unique Wannier function for each
band copied to each lattice site. Inserting the solution (4.82) for the Bloch states, we
find,

⟨z|n, zj⟩ = 1
2π

∫ kl

−kl
e−ıqzj

∑

j∈Z
c
(n)
q+2jkl

eı(q+2jkl)zdq . (4.103)

Wannier function are real, definite parity, and decay exponentially fast at infinity,

⟨z|n, z0⟩ = ⟨z|n, z0⟩∗ = ±⟨−z|n, z0⟩ . (4.104)
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(a) (b) (c)

Figure 4.6: (code) Wavefunctions of bound states in a double-well potential calculated using

the Fourier grid method (see Sec. 2.4.2).

Let us now calculate the momentum representation of Wannier states, which
is obtained by projecting onto momentum space,

⟨k|n, zj⟩ = ⟨k|
∫ ∞

−∞
|z⟩⟨z|n, zj⟩dz =

∫ ∞

−∞
e−ıkz
√
2π
⟨z|n, zj⟩dz . (4.105)

The momentum representation of Wannier states is also related to the momentum
representation of Bloch states,

⟨k|zj⟩ = ⟨k|
∫ kl

−kl
|n, q⟩⟨n, q|n, zj⟩dq

(4.89)
=

∫ kl

−kl

e−ıqzj√
2π
⟨k|n, q⟩dk . (4.106)

Hence we find that, in the same way as |z⟩ and |k⟩ in free space are Fourier transform
pairs related by ⟨k|z⟩ = e−ıkz/

√
2π, in a periodic potential |n, q⟩ and |n, zj⟩ are

Fourier transform pairs related by,

⟨n, q|n, zj⟩ = e−ıqzj√
2π

= e−ıπjq̃
√
2π

. (4.107)

Inserting the solution (4.82) for the Bloch states, we find,

⟨k|n, zj⟩ =
∫ kl

−kl

e−ıqzj√
2π

c
(n)
k dq (4.108)

= 1√
2π

∑

j∈Z

∫ kl

−kl
e−ıqzjc(n)q+2jkl

δ(q + 2jkl − k)dq =
∑

j∈Z

eı(2jkl−k)zj√
2π

c
(n)
k .

In other words, ⟨k|n, z0⟩ is the continuous function that includes all the ’comb teeth’ of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_DoublewellTunneling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_DoublewellTunneling.m
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the Bloch functions. We can then rewrite any Bloch function in terms of ⟨k|n, z0⟩ 10,

⟨k|n, q⟩ =
∑

j∈Z
⟨k|n, zj⟩⟨n, zj |n, q⟩ =

∑

j∈Z

eıqzj√
2π
⟨k|n, zj⟩ . (4.109)

Wannier states form an orthonormal basis just like Bloch states,

⟨n′, zj′ |n, zj⟩ =
∫
⟨n′, zj′ |z⟩⟨z|n, zj⟩dz =

∫
⟨n′, zj′ |k⟩⟨k|n, zj⟩dk = δn,n′δj,j′ ,

(4.110)
as we will show in Exc. 4.3.4.2.

In Exc. 4.3.4.3 we approximate Wannier functions for sinusoidal potentials.
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Figure 4.7: (code) Wannier functions for the lowest Bloch band n = 0 and different trap

depths (a) Ẽ = 0, (b) Ẽ = 1, and (c) Ẽ = 10. The cyan curves are displaced with respect

to the blue ones by one lattice site.

4.2.3.3 Tunneling between adjacent lattice sites

With tunneling we mean quantum transport between adjacent lattice sites. To de-
velop the formalism for this phenomenon we use the second-quantized notation [817]
in analogy to the procedure introduced for the harmonic oscillator in Sec. 2.5.1. The
advantage of this formalism is that it not only allows to describe single atom dynam-
ics, but can be extended to account for many interacting particles obeying certain
exchange statistics, as we will see in Sec. 28.4.2.

From the single-atom eigenenergies of the Hamiltonian, that has already been

10Remembering Fourier transform and series,∫
R
eı(k−k

′)xdx = 2πδ(k − k′) ⇔
∫
R
eık(x−x

′)dk = 2πδ(x− x′) ,

∫
R
xeık(x−x

′)dx = 2πδ(x− x′)ı
d

dk
,∑

j∈Z
eı(k−k

′)ja = 2π
a
δ(k − k′) ⇔

∫ kl

−kl
eık(j−j

′)adk = 2π
a
δjj′ ,

∑
j∈Z

jeı(k−k
′)ja = 2π

a
δ(k − k′) ı

a

d

dk
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierStates.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierStates.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierStates.m
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Table 4.2: Summary of scalar products between states of the Bloch, Wannier, and
Wannier-Stark basis in position and momentum representation. Red formulas are
completeness relations. Green formulas establish links between the Bloch andWannier
pictures. Band indices are suppressed for clarity. The .̌ on exponential functions
simply indicates that the term should be divided by

√
2π.
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diagonalized in (4.80), the total energy of the system is then obtained as the sum,

E =
∑

n,q

E(n)
q N (n)

q −→
∑

n

al
2π

∫ kl

−kl
E(n)
q N (n)

q dq , (4.111)

where N
(n)
q is the number of atoms with quasi-momentum q in the n-th band and

E
(n)
q /2kl is the spectral energy density. The transition to a continuous spectrum is

valid in the limit of a large number of lattice sites. As usual, the 2nd quantization is
done via the prescription,

N (n)
q −→ N̂ (n)

q ≡ ψ̂(n)†
q ψ̂(n)

q , (4.112)

where we defined a creation and an annihilation operator of a Bloch state, which
satisfy a bosonic or fermionic commutation relation. In the tight binding limit, Ĥ
breaks into bands, so that we can consider each band separately,

Ĥ =
∑

n

Ĥ(n) with Ĥ(n) = 1
2kl

∫ kl

−kl
E(n)
q ψ̂†

qψ̂qdq , (4.113)

where we suppressed the band index n at the field operators for simplicity of notation.
This Hamiltonian coincides with the (4.92) provided we define the operator ψ̂†

q creating
a Bloch state containing a single atom from vacuum as,

|n, q⟩ = 1√
2kl
ψ̂†
q |vac⟩ . (4.114)

Correspondingly, the operator ŵ†
q creates a Wannier state containing a single atom

from vacuum,

|n, zj⟩
(4.97)
=

∫ kl

−kl

e−ıqzj√
2π
|n, q⟩dq = 1√

2kl

∫ kl

−kl

e−ıqzj√
2π

ψ̂†
q |vac⟩dq ≡ 1√

al
ŵ†
j |vac⟩ , (4.115)

which satisfy the commutation relation [ŵj , ŵ
†
j ] = 1. From this follows,

ŵ†
j =

1
2kl

∫ kl

−kl
e−ıqzj ψ̂†

qdq and ψ̂†
q =

∑

j

eıqzj ŵ†
j . (4.116)

Substituting the Bloch field operators, we can now rewrite the number operator and
the Hamiltonian (4.113) in Wannier representation,

N̂
(n)
j = ŵ†

j ŵj (4.117)

Ĥ(n) = al
2π

∑

j,j′

∫ al/π

−al/π
E(n)
q eıq(zj−zj′ )ŵ†

j ŵj′dq ≡ −
∑

j,j′

J(∆j)ŵ†
j ŵj′ ,

where we defined as an the abbreviation the J(∆j), called tunneling rate. Notice,
that the Hamiltonian is NOT diagonal in the Wannier basis, i.e. the Wannier states
are NOT eigenstates of the optical lattice Hamiltonian, but of the kick operator, as
stated in Sec. 4.2.3. The expression ŵ†

j ŵj′ describes annihilation of an atom at lattice
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site j′ followed by its recreation at site j, that is, hopping from j′ to j via quantum
tunneling, if the lattice depth is deeper than the atom’s energy. The tunneling rate
is on one hand related to the matrix element, since,

⟨n, zj′ |Ĥ(n)|n, zj⟩ = −⟨n, zj′ |
∑

i,i′

J(∆j)ŵ†
i′ŵi|n, zj⟩ (4.118)

= −⟨vac|
∑

i,i′

J(∆j)δi′j′δij |vac⟩ = −J(∆j) .

On the other hand,

⟨n, zj′ |Ĥ(n)|n, zj⟩ =
∫

R

∫

R
⟨n, zj′ |z′⟩⟨z′|

(
p̂2z
2m

+ V0 cos
2 klẑ

)
|z⟩⟨z|n, zj⟩dzdz′ .

(4.119)
With this we find,

J(∆j) = J(−∆j) = J∗(∆j) . (4.120)

From the definition of J(∆j) (4.117),

−J(∆j) = al
2π

∫ kl

−kl
E(n)
q eıq(zj′−zj)dq =

∫ 1

−1

E(n)
q cos(πq̃∆j)dq̃ , (4.121)

where we exploited the fact E
(n)
−q = E

(n)
q . The expression (4.121) can be interpreted

as Fourier coefficients of a Fourier expansion of the periodic function E
(n)
q ,

Eq − Ēq = −2
∞∑

∆j=1

J(∆j) cos(alq∆j) . (4.122)

In other words, the dispersion relation E
(n)
q allows evaluation of the tunneling rate

between specific lattice sites j and j′ via (4.121). The Hamiltonian in the Wannier
state basis finally reads,

Ĥ =
∑

n

∑

j,j′

∫ 1

−1

E(n)
q cos(πq̃∆j)dq̃ ŵ†

j ŵj′ . (4.123)

Example 41 (Tight binding limit): From Fig. 4.7 we see that for deep lattice,
i.e. in the so-called tight-binding regime defined by −V ≫ ℏωrec [369, 62, 193],
the Wannier function decreases rapidly with the distance from the site. Then
only nearest neighbor interactions are relevant, and the Hamiltonian simplifies
to,

Ĥ = −Jal
∑
j,j′

|n, zj⟩⟨n, zj′ | (4.124)

−→ −J
∑
j

|n, j + 1⟩⟨n, j| − J
∑
j

|n, j − 1⟩⟨n, j| = −J[Utr(al) + U†
tr(al)] ,
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Figure 4.8: (code) (a) Width of allowed bandsWn as a function of potential depth V0 for the

lowest bands (see also Fig. 4.4). The dash-dotted line shows the tight-binding approximation

(4.126). The magenta dashed line shows the widthW0/ℏωblo of the lowest band scaled to the

Bloch oscillation frequency under the action of a force corresponding to ωblo/ωrec = 0.158,

see Sec. 4.2.2. (b) Hopping rates between lattices sites distant by ∆j as a function of V0.

(c) Two-dimensional representation of the hopping rates on a logarithmic false color scale

lgW0/ℏωrec.

and from (4.122),

Eq = −2J cos(πq̃) . (4.125)

As already illustrated in Fig. 4.4, with deepening potential −V −→ ∞ the al-
lowed energy bands become thinner until they become discrete energy levels.
This can be understood as an expression of a diminishing coupling between lat-
tice sites, i.e. a diminishing tunneling rate. The band width can be shown to be
approximated by [193],

W̃l ≃ 16√
π
Ṽ 3/4e−2Ṽ 1/2

, (4.126)

in units of the recoil energy. The approximation is included in Fig. 4.8.

4.3 Bloch oscillations

Electrons moving in a crystal and exposed to electric fields undergo Bloch oscillations,
as discussed in Sec. 4.1.4. An analogous phenomenon can be observed when neutral
atoms in a vertical optical lattice are accelerated by gravity [189, 645]. To treat this

case, we could simply replace the electric force −eE⃗ in the expression (4.49) by the
gravitational force mg and obtain the result,

ωblo =
mgλl
2ℏ

, (4.127)

with the wavelength λl = 2al of the counterpropagating lasers generating the standing
wave. For didactic reasons, however, we will formulate the problem in the quantum
optics language introduced in the previous section.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierHopping.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierHopping.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierHopping.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierHopping.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierHopping.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierHopping.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierHopping.m
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4.3.1 Bloch oscillations in shallow lattices in momentum space

4.3.1.1 Time-dependent Schrödinger equation

To reproduce the dynamics of a matter wave, we start from the time-dependent
Schrödinger equation with the same periodic potential. We again expand the time-
dependent wavefunction into plane waves via,

ψ(z, t) =

∞∑

j=−∞
cj(t)e

2ıjklz , (4.128)

and insert this ansatz into the Schrödinger equation,

ıℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂z2
+
V0
2

cos(2klz)ψ , (4.129)

obtaining a set of equations of motion for the expansion coefficients cn,

ċj = −4ıωrecj
2cj +

V0
2ıℏ

(cj+1 + cj−1) . (4.130)

The temporal evolution of the coefficients cj(t) can be simulated numerically.

Now we extend the Hamiltonian by the gravitational potential 11 (see also Exc. 1.7.6.2),

Ĥ = − ℏ2

2m

∂2

∂z2
+
V0
2

cos 2klẑ +mgẑ . (4.131)

We define the transformation U ≡ e−ımgẑt/ℏ and find with (1.267) and (1.316) the
Hamiltonian in the accelerated frame,

H̃ = U†ĤU + ıℏU̇†U =
p̃2

2m
+
V0
4

(
e2ıklẑ + e−2ıklẑ

)
. (4.132)

with

p̃ ≡ p̂−mgt = U†p̂U . (4.133)

Now, we expand the operators using the rules (1.209) and (1.316) 12,

p̃ =

∫
p|p⟩⟨p|dp −→

∑

j

(p+ 2jℏkl)|p+ 2jℏkl⟩⟨p+ 2jℏkl| (4.134)

e2ıklẑ =

∫
|p+ 2ℏkl⟩⟨p|dp −→

∑

j

|p+ 2(j + 1)ℏkl⟩⟨p+ 2jℏkl| ,

based on the assumption that every atom can only exist in a superposition of dis-
crete momentum states separated by 2ℏkl, but can have an ’offset’ momentum p = mv,

11For Bose-Einstein condensates, the procedure should be generalized taking into account the
energy of the mean field due to interatomic collisions.

12See also (25.103) and (25.110).
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e.g. due to thermal motion. Disregarding thermal motion, we may set in the acceler-
ated frame p = 0. Then,

p̃ =
∑

j

2jℏkl|2jℏkl⟩⟨2jℏkl| and e2ıklẑ =
∑

j

|2jℏkl + 2ℏkl⟩⟨2jℏkl| , (4.135)

such that,

H̃ =
∑

j

4j2ℏωrec|2jℏkl⟩⟨2jℏkl|+V0

4

∑

j

(|2jℏkl + 2ℏkl⟩⟨2jℏkl|+ |2jℏkl⟩⟨2jℏkl + 2ℏkl|) .

(4.136)
With the expansion of the wavefunction |ψ̃⟩ =∑j cj |2jℏkl⟩ the Schrödinger equation
becomes [721, 722],

ıℏ
d

dt
|ψ̃⟩ = ıℏ

∑

j

ċj |2jℏkl⟩ (4.137)

=
∑

j

(
4j2ℏωreccj +

V0

4 (cj−1 + cj+1)
)
|2jℏkl⟩ = H̃|ψ̃⟩ ,

that is,

ċj = −4ıj2ωreccj +
V0
4ıℏ

(cj−1 + cj+1) . (4.138)

In the lab frame the wavefunction reads,

|ψ⟩ = U|ψ̃⟩ = e−ımgẑt/ℏ
∑

j

cj |2jℏkl⟩ (4.139)

=
∑

j

cj |2nℏkl −mgt⟩ =
∑

j

cj |2ℏkl(j − νblot)⟩ ,

where we introduced the Bloch frequency,

νblo =
mg

2ℏkl
. (4.140)

Finally,

ċj = −4ı(j − νblot)2ωreccj +
V0
4ıℏ

(cj−1 + cj+1) . (4.141)

The center-of-the mass momentum of the atomic matter wave is,

⟨p⟩lab
ℏkl

=
∑

j

j|cj(t)|2 + νblot . (4.142)

4.3.1.2 Interpretation of Bloch oscillations as Bragg reflections

The Bloch oscillations can be understood in various pictures. The first one, illus-
trated in 4.9(a), is based on Bragg reflection: A resting atom has infinite de Broglie
wavelength. Being constantly accelerated by gravity, the matter wave reduces its de
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Broglie wavelength from∞ to a value, where it becomes commensurate with the peri-
odicity of the standing light wave potential. At this moment Bragg scattering comes
into play, reflecting the atomic motion back into upward direction, and the process
starts over again. The atoms evolve like jumping on a trampoline with a frequency
given by νblo.

To understand the second picture, we need to address a question we have left aside
so far, as this requires a notion of optical forces. It is the question in which way the
matter wave interacts with the standing light wave. For the present discussion, it is
sufficient to know that the atom must have an internal transition capable of scattering
photons from the light beams. As any absorption and emission process transfers a
recoil momentum of ℏkl to the atom, we can understand the Bragg scattering process
as a so-called Raman scattering process: a photon of the laser beam generating the
optical lattice coming from the left is absorbed and re-emitted to the left. This is best
illustrated in the momentum domain sketched in Fig. 4.9(b). This Raman scattering
transfers twice the photonic recoil to the atom. The requirement for commensurability
of the Broglie wavelength and wavelength of the standing light wave is equivalent to
saying that the matter wave momentum is equal to the recoil of a single photon. In
other words, the matter wave always Bragg-reflected at the edge of a Brillouin zone.

Finally, in the Bloch state picture, the dispersion relation of a free particle is
distorted due to the periodicity of the potential generated by the standing light wave
such as to open a forbidden band. As a consequence, instead of being accelerated
without limits, the atom enters the second Brillouin zone, which is to say that it is
reflected to the other side of the first Brillouin zone.

Figure 4.9: Illustration of Bloch oscillations (a) in real space, (b) in momentum space, and
(c) in the moving frame. You may also run a movie of Bloch oscillations clicking on (watch
movie)!

The additional term, which contains the frequency of the Bloch oscillation νblo,
increases linearly over time. As time goes by, a resonance is crossed when t = −jτblo,
and the crossing is periodically repeated at every j = −1,−2, 0, ... Tracing the mat-
ter wave evolution in the laboratory system, we see that whenever the resonance is
crossed, the momentum undergoes a change of sign corresponding to a reflection of
its motion. We expand the population of the momentum states into plane (Bloch)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/QM_Lattices_BlochOscillation_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/QM_Lattices_BlochOscillation_Movie.mp4
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waves with |cj(t)|2.
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Figure 4.10: (code) Dynamics of Bloch’s oscillations calculated from Eq. (4.130). (a) The

colored curves show successively populated momentum states. (b) Center-of-mass motion of

the wave packet in the lab frame (red) and in the moving frame (blue). The used parameters

are ωrec = (2π) 4.8 kHz, 2πνblo = 0.3ωrec, and V0 = −0.7ωrec.

Of course there are some conditions that need to be met to observe Bloch oscil-
lations. The transfer of momentum is efficient only in the rapid adiabatic passage
(ARP) regime characterized by the conditions 2(νblo/ωrec)≪ (V0/4ωrec)

2 ≪ 16. The
first condition requires that the force that drives the atoms to perform the Bloch
oscillations must be weak enough to avoid transitions between Bloch bands, which
guarantees the adiabaticity of the process. The other condition requires that the
optical lattice be weak enough so that the dynamics involves only two adjacent mo-
mentum states at the same time and the transfer between the two is successful. A
talk on this subject can be watched at (watch talk). Do the Excs. 4.3.4.5 and 4.3.4.6.

We will come back to the topic of optical lattices holding matter waves in Sec. 28.4.2
in the context of Mott insulating states of Bose-Einstein condensates.

4.3.2 Bloch oscillations in the tight binding regime in position
space

4.3.2.1 Wannier-Stark ladder

In the presence of an external force, the tight-binding Hamitonian (4.124) in the
Wannier basis is generalized to,

Ĥ = −J
∑

±

∑

j∈Z
ŵ†
j±1ŵj +mgal

∑

j∈Z
jŵ†

j ŵj (4.143)

= −Jal
∑

±

∑

j∈Z
|n, zj±1⟩⟨n, zj |+mgal

2
∑

j∈Z
j|n, zj⟩⟨n, zj | .

Expanding the Wannier states in the Bloch basis via insertion of the completeness

relation I =
∫ kl
−kl |n, q⟩⟨n, q|dq, using ⟨n, zj |n, q⟩

(4.107)
= ěıjqal , and ŵ†

j |vac⟩
(4.115)
= |n, j⟩,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochDynamics.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochDynamics.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochDynamics.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochDynamics.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/BlochOscillations
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we obtain,

Ĥ = −Jal 1

2π

∑
±

∫ kl

−kl

∫ kl

−kl
|n, q⟩e∓ıalq

∑
j∈Z

eı(q
′−q)jal⟨n, q′|dqdq′ (4.144)

+mgal
2 1

2π

∫ kl

−kl

∫ kl

−kl
|n, q⟩

∑
j∈Z

jeı(q
′−q)jal⟨n, q′|dqdq′

= −Jal 1

2π

∑
±

∫ kl

−kl

∫ kl

−kl
|n, q⟩e∓ıalq 2π

al
δ(q′ − q)⟨n, q′|dqdq′

+mgal
2 1

2π

∫ kl

−kl

∫ kl

−kl
|n, q⟩2π

al
δ(q′ − q) ı

al

d

dq
⟨n, q′|dqdq′

= −
∫ kl

−kl
|n, q⟩

(
2J cos alq −mg ı d

dq

)
⟨n, q|dq ≡

∫ kl

−kl
|n, q⟩Ĥ(q)⟨n, q|dq ,

using the definition of the Bloch frequency (4.140), mgal = ℏωblo. Obviously, the
Hamiltonian (4.144) is diagonal in the quasi-momentum basis. The first term is the
force-free dispersion relation, while the second one introduces an energy shift known
as Wannier-Stark ladder. The eigenstates of the Hamiltonian

Ĥ⟨n, q|ℓ⟩ =
(
−2J cos alq +mg ı

d

dq

)
⟨n, q|ℓ⟩ = E⟨n, q|ℓ⟩ (4.145)

are the Wannier-Stark states, whose Bloch or quasi-momentum representation
is given by,

⟨n, q|n, ℓ⟩ =
√

al
2π e

−ı[ℓqal+2J sin(alq)/(ℏωblo)] =
√

al
2π e

−ı(jqal+ν sin alq) . (4.146)

where we introduced the abbreviation,

ν ≡ 2J

mgal
. (4.147)

With this normalization factor, these states obviously form an orthonormal basis,

⟨n, ℓ′|n, ℓ⟩ =
∫ kl

−kl
⟨n, ℓ′|n, q⟩⟨n, q|n, ℓ⟩dq = δℓ′ℓ . (4.148)

Inserting them into the differential equation (4.145), we find,

Eℓ = ℓℏωblo = ℓalmg . (4.149)

4.3.2.2 Various representations of Wannier-Stark states

Apart from the Bloch representation (4.146), which projects the Wannier-Stark states
|n, ℓ⟩ onto the Bloch basis ⟨n, q|, we already got to know three other representations:
The Wannier representation projecting onto the Wannier basis ⟨n, zj |, the position
representation projecting onto ⟨z|, and the momentum representation projecting onto
⟨k|. Let us now derive the explicit wavefunctions of the various representations.
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Figure 4.11: (code) (a) Wannier-Stark ladder for V0 = −25ℏωrec and ωblo = 2ωrec. (b) Wan-

nier representation (red circles) and position representation (black solid line) for V0 = −ℏωrec

and ωblo = 0.1ωrec corresponding to ν = 7.7 [369].

The Wannier or lattice site representation of the Wannier-Stark states is
obtained from the Bloch representation (4.146) via Fourier transform, ⟨n, zj |n, q⟩ =
eıqzj/

√
2π,

⟨n, zj |n, ℓ⟩ =
∫ kl

−kl
⟨n, zj |n, q⟩⟨n, q|n, ℓ⟩dq (4.150)

=

∫ kl

−kl

eıqzj√
2π

√
al
2π e

−ı(ℓqal−ν sin alq)dq

= 1
2π

√
al

∫ π

−π
eı(j−ℓ)q̃−ıν sin q̃dq̃ = 1√

al
Jj−ℓ(ν) ,

with the definition of the Bessel function 13. Hence,

|n, ℓ⟩ = al
∑

j

|n, zj⟩⟨n, zj |n, ℓ⟩ =
∑

j

Jj−ℓ(ν)|n, j⟩ . (4.151)

The position and the momentum representation of the Wannier-Stark states
are obtained from the position (respectively momentum) representations of the Wan-
nier states,

⟨z|n, ℓ⟩ = √al
∑

j

Jj−ℓ(ν)⟨z|n, zj⟩ , ⟨k|n, ℓ⟩ = √al
∑

j

Jj−ℓ(ν)⟨k|n, zj⟩ . (4.152)

The position representation is visualized in Fig. 4.11(b). The momentum representa-

13Jm−n(x) =
1
2π

∫ π
−π e

ı(m−n)u−ıx sinudu.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierStarkLadder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierStarkLadder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_WannierStarkLadder.m
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tion can alternatively be derived from (4.146),

⟨k|n, ℓ⟩ = ⟨k|
∫ kl

−kl
|n, q⟩⟨n, q|dq|n, ℓ⟩ =

∫ kl

−kl
cke

−ı(jqal−ν sin alq)dq . (4.153)

From the properties of the Bessel functions we know that Jj−ℓ(ν) is mainly local-
ized in the interval |j − ℓ| < ν, i.e. the Wannier-Stark states extend over an interval
ν. Outside this interval, the Bessel functions decay as Jj(ν) ∝ νj . Furthermore, the
Bessel functions strongly oscillate for negative values of the index because of the prop-
erty J−j(ν) = (−1)jJj(ν). We will see that the spatial extension of the Wannier-Stark
state determines the boundaries of the Bloch oscillations 14. The various representa-
tions of Wannier-Stark states are included in Tab. 4.2.

4.3.2.3 Bloch oscillations

Without external forcing the periodic potential is translation invariant, which entails
complete delocalization of the spatial wavefunction in steady-state: If an atom can
tunnel from site j to j+1, it also can tunnel from j+1 to j+2. The situation changes
when an external force is applied because, according to Eq. (4.149), the energy bands
are shifted between sites by an amount hνblo, see Fig. 4.11. This energy mismatch
spoils the overlap between the Wannier functions at different sites and, as no energy
is dissipated, energy conservation requires the states to remain localized: Tunneling
violating energy conservation is only possible during a time period corresponding to
the Heisenberg uncertainty relation, ∆t = h/∆E = ν−1

blo. That is, an atom trying to
tunnel to other lattice site must return to its original position after a period ν−1

blo. Let
us now derive this quantitatively.

The evolution operator in the Bloch state basis [369] is obtained inserting the
Wannier-Stark states (4.146) and the energy spectrum (4.149) into the propagator,

Uqq′(t) = ⟨n, q′|e−ıĤt|n, q⟩ =
∑

j

⟨n, q′|ℓ⟩e−ıEjt⟨ℓ|n, q⟩ (4.154)

= al
2π e

−ıν(sin alq−sin alq
′)
∑

j

eıj[(q−q
′)al−ℏωblot]

= e−ıν(sin alq−sin alq
′)δ(q − q′ −mgt) .

The evolution operator in the Wannier state basis will be derived in Exc. 4.3.4.9,

Ujj′(t) = ⟨n, j′|e−ıĤt|n, j⟩ =
∑

ℓ

⟨n, j′|ℓ⟩e−ıEℓt⟨ℓ|n, j⟩ (4.155)

= eı(j−j
′)(π−ωblot)/2−ıj′ωblotJj−j′(2ν sin

ωblot
2 ) .

The propagators (4.154), respectively, (4.155) allow to calculate the time evolution of
a wave packet. Fig. 4.12 visualizes the dynamics of a wave packet in a tilted periodic

14The Wannier-Stark states are orthonormalized. However, this breaks down in the presence of a
cavity. After delocalization, only the overlap between the Wannier-Stark states and the cavity mode
function couples to the cavity.
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potential for different initial conditions, localized or spread over several lattice sites.
We see that the Wannier states extend over a maximum number of populated sites,

|j| < ν
∣∣sin νblot

π

∣∣ , (4.156)

The spreading of a wave packet is proportional to the width of an energy band, but
depends inversely on hνblo, see Fig. 4.8(c). Hence, in order to maximize the spreading
it is important to use a band n near the threshold E(n) ≲ 0.

Fig. 4.12 shows a simulation of,

⟨n, zj |n, ℓ(t)⟩ = ⟨n, zj |Ujj′(t)|n, ℓ(0)⟩ (4.157)

with some initial distribution ℓ(0)⟩ = ∑
j cj(0)|n, j⟩. The simulation reveals, that

initial incoherent superpositions of many Wannier states localized in adjacent sites
tend to wash out the oscillations.
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Figure 4.12: (code) Bloch oscillations in the tight-binding limit for ν = 25. (a) The wave

packet is assumed initially perfectly localized at a single lattice site, |n, ℓ(0)⟩ =∑j δ0,j |0, j⟩.
(b) The wave packet is assumed initially spread over a σ = 5 lattice site large Gaussian

distribution, |n, ℓ(0)⟩ = (πσ2)−1/4∑
j e

−j2/2σ2 |0, j⟩. (c) The wave packet is assumed initially

spread equally over jmax = 25 lattice sites, |n, ℓ(0)⟩ = (2jmax)
−1/2∑

j Θ(jmax − |j|)|0, j⟩.

Example 42 (Wavepacket propagation in the tight binding limit): It is
possible to impart a momentum to the wavepacket by multiplying the initial
Wannier state distribution with a phase factor,

|n, ℓ(0)⟩ =
∑
j

eıjp|n, j⟩ ,

as shown in Fig. 4.13(a).

Interestingly, the Bloch oscillations can be used to realize unidirectional quan-

tum transport in a flipped quantum ratchet scheme. One just has to phase shift

the standing wave potential after each Bloch oscillation period, as shown in

Fig. 4.13(b) [369, 537, 705].

Example 43 (Exciting and probing Bloch oscillations): Bloch oscillations

may excited by sudden quench or periodic modulation [902]. They may be

probed by Raman spectroscopy [62], see Fig. 4.11(b).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingBlochoscillation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingBlochoscillation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingBlochoscillation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingBlochoscillation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingBlochoscillation.m
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Figure 4.13: (code) (a) Propagation of a Gaussian wavepacket spread over a σ = 5 and

initially localized around zj = −35al. At time t = π/2ωblo a momentum kick p = π is

imparted to the wavepacket. (b) Propagation of the same Gaussian wavepacket when the

phase of the periodic potential is shifted by π after each Bloch period. (c) Same as (b), but

the particle is initially localized at a single lattice site zj = 0.

Figure 4.14: (b) Raman spectroscopy of the ladder states [62].

4.3.3 Extensions of the Bloch-Wannier model

4.3.3.1 Interacting atoms and three-dimensional lattices

As long as the particles in the lattice do not interact with each other the Bloch-
Wannier model developed so far is sufficient to grasp all phenomena. Indeed, as
long as the atoms evolve independently, the occupation probabilities of lattice sites
are simply reinterpreted as populations. Nevertheless, an important advantage of
Wannier basis is that it can be generalized to include interatomic interactions. The
model, called the Hubbard model, will be investigated later in Sec. 28.4.2, where we
will also extend it to three dimensions.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingTransport.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingTransport.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingTransport.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingTransport.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_TightbindingTransport.m
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4.3.3.2 Interband transitions

The bands are separated by gaps. Hence, transitions can only occur due to time-
dependent perturbations with Fourier frequencies sufficiently high to bridge the gap,
see Sec. 5.4.3. The motion of an atom in the lattice potential represents such a per-
turbation, provided it is sufficiently fast. Such transitions are called Landau-Zener
transitions. A rapid change of the lattice depth or energetic interatomic collisions
represent other sources of interband transitions.

4.3.4 Exercises

4.3.4.1 Ex: Bloch theorem

Verify that,

Ĥ|ψk⟩ = Ek|ψk⟩ =⇒
(
(k̂ + κ)2

2m
+ V (z)

)
|uk⟩ = Ek|uk⟩ .

4.3.4.2 Ex: Spatial wavefunction of the Wannier state for the first band

Find the spatial wavefunction of the Wannier state for the first band, w(1)(z), in the
case of V = 0. Plot the function, and give the location of its nodes.

4.3.4.3 Ex: Orthonormality of Wannier states

Show that, for the ground band, |wj⟩ and |wj′⟩ are orthogonal for j ̸= j′.

4.3.4.4 Ex: Gaussian approximation for Wannier function

Consider a standing light wave producing a dipolar potential of the shape V (x) =
W0 sin

2 kx = W0

2 − W0

2 cos 2kx with W0GgErec = (ℏk)2/2m.
a. Approximate the potential of a single lattice site around x = 0 by a harmonic
potential. Calculate for which depth of the dipolar potential the approximated po-
tential supports at least one bound state. What is the spacing of the levels and the
characteristic size of the harmonic oscillator aho. Write down the normalized ground
state wavefunction of the harmonic oscillator.
b. Now, let us consider a 3D cubic lattice made of three identical orthogonal standing
light waves. Approximate the ground state Wannier function of a lattice site by ap-
propriately normalized ground state wavefunctions of a harmonic oscillator. Derive

the formula U3D = 8
πkad

(
W0

Erec

)3/4
starting from,

U3D = g3D
∫
ω4
(0,0)(x, y, z)d

3r

with g3D = 4πℏad
m .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_OpticalLattice01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_Opticallattice03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_Opticallattice05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_OpticalLattice04.pdf
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4.3.4.5 Ex: Purification of Bloch oscillations

Simulations of Bloch oscillations of atoms in an optical lattice for V0 = 0.4ωrec and
0.8ωrec produce the dynamics exhibited in Fig. 4.15. Interpret the different behaviors.
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Figure 4.15: (code) Dynamics of Bloch oscillations (a-b) for V0 = 0.4ωrec, (c-d) for V0 =

0.8ωrec, and (e-f) for V0 = 1.6ωrec. Furthermore, ωrec = (2π) 4.8 kHz and νblo = 0.05ωrec.

4.3.4.6 Ex: Two-mode model for Bloch oscillations

Simplify the Bloch oscillation model assuming that at any time at most two momen-
tum modes can be coupled via Bragg reflection.

4.3.4.7 Ex: Perturbative treatment of a weak lattice

A weak lattice potential with V0 < Erec can be treated in perturbation theory to moti-
vate the resulting opening of a gap in the refolded energy parabola. The unperturbed
Hamiltonian Ĥ0 = p2/2m contains only the kinetic energy and the perturbation is
V (z) = V sin2(kz) = 1

2V − 1
4V (e2ıkz + e−2ıkz).

a. Calculate V̂ (z)ϕp(z) and show that ⟨ϕp±ℏk|V̂ |ϕp⟩ are the only non-zero matrix

elements of the perturbation V (z) between the eigenstates of Ĥ0 (which are the or-
thonormal plane waves ϕp = eıpz/ℏ). Neglect the constant term of the potential,
which only yields a global energy shift.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_OpticalLattice06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochLandauZener.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochLandauZener.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_OpticalLattice065.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_OpticalLattice07.pdf
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b. This coupling is relevant around those momenta p, where ϕp has the same energy
ϕp+ℏk or ϕp−ℏk. Show that these momenta are p = ∓ℏk.
c. Consider the perturbed system restricted to the basis {|p = −ℏk⟩, |p = +ℏk⟩} and
give the Hamiltonian as 2× 2 matrix.
d. Diagonalize the matrix and consider the difference of the eigenenergies. Use them
to estimate the size of the gap, that the lattice opens between the two lowest bands.
e. Calculate the eigenstates and interpret them by comparing the probability density
to the lattice potential.

4.3.4.8 Ex: Wannier-Stark ladder for strontium

For the strontium intercombination line the Bloch and the recoil frequencies are ωblo =

2π mg2ℏk = (2π) 786Hz and ωrec = ℏk2
2m = (2π) 4530 kHz, respectively. Calculate the

Wannier-Stark ladder.

4.3.4.9 Ex: Propagator for Bloch oscillations in the Wannier basis

Derive the formula (4.155) for the time evolution in the Wannier basis.

4.4 Further reading

B. Pelle et al., State-labeling Wannier-Stark atomic interferometers [DOI]

Min-Kang Zhou et al., Atomic multiwave interferometer in an optical lattice [DOI]

T. Hartmann et al., Dynamics of Bloch oscillations [DOI]

N. Marzari et al., Maximally localized Wannier functions: Theory and applications
[DOI]

L. Guidoni et al., Optical Lattices: Cold Atoms Ordered by Light [DOI]

N. Marzari et al., Nonlinear Landau-Zener tunneling [DOI]

E. Peik et al., Bloch Oscillations of Atoms, Adiabatic Rapid Passage, and Monoki-
netic Atomic Beams [DOI]

J. Zapata, Gravity-induced Wannier-Stark ladder in an optical lattice [DOI]

I. Bloch, Ultracold quantum gases in optical lattices [DOI]

J. Dalibard, Optical traps and optical lattices [http]

J.H. Thywissen, Ultracold atoms in lattices [http]
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https://pro.college-de-france.fr/jean.dalibard/CdF/2013/total_en_2013.pdf
https://www.ictp-saifr.org/wp-content/uploads/2023/03/LatticesNotes-14Mar2023.pdf
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Chapter 5

Approximation methods

Virtually every problem going beyond the potential well, the harmonic oscillator, or
the hydrogen atom without spin and external fields is impossible to solve analytically.
In this chapter we will talk about techniques to solve approximately problems in more
realistic situations. There are a number of methods of which we will discuss the only
following: 1. The stationary or time-dependent perturbation method is useful for
evaluating small perturbations of the system, for example, caused by external electric
or magnetic fields; 2. the variational method, which serves to find and improve trial
wavefunctions, the initial shapes of which are generally motivated by the symmetries
of the system; 3. the semi-classical WKB method; 4. and finally the method of self-
consistent fields, which is an iterative method of solving the Schrödinger equation.

5.1 Stationary perturbations

5.1.1 Time-independent perturbation theory

We first introduce time-independent perturbation theory (TIPT) for multilevel sys-
tems. We separate the Hamiltonian into an unperturbed part,

Ĥ(0)|ψ(0)⟩ = E(0)|ψ(0)⟩ , (5.1)

and perturbations, which are proportional to a small parameters λ,

Ĥ = Ĥ(0) + λĤ(1) + λ2Ĥ(2) + .. . (5.2)

The perturbed wavefunctions are,

|ψ⟩ = |ψ(0)⟩+ λ|ψ(1)⟩+ λ2|ψ(2)⟩+ .. , (5.3)

and the energies

E = E(0) + λE(1) + λ2E(2) + .. . (5.4)

The contributions ∝ λn are the corrections of order n. The equation we need to solve
now is,

Ĥ|ψ⟩ = E|ψ⟩ . (5.5)

207
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By inserting all the expansions above and segregating all orders of λk, we find the
following system of equations,

Ĥ(0)|ψ(0)⟩ = E(0)|ψ(0)⟩ (5.6)

(Ĥ(0) − E(0))|ψ(1)⟩ = (E(1) − Ĥ(1))|ψ(0)⟩
(Ĥ(0) − E(0))|ψ(2)⟩ = (E(2) − Ĥ(2))|ψ(0)⟩+ (E(1) − Ĥ(1))|ψ(1)⟩

... .

5.1.1.1 First order energy correction

We now consider eigenstates |ψ(1)
n ⟩ of the perturbed system and expand the first-order

correction of the wavefunction in a linear combination of unperturbed eigenvectors

|ψ(0)
n ⟩ ≡ |n⟩,

|ψ(1)
n ⟩ =

∑

m

|m⟩⟨m|ψ(1)
n ⟩ . (5.7)

We insert this expansion into the second equation (5.6) and multiply with ⟨n|,

⟨n|(Ĥ(0) − E(0)
n )

∑

m

|m⟩⟨m|ψ(1)
n ⟩ = 0 = ⟨n|E(1)

n − Ĥ(1)|n⟩ . (5.8)

We obtain for the first order correction of the energy of unperturbed states,

E(1)
n = ⟨n|Ĥ(1)|n⟩ . (5.9)

As a first example we will calculate in Exc. 5.1.3.1 the first order correction for
the energy of a slightly deformed one-dimensional box potential.

5.1.1.2 First order correction for the wavefunction

Now let us have a look at the first-order correction for the wavefunction again con-
sidering the second equation (5.6),

⟨m|Ĥ(0) − E(0)
n |ψ(1)

n ⟩ = ⟨m|E(1)
n − Ĥ(1)|n⟩ . (5.10)

When n = m, the left side of this equation disappears. Therefore, E
(1)
n −⟨n|Ĥ(1)|n⟩ =

0, and we can restrict to the terms n ̸= m discarding the terms in E
(1)
n ,

⟨m|ψ(1)
n ⟩ =

E
(1)
n δmn − ⟨m|Ĥ(1)|n⟩

E
(0)
m − E(0)

n

=
⟨m|Ĥ(1)|n⟩
E

(0)
n − E(0)

m

. (5.11)

We obtain for the first-order correction for the energy of the states,

|ψ(1)
n ⟩ =

∑

m

|m⟩⟨m|ψ(1)
n ⟩ =

∑

m̸=n

|m⟩ ⟨m|Ĥ
(1)|n⟩

E
(0)
n − E(0)

m

. (5.12)

This procedure simulates the distortion of the state by blending it with other states.
The perturbation induces virtual transitions to other states. The perturbation is large
when the blended levels are close.
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See Exc. 5.1.3.2. In Exc. 5.1.3.3 we calculate the first order correction due to the
finite extension of the hydrogen nucleus. In Exc. 5.1.3.4 we treat the coupling of the
energy levels of a two-level system as a first order perturbation, and compare the
result with the exact solution. The Stark effect for an electron confined in a box can
be discussed (see Exc. 5.1.3.5) in first order TIPT.

5.1.1.3 Second order correction for the energy

To calculate the second order correction for the energy we expand the second order
correction,

|ψ(2)
n ⟩ =

∑

m

|m⟩⟨m|ψ(2)
n ⟩ , (5.13)

import it into the third equation (5.6) and multiply with ⟨n|,

⟨n|(Ĥ(0)−E(0)
n )

∑

m

|m⟩⟨m|ψ(2)
n ⟩ = ⟨n|(E(2)

n −Ĥ(2))|n⟩+⟨n|(E(1)
n −Ĥ(1))

∑

m

|m⟩⟨m|ψ(1)
n ⟩ .

(5.14)
Now,

∑

m

⟨m|ψ(2)
n ⟩(E(0)

n −E(0)
m )δnm = 0 = E(2)

n −⟨n|Ĥ(2)|n⟩+
∑

m

⟨m|ψ(1)
n ⟩

(
E(1)
n δnm − ⟨n|Ĥ(1)|m⟩

)
.

(5.15)
The left-hand side of this equation disappears. Also, on the right-hand side, for

n ̸= m, the term E
(1)
n δnm disappears, and for n = m the whole parenthesis disappears.

Therefore, we can discard the term E
(1)
n and restrict the sum to terms with n ̸= m.

Inserting the coefficients ⟨m|ψ(1)
n ⟩ calculated in (5.11), we finally obtain,

E(2)
n = ⟨n|Ĥ(2)|n⟩+

∑

m̸=n

⟨n|Ĥ(1)|m⟩⟨m|Ĥ(1)|n⟩
E

(0)
n − E(0)

m

. (5.16)

The first term is similar to the first order correction; the eigenvalue of the second
order perturbation calculated in the base of the unperturbed states. The second term
describes the shift of the energies through possible temporary transitions to other
states.

In Exc. 5.1.3.6 we treat a system of three coupled levels up to the second pertur-
bative order. The Stark effect discussed in Exc. 5.1.3.7 needs the TIPT calculation
up to the second order.

5.1.2 TIPT with degenerate states

Exact calculations show that the effect of a perturbation is larger – but finite – for
degenerate states. On the other hand, from the above expressions for the corrections
of both energies and wavefunctions, we would infer that these corrections can become
very large for small perturbations or even diverge.

Fortunately, the fact that every linear combination of degenerate wavefunctions
is an eigenfunction of the Hamiltonian as well gives us the freedom to choose the
combination, which is most similar to the final form of the perturbed wavefunctions.
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For example, considering a perturbation by a magnetic field it may be advantageous
to expand the spherical functions Ylm on a basis of cylindrical coordinates 1. We
will see in the following that we can solve both problems, the selection of the initial
combination and the prevention of divergent denominators at once, without explicitly
specifying the expansion.

We consider eigenstates |n, ν⟩ with the energy E
(0)
n being r times degenerate with

respect to the quantum number ν, where ν = 1, .., r. All states satisfy

Ĥ(0)|n, ν⟩ = E(0)
n |n, ν⟩ . (5.17)

We construct linear combinations that most resemble the perturbed states

|ψ(0)
nµ ⟩ =

r∑

ν=1

cµν |n, ν⟩ . (5.18)

When the perturbation Ĥ(1) is applied, we assume that the state |ψ(0)
nµ ⟩ is distorted

towards the similar state |ψnµ⟩, and the energy changes from E
(0)
n to Enµ. We now

need the index µ to label the energy, since the degeneracy can be removed by the
perturbation. As before, we write now,

Ĥ = Ĥ(0) + λĤ(1) + .. (5.19)

|ψnµ⟩ = |ψ(0)
nµ ⟩+ λ|ψ(1)

nµ ⟩+ ..

Enµ = E(0)
n + λE(1)

nµ + .. .

The replacement of these expansions in Ĥ|ψnµ⟩ = Enµ|ψnµ⟩, and a collection of the
terms in λ up to first order gives,

Ĥ(0)|ψ(0)
nµ ⟩ = E(0)

n |ψ(0)
nµ ⟩ (5.20)

(E(0)
n − Ĥ(0))|ψ(1)

nµ ⟩ = (E(1)
nµ − Ĥ(1))|ψ(0)

nµ ⟩ .
As before, we try to express the first-order corrections for the wavefunctions

through degenerate unperturbed wavefunctions |ψ(0)
nµ ⟩ and non-degenerate wavefunc-

tions 2 |ψ(0)
m ⟩:

|ψ(1)
nµ ⟩ =

∑

ν

bµν |ψ(0)
nν ⟩+

∑

m

anm|ψ(0)
m ⟩ . (5.21)

Inserting this into the first-order equation (5.20), we obtain,
∑

ν

bµν(E
(0)
n −E(0)

n )|ψ(0)
nν ⟩+

∑

m

anm(E(0)
m −E(0)

n )|ψ(0)
m ⟩ = (E(1)

nµ − Ĥ(1))|ψ(0)
nµ ⟩ . (5.22)

The first term disappears. Inserting the expansion (5.18),
∑

m

anm(E(0)
m − E(0)

n )|ψ(0)
m ⟩ = (E(1)

nµ − Ĥ(1))
∑

ν

cµν |n, ν⟩ , (5.23)

1Another example would be the preference for the coupled base |(l, s)j,mj⟩ in comparison to
the decoupled base |l,ml, s,ms⟩ knowing that the degeneracy in j is lifted, when there is an energy
associated with interacting angular momenta and the degeneracy in mj is lifted, when we apply a
magnetic field.

2Note that we label all states which are not degenerate with the state under investigation |ψ(1)
nµ ⟩

with the index m, even if there are degeneracies between them.
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and multiplying the two sides with ⟨n, µ|, we get zero on the left-hand side, since we
can choose the non-degenerate states to be orthogonal ⟨n, ν|m⟩ = δm,n. Hence,

∑

ν

cµν

[
E(1)
nµ ⟨n, µ|n, ν⟩ − ⟨n, µ|Ĥ(1)|n, ν⟩

]
= 0 . (5.24)

This secular equation (one for each µ) represents, in fact, a set of r linear equations
for the coefficients cµν . The condition for having non-trivial solutions is,

det
(
⟨n, ν|Ĥ(1)|n, µ⟩ − E(1)

nµ δµ,ν

)
µ,ν

= 0 . (5.25)

The solution of this secular determinant yields the solicited energies E
(1)
µ . Now, the so-

lution of the secular equation (5.24) for each energy value produces those coefficients,
which represent the best linear combinations adapted to the perturbation. Unlike in
previous calculations with degenerate states, here we consider linear combinations of
vectors of the degenerate subspace prior to switching on the perturbation.

In practice, we apply perturbation theory only to the lowest relevant order. That
is, we only calculate the second order correction if first order corrections vanish. One
famous example is the quadratic Stark effect discussed in Sec. 10.3. In the case of
eigenvalues, which are degenerate in the absence of perturbation, the first order will
always produce a remarkable correction, as in the example of the linear Stark effect,
also discussed in Sec. 10.3. For this reason, we need not discuss higher perturbation
orders in the case of degenerate eigenvalues.

Example 44 (Perturbation in a system with two degenerate states): As
an example, we consider the following Hamiltonian,

Ĥ =

(
∆ Ω

Ω ∆

)
.

The exact solution gives the eigenvalues and eigenvectors,

E1 = ∆+Ω , E2 = ∆−Ω , |ψ1⟩ = 1√
2

(
1

1

)
, |ψ2⟩ = 1√

2

(
−1
1

)
.

Now we divide the Hamiltonian into an unperturbed part and a perturbation,

Ĥ ≡ Ĥ(0) + Ĥ(1) =

(
∆ 0

0 ∆

)
+

(
0 Ω

Ω 0

)
.

We get in zero order,

E
(0)
1 = ∆ = E

(0)
2 , |1⟩ =

(
1

0

)
, |2⟩ =

(
0

1

)
,

The application of non-degenerate perturbation theory in first order would give,

⟨1|Ĥ(1)|1⟩ = 0 = ⟨2|Ĥ(1)|2⟩ , |ψ(1)
1 ⟩ = |1⟩

⟨1|Ĥ(1)|2⟩
E

(0)
1 − E(0)

2

→∞← −|ψ(1)
2 ⟩ .
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That is, the correction of the energy vanishes in first order, while the correction
of the wavefunction diverges. Obviously, the |ν⟩ obtained by the diagonalization
of the matrix Ĥ(0) is not adapted to the calculation of the matrix elements Ĥ(1).
Now, applying degenerate perturbation theory, we obtain by the secular deter-
minant,

0 = det
[
⟨ν|Ĥ(1)|µ⟩ − E(1)

µ δµ,ν
]
= det

(
−E(1)

µ Ω

Ω −E(1)
µ

)
= (E(1)

µ )2 − Ω2 ,

eigenvalues are E
(1)
1 = Ω and E

(1)
2 = −Ω allowing the establishment of the

secular equation,

c11
[
E

(1)
1 − ⟨1|Ĥ(1)|1⟩

]
− c12⟨1|Ĥ(1)|2⟩ = c11[Ω− 0]− c12Ω = 0

−c21⟨2|Ĥ(1)|1⟩+ c22
[
E

(1)
2 − ⟨2|Ĥ(1)|2⟩

]
= −c21Ω+ c22[−Ω− 0] = 0 .

We obtain c11 = c12 and c21 = −c22 and with this,

|ψ(0)
1 ⟩ =

∑
ν

c1ν |ν⟩ = c11|1⟩+c12|2⟩ = 1√
2

(
1

1

)
, |ψ(0)

2 ⟩ = c21|1⟩+c22|2⟩ = 1√
2

(
−1
1

)
.

Thus, we can verify that the corrections for the eigenenergies,

E1 = E
(0)
1 +⟨ψ(0)

1 |Ĥ(1)|ψ(0)
1 ⟩ = ∆+Ω , E2 = E

(0)
2 +⟨ψ(0)

2 |Ĥ(1)|ψ(0)
2 ⟩ = ∆−Ω ,

coincides with the exact calculation made at the beginning. The eigenfunctions
|ψ(0)

1 ⟩ should be already corrected in zeroth order, which we verify by calculating,

|ψ(1)
1 ⟩ = |ψ(0)

1 ⟩
⟨ψ(0)

1 |Ĥ(1)|ψ(0)
2 ⟩

E1 − E2
= 0 = |ψ(1)

2 ⟩ .

In Exc. 5.1.3.8 we study a partially degenerate three-level system and the break-
down of the degeneracy due to a perturbation. And in Exc. 5.1.3.9 we will treat a
perturbation in a box potential with degenerate energy levels.

5.1.3 Exercises

5.1.3.1 Ex: One-dimensional well with a deformation in the centre

Consider a one-dimensional potential well between −L/2 and L/2 with infinitely high
walls. In the center of the well is a small deformation,

H(1) =

{
ϵ for −a

2 ≤ x ≤ a
2

0 outside that region .

Calculate the correction for the eigenenergies in first order and discuss the limits
a≪ L and a→ L.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PocoUnidimensional.pdf
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5.1.3.2 Ex: Perturbation

Show that the scalar product ⟨ψ(0)
n |ψ(1)

n ⟩ (from the first-order correction to the state
of the ’perturbed’ system with the n-th state of the free Hamiltonian), cancels out
when we impose that the ’perturbed’ state |ψ(λ)⟩ be normalized and the the product

⟨ψ(0)
n |ψ(λ)⟩ be real 3.

5.1.3.3 Ex: Extended nucleus

The expression V (r) = −e2/4πε0r for the potential energy of an electron in the hy-
drogen atom implies that the nucleus (the proton) is treated as a point particle. Now
suppose that, on the contrary, the charge of the proton +e is evenly distributed over
a sphere of radius R = 10−13 cm.
a. Derive the modified potential Vm, which corresponds to this distribution of the
nuclear charge.
b. Assume that the wavefunction of the hydrogen atom does not change much due
to the modified potential. Calculate in lowest order in R/aB the average energetic
displacement ⟨∆V ⟩ for the state (n = 1, ℓ = 0,m = 0). How will the energy displace-
ment be in comparison to the states (n = 2, ℓ = 0,m = 0) and (n = 2, ℓ = 1,m = 0)?
c. Calculate in the same way ⟨∆V ⟩ for muonic hydrogen in the ground state.

5.1.3.4 Ex: Perturbation of a two-level system

We consider a two-level system. Without perturbation the system would have the

Hamiltonian H(0), the eigenenergies E
(0)
1,2 and the eigenfunctions ψ

(0)
1,2. Now we switch

on a stationary perturbation of the form H(1) = ϵ(|1⟩⟨2|+ |2⟩⟨1|).
a. Calculate the eigenenergies directly solving the perturbed Schrödinger equation.
b. Calculate the perturbed energies using TIPT and compare to the exact calculation
of the eigenenergies.
c. Calculate the eigenstates directly solving the perturbed Schrödinger equation.
d. Calculate the perturbed states using TPIT and compare to the exact calculation
of the eigenfunctions.

5.1.3.5 Ex: Stark effect for an electron in a box

Consider an electron in a one-dimensional box, that is, in a well inside the interval
x ∈ [0, a] delimited by infinite walls. When a uniform electric field E is applied, also
in x-direction, the electron experiences a force equal to −eE , being −e the electron
charge, so that the potential energy inside the box becomes eEx.
a. What is the energy of the ground state of the electron (in first order approximation)?
We can assume that eEa is much smaller than the ground state energy the electron
would have in the absence of electric fields.
b. Use first-order TIPT to get an approximation for the ground state wavefunction
by calculating the first term of the correction.

3See [163], Cap XI, A-2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PerturbacaoPrimeiraordem1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_NucleoEstendido.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PerturbacaoDoisniveis.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_EletronCaixa.pdf
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5.1.3.6 Ex: Perturbed 3-level system until second order TIPT

Consider the following perturbed Hamiltonian:

H = H0 +Hλ =



E1 0 0

0 E2 0

0 0 E3


+



0 λ 0

λ 0 λ

0 λ 0


 .

a. Determine the perturbed eigenvalues and eigenfunctions in first order TIPT.
b. Determine the eigenvalues in second order TIPT.

5.1.3.7 Ex: Stark effect for a charge in a harmonic oscillator

Consider a charged harmonic oscillator, immersed in a uniform electric field E , de-
scribed by the Hamiltonian Ĥ(1) = Ĥ + eE x̂, being Ĥ = p̂2/2m + mω2x̂2/2 the
Hamiltonian of the free one-dimensional oscillator, and e the charge of the oscillator.
a. Obtain, through TIPT, the eigenenergies (first and second order corrections). Com-
pare the results obtained by TIPT with the analytical ones 4.
b. Same thing for a perturbation of the form ρmω2x̂2/2.
c. Same thing for a perturbation σℏωx̂3.

5.1.3.8 Ex: Three-level system with degeneracy

Consider the following Hamiltonian Ĥ(0) and its perturbation Ĥ(1)

Ĥ(0) + Ĥ(1) =



∆ 0 0

0 ∆ 0

0 0 ∆′


+



0 Ω 0

Ω 0 Ω

0 Ω 0


 .

Calculate the corrections for the eigenvalues and eigenfunctions up to first order.

5.1.3.9 Ex: Perturbation in a 3D well with degeneracy

Consider a particle confined to a three-dimensional, infinite cubic well described by
the potential energy V (x, y, z) = 0 for 0 < x < a, 0 < y < a and 0 < z < a and
V (x, y, z) =∞ outside this region. We know that the particle’s stationary states are

Ψ
(0)
nx,ny,nz (x, y, z) =

(
2
a

)3/2
sin
(
nxπ
a x

)
sin
(nyπ

a y
)
sin
(
nzπ
a z
)
, being nx, ny, nz positive

integers. The associated energies are E
(0)
nx,ny,nz = π2ℏ2

2ma2 (n
2
x + n2y + n2z). Note that the

ground state is not degenerate while the first excited state is three times degenerate.
Consider that the particle in this box is subject to a perturbation of the shape H(1) =
V0 for 0 < x < a/2 and 0 < y < a/2 and H(1) = 0 outside this region.
a. Obtain the first-order correction for the ground state energy.
b. Obtain the first-order correction for the (degenerate) energy of the first excited
state, in addition to the optimal base (which follows from the linear combinations of
degenerate states) which most closely approximates the perturbed states.

4See [163], Complement A XI.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PerturbacaoSegunda.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PerturbacaoStark.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_StationaryDegenerate.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PerturbaPoco3D.pdf
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5.1.3.10 Ex: Vanishing perturbation orders

Show that it is impossible to design a perturbation Hamiltonian of the form,

Ĥ = Ĥ(0) + Ĥ(1) =



0 0 0

0 E2 0

0 0 E3


+




0 Ω12 Ω13

Ω∗
12 0 Ω23

Ω∗
13 Ω∗

23 0




such that the first and second order corrections vanish.

5.2 Variational method

5.2.1 The Rayleigh fraction

Let us assume that we want to calculate the ground state energy Eg of a system

described by a Hamiltonian Ĥ, but we do not know the wavefunction, and we do
not know how to solve the Schrödinger equation. If at least we had a good idea of
the generic form of the solution (Gaussian, sinusoidal, ...), we could choose a trial
function with a free parameter and optimize this parameter minimizing the energy,
which ought to be minimal for the ground state. This is precisely the idea of the
variational method. Note that the variational method only works for the ground state.
Numerically it can be implemented by the method of steepest descent presented in
Sec. 2.4.3.

For any function ψ we know that the Rayleigh fraction E satisfies,

Eg ≤
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ ≡ E , (5.26)

not only when ψ is the wavefunction of an excited state, but even when it represents
a (imperfect) trial to the ground state. Assuming normalized wavefunctions we can
discard the denominator ⟨ψ|ψ⟩ = 1. To verify the theorem, we expand the function ψ
into orthonormal (unknown) eigenfunctions, |ψ⟩ =∑n cn|ψn⟩. Since ψ is normalized,

1 = ⟨ψ|ψ⟩ =
∑

m,n

⟨ψm|c∗mcn|ψn⟩ =
∑

n

|cn|2 . (5.27)

In the same way,

⟨ψ|Ĥ|ψ⟩ =
∑

m,n

⟨ψm|c∗mĤcn|ψn⟩ =
∑

n

En|cn|2 . (5.28)

As the ground state is that of the lowest energy, Eg ≤ En, we have demonstrated the
relationship (5.26)

Eg = Eg

∑

n

|cn|2 ≤
∑

n

En|cn|2 = ⟨Ĥ⟩ . (5.29)

In practice, we arrange for the trial wavefunction to depend on a free parameter
α. This ansatz ψα for the ground state wavefunction then allows us to calculate an

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PerturbSecondorder.pdf
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energy that must be minimized via

∂⟨ψα|Ĥ|ψα⟩
∂α

= 0 . (5.30)

In the Excs. 5.2.3.1 and 5.2.3.2 we will approach the fundamental state of a quartic
potential and a harmonic oscillator, respectively, by trying several trial wavefunctions
and optimizing their free parameters.

5.2.2 Rayleigh-Ritz method

A modification of the variational method is the Rayleigh-Ritz method. Here, instead
of using a trial function, we use a linear combination of eigenfunctions with variable
coefficients: |ψ⟩ = ∑

k ck|k⟩. These variables are then optimized to minimize the
Rayleigh fraction,

Eg ≤
∑
k,m c

∗
kcm⟨k|Ĥ|m⟩∑

k,m c
∗
kcm⟨k|m⟩

= E , (5.31)

where we assume real coefficients and eigenfunctions. For this, the derivatives with
respect to all coefficients must vanish:

0 ≡ ∂E
∂cq

=

∑
k,m

∂
∂cq

c∗kcm⟨k|Ĥ|m⟩∑
k,m c

∗
kcm⟨k|m⟩

−
∑
k,m c

∗
kcm⟨k|Ĥ|m⟩

∑
k,m

∂
∂cq

c∗kcm⟨k|m⟩
(∑

k,m c
∗
kcm⟨k|m⟩

)2

=

∑
k,m c

∗
kδqm⟨k|Ĥ|m⟩∑

k,m c
∗
kcmδkm

− E
∑
k,m c

∗
kδqmδkm∑

k,m c
∗
kcmδkm

=
∑

k

c∗k⟨k|Ĥ|q⟩ − Ec∗q , (5.32)

using the definition of E (5.31). For the expression ∂E/∂c∗q we get analogous results.
Hence,

0 =
∑

m

cm(⟨q|Ĥ|m⟩ − E⟨q|m⟩) . (5.33)

The condition for the existence of solutions is that the secular determinant disappears,

0 = det(⟨q|Ĥ|m⟩ − E⟨q|m⟩) . (5.34)

The solution of this equation leads to a set of values E , and the lowest value, Emin, is the
best approximation for the ground state energy. The coefficients of the wavefunction
are obtained by solving the eigenvalue equation (5.33) with Emin.

In Exc. 5.2.3.3 we derive the regression formulas for a linear least squares fit from
a Rayleigh-Ritz variational. In Exc. 5.2.3.4 we will use the Rayleigh-Ritz method to
estimate the effect of a finite nuclear mass of the hydrogen atom on the energy levels.
In Exc. 5.2.3.5 we will use the Rayleigh-Ritz method to find the maximum number
of atoms allowing for a stable Bose-Einstein condensate made of atoms subject to an
attractive interatomic force.
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5.2.3 Exercises

5.2.3.1 Ex: Variational method applied to a quartic potential

Determine the ground state energy of the quartic potential V (x) = bx4 making the

variational ansatz ψα(x) = (α/π)1/4e−αx
2/2. Formulae:

∫ ∞

−∞
e−x

2

dx =
√
π ,

∫ ∞

−∞
x2e−x

2

dx = 1
2

√
π ,

∫ ∞

−∞
x4e−x

2

dx = 3
4

√
π

5.2.3.2 Ex: Variational method applied to the harmonic oscillator

Obtain, through the variational method, the ground state energy of the one-dimensional

harmonic oscillator described by the Hamiltonian Ĥ = − ℏ2

2m
d2

dx2 + 1
2mω

2x2, and the
corresponding wavefunction from the test functions
a. ψ(x) = Ae−αx

2

being α a constant;
b. ψ(x) = A/(x2 + β2) being β a constant;
c. ψ(x) = A cos(πx/a) between the limits ±a/2 being a a constant.

5.2.3.3 Ex: Linear least squares

Use the Raleigh-Ritz method to derive the regression coefficients for a linear fit
f(xk) = axk + b to a set of data points (xk, yk).

5.2.3.4 Ex: Effect of finite nuclear mass on hydrogen via Rayleigh-Ritz

Use the Rayleigh-Ritz method to estimate the impact of the finite mass of the nucleus
of the hydrogen atom. To do this, calculate the ground state energy using the exact
Hamiltonian, but a basis of wavefunctions assuming an infinitely heavy nucleus. Only
take into account the states ψ100 and ψ200. Help: Express the exact Hamiltonian
in terms of the infinite-mass Hamiltonian approximating for small corrections of the
reduced mass: m ≡ me/(1 + γ) ≃ (1− γ)me, where γ ≡ me/mp.

5.2.3.5 Ex: Collapse of a condensate with attractive interactions

A Bose-Einstein condensate of 7Li may become unstable due to attractive interatomic
force, the scattering length being as = −27.3aB. Consider the radial Gross-Pitaevskii
Hamiltonian derived in Exc. 3.1.5.2 with an external harmonic potential with the
oscillation frequency ωtrp/(2π) = 50 Hz. Using the variational method to determine
the maximum number of atoms allowing for a stable condensate. (Note that the
derived minimization condition must be evaluated numerically.)

5.3 WKB approximation

TheWKB approximation (fromWentzel-Kramers-Brillouin) [119, 488, 863] is a method
to find approximate solutions for linear differential equations with spatially variable
coefficients. It is typically used for calculations in quantum mechanics where the
wavefunction is reformulated as an exponential semi-classically expanded function,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_VariacionalQuartico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_MetodoVariacional.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_VariationalLeastsquares.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_VariacionalHidrogenio.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_CondensadoColabindo.pdf
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and then the amplitude or phase is slowly changed. In the following, we present the
WKB approximation applied to the Schrödinger equation and exemplify it in some
canonical systems.

5.3.1 WKB approximation applied to the Schrödinger equa-
tion

Starting from the time-independent Schrödinger equation,

− ℏ2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) , (5.35)

and rewrite it as follows,
d2ψ

dx2
= k(x)ψ(x) . (5.36)

with k(x) =
√
2m[E − V (x)]/ℏ2. For now, we will restrict ourselves to energies

E > V (x). In this scheme, the wavefunctions are usually complex functions, so that
we can write them in polar coordinates, containing an amplitude A(x) and a phase
ϕ(x), which are both real numbers:

ψ(x) = A(x)eıϕ(x) . (5.37)

Substituting this function into the Schrödinger equation we obtain a system of coupled
equations in terms of A(x) and ϕ(x),

A′′ = A
[
(ϕ′)2 − k2

]
and (A2ϕ′)′ = 0 . (5.38)

The equations (5.39) and (5.37) are completely equivalent to the Schrödinger equation.
The second Eq. (5.38) is easy to solve,

A =
C√
ϕ′

, (5.39)

being C a real constant. We can not say the same thing about the solution of the first
Eq. (5.38). In order to solve it we are going to use the WKB approach, assuming that
A varies slowly, so the term A′′ → 0. By doing this approximation we can rewrite
Eq. (5.39) in this way:

(ϕ′)2 = k2 . (5.40)

Solving this last expression we obtain two linearly independent solutions, ϕ′ = ±k.
So we get the expression for the phase:

ϕ(x) = ±
∫
k(x)dx . (5.41)

We write this indefinite integral, because the constant term can be absorbed by the
constant C. Finally, we obtain the expression for the wavefunction in the WKB
approximation:

ψ(x) =
C√
|k(x)|

e±
∫
|k(x)|dx . (5.42)
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Here, taking the absolute value of the wavevector, we have already generalized for the
case that the energy E of the particle is lower than the potential V (x) (classically
forbidden region).

Example 45 (WKB approximation): The WKB approach is a semiclassical
method for the solution of the Schrödinger equation that does not require the
potential to be a perturbation of a soluble problem. Instead, it only assumes
that certain classical quantities having the dimension of an action (energy per
time) are much larger than Planck’s constant. Inserting the ansatz

ψ(x) = AeıS(x)/ℏ ,

into the one-dimensional time-independent Schrödinger equation, we find,

− iℏ
2m
S′′(x) + 1

2m
S′(x)2 + V (x)− E = 0 .

Now we expand the exponent in orders of ℏ,

S(x) = S0(x) + ℏS1(x) +
ℏ2
2
S2(x) + ... ,

and insert it in the above equation. Collecting the orders in ℏ, we find in the
first orders, [

1
2m
S′
0(x)

2 + V (x)− E
]
ℏ0 = 0[

− ıℏ
2m
S′′
0 (x) +

1
m
S′
0(x)S

′
1(x)

]
ℏ1 = 0[

1
2m
S′
1(x)

2 − ı
2m
S′′
1 (x)

]
ℏ2 = 0 .

The solution of the zeroth order equation, S0(x) = ±
∫ x√

2m[E − V (x′)dx′,
gives

ψ(x) = Ae±
ı
ℏ

∫ x
√

2m[E−V (x′)dx′ .

The WKB approximation can be used to describe continuous potentials (or barri-
ers) by stepwise constant potentials. The transmission |T |2 through these parts can
be obtained by multiplying the individual tunneling probabilities,

ln |T |2 ≃ −2
∫

barrier

κ(x)dx ,

with κ(x) = 1
ℏ
√
2m[V (x)− E].

5.3.2 Connection formulas

Now let us derive the connection formulas that interconnect solutions with E above
and below V (x) at the turning points, precisely those regions where WKB fails. We
will apply the derivation to a generic confining potential shown in Fig. 5.1.

Let us start with the right turning point Fig. 5.1(a)]. First, we shift the coordinate
system so that the turning point coincides with zero, as shown in Fig. 5.1(b). As seen
above, the WKB solutions will be given by the following equations:

ψ(x) ≈





1√
k(x)

[
Beı

∫ 0
x
k(x′)dx′

+ Ce−ı
∫ 0
x
k(x′)dx′

]
if x ≤ 0

1√
k(x)

De−
∫ x
0

|k(x′)|dx′
if x ≥ 0

. (5.43)
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Figure 5.1: (a) Potential for which we want to obtain the connection formula. (b) Turning
point.

In the vicinity of the turning point we approximate the potential by a straight line
(Taylor series expansion up to first order) with the following functional dependence,

V (x) ≈ E + V ′(0)x . (5.44)

The Schrödinger equation for this potential acquires the following format,

d2ψt

dx2
= α3xψt , (5.45)

with α = [ 2mℏ2 V
′(0)]1/3. Through a change of variables, z = αx, we fall back on Airy’s

equation,
d2ψt

dz2
= zψt , (5.46)

having as solution a linear combination of the two solutions of the Airy equation,

ψt(x) = aAi(αx) + bBi(αx) . (5.47)

Now let’s have a look at the WKB solutions in the two regions in the vicinity of
the turning point. In the classically forbidden region we have k(x) = α3/2

√−x, thus
being

∫ x
0
|k(x′)|dx′ = 2

3 (αx)
3/2. Thus, the WKB solution in the classically forbidden

region near the turning point will be given by:

ψ(x) ≈ D√
ℏα3/4x1/4

e−
2
3 (αx)

3/2

. (5.48)

Using the asymptotic forms of Airy functions in the solution (5.47) we obtain the
following expression for ψt(x),

ψp(x) ≈
a

2
√
π(αx)1/4

e−
2
3 (αx)

3/2

+
b√

π(αx)1/4
e

2
3 (αx)

3/2

, (5.49)

which when compared to equation (5.48) shows us that a =
√

4π
αℏD and b = 0.

Repeating the previous steps in the negative region we see that the WKB solution in
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the asymptotic forms of the Airy solutions for approximately linear potentials takes
the following format (with b = 0):

ψ(x) ≈ 1√
ℏα3/4(−x)1/4

[
Beı

2
3 (−αx)3/2 + Ce−ı

2
3 (−αx)3/2

]
, (5.50)

and

ψp(x) ≈
a√

π(−αx)1/4
1

2ı

[
eıπ/4eı

2
3 (−αx)3/2 − e−ıπ/4e−ı 23 (−αx)3/2

]
. (5.51)

When compared, a
2ı
√
π
eıπ/4 = B√

ℏα and − a
2ı
√
π
e−ıπ/4 = C√

ℏα . Having all this infor-

mation we can rewrite the WKB solutions for all positions in the potential, including
the turning points 5:

ψ(x) ≈





2D√
k(x)

sin
[ ∫ x2

x
k(x′)dx′ + π

4

]
, if x ≤ x2

D√
k(x)

e
−

∫ x
x2

|k(x′)|dx′
, if x ≥ x2

. (5.52)

Repeating the process for a decreasing turning point [left turning point of the
potential of Fig. 5.1(a)], we obtain the following expression:

ψ(x) ≈





D′√
k(x)

e−
∫ x1
x

|k(x′)|dx′
, if x ≤ x1

2D′√
k(x)

sin
[ ∫ x

x1
k(x′)dx′ + π

4

]
, if x ≥ x1

. (5.53)

Example 46 (Harmonic oscillator): Now we apply the WKB method to a
well-known system: the harmonic oscillator. We will calculate its energy levels
and the respective eigenfunctions.
Eigenenergies: First, note that for a confining potential, and more specifically
in the region where E ≥ V (x), we have the solutions obtained for the left and
right turning point, these two solutions must match each other, that is,

2D√
k(x)

sin
[ ∫ x2

x

k(x′)dx′ +
π

4

]
≃ 2D′√

k(x)
sin
[ ∫ x

x1

k(x′)dx′ +
π

4

]
,

and hence the zeros of these functions, so the arguments of those sines must be
equal (except for a multiple of π),∫ x2

x

kdx′ +
π

4
= −

∫ x1

x1

kdx′ − π

4
+ nπ (5.54)(∫ x

x1

+

∫ x2

x

)
kdx′ =

(
n− 1

2

)
π∫ x2

x1

kdx′ =
(
n− 1

2

)
π ,

with n = 1, 2... 6. With this information we take a harmonic potential of the
type V (x) = 1

2
κx2. In this case, the turning points for a given energy E will be at

5Note that we shifted the turning point to an arbitrary position x2.
6Note that n ̸= 0, because the integral (5.54) has to be greater than zero.
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−
√

2E
κ

and
√

2E
κ
. For this potential we will have that k(x) =

√
2m
ℏ2 (E − 1

2
κx2).

Calculating the integral of k(x) between these two turning points we get,

∫ x2

x1

k(x)dx = 2m
ℏ

∫ √2E/k

−
√

2E/k

√
E − 1

2
κx2dx = πE

m

κ
=
(
n− 1

2

)
πℏ ,

isolating E and taking ω =
√
κ/m we have,

E = (n− 1
2
)ℏω ,

with n = 1, 2..., the exact spectrum of the harmonic oscillator, but this is just a

coincidence.

Eigenstates: Now we will calculate the eigenstates of the harmonic oscil-

lator. The eigenfunctions were calculated on a computer. The first graph

(Fig. 5.2) compares the first exact excited state with that obtained using the

WKB method.

Figure 5.2: First excited state calculated accurately and through the WKB approximation.

Note that the WKB approach is very good when x → 0 and x → ∞, regions

where the difference between the oscillator energy and the potential are large

(E ≫ V (x → 0) and E ≪ V (x → ∞)), because in these regions the wave-

length λ(x) acquires the lowest values, since it is proportional to |1/
√
E − V (x)|.

Hence, the spatial region in which the potential needs to be practically constant

is smaller, which explains why the approximation is closer to the exact solu-

tion. In the intermediate regions the difference between E and V (x) begins to

decrease, and the WKB approximation delivers its worst results.

As we increase the energy of the harmonic oscillator, the approximation be-

comes better (for the same reason as discussed in the previous paragraph). The

following graph illustrates this effect for n = 10.

Example 47 (Hydrogen atom): Eigenenergies: For the hydrogen atom the
effective potential is given by,

V (x) = − e2

4πε0

1

r
+

ℏ2

2m

l(l + 1)

r2
.
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Figure 5.3: Wavefunction of the vibrational state n = 10 calculated exactly and using the
WKB approximation.

Note that the WKB method for this case obeys the relation (5.54), hence we
get, ∫ r2

r1

p(r)dr =
√
2m

∫ r2

r1

√
E +

e2

4πε0

1

r
− ℏ2

2m

l(l + 1)

r2
dr

=
√
−2mE

∫ r2

r1

1

r

√
−r2 − e2

4πε0E
r +

ℏ2
2mE

l(l + 1)dr .

Notice that E < 0. Let us make the following substitution to facilitate algebraic
manipulations,

B = − e2

4πε0E
and C = − ℏ2

2mE
l(l + 1) .

The turning points r1 and r2 are given by the following expressions,

r1 =
B −

√
B2 − 4C

2
and r2 =

B +
√
B2 − 4C

2
.

Thus, returning to the integral we will have the following:∫ r2

r1

p(r)dr =
√
−2mE

∫ r2

r1

1

r

√
(r − r1)(r2 − r)dr =

√
−2mEπ

2
(
√
r2 −

√
r1)

2

=
√
−2mEπ

2
(r1 + r2 − 2r1r2) =

√
−2mEπ

2
(B − 2

√
C)

=
π

2

(
− e2

√
2m

4πε0
√
−E
− 2ℏ

√
l(l + 1)

)
=
(
n− 1

2

)
πℏ .

Isolating E we obtain the energy spectrum of the hydrogen atom in the WKB
approximation:

E = −m
2ℏ

( e2

4πε0

)2 1[
n− 1/2 + l(l + 1)

]2 = − 13.6[
n− 1/2 + l(l + 1)

]2 eV .

For high energies (n≫ l), we recover Bohr’s expression.
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5.3.3 Exercises

5.3.3.1 Ex: Energy levels of hydrogen via WKB

Use the WKB approach to calculate the energy levels of the hydrogen atom.

5.4 Time-dependent perturbations

Temporal perturbations typically occur when we suddenly switch on an external field
that influences the motion or spin of the particles, or when the field varies over time,
for example, an electromagnetic field. Let us first study a two-level system subject to
a temporal perturbation.

5.4.1 Two-level systems

We write the perturbation as

Ĥ = Ĥ(0) + Ĥ(1)(t) . (5.55)

As in the case of a stationary perturbation, we write the eigenenergies and -functions
of the unperturbed system as

Ĥ(0)|n⟩ = En|n⟩ . (5.56)

Recalling that this stationary Schrödinger equation was obtained from the time-
dependent Schrödinger equation via a separation ansatz (1.167), the temporal evolu-
tion of these eigenfunctions is given by,

|ψ(0)
n (t)⟩ = |n⟩e−ıEnt/ℏ . (5.57)

For small perturbations we can expect that the ansatz,

|ψ(1)(t)⟩ = a1(t)|ψ(0)
1 (t)⟩+ a2(t)|ψ(0)

2 (t)⟩ , (5.58)

be good. Note that not only do eigenfunctions oscillate, but the coefficients also
depend on time, because the composition of the states can change. The instantaneous
probability of finding the system in state n is |an(t)|2. Importing the above linear
combination into the Schrödinger equation,

[
Ĥ(0) + Ĥ(1)(t)

]
|ψ(1)(t)⟩ = ıℏ

∂

∂t
|ψ(1)(t)⟩ , (5.59)

we find,

a1Ĥ
(0)|ψ(0)

1 ⟩+ a2Ĥ
(0)|ψ(0)

2 ⟩+ a1Ĥ
(1)|ψ(0)

1 ⟩+ a2Ĥ
(1)|ψ(0)

2 ⟩

= ıℏ

[
∂a1
∂t
|ψ(0)

1 ⟩+
∂a2
∂t
|ψ(0)

2 ⟩+ a1
∂|ψ(0)

1 ⟩
∂t

+ a2
∂|ψ(0)

2 ⟩
∂t

]
(5.60)

=⇒ a1Ĥ
(1)|ψ(0)

1 ⟩+ a2Ĥ
(1)|ψ(0)

2 ⟩ = ıℏȧ1|ψ(0)
1 ⟩+ ıℏȧ2|ψ(0)

2 ⟩ ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_.pdf
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because the other terms satisfy the Schrödinger equation of zero order. Replacing
the stationary eigenfunctions,

a1e
−ıE1t/ℏĤ(1)|1⟩+ a2e

−ıE2t/ℏĤ(1)|2⟩ = ıℏȧ1e−ıE1t/ℏ|1⟩+ ıℏȧ2e−ıE2t/ℏ|2⟩ , (5.61)

and multiplying this equation with ⟨1|× and ⟨2|×, we find with the abbreviation
ℏω0 ≡ E2 − E1,

ıℏȧ1 = a1⟨1|Ĥ(1)|1⟩+ a2e
−ıω0t⟨1|Ĥ(1)|2⟩ (5.62)

and ıℏȧ2 = a1e
ıω0t⟨2|Ĥ(1)|1⟩+ a2⟨2|Ĥ(1)|2⟩ .

Frequently, the perturbation induces only a coupling, but does not directly influence
the energies very much, ⟨n|Ĥ(1)|n⟩ ≃ 0,

ȧ1 = a2
e−ıω0t

ıℏ
⟨1|Ĥ(1)|2⟩ and ȧ2 = a1

eıω0t

ıℏ
⟨2|Ĥ(1)|1⟩ . (5.63)

Without perturbation, ⟨m|Ĥ(1)|n⟩ = 0, no dynamics develops; the eigenfunctions
evolve independently.

5.4.2 The time-dependent perturbation method

Now, let us turn our attention to systems with many levels.
In time-dependent perturbation theory (TDPT) we separate the Hamiltonian into

a stationary part and a time-dependent part 7,8,

Ĥ(t) = Ĥ(0) + λĤ(1)(t) . (5.64)

As usual, this Hamiltonian satisfies the Schrödinger equation,

ıℏ
∂

∂t
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ . (5.65)

Now, we do a unitary transformation into the interaction picture with S(t) = e−ıĤ
(0)t/ℏ

substituting |ψ(t)⟩ ≡ S(t)|ψI(t)⟩ and Ĥ(1)(t) ≡ S(t)Ŵ (t)S−1(t) in the Schrödinger
equation. This procedure removes the stationary part, as shown in Sec. 1.6.4,

ıℏ
∂

∂t
|ψI(t)⟩ = λŴ (t)|ψI(t)⟩ . (5.66)

If Ŵ (t) is also independent of time, the solution simply is |ψI(t)⟩ = e−ıŴ t/ℏ|ψI(0)⟩.
Otherwise, we integrate the equation,

|ψI(t)⟩ = |ψI(0)⟩+
λ

ıℏ

∫ t

0

Ŵ (τ)|ψI(τ)⟩dτ . (5.67)

7See Becker-Sauter II, p.118ff and [813], p.104ff. An alternative treatment is found in [530], p.191ff
or in Blochinzew, p.332ff.

8Note that by substituting Ŵ by Ĥ(1), the equation (5.66), ıℏ∂t|ψI(t)⟩ = Ĥ(1)(t)|ψI(t)⟩, cor-

responds to a first-order perturbative approximation, i.e., the perturbation eigenvalues Ĥ(1) are
calculated with the eigenvectors of the unperturbed system. Thus, in first order TDPT we can
substitute Ŵ for Ĥ(1).
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Substituting |ψI(τ)⟩ by |ψI(t)⟩ we iterate this equation,

|ψI(t)⟩ = |ψI(0)⟩+ λ

ıℏ

∫ t

0

Ŵ (τ1)

(
|ψI(0)⟩+ λ

ıℏ

∫ τ1

0

Ŵ (τ2)|ψI(τ2)⟩dτ2
)
dτ1 (5.68)

= |ψI(0)⟩+ λ

ıℏ

∫ t

0

Ŵ (τ1)dτ1|ψI(0)⟩+
(
λ

ıℏ

)2 ∫ t

0

Ŵ (τ1)

∫ τ1

0

Ŵ (τ2)|ψI(τ2)⟩dτ2dτ1⟩

=

[∑N

n=1

(
λ

ıℏ

)n ∫ t

0

Ŵ (τ1)

∫ τ1

0

Ŵ (τ2)...

∫ τn−1

0

Ŵ (τn)dτ1dτ2...dτn

]
|ψI(0)⟩+ o(λN+1) .

This is called the Dyson series. For N = 1, we get the first order of the perturbation
series 9,

|ψI(t)⟩ =
(
1 +

λ

ıℏ

∫ t

0

Ŵ (τ)dτ

)
|ψI(0)⟩ . (5.69)

The stationary states of the unperturbed Hamiltonian are given by Ĥ(0)|f⟩ =
Ef |f⟩. Now, the perturbed states are expanded on this basis, |ψI(t)⟩ =

∑
f |f⟩af (t).

The expansion coefficients are 10,

af (t) = ⟨f |ψI(t)⟩ = ⟨f |ψI(0)⟩+
λ

ıℏ
⟨f |
∫ t

0

S−1(τ)Ĥ(1)(τ)S(τ)|ψI(0)⟩dτ . (5.70)

Now, we assume that the system be initially in the eigenstate |ψI(0)⟩ = |i⟩. The
amplitudes then are,

ai→f (t) = ⟨f |i⟩+
λ

ıℏ

∫ t

0

eıEfτ/ℏ⟨f |Ĥ(1)(τ)|i⟩e−ıEiτ/ℏdτ (5.71)

= δif +
λ

ıℏ

∫ t

0

⟨f |Ĥ(1)(τ)|i⟩eıωifτdτ .

The time-varying potential generates a perturbation causing a variation of the
system’s state. As the energy is not conserved, [∂t, Ĥ(t)] ̸= 0, the time-dependence is
not separable and the system exchanges energy with the potential. In first-order per-
turbation theory we only consider weak perturbations, i.e. the initial state is emptied
only slowly, ai→i(dt) ≃ ai→i(0) = 1. On the other hand, for an initially empty state
f the gain is obviously considerable. For i ̸= f we have,

dai→f (t) = ai→f (t+ dt)− ai→f (t) =
λ

ıℏ
⟨f |Ĥ(1)(t)|i⟩eıωif tdt . (5.72)

This formula is nothing more than a generalization of the formula (5.63) obtained
for a two-level system assuming that the initial state does not deplete considerably.
In Exc. 5.4.5.1 we calculate the dynamics of a harmonic oscillator perturbed by a
decaying force.

9For higher orders,

|ψI(t)⟩ ≈
[∑N

n=1

(
λ

ıℏ

)n (∫ t

0
Ŵ (τ)dτ

)n]
|ψI(0)⟩ = T

[
exp

(
λ

ıℏ

∫ t

0
Ŵ (τ)dτ

)]
|ψI(0)⟩ .

10We could define the coefficients in Schrödinger’s picture, af ≡ ⟨f |ψ⟩, but this would only intro-

duce a phase factor, ai→f → ai→f e
ı(Ef−Ei)t/ℏ, which is unimportant for absolute values |ai→f |2.

This corresponds to a transformation to a rotating system, which will be discussed in Sec. 16.3.2.
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5.4.3 Specific perturbations

5.4.3.1 Sudden switch-on of a constant perturbation

To begin with, we consider a constant perturbation Ĥ(1) suddenly switched on at
t = 0. In Schrödinger’s picture we can rewrite Eq. (5.71),

ai→f (t) = δif +
λ

ıℏ
⟨f |Ĥ(1)|i⟩

∫ t

0

eıωifτdτ = δif +
λ

ıℏ
⟨f |Ĥ(1)|i⟩−1 + eıωif t

ıωif
. (5.73)

We obtain for i ̸= f ,

|ai→f (t)|2 =
λ2

ℏ2
|⟨f |Ĥ(1)|i⟩|2 sin

2(ωif t/2)

(ωfi/2)2
. (5.74)

For long times we calculate the rate 11,

d

dt
|ai→f (t)|2 =

λ2

ℏ2
|⟨f |Ĥ(1)|i⟩|2 sinωfit

ωfi/2

t→∞−→ 2πλ2

ℏ2
|⟨f |Ĥ(1)|i⟩|2δ(ωf−ωi) , (5.75)

where we use the representation of the Dirac function,

δ(x) = lim
t→∞

1
2π

∫ t

−t
eıkxdk = lim

t→∞
t
π sinc xt . (5.76)

The δ-function in (5.75) ensures that, for infinitely sharp steps, transitions are im-
possible, unless the energy of the final state is the same as the one of the initial state.
This points to the fact that infinitely sharp steps are not a realistic physical concept.

In practice, the changes applied to a system are often slow and the observation
times are long, because the frequencies of the transitions are high ωfi/2π ≃ THz.
Let us assume that the perturbation be switched on within a time constant γ−1. In
Exc. 5.4.5.2 we will study how the rapidity of a perturbation influences the transition
rate. We will see via a temporal analysis of |ai→f (t)|2, that for slow variations,
γ ≪ ωfi, the system adiabatically approaches the final situation. For γ ≃ ωfi, the
system receives a shock and exhibits oscillating transients. For γ > ωfi, we observe
violent oscillations with largest amplitudes.

5.4.3.2 Periodic perturbations

We now consider the case of an oscillatory perturbation, for example an electromag-
netic field. In principle, knowledge of the system’s response to periodic perturbations
allows us to treat arbitrary perturbations, since we can expand them in Fourier series.
We first treat transitions between discrete levels, before considering states embedded
in continua,

Ĥ(1)(t) =

{
0 for t < 0

2ℏΩ̂0 cosωt for t ≥ 0
. (5.77)

11We use the trigonometric rule sinx = 2 sin x
2
cos x

2
.
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With the abbreviation Ωfi ≡ ⟨f |Ω̂0|i⟩ the transition rate is,

ai→f (t) = −ıΩfi
∫ t

0

2eıωfiτ cosωτdτ (5.78)

= −ıΩfi
[
eı(ωfi+ω)t−1
ı(ωfi+ω)

0

+
eı(ωfi−ω)t − 1

ı(ωfi − ω)

]
.

The first term being small, we neglect it doing a so-called rotating wave approximation
(RWA). We obtain,

|ai→f (t)|2 = |Ωfi|2
sin2 1

2 (ωfi − ω)t
1
4 (ωfi − ω)2

. (5.79)

This result coincides with the formula (5.74), except that the energy difference be-
tween the states ωfi is shifted by the frequency of the perturbation ω. The quantity
∆fi ≡ ω − ωfi is called a detuning. The transition probability is maximal, when we
are at resonance, that is ∆fi = 0. In this case,

|ai→f (t)|2 −→ |Ωfi|2t2 . (5.80)

This can be seen by expanding the numerator in a Taylor series for small (ωfi − ω)t.
Note, that the probability exceeds 1 for long times, which can not be. In fact, the

restriction to the first order in the Taylor expansion used in the derivation of the last
equation is no longer valid for long times, when (ωfi − ω)t > 1, and we need to take
into account higher orders.

Example 48 (The Rabi formula): Let us now come back to the two-level
system studied in Sec. 5.4.1 and consider a periodic perturbation oscillating at
frequency ω = ω0+∆, where ∆ is called the detuning from the resonance whose
frequency is ω0,

H(1) = −eE⃗(r, t) · r = −eE0ε̂ cos(kz − ωt) · r . (5.81)

Then,

⟨2|H(1)|1⟩ = −eE0 cos(kz − ωt)⟨2|r|1⟩ = ℏΩcos(kz − ωt) , (5.82)

where we call

Ω ≡ −eE0⟨2|r|1⟩
ℏ

(5.83)

the Rabi frequency. With this abbreviation the Eqs. (5.63) become,

ȧ1 = −ıΩa2e−ıω0t cos(kz−ωt) and ȧ2 = −ıΩ∗a1e
ıω0t cos(kz−ωt) . (5.84)

Neglecting fast-rotating terms doing the so-called rotating wave approximation
(RWA) and choosing the position of the atom to be z = 0 we derive,

ȧ1 ≃ − ıΩ
2
a2e

ı∆t and ȧ2 ≃ − ıΩ
∗

2
a1e

−ı∆t , (5.85)

which coincides with the formulas derived in Sec. 5.4.1. With the equations of
motion we can, starting from initial values for a1(0) and a2(0), calculate the
temporal evolution.
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We solve this system of differential equations by differentiating one and substi-
tuting the other,

ä2 = −ıȧ1Ω
2

∗
e−ı∆t − a1∆Ω∗

2
e−ı∆t = −|Ω|

2

4
a2 − ı∆ȧ2 . (5.86)

We find solutions via the ansatz a2 = e−ı∆t/2(AeıGt/2+Be−ıGt/2). The equation
for a2 yields,

( ı
2
G− ı

2
∆)2Aeı(G−∆)t/2 + (− ı

2
G− ı

2
∆)2Beı(−G−∆)t/2 (5.87)

= − |Ω|2
4

(Aeı(G−∆)t/2 +Beı(−G−∆)t/2

− ı∆
[
( ı
2
G− ı

2
∆)Aeı(G−∆)t/2 + (− ı

2
G− ı

2
∆)Beı(−G−∆)t/2

]
.

Separating the parts in A and in B we obtain two equations with the same
result,

G2 = |Ω|2 +∆2 . (5.88)

G is called the generalized Rabi frequency. Using the initial conditions, a1(0) = 1
and a2(0) = 0, we can fix one of the coefficients A and B, since a2(0) = A+B =
0,

a2 = 2ıAe−ı∆t/2 sin G
2
t . (5.89)

We now import this solution into the differential equation for a1,

ȧ1 = −ıΩ
2
a2e

ı∆t = ΩAeı∆t/2 sin G
2
t . (5.90)

The integral is,

a1(t) =

∫ t

0

ΩAeı∆t
′/2 sin G

2
t′dt′ = −2A

Ω∗ e
ı∆t/2 (G cos G

2
t− ı∆sin G

2
t
)
. (5.91)

Using the normalization condition,

1 = |a1|2 + |a2|2 =

∣∣∣∣−2A

Ω∗ e
ı∆t/2 (G cosGt− ı∆sin G

2
t
)∣∣∣∣2 + ∣∣∣2ıAe−ı∆t/2 sinGt∣∣∣2

=
4A2

|Ω|2
(
G2 cos2 G

2
t+∆2 sin2 G

2
t
)
+ 4A2 sin2 G

2
t = 4A2 G

2

|Ω|2 . (5.92)

Hence, A = |Ω|/2G. In general, we can choose Ω real, and the final solution is,

a1(t) = −eı∆t/2
(
cos G

2
t+ −ı∆

G
sin G

2
t
)

and a2(t) =
ıΩ
G
e−ı∆t/2 sin G

2
t .

(5.93)

This results has already been obtained in Exc. 1.6.7.1 using an exact (i.e. not per-

turbative) calculus. When the energies En are degenerate, under the influence of

the perturbation, the populations of the system oscillate with the Rabi frequency

Ω. When the energies are different, the oscillation frequency G is higher, but

the amplitude decreases as well. The initially empty state never reaches unitary

population. In Exc. 5.4.5.3 we calculate the time required to allow the pertur-

bation to invert the population of a two-level system, in Exc. 5.4.5.4 we study

the maximum achievable inversion as a function of detuning, and in Exc. 5.4.5.5

we analyze the dynamics of a system subject to sequences of pulses.

In Exc. 5.4.5.6 we show a derivation using the Laplace transformation method.
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Ωt (π)
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|a 2
(t
)|2

Figure 5.4: (code) Probability |a2(t)|2 for the atom to be in the excited state for Ω = Γ and

∆ = 0 (blue), ∆ = Γ (green), and ∆ = 2.5Γ (red). Time is in units of 1/Γ.

5.4.3.3 Transitions to continuous levels

When there are several final states, f ∈ F , the formula (5.79) must be generalized.
The total transition probability,

Pi→F (t) =
∑

f∈F
|ai→f (t)|2 , (5.94)

corresponds to the probability of the initial state |i⟩ to be depleted. When the final
state lies within a continuum, the sum in (5.94) must be replaced by an integral.
With the density of states written in the form ρ(E), where ρ(E)dE is the number of
states found in the energy range between E and E + dE, the transition probability
is 12,

Pi→F (t) =

∫ Emax

Emin

|ai→f (t)|2ρ(Ef )dEf , (5.95)

where E ∈ [Emin, Emax] is the regime of energies within reach of the periodic pertur-
bation. Now, plugging in the expression (5.79),

Pi→F (t) =

∫ Emax

Emin

|Ωfi|2
sin2 1

2ℏ (Efi − E)t
1

4ℏ2 (Efi − E)2
ρ(Ef )dEf . (5.96)

Again using the representation (5.76) of the Dirac function with the substitution
x ≡ (Efi − E)/2ℏ, we obtain after sufficiently long times 13,

Pi→F (t) =

∫ Emax

Emin

|Ωfi|2t2
π

t
δ(
Efi−E

2ℏ )ρ(Ef )dEf = 2πℏt|Ωfi|2ρ(Ei + E) . (5.97)

The transition rate is,

dPi→F (t)

dt
= 2πℏ|Ωfi|2ρ(Ei + E) . (5.98)

12With ρ(E) ≡ ∑
f∈F δ(Ef − E) the integral is converted back into a sum.

13Remember δ(ax) = 1
a
δ(x).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_RabiOscillations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_RabiOscillations.m
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For a narrow distribution of final energies E centered around Ef we may substitute
the density of states by a δ-distribution, ρ(E) = δ(E − Ef ), so that,

dPi→F

dt
=

2π

ℏ
|⟨f |Ĥ(1)|i⟩|2δ(Efi − E) , (5.99)

where we went back to the definition of the perturbation Hamiltonian (5.77). This
expression is called Fermi’s Golden rule. In Exc. 5.4.5.7 we will calculate the photo-
electric effect.

5.4.3.4 Continuous frequency distribution

To derive Eq. (5.79), we considered perturbations with fixed oscillation frequencies. To
handle frequency distributions ϱ(ω), we must generalize this equation by calculating
the integral,

|ai→f (t)|2 = |Ωfi|2
∫
ϱ(ω)

sin2 1
2 (ωfi − ω)t

1
4 (ωfi − ω)2

dω (5.100)

≃ |Ωfi|2tϱ(ωfi)
∫ ∞

−∞
sinc2xdx = 2πt|Ωfi|2ϱ(ωfi − ω) ,

again using the representation (5.76) of the Dirac function. The approximation
ϱ(ω) = ϱ(ωfi) can be used if the width of the sinc function is much narrower than
the frequency distribution, which is the case for sufficiently long times, t≫ π/2∆fi.

5.4.4 Transition rates for higher-order perturbations

The evolution from an initial state |i⟩ that the system occupies at time t0 to some
final state |ψ⟩, which may be a superposition, occupied at time t, is ruled by the
solution of the Schrödinger equation,

|ψ⟩ = e−ıĤ(t−t0)/ℏ|i⟩ . (5.101)

The probability to encounter |ψ⟩ in a given state |f⟩ is |⟨f |ψ⟩|2, and the transition
rate is simply the derivative of this. The transition rate out of the initial state into
any other final state is, consequently

1

τ
=
∑

f

d

dt
|⟨f |e−ıĤ(t−t0)/ℏ|i⟩|2 . (5.102)

From this formula we can already see, that at short times, when we can expand the
exponential to first order, we will recover the results of (5.72).

Let us now consider a time-independent perturbation in the Schrödinger picture,

Ĥ(t) = Ĥ(0) + Ĥ(1) , (5.103)

where the time dependence is entirely left to the wavefunction. Now, we expand the

propagator e−ıĤ(t−t0) in a perturbative series 14. Unfortunately, generally [Ĥ(0), Ĥ(1)] ̸=
14We drop the ℏ = 1 for the following calculation to simplify the notation.
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0, so that we cannot simply assume e−ıĤt ̸= e−ıĤ
(0)te−ıĤ

(1)t. But we can calculate,

ı
d

dt
eıĤ

(0)te−ıĤt = −Ĥ(0)eıĤ
(0)te−ıĤt + eıĤ

(0)tĤe−ıĤt = eıĤ
(0)tĤ(1)e−ıĤt . (5.104)

Integrating both sides and resolving for e−ıĤt,

e−ıĤt = e−ıĤ
(0)t

{
eıĤ

(0)t0e−ıĤt0 − ı
∫ t

t0

eıĤ
(0)t1Ĥ(1)e−ıĤt1dt1

}
. (5.105)

We want to analyze a steady-state situation, that is, we assume that the interaction
as gradually built up in an infinitely remote past. Hence, we can set Ĥ = Ĥ(0) for
t0 → −∞,

e−ıĤt = e−ıĤ
(0)t

{
1− ı

∫ t

−∞
eıĤ

(0)t1Ĥ(1)eεt1e−ıĤt1dt1

}
, (5.106)

where the term eεt1 , with ε → 0, is inserted to guarantee a smooth switch-on. We
iterate,

e−ıĤt = e−ıĤ
(0)t

{
1− ı

∫ t

−∞
eıĤ

(0)t1Ĥ(1)eεt1×

× e−ıĤ
(0)t

[
1− ı

∫ t1

−∞
eıĤ

(0)t2Ĥ(1)eεt2e−ıĤt2dt2

]
dt1

} . (5.107)

We calculate the matrix elements up to second order substituting Ĥ with Ĥ(0) in the
last integral,

⟨f |e−ıĤt|i⟩ (5.108)

≃ ⟨f |e−ıĤ(0)t

{
1− ı

∫ t

−∞
eıĤ

(0)t1Ĥ(1)eεt1e−ıĤ
(0)t1

[
1− ı

∫ t1

−∞
eıĤ

(0)t2Ĥ(1)eεt2e−ıĤ
(0)t2dt2

]
dt1

}
|i⟩

= e−ıωfit⟨f |i⟩ − ıe−ıωf t

∫ t

−∞
eıωf t1⟨f |Ĥ(1)|i⟩eεt1e−ıωit1dt1

− e−ıωf t1

∫ t

−∞
eıωf t1⟨f |Ĥ(1)eεt1e−ıωit1

∑
m

|m⟩⟨m|
∫ t1

−∞
eıĤ

(0)t2Ĥ(1)|i⟩eεt2e−ıωit2dt2dt1 .

where we separated the perturbation orders and inserted
∑
m |m⟩⟨m| = I using the
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closure relation. Using the time-independence of Ĥ(1),

⟨f |e−ıĤt|i⟩ ≃ e−ıωfitδfi − ıe−ıωf t⟨f |Ĥ(1)|i⟩
∫ t

−∞
e(ıωf−ıωi+ε)t1dt1 (5.109)

− e−ıωf t
∑
m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
∫ t

−∞
e(ıωf−ıωi+ε)t1

∫ t1

−∞
e(ıωm−ıωi+ε)t2dt2dt1

= e−ıωfitδfi − ıe−ıωf t⟨f |Ĥ(1)|i⟩ e
(ıωf−ıωi+ε)t

ı(ωf − ωi) + ε

− e−ıωf t
∑
m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
∫ t

−∞
e(ıωf−ıωm+ε)t1 e

(ıωm−ıωi+ε)t1

ı(ωm − ωi) + ε
dt1

= e−ıωfitδfi − ı⟨f |Ĥ(1)|i⟩ e(−ıωi+ε)t

ı(ωf − ωi) + ε

− e−ıωf t
∑
m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
ı(ωm − ωi) + ε

∫ t

−∞
e(ıωf−ıωi+2ε)t1dt1

= e−ıωfitδfi − ı⟨f |Ĥ(1)|i⟩ e(−ıωi+ε)t

ı(ωf − ωi) + ε
−
∑
m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
ı(ωm − ωi) + ε

e(−ıωi+2ε)t

ı(ωf − ωi) + 2ε
.

These three terms represent the zeroth, first, and second perturbation orders of the
propagation operator (5.101). They are also called Feynman propagators. Now, we
can calculate the transition rate up to second order,

1

τ
=

d

dt

∑

f

∣∣∣⟨f |e−ıĤt|i⟩
∣∣∣
2

(5.110)

= lim
ε→0

∑

f

∣∣∣∣∣⟨f |Ĥ
(1)|i⟩ −

∑

m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
−ıı(ωm − ωi)− ıε

∣∣∣∣∣

2
d

dt

∣∣∣∣
e(−ıωi+ε)t

ı(ωf − ωi) + ε

∣∣∣∣
2

=
∑

f

∣∣∣∣∣⟨f |Ĥ
(1)|i⟩ −

∑

m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
(ωm − ωi)

∣∣∣∣∣

2

lim
ε→0

2εe2εt

(ωf − ωi)2 + ε2
.

The last fraction is a representation of the δ-function. Reintroducing ℏ, we finally
obtain,

1

τ
=

2π

ℏ2
∑

f

∣∣∣∣∣⟨f |Ĥ
(1)|i⟩+ 1

ℏ
∑

m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
ωi − ωm

∣∣∣∣∣

2

δ(ωf − ωi) . (5.111)

The first term is Fermi’s Golden rule, the second order corresponds to the Kramers-
Heisenberg formula, which serves to describe Thomson, Rayleigh and Raman scat-
tering. The generalization of this transition rate to all perturbation orders can be
written,

1

τ
=

2π

ℏ2
∑

f

∣∣∣∣∣⟨f |
(
Ĥ(1) +

1

ℏ
∑

m

Ĥ(1)|m⟩⟨m|Ĥ(1)

ωi − ωm
+ ... (5.112)

+
1

ℏn−1

∑

m1,...,mn−1

Ĥ(1)|m1⟩⟨m1|...|mn−1⟩⟨mn−1|Ĥ(1)

(ωi − ωm1
)...(ωi − ωmn−1

)


 |i⟩

∣∣∣∣∣∣

2

δ(ωfi) .



234 CHAPTER 5. APPROXIMATION METHODS

Figure 5.5: Graphical illustration of the various transitions orders. From left to right:
absorption, Raman transition via an intermediate virtual state |m1⟩, three-photon process
via two intermediate virtual states |m1⟩ and |m2⟩.

5.4.5 Exercises

5.4.5.1 Ex: Perturbed harmonic oscillator

Consider a one-dimensional harmonic oscillator (HO) initially prepared (t = −∞)
in the ground state |0⟩ of the unperturbed Hamiltonian H(0) = ℏωâ†â, such that
H(0)|n⟩ = En|n⟩ with En = nℏω.
a. Through the expression, af (t) ≈ 1

ıℏ
∫ tf
ti
Wfie

iωfitdt, and the perturbative Hamil-

tonian W (t) = −eExe−t2/τ2

(x is the position operator of the HO), applied between
t = −∞ and t = +∞, calculate the probability of the system to be in the excited
state |n⟩, specifying n, at t = +∞. Analyze the result.

b. Do the same for a shape-changing perturbation, W (t) = Λx2e−t
2/τ2

.

5.4.5.2 Ex: Impact of the rapidity of a perturbation

Here we consider a slow variation,

Ŵ (t) =

{
0 for t < 0

W0(1− e−γt) for t ≥ 0
,

with γ ≪ ωfi.
a. Calculate the transition rate for long times, t≫ γ−1.
b. Analyze the transition rate at a given time as a function of γ.

5.4.5.3 Ex: Rabi oscillation

The population of a degenerate two-level system be initially in state |1⟩. What should
be the duration of a perturbation to transfer the population to state |2⟩?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_OsciladorPerturbado.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_TransicaoLenta.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_Lecture1Rabi.pdf
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5.4.5.4 Ex: Rabi method

Free atoms be illuminated by light pulses characterized by the Rabi frequency Ω,

whose pulse area is (i)
t∫
0

Ω dt = π and (ii) = 2π. For which frequency tuning ∆ =

ω − ω0 the excited state population is maximum? Draw the spectral profile of the
population in the range −5 < ∆/Ω < 5.

5.4.5.5 Ex: Ramsey fringes

a. Consider a two-level atom illuminated by a π
2 -pulse of nearly resonant light, G ≃ Ω,

and calculate the ground and excited state amplitudes.
b. How do the amplitudes evolve after the pulse if the detuning ∆ is small but non-
zero?
c. Derive the solution for |a2(t)|2 of the equations (5.63) for the resonant case (∆ = 0)

assuming the following initial conditions, a2(0) =
eıϕ√
2
and a2(t =

π
2Ω ) = 0 if ϕ = 0.

d. Discuss the case of two consecutive π
2 -pulses separated by a time interval T .

5.4.5.6 Ex: Two-level atom via Laplace transformation

Solve the problem of a two-level atom interacting with a laser using the Laplace
transformation method.

5.4.5.7 Ex: Photoelectric effect

A hydrogen atom ground state in the ground state 1s is placed in an electric field
E(t) = E⃗0 cosωt, such thatW (t) = −er·E⃗(t) =W0e

−ıωt+W †
0 e
ıωt withW0 = er·E⃗0/2.

Find, via Fermi’s Golden rule,

R =
2π

ℏ
|⟨f |W (t)|i⟩|2ρ(Ef − Ei ∓ ℏω) ,

using the density of states ρ(Ek)dEk = V/(2π)3k2dkdΩ, the probability per unit
of time for the atom to be ionized, by exciting from the ground state ψ100(r) =
e−r/aB/(πa3B)

1/2 to the state described by the plane wave ψk(r) = e−ık·r/V 1/2. Sim-

plify the calculation by assuming E⃗0 = E0êz and k = kêz.

5.4.5.8 Ex: Kicked harmonic oscillator in second order perturbation

Consider a one-dimensional harmonic oscillator initially in its ground state kicked via
the Ĥ(1)(t) = eıkx̂Θ(t), as discussed in Sec. 2.6.2. Calculate the transition rate (5.102)
to the final state |f⟩ = |0⟩ in first and second order perturbation theory.

5.4.5.9 Ex: Dynamic Stark shift induced by blackbody radiation

Calculate the dynamic Stark shift induced by blackbody radiation at T = 300K on
the 1mHz large strontium intercombination line at 698 nm.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_Lecture1Rabimethod.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_Lecture1Ramsey.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_DoisniveisLaplace.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_EfeitoFotoeletrico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_SecondorderPerturbations01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_DynamicStark01.pdf
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5.5 Further reading

C. Cohen-Tannoudji, B. Diu, F. Laloe, Wiley Interscience, Quantum mechanics,
vol. 1,2 [ISBN]

http://isbnsearch.org/isbn/978-0-471-56952-7


Chapter 6

Appendices to ’Quantum
Mechanics’

This chapter compiles some fundamental functions and polynomials, which are rele-
vant in quantum theory.

6.1 Quantities and formulas in quantum mechanics

6.1.1 Notations and conventions

quantity notation examples

scalars italic letters T

vectors bold letters F

electromagnetic fields calligraphic letters E⃗
Green function calligraphic G
quantum observables hat p̂

(many-body) Hamiltonian Ĥ

single-particle Hamiltonian gothic H

Liouvillean gothic L

unitary transform calligraphic U
displacement calligraphic D
Laplace & Fourier transform calligraphic L & F
number spaces N,Z,R
Hilbert space H

237
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6.1.2 Atomic units

A commonly used system of units in atomic physics is the one of atomic units. This
system is based on the system of Gaussian units (CGS) defined by setting,

ecgs ≡
e√
4πε0

and ℏ ≡ 1 , (6.1)

using α = e2/4πε0ℏc and aB = 4πε0ℏ2/mee
2 and giving the energy in terms of

e2cgs/aB = 1/α2mec
2 ≈ 4.36 · 10−18 J, the wavevector in terms of 1/aB, the distance

in terms of aB and the mass in terms of me we find,

Ẽ = E/(e2cgs/aB)

k̃ = kaB

R̃ = R/aB

µ̃ = µ/me

. (6.2)

This notation simplifies formulas in atomic physics. For example,

k =
√

2µ
ℏ2 (E − V ) becomes k̃ =

√
2µ̃(Ẽ − Ṽ ) (6.3)

and the van der Waals potential

V =
Cn
Rn

becomes Ṽ =
C̃n

R̃n
with C̃n ≡

Cn

e2cgsa
n−1
B

. (6.4)

Note that energies are sometimes given in wavenumbers,

Vwn ≡ V/(100hc) . (6.5)

6.2 Clebsch-Gordan and Wigner symbols

6.2.1 Clebsch-Gordan symbols

Clebsch-Gordan coefficients are used to describe spin coupling 1,

⟨j1,m1; j2,m2|(j1j2)j,m⟩ =
(
j1 j2
m1 m2

∣∣∣∣∣ jm
)

= (−1)j1−j2+m
√

∆(j1j2j)× (6.6)

×
√

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!∑
t

(−1)t
t!(−j2 +m1 + j + t)!(−j1 −m2 + j + t)!(j1 + j2 − j − t)!(j1 −m1 − t)!(j2 +m2 − t)!

.

1See [35], p.111 or [813], p.119.
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6.2.2 {3j}-symbols

The Clebsch-Gordans are related to Wigner’s {3j}-symbols,

(
j1 j2
m1 m2

∣∣∣∣
j

m

)
= (−1)−j1+j2−m

√
2j + 1

(
j1 j2 j

m1 m2 −m

)
, (6.7)

with the abbreviation,

∆(j1j2j3) ≡
(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!
. (6.8)

Particular {3j}-symbols are,

(
j1 j2 j

0 0 0

)
=

(−1)(j1+j2+j)/2
j1/2 + j2/2 + j/2 + 1

√
∆(j1j2j)

∆( j12
j2
2
j
2 )

, (6.9)

and (
0 j j

0 0 0

)
=

(−1)j√
2j + 1

. (6.10)

6.2.3 {6j}-symbols

{6j}-symbols describe the recoupling of two spins. They can be evaluated by,

{
j1 j2 j3
J1 J2 J3

}
=
√
∆(j1j2j3)∆(j1J2J3)∆(J1j2J3)∆(J1J2j3)

∑

t

(−)t(t+ 1)!

f(t)
,

(6.11)
where,

f(t) = (t− j1 − j2 − j3)!(t− j1 − J2 − J3)!(t− J1 − j2 − J3)!(t− J1 − J2 − j3)! (6.12)

(j1 + j2 + J1 + J2 − t)!(j2 + j3 + J2 + J3 − t)!(j3 + j1 + J3 + J1 − t)! .

6.2.4 {9j}-symbols

{3j}-symbols describe the recoupling of three spins. They can be evaluated by,





j1 j2 J12
j3 j4 J34
J13 J24 J



 =

∑

g

(−)2g(2g+1)

{
j1 j2 J12
J34 J g

}{
j3 j4 J34
j2 g J24

}{
J13 J24 J

g j1 j3

}
.

(6.13)
{9j}-symbols satisfy the following orthogonality relation,

∑

J12,J34

Ĵ12Ĵ34Ĥ13Ĥ24





j1 j2 J12
j3 j4 J34
H13 H24 J









j1 j2 J12
j3 j4 J34
J13 J24 J



 = δJ13H13δJ24H24 .

(6.14)
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6.3 Functions and polynomials

6.3.1 The Gauss function

Indefinite integrals:

∫ ∞

−∞
e−ax

2

dx =
√
π/a and

∫ ∞

0

xne−ax
2

dx =
Γ(n+1

2 )

2a
n+1
2

. (6.15)

Higher momenta:

∫ x1

x0

e−ax
2

dx = xe−ax
2
∣∣∣
x1

x0

+ 2a

∫ x1

x0

x2e−ax
2

dx . (6.16)

6.3.2 Bessel functions

The integral definition of the Bessel function, the von Neumann function, and the
Hankel function of the first and second kind are:

Jk(x) =
1

π

∫ π

0

cos(kτ − x sin τ)dτ =
1

2π

∫ π

−π
eı(x sin τ−kτ)dτ (6.17)

Nk(x) = ...

H
(1,2)
k = Jk ± ıNk .

The derivative,

2
dJk(x)

dx
= Jk−1(x)− Jk+1(x) . (6.18)

Sum rules (empirically found),

∞∑

k=−∞
Jk(x) =

∞∑

k=−∞
Jk(x)

2 = 1 ̸=
∞∑

k=−∞
|Jk(x)|2 . (6.19)

The spherical Bessel function, the spherical von Neumann function, and the spher-
ical Hankel function of the first and second kind are defined by:

jk(x) =

√
π

2x
Jk+1/2(x) (6.20)

nk(x) =

√
π

2x
Nk+1/2(x) = (−1)k+1

√
π

2x
J−k−1/2(x)

h
(1,2)
k = jk ± ınk .

The series,

jk(x) = (−x)k
(
1

x

d

dx

)k
sinx

x
, nk(x) = −(−x)k

(
1

x

d

dx

)k
cosx

x
. (6.21)

The derivative,

j′k(x) =
k

x
jk(x)− jk+1(x) . (6.22)
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6.3.3 Hermite polynomials

The definition of the Hermite polynomials:

Hn(x) =

(
2x− d

dx

)n
· 1 = (−1)nex2 dn

dxn
e−x

2

=
2n√
π

∫ ∞

−∞
(x+ ıt)ne−t

2

dt (6.23)

Hen(x) ≡ 2−n/2Hn(x) .

Orthogonality and normalization:
∫ ∞

−∞
e−x

2

Hm(x)Hn(x)dx =
√
π2nn!δmn . (6.24)

Recursion:

d

dx
Hn(x) = 2Hn−1(x) (6.25)

d

dx
e−x

2

Hn(x) = e−x
2

Hn+1(x)

Hn+1(x) = 2xHn(x)− 2nHn−1(x) .

Particular values:

H2n+1(0) = 0 (6.26)

H2n+1(0) = (−1)n2n(2n− 1)!!

Series:

H2n(x) =

∞∑

k=0

(2n)!

(2k)!

(−1)n−k
(n− k)! (2x)

2k (6.27)

H2n−1(x) =

∞∑

k=0

(2n+ 1)!

(2k + 1)!

(−1)n−k
(n− k)! (2x)

2k+1

Hn(x) = n!

int(n/2)∑

k=0

1

k!

(−1)k
(n− 2k)!

(2x)n−2k .

6.3.4 Laguerre polynomials

The definition of the Laguerre polynomials is:

L(m)
n (x) ≡ exx−m

m!

dn

dxn
(e−xxn+m) (6.28)

Ln ≡ L(0)
n (x) .

Series:

L(m)
n (x) =

n∑

k=0

(
n+m

n− k

)
(−x)k
k!

. (6.29)

Recursion:
d

dx
L(m)
n (x) = −L(m+1)

n−1 (x) . (6.30)
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Related functions:

umn(ε) ≡ e−ε
2 · (ıε)n−m ·

√
m!
n! · Ln−mm (ε2) (6.31)

umn(0) ≈ (ıε)n−m ·
√

n!
m!(n−m)!2

un+1,n(0) ≈ ıε ·
√
n+ 1 .

Fourier transforms:
∫ ∞

−∞
e−ax

2

x2k cosxp · dx = (−1)k
√
π

2k
√
a2k+1

· ep2/4a ·He2k(p/
√
2a) (6.32)

∫ ∞

−∞
e−x

2/2x2mL2m
n (x2) cosxp · dx = (−1)m

√
π√

2n!
· e−p2/2 ·Hen(p)Hen+2m(p)

∫ ∞

−∞
e−x

2/2x2m+1L2m+1
n (x2) sinxp · dx = (−1)m

√
π√

2n!
· e−p2/2 ·Hen(p)Hen+2m+1(p)

∫ ∞

−∞
e−ax−bpf(|x− p|) · dxdp = 1

a+b

[∫ ∞

−∞
e−axf(x)dx+

∫ ∞

−∞
e−bpf(p)dp

]
.

6.3.5 Legendre polynomials

The definition of Legendre polynomials is:

Pn(x) ≡
1

2nn!

dn

dxn
(x2 − 1)n (6.33)

P (−m)
n (x) ≡ (1− x2)m/2 d

m

dxm
Pl(x) .

Series:

P (m)
n (x) =

(−1)m(n+m)!

2mm!(n−m)!
(1−x2)m/2

[
1− (n−m)!(m+n+1)!

1!(m+1)!
1−x
2 +

+ (n−m)!(n−m+1)!(m+n+1)!(m+n+2)!
2!(m+1)!(m+2)!

(
1−x
2

)2 − ...

]
.

(6.34)

6.3.6 Spherical harmonics

The definition of spherical harmonics is [862]:

Yℓm(ϑ, φ) ≡
√

2ℓ+ 1

4π

√
(ℓ− |m|)!
(ℓ+ |m|)!P

|m|
ℓ (cos(ϑ)eimφ . (6.35)

The lowest spherical harmonics are:

Y
(0)
0 = 1

2

√
1
π Y

(1)
0 = 1

2

√
3
π cos θ

Y
(1)
±1 = ∓ 1

2

√
3
2π sin θe±iϕ Y

(2)
0 = 1

4

√
5
π (3 cos

2 θ − 1)

Y
(2)
±1 = ∓ 1

2

√
15
2π sin θ cos θe±iϕ Y

(2)
±2 = 1

4

√
15
2π sin2 θe±2iϕ

(6.36)
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6.3.7 Vector spherical harmonics

The definition of vector spherical harmonics is [862]:

Yjℓm(r) ≡ (−1)1−ℓ−m
√
2j + 1

∑

q

(
ℓ 1 j

m− q q −m

)
Yℓ m−q(ϑ, φ)êq . (6.37)

6.3.7.1 The Gamma function

The definition of the Gamma function is:

Γ(x+ 1) = xΓ(x) , Γ(1/2) =
√
π . (6.38)

6.4 Rules of tensor algebra

Here are some rules for calculating with tensor products. Be Â, B̂, ... operators, u,
v, ... state vectors, and α, β, ... scalars [15],

(i) (Â⊗ B̂)† = Â† ⊗ B̂† (6.39)

(ii) (Â1 + Â2)⊗ B̂ = Â1 ⊗ B̂ + Â2 ⊗ B̂
(iii) (Â1 ⊗ B̂1)(Â2 ⊗ B̂2) = (Â1Â2)⊗ (B̂1B̂2)

(iv) [Â1 ⊗ B̂1, Â2 ⊗ B̂2] =
1
2

(
[Â1, Â2]⊗ {B̂1, B̂2}+ {Â1, Â2} ⊗ [B̂1, B̂2]

)

(v) {Â1 ⊗ B̂1, Â2 ⊗ B̂2} = 1
2

(
{Â1, Â2} ⊗ [B̂1, B̂2] + [Â1, Â2]⊗ {B̂1, B̂2}

)

(vi) Tr (Â⊗ B̂) = Tr ÂTr B̂

(vii) (Â⊗ B̂)(u⊗ v) = Âu⊗ B̂v

(viii) (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v

(ix) u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2

(x) u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2

(xi) αu⊗ βv = αβ(u⊗ v)

(xii)

(
Â1 Â2

Â3 Â4

)
⊗ B̂ =

(
Â1 ⊗ B̂ Â2 ⊗ B̂
Â3 ⊗ B̂ Â4 ⊗ B̂

)

(xiii)

(
a1 a2
a3 a4

)
⊗ B̂ =

(
a1B̂ a2B̂

a3B̂ a4B̂

)

(xiv) (Â⊗ B̂)†(Â⊗ B̂) = I ⇔ Â†Â = caI and B̂†B̂ = cbI .

6.5 Further reading

I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products [ISBN]

http://isbnsearch.org/isbn/978-0-123-73637-6
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Preface

All thermodynamic quantities studied in phenomenological thermodynamics (ex-
tensive or intensive) are quasi-continuous, i.e. macroscopic. The laws of thermody-
namics found to rule the behavior of large systems were discovered empirically via
experimental observations. The nature of the laws is thus phenomenological, i.e. not
derived from first principles. Until now we totally neglected the fact that matter
(gases, fluid, or solids) is composed of microscopic elementary particles (atoms or
molecules). Instead, the properties of matter have been resumed in material parame-
ters, such as heat capacity and compressibility. Nevertheless, it already became clear
that the behavior of a system is somehow related to the properties of the particles
that compose it. E.g. the degrees of freedom of a molecule that can be excited have
an influence on the heat capacity of a gas composed of these molecules; the Joule-
Thomson effect is due to intermolecular forces; and what we experience as heat, is
actually an outward manifestation of molecular and atomic motion. Tracing back
macroscopic properties and phenomena to microscopic models bears a formidable po-
tential of deepening our level of understanding thermodynamic systems. It may even
provide insight into the physical meaning of mysterious or elusive phenomenological
concepts such as entropy production. Last not least, it may allow for a derivation of
material parameters from first principles.

An atomistic description acknowledges the fact that matter is quantized into small
portions called molecules 2. Each molecule is understood as a (not necessarily rigid)
body characterized by its center-of-mass coordinates, but also its rotations or internal
vibrations. With typically 1023 atoms in just one liter of air the task of describing
the microstate by all its coordinates is hopeless. The mathematical discipline that
provides the tools capable of handling such big numbers is statistics, and the primary
tool supplied for the purpose is the concept of the distribution function. The idea is
to lump atoms having similar properties together to classes, e.g. energy levels. The
distribution function then simply reports the number of particles in each class, which
dramatically reduces the amount of information. The task of statistical thermodynam-
ics is now the description of a thermodynamic state in terms of a distribution function
called macrostate. The formulation of statistical thermodynamics by Boltzmann and
Gibbs provided a solid microscopic foundation of phenomenological thermodynamics.

In chapter 7 we develop the foundations of statistical mechanics and establish
the link to phenomenological thermodynamics with special attention to the role the
quantum statistical nature of the particles under study.

2The ’quantization’ of matter is not to be understood in the quantum mechanical sense. Nev-
ertheless, the particles themselves are generally microscopic and, under certain circumstances, may
behave following rules dictated by quantum mechanics. This can lead to macroscopically observable
phenomena studied in the area of quantum statistics, as we will learn in Chp. 7.2.
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Chapter 7

Statistical thermodynamics

We will begin this chapter with a calculation of the Boltzmann distribution of mi-
crostates over the macrostates in Sec. 7.1 and introduce the concept of partition func-
tion, from which all macroscopic state functions may be computed. As applications
of this algorithm we will revisit the ideal gas and the Einstein model of a crystalline
solid.

7.1 Microstates, macrostates, and entropy

7.1.1 Probabilities of microstates and the partition function

We consider a unary thermodynamic system composed of a very large number N of
identical (albeit distinguishable) particles, each one sufficiently specified by a set of
numbers (coordinates and internal quantum numbers). The list combining the sets
of all particles completely describes the microstate of the system. It changes if a
single number of just one particle is changed. The microstate also changes when we
just exchange two particles, although the physics of the system cannot change if the
particles are identical. Clearly, the macrostate of a system is invariant upon particle
exchange.

On the other hand, the number of macrostates we attribute to a system depends on
the information we want to gather. For example, we could split the volume occupied
by a gas into two parts, V1 and V2, and call macrostate the situation when a specific
number N1 of particles is in volume V1, no matter which particles. Or we could
classify the particles by their velocities and prepare a histogram. Any distribution of
the particles over the possible velocity classes leading to the exact same histogram
would then belong to the same macrostate.

In general, the microstates outnumber the macrostates by many orders of mag-
nitude such that, when a system evolves along a thermodynamic process, it moves
through a large number of microstates. And since, a priori, all microstates have the
same probability, the likeliness of a macrostate is just the number of microstates it
encompasses. Let 1, 2, .., j, .., r denote the possible single-particle states that the sys-
tem has to offer, nj the number of particles being in the single-particle state j, and
{n1, n2, .., nj , .., nr} the actual macrostate. The number of microstates contributing
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to the same macrostate is easily found by combinatorial analysis,

W{nj} =
N !

n1!n2!...nr!
= N !

r∏

j=1

1

nj !
, (7.1)

with the total number of particles N = n1 + n2 + ... + nr. The total number of
possible microstates is obviously rN . Hence, the probability to encounter the system
in a particular macrostate is 1,

P{nj} =
W{nj}
rN

= N !

r∏

j=1

1

nj !rnj
. (7.2)

Figure 7.1: Illustration of micro- and macrostates with identical indistinguishable particles:
(a-c) Distribution of 12 particles over 2 boxes. (d-f) Distribution of 13 particles over 4 energy
levels. All schemes show different microstates, but only the schemes (a) and (b), respectively,
(d) and (e) correspond to same macrostates.

Of all possible macrostates, there will be one containing the largest number of
microstates, and the probability to encounter the system in this macrostate is highest.
Examination of P{nj} for a variety of macrostates {nj} reveals that the probability
distribution is sharply peaked, and that macrostates deviating only slightly are already
very unlikely. The most probable state is now interpreted as the state of equilibrium,
and this hypothesis forms the basis for connecting phenomenological thermodynamics
to an atomistic statistical description.

The equilibrium condition for highest probability in the statistical description
is similar to the request for highest entropy in phenomenological thermodynamics,
which suggests that both concepts are connected. But while the entropy is additive
(the entropies of subsystems sum up to a global entropy), the number of macrostates
is multiplicative. This led Boltzmann to his famous hypothesis,

S = kB lnW . (7.3)

Do the Excs. 7.1.7.1 to 7.1.7.7.

1For r = 2 we just obtain the binomial distribution, P{nj} =
(N
nj

) (
1
r

)nj
(
1− 1

r

)N−nj , obviously

satisfying
∑N
nj=0 P{nj} = 1.
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7.1.2 Equilibrium in statistical thermodynamics

Evaluating Eq. (7.3) involves computation of large factorials, which is a challenging
numerical task. Fortunately, large factorials can be very well approximated by Stir-
ling’s formula,

lnn! ≃ n lnn− n . (7.4)

With this formula we can simplify Eq. (7.3),

S = kB ln
N !∏r
j=1 nj !

≃ kB(N lnN −N)− kB
r∑

j=1

(nj lnnj − nj) (7.5)

= kBN lnN − kB
r∑

j=1

nj lnnj = −kB
r∑

j=1

nj ln
nj
N

.

This expression allows to compute the entropy of any macrostate of the system.
To find the equilibrium macrostate {n1, n2, .., nj , .., nr}eq in the atomistic descrip-

tion, we have to maximize the entropy (7.5). That is, we have to evaluate the to-
tal differential of entropy in the direction of changes {dn1, dn2, .., dnj , .., dnr} of the
macrostate under the constraint N =

∑r
j=1 nj ,

dS =

r∑

j=1

(
∂S

∂nj

)
dnj+

(
∂S

∂N

)
dN = −kB

r∑

j=1

(
1 + ln

nj
N

)
dnj+kB

r∑

j=1

nj
N
dN , (7.6)

yielding,

dS = −kB
r∑

j=1

ln
nj
N

dnj . (7.7)

Application of the equilibrium criterion requires isolation from the environment,
which sets constraints to the entropy evaluation in terms of particle and energy ex-
change,

N =

r∑

j=1

nj and E =

r∑

j=1

εjnj , (7.8)

or equivalently 2,

dN =

r∑

j=1

dnj = 0 and dE =

r∑

j=1

εjdnj = 0 . (7.9)

Here, εj is the energy of the single-particle state j occupied with nj particles.
The maximum of the entropy function (7.5) under the constraints (7.9) can be

found using the technique of Lagrange multipliers, which consists in solving the equa-
tion

0 = dS − αkB dN − βkB dE = kB

r∑

j=1

(
− ln

nj
N
− α− βεj

)
dnj (7.10)

2Note that dεj = 0, if the energy levels do not vary along a thermodynamic process, only their
population with particles.
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for arbitrary factors α and β. This implies,

nj
N

= e−αe−βεj , (7.11)

for j = 1, 2, ..., r. The Lagrange multiplier α can readily be eliminated using the
normalization constraint (7.8)(i),

1 =

r∑

j=1

nj
N

= e−α
r∑

j=1

e−βεj , (7.12)

leaving us with,

nj
N

=
e−βεj∑r
j=1 e

−βεj . (7.13)

The denominator is called the canonical partition function,

Ξcn ≡
r∑

j=1

e−βεj = eα . (7.14)

To determine the Lagrange multiplier β, we compare the expressions obtained for
the entropy variations in statistical and phenomenological thermodynamics. Solving
(7.10) by dS and substituting α taken from (7.14) we get,

dS = −kB
r∑

j=1

ln
e−βεj

Ξcn
dnj = kB

r∑

j=1

(βεj + lnΞcn) dnj = kBβ dE + kB ln Ξcn dN .

(7.15)
And from (??) we get,

dS =
1

T
dE +

P

T
dV − µ

T
dN , (7.16)

where µ is the chemical potential per atom and dV = 0, since we assumed in this
derivation, that every atom has access to the whole volume of the system. A compar-
ison of the expressions (7.15) and (7.16) then yields,

β =
1

kBT
and α = −βµ = lnΞcn . (7.17)

Substitution into (7.13) and (7.14) finally yields,

nj
N

=
1

Ξcn
e−εj/kBT with Ξcn =

r∑

j=1

e−εj/kBT . (7.18)
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This expression is known as Boltzmann distribution 3,4,5.

7.1.3 Thermodynamic potentials in canonical ensembles

We wish now to express all state functions of the system in terms of the partition
function (7.14). To this end we begin calculating the Helmholtz free energy using the
expressions for the total energy (7.8)(ii) and the entropy (7.5),

F = E − TS =

r∑

j=1

njεj + kBT

r∑

j=1

nj ln
e−βεj

Ξcn
= −kBT ln Ξcn . (7.19)

Hence, Ξcn = e−βF and,
nj
N

= eβ(F−εj) (7.20)

confirming the role of the free energy (??) for normalization of the canonical proba-
bility distribution.

The entropy function can now be expressed by the coefficient relation (??)(ii),

S = −
(
∂F

∂T

)

V

= kB ln Ξcn + kBT

(
∂ ln Ξcn

∂T

)

V

, (7.21)

the internal energy becomes,

E = F + TS = kBT
2

(
∂ ln Ξcn

∂T

)

V

, (7.22)

and the heat capacity (??)(ii),

CV =

(
∂E

∂T

)

V

= 2kBT

(
∂ ln Ξcn

∂T

)

V

+ kBT
2

(
∂2 ln Ξcn

∂T 2

)

V

. (7.23)

Note that for now we always consider fixed volumes, dV = 0. To compute the
remaining thermodynamic potentials, V , H, G, and CP , we would need to generalize

3We obtained the Boltzmann distribution from a microcanonical derivation, but since the Boltz-
mann distribution holds for any ensemble of classical particles, we can use it to derive the distribution
function for canonical ensembles.

4A system of non-interacting particles can be separated into independent parts. If such a system is
described by a canonical ensemble, then each part can be seen as a system unto itself and described
by a canonical ensemble having the same temperature as the whole. In this way, the canonical
ensemble provides exactly the Maxwell-Boltzmann statistics for systems of any number of particles.
In comparison, the justification of the Boltzmann distribution from the microcanonical ensemble
only applies for systems with a large number of particles, that is, in the thermodynamic limit. The
Boltzmann distribution itself is one of the most important tools in applying statistical mechanics to
real systems, as it dramatically simplifies the study of systems that can be separated into independent
parts (e.g. particles in a gas, electromagnetic modes in a cavity, etc.).

5In a system of strongly interacting particles, it is usually not possible to find a way to separate
the system into independent subsystems as done in the Boltzmann distribution. In these systems it
is necessary to resort to using the full expression of the canonical ensemble in order to describe the
thermodynamics of the system when it is thermostatted to a heat bath. The Ising model, which is
a widely discussed toy model for the phenomena of ferromagnetism, is one of the simplest models
showing a phase transition.
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the partition function to include pressure dependence. We will show this in Sec. 7.1.6
at the example of an ideal gas.

In summary, the state of thermodynamic equilibrium is characterized by the fact
the particles are distributed over the available energy levels according to the expo-
nential function (7.11). Once the energy levels are known for a system, the partition
function and all the thermodynamic potentials can be calculated. We will now study
the algorithm at three examples.

7.1.4 Two-level systems

Let us consider a system consisting of only two allowed energy levels εj = 0, ε, that is,
we set the energy of the ground state to zero. This system is relevant for atomic system
in equilibrium with radiation fields driving electronic transitions between excitation
levels. The Boltzmann partition function and the population (7.18) then become,

Ξcn =

r∑

j=1

e−βεj = 1 + e−βε , (7.24)

n1
N

=
1

Ξcn
=

1

1 + e−βε
,

n2
N

=
e−βε

Ξcn
=

e−βε

1 + e−βε
. (7.25)

In particular, the ratio between populations of consecutive levels is, n2/n1 = e−βε.
At low temperature, kBT ≪ ε, the excited state population is negligibly small, while
at high temperature, kBT ≫ ε, both energy levels have almost the same population.
Do the Exc. 7.1.7.8.

With the partition function it is easy to evaluate the potentials,

F = −NkBT ln Ξcn = −NkBT ln(1 + e−βε) (7.26)

S = NkB ln Ξcn +NkBT

(
∂ ln Ξcn

∂T

)

V

= NkB ln(1 + e−βε) +
Nε

T

e−βε

1 + e−βε

E = NkBT
2

(
∂ ln Ξcn

∂T

)

V

= Nε
e−βε

1 + e−βε

CV = 2NkBT

(
∂ ln Ξcn

∂T

)

V

+NkBT
2

(
∂2 ln Ξcn

∂T 2

)

V

=
Nε2

kBT 2

e−βε

(1 + e−βε)2
.

7.1.5 Einstein-Debye model of solids

According to the equipartition theorem, every atom has three degrees of freedom
due to its translational motion. Describing a solid simply as a conjunction of N
atoms bound by a common potential, we expect the total energy and the specific heat
following the Dulong-Petit law,

E = 3NkBT resp. CV =

(
∂E

∂T

)

V

= 3NkB , (7.27)

for all solids regardless of temperature.
It was observed, however, that the specific heat of solids decreases like CV ∝ T 3

as T approaches zero. Einstein proposed an alternative model treating the N atoms
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as three-dimensional harmonic oscillators vibrating in a lattice. Indeed, many solids
are crystalline, which means that they arrange in a periodic structure, in the simplest
case a cubic lattice, where each atom has six neighbors arranged along Cartesian
coordinates, as illustrated in Fig. 7.2. The interatomic bonds are described by springs
storing energies like a quantized 3D harmonic oscillator,

εj = (j + 3
2 )ℏω . (7.28)

The normal-mode frequency ω is related to the spring constant of the atomic bond
and the atomic mass.

Figure 7.2: Einstein’s model of a solid.

The energy spectrum (7.28) completely defines the model. The partition function
is,

Ξcn =

r∑

j=1

e−βεj = e−3βℏω/2
r∑

j=1

e−βℏωj ≃ e−3βℏω/2
∞∑

j=0

e−βℏωj =
e−3βℏω/2

1− e−βℏω . (7.29)

The discrete energies nℏω are identified with quasi-particles called phonons. The
quantum nature of atoms does not matter, they just provide the medium supporting
the phonons.

With the partition function it is easy to evaluate the potentials,

F = −NkBT ln Ξcn =
3Nℏω

2
+ 3NkBT ln

(
1− e−βℏω

)
(7.30)

S = NkB ln Ξcn +NkBT

(
∂ ln Ξcn

∂T

)

V

= −3NkB ln
(
1− e−βℏω

)
+

3Nℏω
T

1

eβℏω − 1

E = NkBT
2

(
∂ ln Ξcn

∂T

)

V

=
3Nℏω

2

eβℏω + 1

eβℏω − 1

CV = 2NkBT

(
∂ ln Ξcn

∂T

)

V

+NkBT
2

(
∂2 ln Ξcn

∂T 2

)

V

= −3NkB
(

ℏω
kBT

)2
eβℏω

(eβℏω − 1)2
.

7.1.5.1 Debye model

In his model Einstein applied Planck’s law on the distribution of energy in electromag-
netic radiation, which treats radiation as a gas of photons, to the energy distribution
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of atomic vibrations in a solid, treating them as a gas of phonons in a box (the box be-
ing the solid). Most of the steps of the calculation are identical, as both are examples
of a massless bosonic gas with linear dispersion relation.

Following the Bose-Einstein statistics, we must replace in (7.27),

kBT −→
ℏω

eℏω/kBT − 1
, (7.31)

yielding,

E =
3Nℏω
eβℏω − 1

resp. CV = 3NkB

(
ℏω
kBT

)2
eℏω/kBT

(eℏω/kBT − 1)2
, (7.32)

in accordance with (7.30).

Still, the disappearance of the specific heat at low temperatures,

CV ≃
3N(ℏω)2

kBT 2
e−ℏω/(kBT ) , (7.33)

which is related to the finite localization energy of harmonic oscillators, does not
describe experimental observations very well, and the model had to be refined by
Debye, later on.

While Einstein assumed monochromatic lattice vibrations, Debye’s approach was
to allow a spectrum of vibrational frequencies. With the density-of-states,

ρ(ν)dν =
4πV

v3
ν2dν , (7.34)

where v is the velocity of sound propagation and ω = 2πν, the formula is totally
equivalent to the density-of-states for photons in a cavity. Assuming that there is an
upper bound νm for the vibrational frequencies, we normalize as 3N0 =

∫ νm
0

ρ(ν)dν.
The energy now is 6,

E =

∫ νm

0

ℏω
eℏω/kBT − 1

4πV

v3
νdν = 9NkB

T 4

θ3

∫ θ/T

0

x3dx

ex − 1
. (7.35)

The Debye temperature θ = hνm/kB is characteristic for the metal. The derivative is
then,

CV = 9NkB

[
4

(
T

θ

)3 ∫ θ/T

0

x3dx

ex − 1
− θ

T

1

eθ/T − 1

]
. (7.36)

At low temperatures this formula reproduces the Debye law,

CV ≃ 9NkB

[
4

(
T

θ

)3 ∫ ∞

0

x3dx

ex − 1
− θ

Teθ/T

]
=

12π4

5
NkB (T/θ)

3
. (7.37)

6The fact that the electron gas also has a heat capacity is neglected.
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7.1.6 Maxwell-Boltzmann distribution of ideal gases

Here we consider a gas composed of identical monoatomic particles enclosed in a box
of volume V =

∫
V
d3r. The energy of every atom is just its kinetic energy associated

with its flight through space,

ε =
m

2
v2 =

m

2
v2x +

m

2
v2y +

m

2
v2z . (7.38)

Since the phase space of atomic motion is continuous, the partition function is now
calculated as an integral,

Ξcn =

∫

R3

∫

R3

e−βεd3rd3v (7.39)

= V

∫ ∞

0

4πv2e−βmv
2/2dv = V

(
2πkBT

m

)3/2

.

We will see later how to generalize the procedure in the presence of an inhomogeneous
trapping potential U(r). Insertion of the kinetic energy (7.38) generates the well-
known Maxwell-Boltzmann distribution,

n(ε)

N
=

1

Ξcn
e−βmv

2/2 , (7.40)

which will be studied in Excs. 7.1.7.9 to 7.1.7.16.
The potentials are easily calculated,

F = −NkBT ln Ξcn = −NkBT
(
lnV +

3

2
ln

2πkBT

m

)
(7.41)

S = NkB ln Ξcn +NkBT

(
∂ ln Ξcn

∂T

)

V

= NkB

(
lnV +

3

2
+

3

2
ln

2πkBT

m

)

E = NkBT
2

(
∂ ln Ξcn

∂T

)

V

=
3

2
NkBT

CV = 2NkBT

(
∂ ln Ξcn

∂T

)

V

+NkBT
2

(
∂2 ln Ξcn

∂T 2

)

V

=
3

2
NkB .

Furthermore,

P = −
(
∂F

∂V

)

T

=
NkBT

V
. (7.42)

7.1.6.1 Inclusion of vibrational and rotational degrees of freedom

If the gas under consideration is composed of molecules, energy may be stored in
rotations of the molecules about some axis passing through their center of mass.
The atoms composing the molecules may vibrate against each other. And finally,
the motion of electrons within the molecules contribute to the internal energy of a
gas. The development of models accounting for these energy contributions allows
to compute heat capacities which, compared to experimental measurements, provide
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insight in the molecular structure, as we have seen at the example of the Einstein-
Debye model.

In the case of ideal molecular gases, the treatment of vibrational and rotational
degrees of freedom is similar to that of the translational degrees of freedom as long
as the corresponding energies can be brought into the form bα

2 v
2
α, where α labels

the degree of freedom, vα is the velocity of the respective motion, and bα the mass or
inertial moment. The partition function then needs to be calculated with the complete
spectrum (see [212], p.155),

E =
∑

α

bα
2 v

2
α . (7.43)

7.1.7 Exercises

7.1.7.1 Ex: Probabilities

In a game, 5 ideal dices are rolled.
a. What is the probability that exactly two of these dices show the number one?
b. What is the probability that at least one dice shows the number one?

7.1.7.2 Ex: Probabilities

With what probability have out of
a. 1000 random numbers between 1 and 100 exactly five the value 50;
b. 100 two people on birthday January 1st.

7.1.7.3 Ex: Probabilities

What is the probability that you inhale at least one molecule that Julius Caesar
exhaled during his last breath (Tu quoque, Brute, fili mi!)? Assume a breathing
volume of 1 liter and an atmosphere height of approximately h = 10 km. Assume the
density of the atmosphere is approximately homogeneous.

7.1.7.4 Ex: Idiots roulette

A Bavarian, a Swabian and an East Frisian play Russian roulette together, each
according to their own rules. The Bavarian inserts two cartridges into the drum of a
six-shot revolver, sets the drum in a rapid rotation, aims at his own head and pulls
the trigger once. The Swabian puts a cartridge in the revolver and pulls the trigger
twice, the East Frisian puts a cartridge in the revolver, pulls the trigger once, turns
the drum a second time and pulls the trigger again. What is the chance of survival
of the three crazy people?

7.1.7.5 Ex: Students roulette

A student writes a multiple choice test in physics. It consists of 18 tasks. For each
task, only one of the four proposed solutions is correct. Since he does not understand
much about the topic, he trusts his luck and checks the possible solutions by chance.
What is the probability that the student meets the minimum requirement of 8 correct
answers?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs05.pdf
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7.1.7.6 Ex: Slot machine

A slot machine consists of three concentric rings. Each ring is evenly divided into
10 sections and the sections in each ring are labeled with letters from ’a’ to ’j’. By
pressing the start button, the three rings start to rotate independently. If the lock
button is pressed, the rings brake independently of one another and three letters
appear side by side in the viewing window. With three ’a’ you win, with two ’a’ there
is a free spin.
a. Calculate the probability for one free spin per game.
b. What is the probability of getting exactly 3 free spins in 10 games?
c. What is the probability of winning at least once in 10 games?

7.1.7.7 Ex: Binomial distribution

Two drunks stagger on the x-axis. Starting from the origin, they take a step to the
right or to the left with the same probability. The steps take place synchronously,
and the steps of both people are the same and constant. Determine the probability
that they will meet again after N steps.

7.1.7.8 Ex: Simple model for a solid

Consider a system of N atomic particles at a temperature T . The individual atoms
can only be in one of two states. Either in state |0⟩ at the energy ε0 = 0 or in state
|1⟩ at energy ε1 = ε. Apart from this energy εi the atoms have no kinetic or other
energies.
a. Choosing the Boltzmann distribution, determine the population ni, that is, the
probability that a certain atom is in state |i⟩. How should the normalization be
chosen?
b. Determine the statistical mean ε̄ for the energy of one atom. Which value results
for kBT = ε? What is the expression for the total energy E of N atoms?
c. Calculate the population n1(Tj) to find a certain atom at the energy ε for four
different temperatures: kBTj = 0.1 × jε for j = 1, 2, 3, 4. Also calculate the energy
per atom E(Tj)/N of the entire system at these temperatures.
d. Find an expression for the heat capacity C of this N -atom system. Note: For this
system, the total energy is identical to the thermal energy.
e. Calculate the heat capacities Cj especially for the temperatures Tj from subtask
(c). What does the result have to do with ’freezing degrees of freedom’?

7.1.7.9 Ex: Velocity distribution

The Maxwellian velocity distribution or Boltzmann distribution of a one-dimensional
ideal gas of identical particles of mass m at temperature T is,

f(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv .

This gives the average kinetic energy for each molecule of ⟨Ekin⟩ = 1
2kBT . According

to the equipartition theorem, Maxwell’s velocity distribution of a three-dimensional
gas is given by f(vx)dvx f(vy)dvy f(vz)dvz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_SolidModel01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute01.pdf
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a. Write down the velocity distribution explicitly and determine the average kinetic
energy of a molecule in the three-dimensional gas at temperature T .
Determine the average absolute velocity ⟨v⟩ = ⟨|v|⟩ and compare ⟨v⟩2 with ⟨v2⟩ for
the three-dimensional case.
c. What is the number of particles F (v)dv with an absolute velocity v = |v| in the
range v and v + dv.
d. Consider a gas made of rubidium atoms (m = 87u) and sketch F (v) for tempera-
tures between 100K and 300K.
e. Consider the rubidium gas at room temperature (T = 300K). What is the propor-
tion of molecules whose average velocity ⟨v⟩ is greater than 1000m/s?

7.1.7.10 Ex: Maxwell-Boltzmann distribution

Calculate the number of particles in an ideal homogeneous gas having velocities slower
than 2vrms.

7.1.7.11 Ex: Maxwell-Boltzmann distribution

Using the Maxwell-Boltzmann distribution f(v) and the following formulas, calculate

the velocities v̄ ≡
∫∞
0
vf(v)v2dv and vrms ≡

√
v2:

∫ ∞

0

xne−x
2

dx = 1
2Γ(

n+1
2 ) =

{
(2k−1)!!

√
π

2k+1 for n = 2k
k!
2 for n = 2k + 1

.

7.1.7.12 Ex: Mean velocity in a gas

The average velocity of the molecule in an ideal gas is 500m/s. If the gas maintains
the same temperature and the molecular masses are doubled, what will be the new
average velocity?

7.1.7.13 Ex: Evaporation

a. A three-dimensional homogeneous gas consisting of N = 108 rubidium atoms (mass
m = 87u) has the temperature T = 100µK. How many atoms are faster on average
than v1 = 10 cm/s?
b. Now suppose that all atoms with a velocity v > v1 were suddenly removed. After
some time, a new thermal equilibrium is established due to collisions. What is the
temperature of the gas now?

7.1.7.14 Ex: Trapped gases

The density distribution of a rubidium gas in a three-dimensional harmonic potential
can be expressed by,

n(r)d3r = n0e
−U(r)/kBT d3r ,

where U(r) = m
2 ω

2r2. Numerical values: m = 87u and ω = 2π · 50Hz.
a. Determine the size of the gas cloud (1/

√
e full width of the distribution) at a given

temperature T = 100µK.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute06.pdf
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b. Determine the maximum density n0 of the gas when N =
∫
n(r)d3r = 108 is the

total number of atoms.
c. The effective volume is defined by Veff = N/n0. How many atoms are in the effective
volume?

7.1.7.15 Ex: Trapped gases

Calculate the internal energy and heat capacity of an ideal gas stored in a harmonic
trap by explicit tracing over the density operator ρ = e−βε−βU , and compare the
result with a free gas.

7.1.7.16 Ex: Trapped gases

An ultracold gas made of 108 rubidium atoms (mass number 87) is trapped in a
three-dimensional potential of the form U(r) = m

2 ω
2r2 with the oscillation frequen-

cies ω/2π = 100Hz.
a. Assume the spatial distribution function for the atoms to be n(r) = n0e

−U(r)/kBT .
What is its width at 1/

√
e of the maximum height? How does the width of the dis-

tribution function change when the number of atoms is doubled?
b. The trap potential is suddenly switched off. The atoms are robbed of their poten-
tial energy, while their kinetic energy leads to the ballistic expansion of the cloud.
20ms after switching off the trapping potential, a 1/

√
e width of r̄a = 0.2mm is ex-

perimentally measured for the distribution of the expanded atomic cloud. What was
the temperature of the atomic cloud in the trap?
Help: Assume that the final size of the atomic cloud is much larger than the size of
the trap. Neglect collisions between the atoms.

7.2 Quantum statistics

Considering a closed isolated system in a fixed volume (NV E-ensemble where E,N, V =
const) we have derived in Sec. 7.1.1 the partition function for microcanonical ensem-
bles, from which we obtained in Sec. 7.1.2 the Boltzmann distribution function.

The combinatorial derivation of the number of microstates contributing to the
same macrostate (7.1) was based on the observation, that all particles constitut-
ing the system were identical, but distinguishable. The expression (7.1) is just the
multinomial coefficient, i.e. the number of ways of arranging N items into r boxes,
the j-th box holding nj items, ignoring the permutation of items in each box. The
problem, however, is that quantum mechanics postulates that identical particles are
indistinguishable, and this has an impact on the numbers of states available upon
permutation. Consequently, the partition function (7.1) needs to be corrected.

The problems ultimately results from the fact that phase space is quantized. If this
weren’t the case, the cells’ size could be chosen so small that they admit at most one
particle. Then quantum statistics would not apply, the system would be classical 7.

7The problem with undistinguishability is that it is not a classical concept and thus cannot be
mapped immediately to classical computers, which will always need to know in which of its bits the
information on what particle is stored. Bluring this information requires some trick, which is rather
easy to implement in the symmetrization and more cumbersome in the case of (anti-)symmetrization.
On the other hand, undistinguishability can be mapped to quantum computers.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute08.pdf
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7.2.1 Wavefunction symmetrization and detailed balance

We learn in quantum mechanics, that (anti-)symmetrization of the total wavefunction
of a multiparticle system leads to Bose-enhancement (Pauli blocking). Consider a
product state of two particles 1 and 2, Ψo = ψα(1)ψβ(2), and symmetrize it to

Ψs,a = 1√
2
[ψα(1)ψβ(2)± ψα(2)ψβ(1)] . (7.44)

Now assume that the single particle wavefunctions do completely overlap,

α = β =⇒ |Ψo,s,a|2 = (s+ 1) |ψα(1)|2|ψβ(2)|2 , (7.45)

where s = 0 for Boltzmann particles (called boltzons here for simplicity), s = 1
for bosons, and s = −1 for fermions. Generalized to arbitrary numbers of par-
ticles we state: If n bosons (fermions) are in state Ψ, the probability for another
bosons (fermions) to joint this state is 1 + sn times the probability without (anti-
) symmetrization.

An intuitive derivation of the quantum statistical distribution function is based on
the postulate of detailed balance. Let us consider the most fundamental process in
physics, which is the collision between two particles initially in states 1 and 4 ending
up in two other states 2 and 3 [see Fig. 7.3(a)]. All four states j are initially occupied
with populations nj . The detailed balance postulate claims that equality of the rates
R14→23 for two particles to change their states and the rate for the inverse process
R23→14 is a sufficient condition for thermal equilibrium. Using the bosonic enhance-
ment (fermionic suppression) factor derived above, the postulate can be formulated,

R14→23 = |M14,23|2n1n4(1 + sn2)(1 + sn3) = (7.46)

R23→14 = |M14,23|2n2n3(1 + sn1)(1 + sn4) ,

where M14,23 is the matrix element of the collision process. Hence,

n1
1 + sn1

n4
1 + sn4

=
n2

1 + sn2

n3
1 + sn3

. (7.47)

Energy conservation requires,

ε1 + ε4 = ε2 + ε3 . (7.48)

In a canonical ensemble in thermal equilibrium the population distribution among
the levels must be a unique function of their energies,

nj = f(εj) . (7.49)

To satisfy Eqs. (7.47) and (7.48) f must have the functional form,

f(εj) =
1

Ceβεj − s , (7.50)

where C is an arbitrary constant introduced to satisfy some normalization constraints.
This can be verified easily by plugging the formula (7.50) into the Eq. (7.47).
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Figure 7.3: (a) Detailed balance entails thermal equilibrium. (b) Subdivision of energy levels
j in subboxes gj . Red circles are fermions and green particles bosons.

7.2.2 Microcanonical ensembles of indistinguishable particles

7.2.2.1 Boltzons

In order to hold for indistinguishable particles, the partition function (7.1) must be
generalized allowing for the possibility that there is more than one way to put nj
particles into the box j. If the j-th box has a ’degeneracy’, that is, it has gj ’sub-
boxes’ with the same energy εj , such that any way of filling the j-th box where the
number in the sub-boxes is changed is a distinct way of filling the box, then in order to
get the right number of macrostates, the number of ways of filling the j-th box must
be increased by the number of ways of distributing the nj objects in the gj sub-boxes.
The number of ways of placing nj distinguishable objects in gj sub-boxes is g

nj

j , since
any particle can go into any of the gj boxes. Thus the number of ways W{nj} that
a total of N particles can be classified into energy levels according to their energies,
while each level j having gj distinct states such that the j-th level accommodates nj
particles is,

W{nj} = N !

r∏

j=1

g
nj

j

nj !
. (7.51)

In analogy to the procedure outlined in Sec. 7.1.2 we derive the Boltzmann distri-
bution by first taking the logarithm from (7.52) and then simplifying it using Stirling’s
formula (8.1),

lnW = lnN ! +
∑

j

[nj ln gj − lnnj !] ≃ lnN ! +
∑

j

[nj ln
gj
nj

+ nj ] , (7.52)

then calculating the differential,

d lnW =
∑

j

(
∂ lnW

∂nj

)
dnj =

∑

j

ln
gj
nj
dnj . (7.53)

introducing Lagrange multipliers α and β and minimizing the functional,

f({nj}) ≡ lnW + α(N −
∑

j

nj) + β(E −
∑

j

εjnj) . (7.54)

Relating the condition,

0 = df(nj) = d lnW − α
∑

j

dnj − β
∑

j

εjdnj =
∑

j

(
ln
gj
nj
− α− βεj

)
dnj (7.55)



264 CHAPTER 7. STATISTICAL THERMODYNAMICS

via the Boltzmann hypothesis (7.16) to entropy,

dS =
1

T
dE +

P

T
dV − µ

T
dN = kBβ dE + kBαdN = kB d lnW , (7.56)

we identify the Lagrange multipliers,

β =
1

kBT
and α = − µ

kBT
, (7.57)

and finally obtain the Boltzmann distribution by setting the parenthesis in (7.55) to
zero,

nj =
gj

eβ(εj−µ)
. (7.58)

This is basically the same result as the Boltzmann distribution derived in (7.18) except
for the appearance of the degeneracy factor gj .

7.2.2.2 Bosons

Boltzmann’s fundamental equation (7.3) relates the thermodynamic entropy S to
the logarithm of the number of microstates W{nj}. It was pointed out by Gibbs
however, that the above expression (7.51) does not yield an extensive entropy, and
is therefore faulty 8. This problem is known as the Gibbs paradox. The problem is
that the particles considered by the above equation are not indistinguishable. In other
words, for two particles (i and j) in two energy sublevels the population represented
by [i, j] is considered distinct from the population [j, i], while for indistinguishable
particles, they are not. Indeed, bosons have anti-symmetric wavefunctions, fermions
have symmetric ones. Boltzons have all wavefunctions as eigenfunctions. In the limit
of high temperatures all particles behave like boltzons.

Let us a system with a given one-particle energy spectrum εj . Now, every en-
ergy level labeled by j and containing nj particles is discretized into a number of gj
subboxes degenerate with respect to energy (i.e. all having the same energy εj), but
distinguished by some other quantum number [see Fig. 7.3(b)].

For bosons, each level gj can hold arbitrarily many of the nj particles. If we carry
out the argument for indistinguishable particles, we are led to the expression for the

8This can be seen as follows: Consider two identical systems, r′ = r and g′
j′ = gj , with atom

numbers N =
∑
j nj and N ′ =

∑
j n

′
j . The partition function for boltzons is not multiplicative,

(N +N ′)!
r∏
j=1

g
nj

j

nj !
̸= N !

r∏
j=1

g
nj

j

nj !
×N ′!

r∏
j=1

g
n′
j

j

n′
j !

while for fermions it is. To see this we set n′
j′ ≡ nr+j for j′ = r + j and j = 1, ..., r. Then,

2r∏
j=1

(gj
nj

)
=

r∏
j=1

(gj
nj

)
×

r∏
j=1

(gj
n′
j

)
.

The same argument holds for bosons. A critical discussion of the above statements can be read in
[435].
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Figure 7.4: Distribution of nj bosons (green), fermions (red), and boltzon (blue) over gj

boxes the number of possibilities being, respectively,
(
nj+gj−1

nj

)
,
(
gj
nj

)
, and

N !g
nj
j

nj !
.

partition function for bosons 9,

W{nj} =

r∏

j=1

(
nj + gj − 1

nj

)
. (7.59)

Analogously to (7.52) we calculate the logarithm using Stirling’s formula,

lnW =
∑

j

[ln(nj + gj − 1)!− lnnj !− ln(gj − 1)!] (7.60)

≃
∑

j

[
nj ln

gj − 1 + nj
nj

+ (gj − 1) ln
gj − 1 + nj
gj − 1

]
,

the differential,

d lnW =
∑

j

(
∂ lnW

∂nj

)
dnj =

∑

j

ln
nj + gj − 1

nj
dnj , (7.61)

and obtain the condition,

0 = df(nj) = d lnW − α
∑

j

dnj − β
∑

j

εjdnj (7.62)

=
∑

j


ln

nj + gj − 1

nj
− α

∑

j

−β
∑

j

εj


 dnj

with the same Lagrange multipliers. This yields the Bose-Einstein distribution,

nj =
gj − 1

eβ(εj−µ) − 1
. (7.63)

9Note that this partition function converges toward the one for boltzons for gj ≫ nj ≫ 1, which
can be seen by simplifying it using the Stirling formula.
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The Boltzmann distribution follows from this Bose-Einstein distribution for temper-
atures well above absolute zero, implying that gj ≫ 1. The Boltzmann distribution
also requires low density, implying that gj ≫ nj . Under these conditions, we may use
Stirling’s approximation (8.1) for the factorial: N ! ≈ NNe−N .

7.2.2.3 Fermions

For fermions, each level gj can hold at most one of the nj particles, which implies
that necessarily gj > nj [see Fig. 7.3(b)]. Let us consider a single energy level j. The
first of the nj particles has the choice between gj boxes. Since no box can be filled
with more than one particle, the second particle has only gj − 1 boxes at its disposal,
and so on until all particles have been assigned. This corresponds to gj !/nj ! possible
choices. However, we still need to respect the indistinguishability requirement. The
overcounting can be removed by dividing by (gj−nj)!. The procedure is now repeated
with all energy levels j, which leads to the partition function for fermions,

W{nj} =

r∏

j=1

(
gj
nj

)
. (7.64)

Again we calculate the logarithm using Stirling’s formula,

lnW =
∑

j

[ln gj !− lnnj !− ln(gj − nj)!] (7.65)

≃
∑

j

[
nj ln

gj − nj
nj

− gj ln
gj − nj
gj

]
,

the differential,

d lnW =
∑

j

(
∂ lnW

∂nj

)
dnj =

∑

j

ln
gj − nj
nj

dnj . (7.66)

and obtain the condition,

0 = df(nj) = d lnW − α
∑

j

dnj − β
∑

j

εjdnj (7.67)

=

r∑

j=1

(
ln
gj − nj
nj

− α− βεj
)
dnj ,

with the same Lagrange multipliers. This yields the Fermi-Dirac distribution for
gj ≫ 1,

nj =
gj

eβ(εj−µ) + 1
. (7.68)

Do the Exc. 7.2.6.1.
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7.2.2.4 Thermodynamic potentials for bosons and fermions

Using the abbreviation s = +1 for bosons, s = −1 for fermions, and s = 0 for boltzons
the distribution function can be expressed as,

nj =
gj

eβ(εj−µ) − s . (7.69)

The chemical potential µ is fixed by the boundary conditions,

N =
r∑

j=1

nj and E =

r∑

j=1

εjnj , (7.70)

0 1 2

nj

0

0.5

1

1.5

2

ε j
/
μ

(a)
kBT = 0.3μ

0.05μ

0 1 2

kBT/μ

0

0.5

1

1.5

2

n
j

(b)
E = 0.8μ

μ

1.2μ

Figure 7.5: (code) Quantum statistical weight (7.50) for fermions (red dash-dotted line),

bosons (green dashed line), and boltzons (black solid line). (a) Weight nj as a function of

level energy εj for two different temperatures (solid and dash-dotted lines). (b) Weight nj
as a function of temperature for various level energy εj (solid, dash-dotted, and dashed).

With this, knowing the energy spectrum εi and the distribution of states gj of
the system, we are able to calculate all thermodynamic potentials. E.g. the entropy
reads,

S = kB lnW{nj} = kB
∑

j

[
nj ln

(
s+

gj
nj

)
+ sgj ln

(
1 + s

nj
gj

)]
(7.71)

= kB
∑

j

[
sgjβ(εj − µ)
1− se−β(εj−µ) + sgj ln

(
eβ(εj−µ) − s

)]
.

The Bose-Einstein and the Fermi-Dirac distribution both have many applications
in quantum mechanics, e.g. for the explanation of the blackbody radiation, the heat
capacity of metals, the laser, the Bose-Einstein condensation, and much more. In fact,
these distributions must be used whenever quantum statistical effects are important.
Prominent examples of systems where a quantum statistical treatment is crucial are
electrons in metals and ultracold quantum gases. We will discuss the latter in Secs. 7.3
and 7.4.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBose.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBose.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBose.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBose.m
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7.2.3 Density-of-states in a trapping potential

An important boundary condition for the discussion of the quantum statistics of
gases is that the atoms are often confined in trapping potentials. Suspended in space
far from massive walls, they escape the perturbative influence of the environment.
This however implies, that the system becomes inhomogeneous, which means that
the number of states available to the atoms varies in space. In order to prepare
subsequent evaluations of thermodynamic potentials, let us first characterize this
spatial dependence by introducing the concept of the density-of-states.

In three dimensions the Hamiltonian of a trapped atoms is,

Ĥ = − ℏ2

2m
∇2 + U(r) . (7.72)

As the wavefunction is localized, the spectrum of possible energies organizes into
discrete levels, and the atoms are allocated in populations of these levels. Such mul-
tidimensional systems are often degenerate, which means that the same total energy
can be realized with different sets of quantum numbers 10. The way an atomic cloud
accommodates itself inside a trapping potential is governed by the density of available
states. We now introduce the density-of-states η(ϵ) for an arbitrary potential via,

∫
η(ε)dε ≡ 1

(2π)3

∫
d3rd3k =

(2m)3/2

(2π)2ℏ3

∫
d3r

∫
dε
√
ε− U(r) , (7.73)

with the substitution k =
√

2m
ℏ2 [ε− U(r)].

As an example, let us consider a box potential of volume V . In this case, the
expression (7.72) simply yields,

η(ε) =
(2m)3/2

(2π)2ℏ3

∫

V

d3r
√
ε =

(2m)3/2

(2π)2ℏ3
V
√
ε (box potential) . (7.74)

In the following we derive the density-of-states for the case of an harmonic oscillator
potential. More general potentials are discussed in the Excs. 7.2.6.2 and 7.2.6.3.

Figure 7.6: Artists’s view of phase space cells in a trapping potential in two dimensions.

10This can be checked easily with separable potentials, such as the rectangular 3D box potential or
the 3D harmonic oscillator, where the same energy E = Ex +Ey +Ez can be reached with different
combinations of Ex, Ey , and Ez .
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Example 49 (Density-of-states for a cylindrical harmonic oscillator
potential): Let us consider a cylindrical harmonic oscillator,

U(r) =
m

2
ω2
rr

2 +
m

2
ω2
zz

2 where r2 = x2 + y2 , (7.75)

which can also be given in the form,

U(r) =
m

2
ω2
rρ

2 where ρ2 = x2 + y2 + λ2z2 with λ =
ωz
ωr

. (7.76)

We also define the mean oscillation frequency,

ω̄ = (ω2
rωz)

1/3 = λ1/3ωr . (7.77)

The single-particle levels of this Hamiltonian are,

εnxnynz = ℏωxnx + ℏωyny + ℏωznz , (7.78)

where the coefficients nj with j = x, y, z are integer numbers. For the cylindrical
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Figure 7.7: (code) (a) The figure shows two dimensions of a Ioffe-Pritchard type magnetic

trapping potential (characterized by being approximately linear at large distances from the

center and harmonic near the center). (b) Harmonic approximation (most experimentally

feasible potentials are approximately harmonic near the center). (c) One-dimensional cut

through the potential of (a,b). (d) Density-of-states for a harmonic (dotted line) and a

Ioffe-Pritchard type potential (solid line).

harmonic trap defined in (7.74), we find with a little help from Dr. Bronstein
[120],

η(ε) =
(2m)3/2

(2π)2ℏ3

∫
d3r

√
ε− m

2
ω2
rρ2 (7.79)

=
1

(2π)2
8ε2

(ℏω̄)3

∫ 1

−1

dx̃

∫ √1−x̃2

−
√

1−x̃2
dỹ

∫ √1−x̃2−ỹ2

−
√

1−x̃2−ỹ2
dz̃
√

1− x̃2 − ỹ2 − z̃2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
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The resolution of the integral gives,

η(ε) =
ε2

2(ℏω̄)3
(harmonic potential) . (7.80)

7.2.3.1 Application to the microcanonical partition function

Let us now come back to the distribution functions for ideal quantum gases introduced
in Sec. 7.2.2. In the thermodynamic limit, N → ∞, the distribution of states is
assumed so dense, that it can be expressed by a continuous density,

εj −→ ε = εr,p

gj −→ η(ε)

1

eβ(εj−µ)−s −→ 1
eβ(ε−µ)−s ≡ wT,µ(ε)

nj =
gj

eβ(εj−µ)−s −→ η(ε)wT,µ(ε)

∑
j gj −→

∫
η(ε)dε = 1

(2π)3

∫
d3rd3k

N =
∑
j nj −→

∫
η(ε)wT,µ(ε)dε

E =
∑
j εjnj −→

∫
εη(ε)wT,µ(ε)dε

(7.81)

where s = 0 stands for the ’Boltzmann’, s = −1 for the ’Bose-Einstein’, and s = +1
for the ’Fermi-Dirac’ distributions derived in (7.58), (7.63), and (7.68). We also
introduced the symbol wT,µ to denote the statistical distribution function,

wT,µ(r,p)d
3rd3p = η(ε)wT,µ(ε)dε . (7.82)

In the following sections we will calculate all system variables based on the expressions
(7.91) in the thermodynamic limit.

7.2.4 Grand canonical ensembles of ideal quantum gases

Let us now derive the statistics for physical conditions satisfied by a grand canonical
ensemble, which is a good model for many systems in which the particle number is
not conserved. A deeper discussion of the relation to the canonical ensemble and the
role of the chemical potential will be provided in the last part of this section.

Supposing that the particles of a system do not interact, it is possible to compute a
series of single-particle stationary states, each of which represents a separable part that
can be included into the total quantum state of the system. Let us call these single-
particle stationary states ’orbitals’ in order to avoid confusion with the total many-
body state. Every orbital represents a smallest possible cell in quantized phase space
and has a distinct set of quantum numbers and may be occupied by several particles
or be empty. In this sense, each orbital forms a separate grand canonical ensemble by
itself, one so simple that its statistics can be immediately derived. Focusing on just
one orbital labeled j, the total energy for a microstate of N particles in this orbital



7.2. QUANTUM STATISTICS 271

will be E = Nεj , where εj is the characteristic energy level of that orbital. The grand
potential for the orbital is given by 11,

Ω = −kBT ln Ξgc with Ξgc =
∑

microstates

eβ(µN−E) , (7.83)

which is required for the microstates’ probabilities to add up to 1, similarly to the
procedure for canonical ensemble in (7.20).

In quantum mechanics the orbitals are understood as the eigenstates |ψm⟩ of a
single-particle Hamiltonian,

ĥm =
p̂2
m

2m
+ Vtrap(r̂m) , (7.84)

with m = 1, . . . , N , whose spectrum is εm = ⟨ψm|ĥm|ψm⟩. That is, every single
particle is completely characterized by the quantum number m 12. A microstate |Ψk⟩
is now identified as an eigenstate of the total many-particle Hamiltonian,

Ĥ =

N∑

m=1

ĥm with |Ψk⟩ =
N∏

m=1

|ψm⟩k . (7.85)

The request that the particles do not interact makes the system separable. The
density operator and the grand canonical partition function are [185],

ρ̂ =
e−β(Ĥ−µN̂)

Ξgc
and Ξgc = e−βΩ = Tr e−β(Ĥ−µN̂) , (7.86)

obviously satisfying Tr ρ̂ = 1. For the grand canonical ensemble the basis states of
the total Hamiltonian Ĥ are all microstates composed of many particles, and the
operators N̂ and ρ̂ can be expressed in the same basis.

We now migrate from the single-particle product state basis {|Ψk⟩} to a Fock state
basis assigning a given number of particles nj to every possible energy level εj , where
j = 1, . . . ,∞, as illustrated in Fig. 7.8,

|Ψk⟩ −→ |n1, n2, . . . , nj , . . .⟩ . (7.87)

I.e. we replace the distribution of microstates by a distribution of populations {nj}
among the energy levels. Since the energy and particle numbers are separately con-
served, the corresponding operators commute,

[Ĥ, N̂ ] = 0 , (7.88)

and therefore it is possible to find a complete basis of simultaneous eigenstates,

Ĥ| . . . nj . . .⟩ = E| . . . nj . . .⟩ with N̂ | . . . nj . . .⟩ = N | . . . nj . . .⟩ (7.89)

11In case of multi-species ensembles, the potentials add up like µ1N1 + µ2N2 + ....
12In practice, a set of several quantum numbers may be required.
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with,

E =

∞∑

j=0

εjnj and N =

∞∑

j=0

nj . (7.90)

This means that the number of particles is a conserved quantity and that Ĥ and N̂
can be simultaneously diagonalized.

We can now evaluate the partition function (7.86),

Ξgc =
∑

k∈{microstates}
⟨Ψk|e−β(Ĥ−µN̂)|Ψk⟩ (7.91)

=
∑

{nj}
⟨. . . nj . . . |e−β(Ĥ−µN̂)| . . . nj . . .⟩ =

∑

{nj}
e−β(E−µN) .

The density operator in this new basis is,

ρ̂ =
∑

{nj}

| . . . nj . . .⟩e−β(E−µN)⟨. . . nj . . . |∑
{nj} e

−β(E−µN)
. (7.92)

Figure 7.8: (a) Ensemble of N particles with different positions and velocities. (b) Distri-
bution of the particles over the spectrum of allowed energies.

Using the conditions (7.90), the partition function becomes,

Ξgc =
∑

n1,n2,...

⟨. . . nj . . . |e−β(Ĥ−µN̂)| . . . nj . . .⟩ (7.93)

=
∑

n1

⟨n1|e−β(n1ĥ1−n1µ)|n1⟩
∑

n2

⟨n2|e−β(n2ĥ2−n2µ)|n2⟩ × . . . ≡
∞∏

j=1

Ξj ,

where in the last step we defined a partial partition sum,

Ξj ≡
∑

nj

e−β(εjnj−µnj) , (7.94)

accounting for all possible populations of a particular energy level εj . Analogously,
the density operator becomes,

ρ̂ =
e−β(Ĥ−µN̂)

Ξgc
=

1

Ξgc
e
−β

(∑
{nj}

(εj−µ)n̂j

)
(7.95)

=
1

Ξgc
e−β(ε1−µ)n̂1e−β(ε2−µ)n̂2 × . . . =

∞∏

j=1

ρ̂j .
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Note, that breaking down the exponential of a sum of operators, e−
∑
n̂j , into a prod-

uct of exponentials of that operators,
∏
e−n̂j , is only possible because the operators

commute, [n̂k, n̂j ] = 0, which is only the case for non-interacting particles. In the last
step we defined,

ρ̂j ≡
e−β(εj−µ)n̂j

Ξj
= |nj⟩

e−β(εj−µ)

Ξj
⟨nj | . (7.96)

The problem with this expression is, that the global wavefunction |Ψ⟩ has not
yet been (anti-)symmetrized according the particles’ bosonic or fermionic nature.
For bosons, nj may be any non-negative integer and each value of nj counts as
one microstate due to the indistinguishability of particles. For fermions, the Pauli
exclusion principle allows only two microstates for the orbital (occupation of 0 or 1),
giving a two-term series 13, The partial partition sum (7.94) can thus be evaluated,

Ξj =





∑∞
nj=0 e

−β(njεj−njµ) = 1

1−e−β(εj−µ) for bosons

∑1
nj=0 e

−β(njεj−njµ) = 1 + e−β(εj−µ) for fermions
(7.97)

Hence,

Ξgc =

∞∏

j=1

(1− se−β(εj−µ))−s , (7.98)

where s = 1 for bosons and s = −1 the lower for fermions.
The grand canonical potential per microstate becomes,

Ωj = −kBT ln Ξj = skBT ln(1− se−β(εj−µ)) . (7.99)

Considering again the entire system, the total Landau grand potential is found by
adding up the Ωj for all orbitals,

Ω =

∞∑

j=1

Ωj . (7.100)

In any case the value 14

nj = −
∂Ωj
∂µ

=
1

eβ(εj−µ) − s ≡ wT,µ(εj) (7.101)

13Here, we introduce the statistics of indistinguishable particles ad hoc. The same result is obtained
automatically introducing field operators satisfying bosonic or fermionic commutation rules. Indeed,
we can rewrite the Hamiltonian and the number operator of any non-interacting system like [850],

Ĥ =
∑
{nj}

εj â
†
j âj and N̂ =

∑
{nj}

â†j âj ,

where â†j and âj are the particle creation and annihilation operators introduced in the occupation
number representation.

14Note the absence of the degeneracy factor gj in comparison to the formula (7.69), which is
simply due to the fact that here we only consider a potential with non-degenerate eigenstates. The
degeneracy factor gj can, however, simply added ad hoc.
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gives the thermodynamic average number of particles on the orbital: the Fermi-Dirac
distribution for fermions, and the Bose-Einstein distribution for bosons.

The problem is completely analogous to Planck’s treatment of blackbody radia-
tion, where the Bose-Einstein distribution function followed as a corollary from the
Boltzmann statistics in thermal equilibrium and Planck’s quantization hypothesis,
E = Nεj .

7.2.4.1 Grand potential and ensemble averages

Evaluating partial derivatives of the function Ω(µ, V, T ), looking up the relations
(??), we find for the averages of numbers of particles, the Gibbs entropy, the average
pressure, and the average energy,

1 = Tr ρ̂

N = ⟨N̂⟩ = Tr ρ̂N̂ = −
(
∂Ω

∂µ

)

T,V

S = kBTr ρ̂ ln ρ̂ = −
(
∂Ω

∂T

)

µ,V

P = −
(
∂Ω

∂V

)

T,µ

E = ⟨Ĥ⟩ = Tr ρ̂Ĥ = TS + µN +Ω

. (7.102)

We will derive Eq. (7.102)(iii) in Exc. 7.2.6.4.

Example 50 (Calculation of ensemble averages): Thermodynamic fluc-
tuations can be calculated via the variances in energy and particle numbers.
Starting from,

−βΩ = lnΞgc = lnTr e−β(Ĥ−µN̂) (7.103)

it is easy to show, that,

∂Ξgc

∂µ
= βTr N̂e−β(Ĥ−µN̂) = βΞgc⟨N̂⟩ (7.104)

−β ∂Ω
∂µ

=
Tr N̂e−β(Ĥ−µN̂)

Ξgc
= β⟨N̂⟩

−∂
2Ω

∂µ2
=

Ξgc
∂
∂µ

Tr N̂e−β(Ĥ−µN̂) − Tr N̂e−β(Ĥ−µN̂) ∂
∂µ

Ξgc

Ξ2
gc

= β(⟨N̂2⟩ − ⟨N̂⟩2) .

Hence, the particle number fluctuations are,

∆N̂ = ⟨N̂2⟩ − ⟨N̂⟩2 = − 1

β

∂2Ω

∂µ2
= kBT

∂⟨N̂⟩
∂µ

. (7.105)

Similarly,

(∆Ĥ)2 = ⟨Ĥ2⟩ − ⟨Ĥ⟩2 = kBT
2 ∂⟨Ĥ⟩
∂T

+ kBTµ
∂⟨Ĥ⟩
∂µ

, (7.106)

as will be verified in Exc. 7.2.6.5.
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If different species are present, it is interesting to calculate correlations in fluctu-
ations [501]. The covariances of particle numbers and energy are then,

⟨N1N2⟩ − ⟨N1⟩⟨N2⟩ = kBT
∂⟨N̂2⟩
∂µ1

= kBT
∂⟨N̂1⟩
∂µ2

(7.107)

⟨N̂1Ĥ⟩ − ⟨N̂1⟩⟨Ĥ⟩ = kBT
∂⟨Ĥ⟩
∂µ1

.

From the above expressions, it can be seen that the function Ω has the exact
differential,

dΩ = −S dT − ⟨N̂⟩dµ− P dV . (7.108)

Substituting the relationship (7.102)(v) for E into the exact differential of Ω, an equa-
tion similar to the first law of thermodynamics is found, except that some quantities
only appear as averages,

d⟨Ĥ⟩ = T dS + µd⟨N̂⟩ − P dV . (7.109)

7.2.4.2 Meaning of chemical potential

The key behind second quantization is to remove the restriction that the number of
particles is fixed. Instead, the theory is built around the idea of Fock space, where the
number of particles is not fixed. This is highly advantageous when dealing with many-
body systems. This same idea, when extended to finite temperatures, is what we call
the grand canonical ensemble. What we want is to consider some finite temperature

density matrix ρ̂ ∼ e−βĤ , where the number of particles is not fixed, but can fluctuate
[501].

However, letting it fluctuate arbitrarily would make no physical sense. Instead, the
basic idea of the grand canonical ensemble is to impose that the number of particles
in the system is only fixed on average. That is, we impose that,

⟨N̂⟩ = N . (7.110)

In some systems, the number of particles does indeed fluctuate. This happens, for
instance, in chemical solutions: if we look at a certain region of a liquid, the number
of molecules there is constantly fluctuating due to molecules moving in and out from
other regions. Of course, in many other systems, the number of particles is fixed.
However, even in these cases, pretending it can fluctuate may still give good answers
for large N (thermodynamic limit). The reason is that, as we have seen above, the
variance of N̂ scales as,

∆N̂ ∝
√
N , (7.111)

which is small. Hence, when N is large, the grand canonical ensemble will give
accurate answers, even if the number of particles is not actually allowed to fluctuate.
This is the idea behind ensemble equivalence: we are allowed to use an ensemble
where the number of particles fluctuates, even though it actually doesn’t, because in
the thermodynamic limit the fluctuations are small.

Because of [Ĥ, N̂ ] = 0 the eigenvalues of N̂ are good quantum numbers alongside

the eigenvalues of Ĥ. We can now arrange the common eigenvectors of E and N in
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such a way as to sort the eigenvalue sets (N,E) by total atom numbers, such that

Ĥ is divided in sectors with well-defined N . In other words, Ĥ is block diagonal,
and there are no terms connecting sectors with different N . The eigenvalues E are
thus labeled by two indices E(N,m), where m labels the quantum states within each
sector,

Ĥ =



E(N1, 1)

E(N1, 2)

. . .

E(N2, 1)

E(N2, 2)

. . .

. . .


. (7.112)

Suppose now that the system is in thermal equilibrium with exactly N particles,
which corresponds to a canonical ensemble. As resumed in Tab. ??, the conditions
for equilibrium are then obtained minimizing the Helmholtz free energy, dF = 0, and
the corresponding canonical density operator and partition function are,

ρ̂cn =
e−βĤ

Ξcn(N)
, Ξcn(N) =

∑

m∈sector

e−βE(N,m) , F = −kBT ln Ξcn(N) .

(7.113)

This is a constrained sum, since we are only summing over that sector that has
exactly N particles. This constraint makes it notoriously difficult to compute the
sum in practice solving a Schrödinger equation with Ĥ.

Instead, in the grand canonical ensemble we allow the number of particles to
fluctuate but only fix them on average (7.110). To accomplish this we had to intro-
duce a new parameter µ, called the chemical potential, so that the grand canonical
equilibrium state is transformed to,

ρgc =
e−β(Ĥ−µN̂)

Ξgc
, Ξgc = Tr e−β(Ĥ−µN̂) , Ω = −kBT ln Ξgc . (7.114)

Apparently, the chemical potential enters by shifting the Hamiltonian,

Ĥ → Ĥ − µN̂ . (7.115)

As resumed in Tab. ??, in grand canonical ensembles the conditions for equilibrium are
obtained minimizing the Landau energy, dΩ = d(F − µN) = 0. To obtain the energy
spectrum in the case of fluctuating particle numbers, we need to solve a many-body
Schrödinger equation (such as the Gross-Pitaevski equation) with the Hamiltonian
substituted by Ω̂ = Ĥ − µN̂ [238].

The logic behind µ is twofold. When the number of particles is allowed to fluctuate,
the value of µ is fixed externally (like the temperature). As a consequence the number
of particles ⟨N̂⟩ = N(µ, T ) is interpreted as a function of µ and T . Conversely, if the
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number of particles N is fixed, then µ = µ(N,T ) is to be interpreted as a function of
N and T , which is to be determined as the solution of the implicit equation,

⟨N̂⟩ = Tr N̂e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)
= N . (7.116)

Relevant cases in which the number of particles is not conserved are:

• Chemical reactions can convert one type of molecule to another; if reactions
occur then the Ni must be defined such that they do not change during the
chemical reaction.

• In high energy particle physics, ordinary particles can be spawned out of pure
energy, if a corresponding antiparticle is created. Then, neither the number of
particles nor antiparticles are conserved, only their difference.

• In a system composed of multiple compartments that share energy but do not
share particles it is possible to set the chemical potentials separately for each
compartment, for example, when a capacitor composed of two isolated conduc-
tors is charged by applying a difference in electron chemical potential.

• In some slow quasi-equilibrium situations it is possible to have distinct popula-
tions of the same kind of particle in the same location, which are each equili-
brated internally but not with each other.

• The grand canonical ensemble is particularly useful for developing the thermo-
dynamics of large ideal trapped quantum gases. While the phenomenon of BEC
can be derived in any ensemble (in Sec. 7.2.2 we derived the bosonic partition
function from the detailed balanced assumption using combinatorial arguments),
when the dynamics of a condensate is the subject under study, it is often useful
to consider it as a separate system being in thermal and chemical equilibrium
with a reservoir. The role of a reservoir is played by the thermal cloud, which
always coexists with the condensate and which exchanges particles and energy
with it.

In order for a particle number to have an associated chemical potential, it must
be conserved during the internal dynamics of the system, and only able to change
when the system exchanges particles with an external reservoir. If the particles can
be created out of energy during the dynamics of the system, then an associated µN
term must not appear in the probability expression for the grand canonical ensemble,
i.e. we require µ = 0 for that kind of particle. Such is the case for photons in a black
cavity, which can be annihilated or created due to absorption and emission on the
cavity walls (see Exc. 7.2.6.6) 15.

15Note that photons in a highly reflective cavity can be conserved and caused to have a non-zero
chemical potential µ.
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7.2.4.3 Comparison of canonical and grand canonical ensembles

The canonical ensemble is used to represent the possible microstates of a mechanical
system in thermal equilibrium with a heat bath at a fixed temperature. The system
can exchange energy with the heat bath, so that the states of the system will differ
in total energy. The principal thermodynamic variable of the canonical ensemble,
determining the probability distribution of states, is the absolute temperature T .
The ensemble typically also depends on mechanical variables, such as the number of
particles N in the system and the system’s volume V , each of which influence the
nature of the system’s internal states.

The canonical ensemble assigns a probability Pcn(E) to each distinct microstate
given by the following exponential,

Pcn(E) = eβ(F−E) = 1
Ξcn

e−E/(kBT ) with Ξcn = e−F/(kBT ) , (7.117)

where E is the total energy of the microstate and Ξcn the canonical partition function.
In quantum mechanics the density operator and partition function are,

ρ̂cn = eβ(F−Ĥ) = e−βĤ

Ξcn
= 1

Ξcn

∑
k |ψk⟩eβ(F−Ek)⟨ψk|

Ξcn = Tr e−βĤ = e−βF =
∑
k e

−βEk

. (7.118)

The Helmholtz free energy F is constant for the ensemble. However, the prob-
abilities and F will vary if different N,V, T are selected. The free energy F serves
two roles: first, it provides a normalization factor for the probability distribution (the
probabilities, over the complete set of microstates, must add up to one); second, many
important ensemble averages can be directly calculated from the function F (N,V, T ).

The canonical ensemble is the ensemble that describes the possible states of a
system that is in thermal equilibrium with a heat bath. It applies to systems of
any size; while it is necessary to assume that the heat bath is very large (i.e. take a
macroscopic limit), the system itself may be small or large.

The condition that the system is mechanically isolated is necessary in order to
ensure it does not exchange energy with any external object besides the heat bath. In
general, it is desirable to apply the canonical ensemble to systems that are in direct
contact with the heat bath, since it is that contact that ensures the equilibrium.
In practical situations, the use of the canonical ensemble is usually justified either
(1) by assuming that the contact is mechanically weak, or (2) by incorporating a
suitable part of the heat bath connection into the system under analysis, so that the
connection’s mechanical influence on the system is modeled within the system.

When the total energy is fixed but the internal state of the system is otherwise
unknown, the appropriate description is not the canonical ensemble but the micro-
canonical ensemble. For systems where the particle number is variable (due to contact
with a particle reservoir), the correct description is the grand canonical ensemble.

The grand canonical ensemble is used to represent the possible microstates of a
system of particles that are in thermal and chemical equilibrium with a reservoir.
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The system is said to be open in the sense that the system can exchange energy and
particles with a reservoir, so that various possible states of the system can differ in
both their total energy and total number of particles. The system’s volume, shape,
and other external coordinates are kept the same in all possible states of the system.

The thermodynamic variables of the grand canonical ensemble are chemical po-
tential µ and absolute temperature T . The ensemble is also dependent on mechanical
variables such as volume V which influence the nature of the system’s internal states.
As each of these is assumed to be constant in the grand canonical ensemble, it is
sometimes called the µV T ensemble.

The grand canonical ensemble assigns a probability Pgc(E) to each distinct mi-
crostate given by the following exponential 16,

Pgc = eβ(Ω+µN−E) = 1
Ξgc

eβ(µN−E) with Ξgc = e−βΩ , (7.119)

where N is the number of particles in the microstate and E is the total energy of the
microstate.

The quantum mechanics the density operator and partition function are,

ρ̂gc = eβ(Ω+µN̂−Ĥ) = e−β(Ĥ−µN̂)

Ξgc
= 1

Ξgc

∑
k |ψk⟩eβ(Ω+µnk−Ek)⟨ψk|

Ξgc = Tr e−β(Ĥ−µN̂) = e−βΩ =
∑
k e

β(µnk−Ek)

. (7.120)

The grand potential Ω is constant for the ensemble. However, the probabilities
and Ω will vary if different µ, V, T are selected. The grand potential Ω serves two roles:
to provide a normalization factor for the probability distribution (the probabilities,
over the complete set of microstates, must add up to one); second, many important
ensemble averages can be directly calculated from the function Ω(µ, V, T ).

The grand canonical ensemble is the ensemble that describes the possible states
of an isolated system that is in thermal and chemical equilibrium with a reservoir.
The grand canonical ensemble applies to systems of any size, small or large; it is
only necessary to assume that the reservoir with which it is in contact is much larger
(i.e. to take the macroscopic limit).

The condition that the system is isolated is necessary in order to ensure it has well-
defined thermodynamic quantities and evolution. In practice, however, it is desirable
to apply the grand canonical ensemble to describe systems that are in direct contact
with the reservoir, since it is that contact that ensures the equilibrium. The use of
the grand canonical ensemble in these cases is usually justified either (1) by assuming
that the contact is weak, or (2) by incorporating a part of the reservoir connection
into the system under analysis, so that the connection’s influence on the region of
interest is correctly modeled. Alternatively, theoretical approaches can be used to
model the influence of the connection, yielding an open statistical ensemble.

Another case in which the grand canonical ensemble appears is when considering
a system that is large and thermodynamic (a system that is ’in equilibrium with

16In the case where more than one kind of particle is allowed to vary in number, the probability
expression generalizes to Pgc = eβ(Ω+µ1N1+µ2N2+...−E), where µj is the chemical potential for the
j-th kind of particles, Nj the number of that kind of particle in the microstate.
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itself’). Even if the exact conditions of the system do not actually allow for variations
in energy or particle number, the grand canonical ensemble can be used to simplify
calculations of some thermodynamic properties. The reason for this is that various
thermodynamic ensembles (microcanonical, canonical) become equivalent in some
aspects to the grand canonical ensemble, once the system is very large. Of course,
for small systems, the different ensembles are no longer equivalent even in the mean.
As a result, the grand canonical ensemble can be highly inaccurate when applied to
small systems of fixed particle number, such as atomic nuclei 17.

Grand ensembles are apt for use when describing systems such as electrons in a
conductor or photons in a cavity, where the shape is fixed but the energy and number
of particles can easily fluctuate due to contact with a reservoir (e.g. an electrical
ground or a dark surface, in these cases). The grand canonical ensemble provides a
natural setting for an exact derivation of the Fermi-Dirac statistics or Bose-Einstein
statistics for a system of non-interacting quantum particles.

7.2.5 Thermodynamic limit and Riemann’s zeta function

The partition functions (7.59) resp. (7.64) for microcanonical and (7.98) for grand
canonical ensembles are evaluated over discrete distributions of microstates. Also, in
Sec. 7.2.3 we argued that, in view of the huge number of microstates, it is desirable
to introduce continuous distribution functions,

∑

r,p

. . . −→ h−3

∫
d3rd3p . . . −→ h−3

∫
dεη(ε) . . . , (7.121)

which, for confined ensembles, can even be simplified using the concept of density-of-
states η(ε). As long as we are deep in the thermodynamic limit, N →∞, we expect to
obtain reliable results. Let us now do this exercise for an ideal quantum gas confined
in a box potential of volume V , whose density-of-states is given by (7.74).

We begin with the request that the chemical potential satisfies the normalization
condition,

N =

∫
wT,µ(ε)η(ε)dε =

V
√
2m

(2π)2ℏ3

∫ ∞

0

√
εdε

eβ(ε−µ) ∓ 1
. (7.122)

Introducing the thermal de Broglie wavelength,

λth ≡
√

2πℏ2
mkBT

, (7.123)

and defining the fugacity,

Z ≡ eβµ , (7.124)

and we may also write,

N =
V

λ3th

∫ ∞

0

√
xdx

Z−1ex ∓ 1
. (7.125)

17Note that even in the thermodynamic limit, in the presence of long range interactions, the
ensembles may not be equivalent.
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At this point, to simplify the notation, we introduce the Bose function and its
integral representation,

g+ξ (Z) =

∞∑

t=1

Zt

tξ
=

1

Γ(ξ)

∫ ∞

0

xξ−1dx

Z−1ex − 1
≡ gξ(Z) , (7.126)

where Γ(η) denotes the Gamma function. Analogically, we can define the Fermi
function via 18,

g−ξ (Z) =
∞∑

t=1

− (−Z)t
tξ

=
1

Γ(ξ)

∫ ∞

0

xξ−1dx

Z−1ex + 1
≡ fξ(Z) . (7.127)

For classical particles,

g0ξ (Z) =
1

Γ(ξ)

∫ ∞

0

xξ−1dx

Z−1ex + 0
= Z , (7.128)

because the integral just defined the Gamma function. That is, interestingly the
classical function corresponding to the Bose or Fermi function is an identity for all
orders of ξ. A particular value is the Riemann zeta-function defined as,

ζ(ξ) = g+ξ (1) . (7.129)
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Figure 7.9: (code) (a) Bose and Fermi functions for box potentials (g3/2 and f3/2) and

for harmonic potentials (g3 and f3). Note that the Bose function is only defined between

Z ∈ [0, 1]. Also shown is the Boltzmann limit (7.128). (b) Riemann function.

Note that for Z−1ex ≫ 0 all denominators in the expressions (7.126) or (7.128)
converge to the classical limit, which is to say, that for highly excited atoms, ε−µ≫
kBT , all quantum statistical effects disappear.

With all these definitions we can now rewrite the expression (7.125),

N =
V

λ3th
g
(s)
3/2(Z) , (7.130)

18When the context is clear, we will use the shorter notations gξ and fξ for Bose and Fermi
functions, respectively.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseFermiFunction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseFermiFunction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseFermiFunction.m
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where s = + for bosons, s = − for fermions, and s = 0 for boltzons. Apparently, we
can identify the Bose/Fermi function as the thermal phase space density of an ideal
gas,

ρth ≡
N

V
λ3th = g

(s)
3/2(Z) . (7.131)

In a similar way we could now derive analytic expressions for all other thermodynamic
potentials. We will, however, see in the next Sec. 7.3, that for ideal bosonic gases the
result (7.130) must be corrected. The reason is rooted in a momentous quality of the
Bose function, which is that it diverges for Z > 1, which limits the chemical potential
to negative values.

7.2.6 Exercises

7.2.6.1 Ex: Quantum statistics

n particles are distributed over g > n different cells with the same probability. Cal-
culate the probabilities
a. that there is exactly one particle in each one of the first n cells;
b. that there is no cell with more than one particle.
Use the three different assumptions that:
i. the particles are boltzons, i.e. they are identifiable and arbitrarily many particles
can be assigned to each cell;
ii. the particles are bosons, i.e. they are NOT identifiable and arbitrarily many par-
ticles can be assigned to each cell;
iii. the particles are fermions, i.e. they are NOT identifiable and only a single particle
may be assigned to each cell.

7.2.6.2 Ex: Density-of-states for non-harmonic potentials

Calculate the density-of-states for non-harmonic potentials, Ĥ = ℏ2k2

2m +
∣∣ x
2x̄

∣∣p+
∣∣∣ y2ȳ
∣∣∣
l

+
∣∣ z
2z̄

∣∣q using Ref. [44]. Apply the result to a quadrupolar potential.

7.2.6.3 Ex: Electron gas model

A simple model for the behavior of electrons in a metal is the Fermi gas model. In this
model the electrons move in a square well potential, a mean-field approach accounts
globally for the periodic lattice of ions and the influence of all other electrons. The
density-of-states and the electron density are the same as for blackbody radiation,

ρ(ε)dε =
V (2m3)1/2

π2ℏ3
√
εdε ,

n(ε)ρ(ε)dε =
1

e(ε−εF)/kBT + 1
ρ(ε)dε .

Calculate the maximum energy at T = 0.

7.2.6.4 Ex: Entropy in the grand canonical ensemble

Derive the relationship S = kBTr ρ̂ ln ρ̂.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats04.pdf
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7.2.6.5 Ex: Energy fluctuation in grand canonical ensembles

Derive the expression (7.106).

7.2.6.6 Ex: Black-body radiation

Derive the thermodynamics of the phenomenon of black-body radiation.
a. Which is the appropriate thermodynamic ensemble, and why?
b. For a single mode of a cavity, calculate the partition function, the density operator,
the total energy, and the Helmholtz free energy.
c. Generalize the results for an arbitrary black-body.
d. Introducing the density-of-states, calculate the energy density in the cavity as a
function of temperature.

7.3 Condensation of an ideal Bose gas

The clearest manifestation of quantum statistical effects is probably the phenomenon
of Bose-Einstein condensation (BEC) predicted by Bose and Einstein in 1926 [107].
With the achievement of BEC in a dilute gas of atomic rubidium in 1995, Cornell
et al. [172] confirmed the theory. Quantum degeneracy in Fermi gases was also
observed a bit later [214, 628]. In this and the subsequent section, we will present a
quantum statistical theory of ideal quantum gases for the cases of bosons, respectively,
fermions. Clearly, the theory is unable to grasp many phenomena observed in BECs
and linked to interatomic interactions, such as superfluidity. These will be discussed
elsewhere 19.

7.3.1 Condensation of a gas confined in a box potential

At very low temperatures approaching T = 0, according to the Bose-Einstein distri-
bution (7.101), we expect the atoms to pile up in the lowest energy state εj=0 = 0 of
the trap,

n0
ε0→0−→ wT,µ(0) =

1

e−βµ − 1
=

1

1/Z − 1
= N , (7.132)

where we used the definition of the fugacity (7.124). In the thermodynamic limit,

Z =
1

1 + 1/N

N→∞−→ 1 , (7.133)

we find that the fugacity approaches unity. Thus, Z = 1 is the condition for a
macroscopic ground state population.

Let us now calculate the ground state population at finite temperatures. For
a free gas with energy spectrum, ε = p2/2m, we derived the density-of-states η(ε)
in (7.74) 20. Using the occupation number wT,µ(ε) for the Bose-Einstein distribu-
tion (7.101) in the thermodynamic limit, we express the total number of atoms as we

19See script on Quantum Mechanics applied to Atomic and Molecular Physics, Quantum and
Atom Optics (2025).

20We must, however, keep in mind that the state density approach is an approximation not valid
for experiments with a limited number of atoms.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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already did in Eq. (7.130),

N =

∫ ∞

0

wT,µ(ε)η(ε)dε =
V

λ3th
g3/2(Z) . (7.134)

The problem with the expression (7.134) now is, that the thermal de Broglie wave-
length diverges for T → 0, while the phase space density g3/2(Z) is bounded be-
tween g3/2(0) = 0 and g3/2(1) ≈ 2.612, which we realize after a quick inspection of
Fig. 7.9(a). Hence, according to this formula, even taking the largest possible value

of the fugacity, Z
T→0−→ 1, the number of atoms in the lowest energy state tends to 0,

N =
V

λ3th
g3/2(Z) <

(
mkBT

2πℏ2

)3/2

V g3/2(1)
T→0−→ 0 . (7.135)

This is obviously in contrast to the expectation of a large ground state population for
T → 0.

The reason is, that in the process of converting the sum to an integral (7.121),
the density-of-states disappears as we approach the ground state, thus removing the
ground state from the spectrum of energies that can be occupied. Einstein’s idea to
resolve the problem, was to explicitly maintain a discrete term accounting for the
ground state population Nc and to add it to the expression (7.134),

N = Nc +
V

λ3th
g3/2(Z) . (7.136)

7.3.1.1 Critical temperature and condensed fraction

We can use Eq. (7.136) to calculate the critical temperature Tc for Bose-Einstein
condensation. Above the phase transition, T > Tc, the population is distributed over
all states, each individual state being weakly populated; in particular, practically no
atoms are condensed, Nc = 0. The critical temperature Tc is the lowest temperature
where there are still no condensed atoms.

Below the critical temperature, T < Tc, the chemical potential is fixed by µ = 0,
and the fugacity reaches its maximum value, Z = 1. Above and at the critical tem-
perature all atoms occupy excited states. Being a fixed parameter the total number
of atoms N does not depend on temperature,

N =
V

λ3th
g3/2(Z) =

V

λ3c
g3/2(1) for T ≥ Tc , (7.137)

with g3/2(1) = 2.612. The first part of Eq. (7.137) holds for T ≥ Tc and provides a
mean of determining Z from temperature and total atom number. The second part
of Eq. (7.137) holds at T = Tc. Resolving it by Tc we obtain,

kBTc =
2πℏ2

m

(
N

V g3/2(1)

)2/3

. (7.138)

Below the critical temperature we need to add an additional term Nc. Resolving the
full expression (7.136) by the fraction Nc/N of atoms condensed in the ground state
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and substituting N from (7.137), we obtain,

Nc

N
= 1− V

Nλ3th
g3/2(Z) = 1− λ3c

λ3th

g3/2(Z)

g3/2(1)
=

{
1− λ3

c

λ3
th

for T ≤ Tc
0 for T ≥ Tc

(7.139)

In summary we have,

Nc

N
= 1−

(
min(T, T

(3/2)
c )

T
(3/2)
c

)3/2

with kBT
(3/2)
c =

2πℏ2

m

(
N

V g3/2(1)

)2/3

.

(7.140)
The superscript (3/2) denotes the box potential shape of the trapping potential 21.
The abrupt occurrence of a finite occupation in a single quantum state at temperature

below T
(3/2)
c indicates a spontaneous change in the system and a thermodynamic

phase transition. Solve Exc. 7.3.4.1.

0 0.5 1 1.5
T/Tc

0

0.5

1

N
c/
N

Figure 7.10: (code) Condensed fraction for an ideal Bose gas as a function of reduced

temperature for a (blue) in a box potential and (green) in a harmonic trap. Red circles

denote experimentally measured data points [367]. The red dashed line is a fit to the data.

The cyan dash-dotted line is a theoretical curve taking into account finite size effects and

interatomic interactions.

7.3.1.2 Thermodynamic potentials in a grand canonical ensemble

In order to calculate the density-of-states, state equation, mean values in the grand
canonical ensemble, we start from the definitions of the partition sum Ξgc in Eq. (7.98)
using the upper signs for bosons, the grand canonical potential Ω, the fugacity Z, the
density operator ρ̂, and the trace,

Ξgc ≡
∏∞

j=1
(1∓ Ze−βεj )∓1 and Ω ≡ −kBT ln Ξgc and Z ≡ eβµ

and ρ̂ ≡ e−β(ĤN−µN̂)

Ξgc
and Tr . . . ≡

∑

j

⟨ψj | . . . |ψj⟩ . (7.141)

21See Exc. 7.3.4.3 for an explanation of the notation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
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The parameters µ, V, T are held fixed. As we have seen, for large systems in the
thermodynamic limit, the sum can be replaced by an integral, which, in turn, may
be expressed by the Riemann zeta-function (see Secs. 7.2.5 and 8.1.2). The thermo-
dynamic potentials and their expressions are summarized in the following table 22.

Table 7.1: Thermodynamic potentials for an ideal Bose gas (upper signs) or Fermi
gas (lower signs) trapped in a box potential.

Tr ρ̂ ln Ξgc

∑∞
j=1 limN→∞

Ω − 1
β
ln Ξgc

∑
j

ln(1∓Ze−βεj )
±β

µ 1
β
lnZ

1 Tr ρ̂

nj −
(
∂Ωj

∂µ

)
T,V

wT,µ − 1
β

∂
∂εj

ln Ξgc
1

e
βεj /Z∓1

N −
(
∂Ω
∂µ

)
T,V

Tr N̂ ρ̂ Z ∂
∂Z

ln Ξgc

∑
j nj

V
λ3
th
g±3/2+

{
1

1/Z−1

}
S/kB −

(
∂Ω
kB∂T

)
µ,V

Tr ρ̂ ln ρ̂ ln Ξgc ±∑j ln
nje

βεj

Z
5V
2λ3

th
g±5/2

P −
(
∂Ω
∂V

)
T,µ

1
βV

ln Ξgc
1

βλ3
th
g±5/2

E TS + µN +Ω Tr Ĥρ̂ − ∂
∂β

ln Ξgc

∑
j njεj

3kBTV

2λ3
th

g±5/2 ≃ 3PV
2

CV
(
∂E
∂T

)
N,V

15V
4λ3

th
g±5/2

With the particle number N we calibrate the chemical potential µ at a given
temperature T via,

N =
V

λ3th
g3/2(Z) =⇒ Z = g−1

3/2

(
λ3thN/V

)
, (7.142)

and knowing Z we can determine all thermodynamic potentials of the table 7.1.
The internal energy with fixed volume is proportional to the pressure. Note that
limN→∞ S = 0 and limN→∞ CV = 0. Do the Exc. 7.3.4.2.

The Bose-Einstein phase transition occurs at some critical temperature Tc. At
high temperature T > Tc the ground state population vanishes. At low temperature
T < Tc , we have to substitute in the above equations Z by 1. Since g3/2 is limited
for Z = 0, .., 1 the population balance must be equilibrated by an additional term
describing the ground state population:

N

V
λ3th =

{
g+3/2(1) + λ3th

Nc

V for T ≤ Tc
g+3/2(Z) for T ≥ Tc

P

kBT
λ3th =

{
g+5/2(1) for T ≤ Tc
g+5/2(Z) for T ≥ Tc

(7.143)

22The red terms in {} brackets only hold for bosons, because the integrals diverge otherwise.
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In the thermal Bose-gas phase, T ≥ Tc, we get from (7.143) the state equation,

PV

NkBT
=
g+5/2(Z)

g+3/2(Z)

T→∞−→ 1 . (7.144)

In the classical limit, obtained by noticing g0ξ (Z) = Z, follows the well-known classical
ideal gas equation. In the Bose-condensate phase, T ≤ Tc, using the definition of the
critical temperature, we recover from (7.143) the equation of state (7.140).
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Figure 7.11: Ultracold 87Rb gas at various temperatures (a,b) T > Tc, (c,d) T ≃ Tc, and
(e,f) T < Tc measured in experiment [367]. The figures (a,c,e) are two-dimensional false
color images of the momentum distribution. The figures (b,d,f) are cuts through the images.

7.3.2 Condensation of a harmonically confined gas

The critical temperature Tc can be significantly altered, when the atoms are confined
to a spatially inhomogeneous potential. The critical temperature depends on the
general shape and the tightness of the potential. Let us consider N particles of
an ideal Bose gas distributed over several quantum states of an arbitrary potential.
The occupation number wT,µ(ε) of particles at an energy level ε is still given by
(7.101), the ground state energy is defined as zero. In the thermodynamic limit,
the relation between the chemical potential and the total number of particles is still
given by Eq. (7.142), with an adequate density-of-states η(ε). The state density for
an arbitrary confinement potential U(r) can be found by generalizing the calculation
of the free gas case. The phase space volume between the energy surfaces ε and ε+dε
is proportional to the number of states in this energy range. However, the external
potential limits the space available for the gas. For a harmonic potential (7.76) with
the mean secular frequency ω̄ the density-of-states η(ε) has already been calculated
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in Eq. (7.80). With this, we can analogically to (7.142) and (7.140), calculate,

N = Nc +

∫ ∞

0

wT,µ(ε)η(ε)dε (7.145)

= Nc +
1

2(ℏω̄)3

∫ ∞

0

ε2dε

eβ(ε−µ) − 1
= Nc +

(
kBT

ℏω̄

)3

g3(Z) .

In the same way as for a potential well we find for a harmonic potential,

Nth =

(
kBT

ℏω̄

)3

g3(1) = N

(
T

T
(3)
c

)3

, (7.146)

with g3(1) = 1.202. Since Nc +Nth = N , the number of particles in the ground state
is,

Nc

N
= 1−

(
min(T, T

(3)
c )

T
(3)
c

)3

with kBT
(3)
c = ℏω̄

(
N

g3(1)

)1/3

. (7.147)

The superscript (3) indicates the harmonic shape of the trap.
Fig. 7.10 traces the condensed fraction Nc/N measured as a function of the re-

duced temperature T/T
(3)
c . Experiments [367, 267] confirm Bose’s ideal gas theory

in the thermodynamic limit. A particularity of inhomogeneous trapping potentials
is, that the condensed and the normal phase separate in position and in momentum
space, simply because the condensed atoms occupy only the ground state, whose spa-
tial extend is small and where the atoms have low velocity, while thermal atoms are
distributed over all energy levels. Fig. 7.11 shows a measurement of velocity distribu-
tions of a cloud of atoms close to the critical temperature.

We note that smaller trapping volumes (or tighter potentials) increase the critical
temperature Tc, thus allowing for quantum degeneracy at higher temperatures, which
can be advantageous in experimentation. Also, at a given temperature, a strongly
confining potential reduces the total minimum number of atoms required to reach
condensation.

7.3.2.1 Energy and heat capacity

When the number of atoms is limited, N < ∞, we expect a slightly reduced critical
temperature [347]. In addition, the repulsive interatomic interaction reduces the
critical temperature [44]. As the effects are small, they are difficult to observe in
experiments. However, measurements of other thermodynamic quantities such as
energy and heat capacity [214, 267] showed significant deviations from the ideal gas
behavior due to interaction effects.

The heat capacity quantifies the system’s ability to secure its energy. In conven-
tional systems, the heat capacity is typically either specified at constant volume or
at constant pressure. With this specification heat capacities are extensive state vari-
ables. When crossing a phase transition, the temperature-dependent heat capacity
measures the degree of change in the system above and below the critical temperature
and provides valuable information about the general type of phase transition.
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Figure 7.12: (code) Calculation of thermodynamic potentials as a function of temperature

for a Bose gas (green lines) and a classical Boltzmann gas (black lines) of 500000 88Sr atoms

trapped in a harmonic potential with secular frequency ωho/2π = 416Hz. (a) Chemical

potential, (b) energy, (c) heat capacity per particle, and (d) total heat capacity. The critical

temperature is Tc = 1.7µK.

Using (7.82) and (7.126), the total energy per particle is given by,

E

N
=

∫
εwT,µ(r,p)d

3rd3p∫
wT,µ(r,p)d3rd3p

=

∫
εη(ε)(eβ(ε−µ) − 1)−1dε∫
η(ε)(eβ(ε−µ) − 1)−1dε

= 3kBT
g4(Z)

g3(Z)
. (7.148)

For a confined gas, volume and temperature are interdependent, and the concept of
pressure is somewhat vague. In this case, we can not refer to the heat capacity at
constant volume or pressure. However, one can define the heat capacity for a fixed
number of particles,

C(T ) =

(
∂E(T )

∂T

)

N

. (7.149)

Fig. 7.12 shows the temperature dependence of some thermodynamic potentials for a
harmonically trapped ultracold Bose gas. The discontinuity of the heat capacity at
the critical temperature is known as λ-point. It interesting to note the rapid decrease
of the heat capacity with temperature below Tc, which is absolutely not predicted by
classical statistics. This obviously has important consequences for situations in which
a Bose condensate of one species is to be used for sympathetic cooling of a gas of
another species.

Calculating the second moments of the distributions obtained for the same density
by time-of-flight of absorption images, we obtain the kinetic energy,

Ekin =

∫
p2

2m
n(p)d3p . (7.150)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseThermPotentialsHarm.m


290 CHAPTER 7. STATISTICAL THERMODYNAMICS

For confined ideal gases, the virial theorem ensures Ekin+Epot = 2Ekin. For real gases,
the repulsive energy of the mean field adds to this energy, E = Ekin + Epot + Eself.
The sudden extinction of the trapping potential before time-of-flight takes away the
potential energy Epot non-adiabatically. The kinetic energy and the self-energy of
the condensate are fully converted into kinetic energy during ballistic expansion. It
is this energy, p2/2m = Ekin + Eself, which is sometimes called release energy, which
is measured after ballistic expansion 23. Fig. 7.13(right) shows a measurement of the
release energy. Solve the Exc. 7.3.4.3.
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Figure 7.13: Measurement of the release energy [267].

7.3.2.2 Micro- and grand canonical Bose-condensates

The decision which thermodynamic ensemble to use for a theoretical model depends
on the experimental situation. The question is particularly interesting in the context
of Bose-Einstein condensation: Here it is related to the question which state better
describes a BEC: A Fock state characterized by a fixed atom number or a Glauber
state, where the atom number is fluctuating.

The condensates experimentally produced in alkali gases consist of relatively small
atom numbers between 1000 to 107, so that the validity of the thermodynamic approx-
imation and the use of the density-of-states approach has been questioned [347]. Also,
the decision whether to use the grand canonical, the canonical or the microcanoni-
cal ensemble for calculating the thermodynamic quantities noticeably influences the
results. Herzog and Olshanii [391] have shown that for small atom numbers on the
order of 100 the canonical and grand canonical statistics lead to predictions on the
condensed fraction that differ by up to 10% (see Fig. 7.10). On the other hand, they
give the same results if the particle numbers are large. Which canonical statistics
is more appropriate is not a trivial question and depends on the experimental setup
and in particular on the time scale of the measurements. If we look at the sample

23It is interesting to measure the heat capacity of a partially condensed cloud near the critical
point and analyze the discontinuity, because it contains important information about interatomic
interactions and finite-size effects ([175], Sec. 3.4). In addition, the classification of Bose-Einstein con-
densation as a phase transition depends very much on the behavior of the thermodynamic potential
near the critical point [499, 410].
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for short times, the number of condensed atoms will be fixed, and we can assume a
canonical ensemble. For longer times, however, the atom number may be an equi-
librium parameter depending on the contact of the sample with a reservoir, and the
grand canonical statistics is better suited.

7.3.3 Density and momentum distribution for a Bose gas

Bose-Einstein condensates consist of atoms sharing a single quantum state. In in-
homogeneous potentials, the condensate and the thermal fraction form spatially sep-
arated clouds, concentrated around the center of the potential and therefore very
dense. For this reason, interatomic interaction effects generally dominate the density
and momentum distribution of the condensed fraction. However, the non-condensed
(or normal, or thermal) fraction is also subject to modifications due to the bosonic na-
ture of the atoms. Since the density of the normal fraction is generally much smaller,
these modifications are weak. In this section, we will only discuss these effects briefly,
but we note that the calculations are analogous to the calculations for fermionic gases
presented in Sec. 7.4.4.

For an ideal Bose gas the density and momentum distributions are expressed by
Bose functions g3/2(Z) [175]. For example, as will be derived in Exc. 7.3.4.4, the
density and momentum distributions are,

n(x) =
1

λ3th
g3/2(e

−β[U(x)−µ])

n(k) =
a6ho
λ3th

g3/2(e
β(µ−p2/2m))

(bosonic distribution functions) (7.151)

In the classical limit, we can calibrate the chemical potential by Eq. (7.142) for a
box potential or by (7.145) for a harmonic potential,

g3/2(e
βµ)→ c3/2(e

βµ) = eβµ =

{ N
V λ

3
th (for a box potential)

c3(e
βµ) = N

(
ℏω̄
kBT

)3
(for a harmonic potential)

(7.152)
Hence, we obtain for the classical density distribution,

n(x) =
1

λ3th
c3/2(e

−β[U(x)−µ]) =
eβµ

λ3th
e−βU(x) (7.153)

=





N
V

∣∣
x∈V (for a box potential)

N
√

mω̄2

2πkBT

3

e−βmω̄
2x2/2 (for a harmonic potential)

Similarly, the momentum density distribution is given by,

n(k) =
a6ho
λ3th

c3/2(e
β(µ−p2/2m)) =

a6hoe
βµ

λ3th
e−βp

2/2m (7.154)

=





N
V a

6
ho

∣∣
x∈V e

−βp2/2m (for a box potential)

Nℏ3
√

1
2πmkBT

3

e−βp
2/2m (for a harmonic potential)
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where we used the spatial extend of the ground state of the harmonic oscillator
aho =

√
ℏ/mω. We see that we recover the Maxwell-Boltzmann velocity distribution,

as seen in Fig. 7.14,

n(v) = n(k)
m3

ℏ3
= N

√
m

2πkBT

3

e−βmv
2/2 . (7.155)
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Figure 7.14: (code) (a) Density and (b) momentum distribution of a Bose gas (red) and a

Boltzmann gas (green) at T = 1.1Tc (solid line) and at T = 2Tc (dotted line).

7.3.3.1 Ballistic expansion

To describe the density distribution of an ultracold Bose-gas after a time-of-flight we
replace in the second Eq. (7.151): k = mr/ℏtToF. We obtain the density distribution,

nToF(r, tToF) =

(
m

ℏtToF

)3

n(k = mr/ℏtToF) =
(

m

ℏtToF

)3
a6ho
λ3th

g3/2(e
(µ−mr2/2t2ToF)/kBT )

T→∞−→
(

m

ℏtToF

)3

Nℏ3
√

1

2πmkBT

3

e−mr
2/2t2ToFkBT =

N

(2π)3/2r3rms

e−r
2/2r2rms , (7.156)

where we defined,

rrms ≡
√
kBT

m
tToF . (7.157)

This distribution does not directly depend on the potential U(r), that is, the expansion
is isotropic. In Exc. 7.3.4.4(b) we determine the time-of-flight density distribution of
an ultracold Bose gas. For very long flight times (usually several 10ms) the density
resembles a Gaussian distribution [175]. Note however, that in interacting non-ideal
gases the chemical potential does depend on the potential.

In a time-of-flight experiment, any deviation observed between the results (7.156)
and (7.157) points towards an impact of quantum statistics. However, absorption
images only record column densities, i.e. projections of the time-of-flight distribution
on a plane, which tends to smear out the non-Gaussian features.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseDistributions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseDistributions.m
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7.3.3.2 Adiabatic compression

Adiabaticity of a process means reversibility, while the atom number is unchanged
N = const and, hence, constant entropy S = const. According to Eq. (7.7) this
implies an unchanged population distribution nj = const and, consequently, energy
distribution βεj/T = const. Therefore we get βµ, βE = const, and the phase space
density keeps unchanged, e.g. for a box potential N

V λ
3
th = const. The process of

adiabatically compressing a harmonic trap therefore changes the temperature like
T ′ = Tω′/ω. This is valid above and below the transition point.

Example 51 (Heat capacity measurement): For an ideal Bose gas trapped
in a harmonic potential the temperature dependence of the heat capacity at
the threshold to condensation can easily be obtained as follows. The condensed
fraction determines the chemical potential through,

N = N0 +

(
kBT

ℏω

)3

g3(Z) , (7.158)

where Z(T ) = eµ/kBT for a grand canonical ensemble. The condensed fraction
vanishes above the critical temperature, the chemical potential vanishes below
the critical temperature. (kBT/ℏω)3 = 2π(aho/λth)

3 denotes the normalized
volume of a phase space cell. Knowing Z(T ) from equation (7.158), we can
calculate the total energy, the heat capacity and all the other thermodynamic
potentials:

CN = 12kB

(
kBT

ℏω

)3

g4(Z)− 9kBN
g3(Z)

g2(Z)
. (7.159)

For an interacting Bose-gas we expect that the Eqs. (7.158) and (7.159) are

not scrupulously obeyed. Indeed, the abrupt discontinuous change in the heat

capacity at the phase transition to BEC, expected for ideal gases, is smeared

out by atomic collisions [44].

For measuring the heat capacity of a gas we measure its temperature before

and after a controlled experimental cycle including an adiabatic and a sudden

variation, which transfers a quantifiable amount of energy to the system, as

illustrated in Fig. 7.15. The measured heat capacity can then be compared to

the theoretical model given by Eq. (7.159).

Figure 7.15: Population variation during a slow adiabatic compression followed by a sudden
non-adiabatic decompression.

7.3.4 Exercises

7.3.4.1 Ex: Monoatomic gas as a canonical ensemble

Consider a classical monoatomic gas made up of N non-interacting atoms of mass m
confined in a container of volume V , at temperature T . The Hamiltonian correspond-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal01.pdf
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ing to an atom is given by Ĥ = (p̂2x + p̂2y + p̂2z)/2m.
a. Show that the atomic canonical partition function is ξ = V/λ3th, where λth is the
thermal de Broglie wavelength defined in Eq. (7.123).
b. Using ξ of the previous item, obtain the system’s partition function Ξcn and the
Helmholtz free energy F . Also obtain the free energy per atom f = F/N in the
thermodynamic limit N −→∞, V −→∞, such that v = N/V fixed.
c. Obtain internal energy E and the gas pressure p.
d. Calculate the chemical potential and entropy per atom in the thermodynamic limit,
thus deriving the so-called Sackur-Tetrode formula.

7.3.4.2 Ex: Thermodynamic quantities for a Bose gas trapped in a box

Derive all expressions for the entropy and the pressure of Tab. 7.1.

7.3.4.3 Ex: Generalization for arbitrary potentials in reduced dimen-
sions

The calculation of the thermodynamic potentials can be generalized to arbitrary trap-
ping potentials and dimensions [107, 259, 205, 45, 890, 285, 46, 347, 391, 465, 458,
617, 499, 528, 267]. To do so, we consider a generic power law potential confining an
ideal Bose gas in α dimensions,

U(r) =
∑α

i=1

∣∣∣∣
xi
ai

∣∣∣∣
ti

,

and define a parameter describing the confinement power of the potential,

ξ =
α

2
+
∑α

i=1

1

ti
.

For example, for a three-dimensional potential, α = 3. Now, for a 3D harmonic
potential, ξ = 3, and for 3D box potential, ξ = 3/2.
a. Calculate the density-of-states η using the equation (7.72) employing Bose functions
(7.126).
b. Prove the following expressions:

(bosonic potentials)

Nc

N
= 1−

(
min(T, Tc)

Tc

)ξ

E

NkBT
= ξ

gξ+1(Z)

gξ(Z)

(
min(T, Tc)

Tc

)ξ

S

NkB
= ξ

gξ+1(Z)

gξ(Z)
− βµ

C

NkB
= ξ(ξ + 1)

gξ+1(Z)

gξ(Z)

(
min(T, Tc)

Tc

)ξ
− ξ2 gξ(Z)

gη−1(Z)

max(T − Tc, 0)
T − Tc

CT>Tc

NkB
= ξ(ξ + 1)

gξ+1(Z)

gξ(Z)
− ξ2 gξ(Z)

gξ−1(Z)
,

CT<Tc

NkB
= ξ(η + 1)

gξ+1(1)

gξ(1)
∆CTc

NkB
=

CT−
c
− CT+

c

NkB
= ξ2

gξ(1)

gξ−1(1)

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal03.pdf


7.4. QUANTUM DEGENERACY OF AN IDEAL FERMI GAS 295

7.3.4.4 Ex: Time-of-flight distribution of a Bose-gas

a. Derive the formulae (7.151) describing the density and momentum distribution of
an ultracold Bose-gas.
b. Calculate the time-of-flight distribution of a Bose-gas as a function of temperature
(i) analytically for a harmonic potential and (ii) numerically for an arbitrary potential.

7.4 Quantum degeneracy of an ideal Fermi gas

Atoms are fermions or bosons, depending on whether their spin is integer or semi-
integer. For example, 87Rb atoms with their total integer spin of F are bosons, while
40K atoms having a half-integer spin are fermions. At high phase space densities,
atoms have to figure out how they will organize their coexistence. Bosons encourage
each other to occupy the same phase space cell, in contrast to the reluctant fermions,
which prefer to follow Pauli’s exclusion principle. The different behavior is described
by different quantum statistics that determine how the phase space (i.e., the available
energy levels) has to be filled by the atoms. The Bose-Einstein distribution is valid for
bosons, the distribution of Fermi-Dirac for fermions and both asymptotically approach
the Boltzmann distribution at high temperatures. We have seen that bosons undergo
a phase transition and condense in the ground state when the temperature is reduced
below a critical threshold. On the other hand, the fermions organize their phase
space, so that their energy levels are arranged like a ladder. The impact of fermionic
quantum statistics on a cold cloud of atoms were observed experimentally by DeMarco
and Jin [214, 628]. They cooled a two-components Fermi gas of 7 × 105 potassium
atoms down to 300 nK, which corresponded to 60% of the atoms populating energy
levels below the Fermi energy. The measured density distribution was found to deviate
from the one expected for an ideal Boltzmann gas 24.

7.4.1 Chemical potential and Fermi radius for a harmonic trap

The phase space density for a degenerate Fermi gas in the thermodynamic limit has
been derived in (7.127). We consider a cylindrically symmetric harmonic potential, as
defined in (7.75), for which the density-of-states η(ε) has been calculated in (7.80). In
the same way as for a Bose gas, the chemical potential of the Fermi gas must satisfy
the normalization condition,

N =

∫
wT,µ(ε)η(ε)dε =

1

2(ℏω̄)3

∫ ∞

0

ε2dε

eβ(ε−µ) + 1
=

(
kBT

ℏω̄

)3

f3(Z) . (7.160)

For low temperatures, βµ≫ 1, we can use the Sommerfeld expansion of the Fermi
function, which in first order gives fξ(e

x) ≃ xξ/Γ(ξ + 1), where x is a placeholder for
βµ, Γ is the Γ-function, and ξ = 3 for a harmonic potential. From this we immediately
obtain the chemical potential at zero temperature defined as the Fermi energy,

EF ≡ µ(T = 0) = ℏω̄(6N)1/3 , (7.161)

24We note that meanwhile ultracold two-components Fermi gas have been demonstrated to form
bosonic Cooper-pairs, similarly to the phenomena known as superconductivity in some metals and
as superfluidity of the fermionic 3He.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal04.pdf
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and from that the momentum of free particles and the Fermi radius,

KF ≡
√

2mEF

ℏ2
and rF ≡

√
2EF

mω2
r

, zF =

√
2EF

mω2
z

. (7.162)

At low but non-zero temperatures, ε − µ ≪ kBT , we use the second order of the
Sommerfeld expansion,

fξ(e
x) ≃ xξ

Γ(ξ + 1)

(
1 +

π2ξ(ξ − 1)

6x2
+ ...

)
, (7.163)

and obtain for the chemical potential the equation, 0 = µ3+(πkBT )
2µ−E3

F. The ap-
proximate solution of this equation, neglecting higher-order terms such as 4π6k6BT

6 ≪
27E6

F, is

µ = EF

[
1− π2

3

(
kBT

EF

)2
]
. (7.164)

For highly excited atoms, ε−µ≫ kBT , the Fermi function approaches the identity,

fξ(Z)
Z→0−→ Z (see Fig. 7.9), so that,

N =

(
kBT

ℏω̄

)3

eβµ =

(
kBT

ℏω̄

)3

(1 + βµ+ ...) , (7.165)

µ = kBT lnZ ≃ kBT lnN

[(
ℏω̄
kBT

)3
]
= kBT ln

1

6

(
EF

kBT

)3

,

where in the last step we substituted the definition of the Fermi energy. This means
that highly excited fermions behave like a Boltzmann gas, which satisfies an ideal gas
equation similar to that of classical particles in a box potential,

N =

(
kBT

ℏω̄

)3

. (Boltzmann) . (7.166)

Fig. 7.16(a) shows calculations of the chemical potential for an ideal Fermi gas
along with the chemical potentials of a Boltzmann gas and a Bose gas.

7.4.2 Energy

Using (7.82), the total energy per particle, E/N ≡ N−1
∫
εwTµd

3xd3k, is given by,

E

N
=

∫
εwT,µ(x,k)d

3xd3k∫
wT,µ(x,k)d3xd3k

=

∫
εη(ε)

(
eβ(ε−µ) + 1

)−1
dε

∫
η(ε)

(
eβ(ε−µ) + 1

)−1
dε

= 3kBT
f4(Z)

f3(Z)
, (7.167)

in analogy to the expression (7.148) holding for a Bose gas. Again using the Sommer-
feld approximation, we see that for low temperatures, T → 0, the energy is limited
by [see Fig. 7.16(b)],

E =
3

β(βℏω̄)3
f4(e

βµ) =
3µ4

4E3
F

(
1 +

2π2

(βµ)2
+ ...

)
T→0−→ 3

4
EF . (Fermi) (7.168)
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Hence, the total energy per fermion does not vanish for T → 0. The reason is that
the atoms are forced to adopt states in the outermost regions of the harmonic trap.

For comparison, in the limit of high temperatures, T →∞, a classical gas has the
energy per particle,

E =
3

β(βℏω̄)3
f4

(
f−1
3

(
(βEF)

3

6

))
≃ 3NkBT . (Boltzmann) (7.169)

which is seen by taking the high temperature limit fη(Z)
Z→0−→ Z and extrapolating

to all Z. This implies, E1/EF
T→∞−→ 3kBT/EF.

And for bosons we have,

E = 3NkBT
g4(Z)

g3(Z)

(
min(T, Tc)

Tc

)3

≃ 2.7NkBT

(
T

Tc

)3

. (Bose) (7.170)

Hence, the total energy per boson decreases very rapidly for T → 0. The reason
is that the atoms are bosonically encouraged to pile up in the inner region of the
harmonic trap.

7.4.3 Entropy and heat capacity

The entropy per particle S1 = −
(
∂Ω
∂T

)
µ
can be calculated analogously to the Bose gas

(see for example Excs. 7.3.4.2 and 7.3.4.3),

S1 = 4kB
f4(Z)

f3(Z)
− µ

T
=

4E1

3T
− µ

T
. (7.171)

The heat capacity per particle C1 =
(
∂E1

∂T

)
N

is easily calculated using Zf ′η(Z) =
fη−1(Z),

C1 = 3kB
f4(Z)

f3(Z)
− 3µ

T

(
1− f4(Z)f2(Z)

f3(Z)2

)
=
E1

T
− 3µ

T

(
1− f4(Z)f2(Z)

f3(Z)2

)
. (7.172)

For fermions well below the Fermi temperature, T → 0, using the Sommerfeld
approximation, we calculate,

C1
T→0−→ 3π2

2

kBT

TF
. (Fermi) (7.173)

For high temperature T

C1 ≈ 3kB . (Boltzmann) (7.174)
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Figure 7.16: (code) Calculation of thermodynamic potentials for Bose (red), Fermi (green),

and Boltzmann gases as a function of temperature for a given harmonic trapping potential.

The gases are assumed to have same mass, same atom number N = 200000, and same

trap frequencies ωho/2π = 200Hz. (a) Chemical potential, (b) energy, (c) heat capacity per

particle, and (d) total heat capacity. The dotted magenta line in (a) shows the chemical

potential calculated from the Sommerfeld approximation.

7.4.4 Density and momentum distribution for a Fermi gas

7.4.4.1 Spatial distribution

The density distribution is,

n(x) =

∫
wT,µ(x,k)d

3k =
1

(2π)2

∫
2k2dk

eβ[ℏ2k2/2m+U(x)−µ] + 1
(7.175)

=
1

(2π)2

(
2m

ℏ2

)3/2 ∫ √
εdε

eβ[ε+U(x)−µ] + 1
=

1

(2π)2

(
2m

βℏ2

)3/2

Γ(3/2)f3/2(e
−β[U(x)−µ]) ,

such that,

n(x) = λ−3
th f3/2(e

−β[U(x)−µ]) (Fermi) . (7.176)

where λth =
√

2πℏ2/mkBT .
At low temperatures, T → 0, we can apply the Sommerfeld expansion [130], which

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
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to first order gives µ→ EF,

n(x) ≈ 1

(2π)2
Γ(3/2)

Γ(5/2)

(
2m

ℏ2
[µ− U(x)]

)3/2

(7.177)

=
1

(2π)2
2

3

(
2m

ℏ2

)3/2 (
EF −

m

2
ω2
rρ

2
)3/2

=
8λ

π2

N

R3
F

(
1− ρ2

R2
F

)3/2

.

At high temperatures, T →∞, we should recover the Boltzmann gas situation,

n(x) = λ−3
th f3/2(e

−β[U(x)−µ]) (7.178)

≈ λ−3
th N (βℏω̄)3 e−βU(x) =

(
mβω̄2

2π

)3/2

Ne−βm(ω2
xx

2+ω2
yy

2+ω2
zz

2)/2 .

It is easy to check that
∫
n(x)d3x = N . Introducing the peak density n0, we obtain,

n(x) = n0e
−mω2ρ2/2kBT (Boltzmann) . (7.179)

The rms-radius of the distribution is σj =
√
kBT/mω2

j , which seems contrary to the

above results, m2 ω
2
j

〈
x2j
〉
= kBT .

7.4.4.2 Momentum distribution

The momentum distribution is,

ñ(k) =

∫
wT,µ(x,k)d

3x =
1

(2π)2

∫
rdrdz

eβ[ε(k)+mω
2
rρ

2/2−µ] + 1
(7.180)

=
1

(2π)3

∫
4πρ2dρ

eβ[ε+mω
2
rρ

2/2−µ] + 1

=
1

(2π)2

(
2

βmω2
r

)3/2 ∫ √
tdt

eβ[ε+t−µ] + 1
=

1

(2π)2

(
2

βmω2
r

)3/2

Γ(3/2)f3/2(e
β(µ−ε)) ,

such that,

ñ(k) = λ−3
th a

6
hof3/2(e

β(µ−ε)) (Fermi) . (7.181)

where aho =
√
ℏ/mω̄.

At low temperatures, T → 0,

ñ(k) ≈ 1

(2π)2

(
2

βmω2
r

)3/2
Γ(3/2)

Γ(5/2)
(β [µ− ε])3/2 (7.182)

≈ 1

(2π)2

(
2

mω2
r

)3/2
2

3

(
EF −

ℏ2k2

2m

)3/2

=
8

π2

N

K3
F

(
1− k2

K2
F

)3/2

.

Do the Exc. 7.4.8.1.
At high temperatures, T →∞, we should recover the Boltzmann gas situation,

ñ(k) ≈
(

ℏ2ω̄2

2πmω2
r

)3/2

Ne−βε (Boltzmann) . (7.183)

Since ε is the kinetic energy, the rms-radius
√
k2 of this distribution is βℏ2⟨k2⟩ = m.
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7.4.4.3 Time-of-flight distribution

To describe time-of-flight images we substitute k = mr/ℏt. We obtain the density
distribution from a convolution,

nToF(x, t) =
1

(2π)3

∫
d3x0d

3k
δ3(x− x0 − pt/m)

eβ(ε(x0,p)−µ) + 1
(7.184)

=
1

(2π)3

∫
d3k

eβ(ε(x+pt/m,p)−µ) + 1

=
1

(2π)3

∫
dkxdkydkz

eβΣj[ℏ2k2j/2m+ 1
2mω

2
j (xj+ℏkjt/m)2]/Z + 1

where j = x, y, z . .

We rewrite the exponent,

ℏ2k2j/2m+ 1
2mω

2
j (xj + ℏkjt/m)

2
= ℏ2k2j/2m(1 + ω2

j t
2) + ω2

j txjℏkj + 1
2mω

2
jx

2
j

=



√

ℏ2k2j
2m

(1 + ω2
j t

2) +
ω2
j txj
√
2m

2
√
1 + ω2

j t
2




2

+
mω2

jx
2
j

2(1 + ω2
j t

2)

= ξj +
m

2
ω̌2
jx

2
j . (7.185)

where we defined ω̌i ≡ ωi(1+ω2
i t

2)−1/2. With the substitution dξj = dkj

√
2ℏ2

m ξj
(
1 + ω2

j t
2
)

we obtain

nToF(x, t) =
1

(2π)3

(
mkBT

2ℏ2

)3/2
1∏

i (1 + ω2
i t

2)

∫
β3/2 (ξxξyξz)

−1/2
dξxdξydξz

eβΣj[ξj+m
2 ω̌

2
jx

2
j ]/Z + 1

=
1

23π3/2

1

λ3th

ω̃3

ω̄3

∫
β3/2ξ−3/24πξ2dξ

eβΣj[ξ+m
2 ω̌

2
jx

2
j ]/Z + 1

, (7.186)

where ω̄ ≡ (ωxωyωz)
1/3 and ω̌ ≡ (ω̌xω̌yω̌z)

1/3
.

nToF(x, t) =
1

λ3th

ω̌3

ω̄3
f3/2

(
eβµ−

1
2βmΣj ω̌

2
jx

2
j

)
. (7.187)

For long times-of-flight t≫ ω−1,

nToF(x, t) =
1

λ3th

1

ω̄2t2
f3/2

(
eβ(µ−mx2/2t2)

)
=
(m
ℏt

)3
ñ(mx/t) . (7.188)

At low temperatures,

nToF(x, t) =
(m
ℏt

)3 N

K3
F

8

π2

(
1− (mx/ℏt)2

K2
F

)3/2

(7.189)

=
(m
ℏt

)3 R3
F

6π2λ


1−

(
RFmx/ℏt
(48Nλ)

1/3

)2


3/2
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Figure 7.17: (code) Time-of-flight velocity distributions after TToF = 2ms of (red) a Li Fermi

gas at T = 0 with vanishing initial spatial distribution [130] and (black) a thermal gas at

T = TF.

At high temperatures,

nToF(x, t) =
1

λ3th

1

ω̄2t2
f3/2(e

β(µ−mx2/2t2)) (7.190)

≈ 1

λ3th

1

ω̄2t2
eβ(µ−mx2/2t2)

≈
(
mkBT

2πℏ2

)3/2
1

ω̄2t2
N

(
ℏω̄
kBT

)3

e−βmx2/2t2 ≈ N ω̄

t2

(
m

2πkBT

)3/2

e−βmx2/2t2 .

A rms-width is,

〈
r2ToF

〉
=

∫
r2nToF(x, t)d

3x (7.191)

=
1

λ3th

ω̌3

ω̄3

∫
r2f3/2

(
eβµ−

1
2βmΣj ω̌

2
jx

2
j

)
d3x

=
2

mω̌2
rN

∫
εg(ε)dε

eβ(ε−µ) + 1
=
kBT

mω̌2
r

g4(Z)

g3(Z)
.

This shows that the width of the flight-of-time distribution can simply be obtained
from the spatial distribution by substituting ω → ω/

√
1 + ω2t2. Of course this does

not hold for condensed gases Bose.

Example 52 (Equipartition theorem): We find for harmonic traps,

Epot,1 =

∫
U(x)wT,µ(x,k)d

3xd3k∫
wT,µ(x,k)d3xd3k

=
1

(2π)3N2

∫
mω2r2d3xd3k

eβ[ℏ
2k2/2m+mω2r2/2−µ] + 1

=
16

πNβ4 (ℏω)3

∫
u4v2dudv

eu2+v2/Z + 1
(7.192)

=
1

(2π)3N2m

∫
ℏ2k2d3xd3k

eβ[ℏ
2k2/2m+mω2r2/2−µ] + 1

=

∫
ℏ2k2wT,µ(x,k)d3xd3k

2m
∫
wT,µ(x,k)d3xd3k

= Ekin,1 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiDistributionTof.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiDistributionTof.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiDistributionTof.m
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This confirms the equipartition theorem for confined particles, which postulates,

E = Ekin + Epot = 2Ekin . (7.193)

In flight time, however, Epot suddenly vanishes.

7.4.4.4 Calibrating the number of atoms

Experimentally, to calibrate N , we can use either the measured value of ⟨k2⟩ at T = 0,
which gives µ = EF = 4E/3 and consequently,

N =
32

3

(
ℏ2⟨k2⟩
6mℏω̄

)3

. (7.194)

Or we determine the temperature Tg where the Boltzmann gas turns into a Fermi gas
3µ/4 = 3kBTg,

N =
32

3

(
kBTg
ℏω̄

)3

. (7.195)

7.4.5 Density and momentum distribution for anharmonic po-
tentials

7.4.5.1 Width of momentum distribution for anharmonic potentials

If the potential is non-harmonic, the widths of Fermi distributions must in general
be calculated numerically. I.e. first η(ε) is determined by integrating for every value
of ε the root

√
ε− U(x) over the entire volume, where U(x) < ε, i.e. in the case of

cylindrical symmetry,

η(ε) =
(2m)3/2

2πℏ3

∫ √
ε− U(r, z)rdrdz . (7.196)

Second the chemical potential must also be calculated numerically from

N =
∫
η(ϵ)

(
eβ(ε−µ) + 1

)−1
dε by minimizing the function,

o(Z) =

∣∣∣∣βN −
∫
η(x/β)dx

ex/Z + 1

∣∣∣∣ . (7.197)

Finally, the rms-momentum width of a degenerate Fermi-gas is calculated from,

⟨k2⟩
k2F

=
E1

EF
=

1

NEF

∫
εη(ε)dε

eβ(ε−µ) + 1
. (7.198)

It is important to note that the temperature cannot be obtained from ℏ2
〈
k2
〉
/2m =

3NkBT any more. Rather for a given ⟨k2⟩ the parameter β in the integral (7.196)
must be fitted to satisfy the equation.

Alternatively, we may assume a polynomial potential for which the density-of-
states can be described by η(ε) ∝ εn. Then,

⟨k2⟩
k2F

=
1

EF

∫
εη(ε)

(
eβ(ε−µ) + 1

)−1
dε

∫
η(ε)

(
eβ(ε−µ) + 1

)−1
dε

=
T

TF

(n+ 1)fn+2(Z)

fn+1(Z)
, (7.199)
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For a harmonic potential we recover the energy formula,

⟨k2⟩
k2F

=
3T

TF

f4(Z)

f3(Z)
, (7.200)

and for hot clouds the classical limit holds,

⟨k2⟩
k2F

=
n+ 1

βEF
. (7.201)

Must for a single dimension the value be divided by three? ℏ2⟨k2j ⟩ = 2mkBTf4(Z)/f3(Z)

setting ε = ℏ2k2/m.
For a harmonic potential η(ε) ∝ ε2 and for a linear potential η(ε) ∝ ε7/2. Inter-

mediate values are possible for non isotropic traps, which are linear in some directions
and harmonic in others, e.g. for a radially quadrupolar and axially harmonic trap, we
expect η(ε) ∝ ε3 and thus E = 4NkBT . In general, we may have more complicated
situations, where the trap becomes non-harmonic beyond a certain distance from the
origin. In those cases, the density-of-states may be approximated by series,

η(ε) ∝ ε2 + κε3 , (7.202)

where η is a small parameter, so that,

⟨k2⟩
k2F

=
1

EF

∫
(ε3 + κε4)(eβ(ε−µ) + 1)−1dε∫
(ε2 + κε3)(eβ(ε−µ) + 1)−1dε

=
T

TF

3f4(Z) + 12κf5(Z)
f3(Z) + 3κf4(Z)

, (7.203)

which in the classical limit gives rise to energies E = 3..4NkBT depending on the
value of κ.

Such effects must be considered when the time-of-flight method is used for temper-
atures measurements. For example, if we underestimate η(ε) by assuming a harmonic
potential at all ε, although the potential is quadrupolar at large ε ≫ kBT , we get a
wrong estimate for the temperature Twrng = E/3NkB instead of Tcorr = E/4NkB.

7.4.5.2 Width of the density distribution for anharmonic potentials

The result also permits to calculate the rms spatial width,

∑3

j=1

m

2
ω2
j ⟨x2j ⟩ = 3kBT

f4(Z)

f3(Z)
. (7.204)

Let us for simplicity assume ωi = ωj . So in the classical limit,

⟨x2j ⟩
R2

F

=
⟨x2⟩
3R2

F

=
E1

3EF
=

1..1.3T

TF
. (7.205)

If the potential is non-harmonic, the widths of Fermi distributions must in general be
calculated numerically. We may use the same results for the density-of-states and the
chemical potential as for the momentum width calculations. Then,

⟨x2j ⟩
R2

F

=
E1

3EF
=

1

3EF

∫
εη(ε)

(
eβ(ε−µ) + 1

)−1
dε

∫
η(ε)

(
eβ(ε−µ) + 1

)−1
dε

. (7.206)
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7.4.5.3 Momentum distribution for a classical gas

For high temperatures, T →∞, we should recover the ideal Boltzmann gas situation,
f3/2 → id,

ñT→∞(k) =
1

(2π)3

∫
4πρ2dρ

eβ[ε+mω
2
hoρ

2/2−µ]
=

1

2π2
e−β(ε−µ)

∫
e−βmω

2
hoρ

2/2ρ2dρ (7.207)

=

(
1

2πβmω2
ho

)3/2

e−β(ε−µ) = λ−3
th a

6
ho e

β(µ−ε) .

Since the chemical potential satisfies the normalization,
∫
ñT→∞(k)d3k = 1,

ñT→∞(k) =

(
1

2πβmω2
ho

)3/2

N

(
ℏωho

kBT

)3

e−βε = N

√
ℏ2

2πmkBT

3

e−ℏ2k2/2mkBT .

(7.208)
This is easy to integrate by dimensions, so that,

ñT→∞(kz) =

∫ ∞

−∞

∫ ∞

−∞
ñT→∞(k)dkxdky = N

√
ℏ2

2πmkBT
e−ℏ2k2z/2mkBT . (7.209)

The rms-width of this distribution is,

∆kz =

√
mkBT

ℏ
. (7.210)

7.4.6 Signatures for quantum degeneracy of a Fermi gas

Whether an atom is a fermion or a boson uniquely depends on its total spin. Halfinte-
ger spin particles are fermions, integer spin particles are bosons. E.g. Rb atoms have
in the ground state J = 1/2, I = 7/2, integer F , and are therefore bosons. Ca+ ions
have J = 1/2 and no hyperfine structure so that F is half-integer, and are therefore
fermions. 6Li has half-integer F and is a boson.

For a composite particle the quantum statistical nature may depend on the in-
teraction strength of the partners. For weak interaction, e.g. Feshbach the total
spins of the partners will couple to a total total spin, which determines the nature
of the composite particle. A fermion pairing with a fermion or a boson pairing with
a boson will be bosons. A fermion pairing with a boson will be a fermion. Com-
posite trimers may be either bosonic or fermionic depending on the coupling scheme
[684, 108, 323, 330, 397, 651].

7.4.6.1 Optical density of a Fermi gas

With the local density of a Fermi gas,

nloc =
k3F
3π2

(7.211)
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the optical density is at T = 0,

∫
σndy =

8σ

π2

N

R3
F

∫ RF

−RF

(
1− x2 + y2

R2
F

− z2

Z2
F

)3/2

dy (7.212)

=
8σ

π2

N

R3
F

(
1− x2

R2
F

− z2

Z2
F

)3/2 ∫ RF

−RF

(
1− y2

R2
F − x2 −R2

Fz
2/Z2

F

)3/2

dy .

Writing a = RF/
√
R2

F − x2 −R2
Fz

2/Z2
F,

∫
σndy =

8σ

π2

N

R2
Fa

4

∫ a

−a
(1− ỹ2)3/2dỹ (7.213)

=
2σ

π2

N

R2
Fa

4

(
9a
√
1− a2 − 2a3

√
1− a2 + 3arcsin a

)
.

In the center, a = 1, ∫
σndy =

3Nσ

πR2
F

=
9mω2

rN

k2LEF
, (7.214)

such that for EF ≃ 1µK we expect nloc ≃ 4× 1012 cm−3.
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(b) total atom number         N  = 200000

temperature               T = 0.5 μK

Fermi temperature         T
F
 = 2.4468 μK

Figure 7.18: (code) (a) Radial momentum distribution and (b) distribution of momentum

classes in the direction of kz for a Fermi gas at T/TF = 0.2µK (red solid), a classical gas

(black), and a Fermi gas at T = 0 (red dash-dotted).

7.4.6.2 ’Pauli blocking’ of sympathetic cooling

For a harmonic trap U = µB = mω2r2 the rms-radius of a thermal cloud,

rrms =

√
2kBT

mω2
r

=

√
kBT

µ∂2rB
, (7.215)

is independent on the atomic mass. This means that a Li and a Rb cloud in the same
harmonic trap at the same temperature have the same radius. This ensures good
overlap. E.g. at T = 10µK assuming the Rb secular frequencies ωr ≃ 2π × 300Hz
and ωz ≃ 2π×30Hz, we expect rrms = 16µm and zrms = 160µm. However below the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBraggDistribution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBraggDistribution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBraggDistribution.m
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temperature 0.5TF, which is TF ≃ 1µK for NF = 104, the quantum pressure stops
the reduction of the fermion cloud while cooling. This evtl. reduces the overlap with
the boson cloud, disconnects the two clouds and stops the evaporative cooling. On
the other hand, the interaction energy of the boson cloud also increases its size, when
the Rb cloud approaches the critical temperature Tc ≃ 0.6µK for NB = 106.

The Pauli blocking of sympathetic cooling is a signature for the advent of quantum
statistics [215, 340, 629]. It is due to a reduced mobility (or better reduced available
phase space upon collisions) of the atoms and not to be confused with the prohibition
of s-wave collisions due to the Pauli exlusion principle. Furthermore, elastic collisions
are suppressed [214], because atoms cannot be scattered into occupied trap levels
[409, 829, 356, 358].

7.4.6.3 Superfluid suppression of sympathetic cooling

The fermions inside the bosonic cloud can be regarded as impurities. If they travel too
slow, v < c, and if the condensed fraction is too large, the motion will be frictionless
and thermalization stops. If they travel fast, quasiparticles are excited, which can
be removed by evaporation. With the typical velocity of sound in the BEC c =
ℏ
√
16πna/2mB ≈ 2mm/s, or m

2 c
2 ≈ kB × 20 nK, we see that this is no real danger.

7.4.6.4 Component separation

If the interspecies interaction h is stronger than the inter-bosonic interaction, the
components may separate [627]. Otherwise a small fermionic cloud stays inside the
BEC.

7.4.6.5 Excess energy modifies 2nd moment

Independent on any model, just look deviation from Gaussian (interaction energy
plays no role for the fermions). Also calculate the 2nd moment E =

∫
Ekin(k)n(k)dk,

where n(k) is measured in time-of-flight and Ekin = ℏ2k2/2m.

7.4.6.6 Modification of light scattering

The unavailability of final momentum states inhibits scattering in a similar way as the
Lamb-Dicke effect. Forward scattering is suppressed, because all small momentum
states are occupied. Furthermore, spontaneous emission is suppressed like in photonic
band gaps. However, here it is rather an atomic momentum band gap. Could it be
that because scattering is suppressed, in-situ images of fermions are hampered?

A condition for this effect to play a role is krec ≪ kF. For Li the temperature
must be kBTF = ℏ2k2F/2m = ℏω̄(6N)1/3 ≫ ℏ2k2L/2m ≈ kB × 3µK. I.e. we need quite
large Fermi gases.

7.4.6.7 Hole heating

Loss processes that remove particles from an atom trap leave holes behind in the
single particle distribution if the trapped gas is a degenerate fermion system. The
appearance of holes increases the temperature, because of an increase in the energy
share per particle if cold particles are removed. Heating is significant if the initial
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temperature is well below the Fermi temperature. Heating increases the temperature
to T > TF/4 after half of the systems lifetime, regardless of the initial temperature.
The hole heating has important consequences for the prospect of observing Cooper
pairing in atom traps.

7.4.7 Fermi gas in reduced dimensions

In n dimensions with the energy ε = aps + brt [517] we have to generalize the results
of the last chapter,

N = g
Γ
(
n
s + 1

)
Γ
(
n
t + 1

)

(2ℏ)nan/sbn/tΓ
(
n
2 + 1

)2 (kBT )n/s+n/tfn/s+n/t(z) . (7.216)

This gives for a harmonic trap where ε = 1
2mp

2+m
2 ω

2r2 and with the spin degeneracy
factor g = 1,

N =

(
kBT

ℏω

)n
fn(z) . (7.217)

The Fermi energy again follows from Sommerfeld’s expansion,

EF = (n!N)1/nℏω . (7.218)

We now assume a 1D potential V = m
2 ω

2
zr

2 embedded in a 3D trap. A true 1D
situation arises when the atoms occupy all low-lying axial levels with the lowest radial
vibrational quantum number, i.e. EF ≪ ℏωr which gives,

N ≪ ωr
ωz

. (7.219)

Such quantum degenerate 1D fermion gases realize the so-called Luttinger liquid. One
of the hallmarks of Luttinger liquids is spin-charge separation.

Example 53 (Estimations for 1D): Let us consider a Fermi gas in a very

elongated microtrap: ωr =
√

87
7
2π × 1.4 kHz and ωz =

√
87
7
2π × 15Hz for Rb.

With NLi = 105 the Fermi temperature is as high as TF ≃ 5µK. However we
need N ≪ 100 to see 1D features.
Assume ε = 1

2m
p2 + m2

4
b4r4,

N =
1

(ℏb)n
Γ
(
n
4
+ 1
)

Γ
(
n
2
+ 1
) (kBT )3n/4f3n/4(z)

EF ≈ (ℏb)4/3
(
N

Γ
(
n
2
+ 1
)
Γ( 3n

4
+ 1)

Γ
(
n
4
+ 1
) )4/3n

.

In 1D,

N =
1.02

ℏb
(kBT )

3/4f3/4(z)

EF ≈ 0.87(Nℏb)4/3 .
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7.4.7.1 Fermi degeneracy

A completely analogous treatment to the Bose-gas yield for the case of fermion

E = 3
2kBTN

(
1 + 2−5/2nλ3th

)
+ ... . (7.220)

Bosonic 4He has a very different behavior than fermionic 3He. It stays gaseous at
very low temperatures and becomes a Fermi gas before becoming fluid. Fermi gases
have a higher pressure then classically predicted.

Electrons in a solid are characterized by a high density and a low mass. Hence,
nλ3th ≈ 103. The interelectronic repulsion is canceled by atomic attraction, so that
they may be considered an ideal gas. For the density-of-states we get the same formula
as for bosons in a box multiplied with the factor 2 to account for the spin degree of
freedom. Thus, from

N =

∫ EF

0

ρfFDdε , (7.221)

we derive the Fermi energy EF = h2

8m (3N/πV )2/3. The free electron gas is deep in
the Fermi regime, the classical statistics may only be used at temperatures above
T > 105 K. Hence the energy is temperature-independent and the heat capacity
vanishes, i.e. the electron gas does not contribute to the heat capacity of a metal. It
is only at very low temperatures of a few K, when the heat capacity of the atomic
lattice drops due to the underlying bosonic statistics, that the electrons contribute.

Now, make the metallic box potential having a finite depth. An electron can then
leave the metal, if it surmounts the exit work W = −Vmin−EF ≃ 10 eV, which is the
difference between the potential depth and the Fermi energy. At high temperatures,
the tail of the Fermi-Dirac distribution can leak into the unbound regime, which gives
rise to thermoionic emission. This feature explains the existence of contact potentials:
Metals with different W and EF brought into contact exchange charges until their
Fermi level is at same height.

7.4.8 Exercises

7.4.8.1 Ex: Integrated momentum distribution of a Fermi gas

Integrate the momentum distribution of a Fermi gas over two dimensions,

ñT→0(kz) =

∫ ∞

−∞

∫ ∞

−∞
ñcl(k)dkxdky , (7.222)

assuming (a) low temperatures and (b) for the general case.

7.4.8.2 Ex: Li Fermi gas

Programs on Li Fermi gases.

7.5 Further reading

7.5.1 on quantum statistics

R. DeHoff, Thermodynamics in Material Science [ISBN]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_FermiGas01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_FermiGas02.pdf
http://isbnsearch.org/isbn/978-0849340659
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H.B. Callen, Thermodynamics [ISBN]

C. Kittel, Introduction to Solid State Physics [ISBN]

A.R. West, Basic Solid State Chemistry [ISBN]

D. Mc Quarry, Statistical Thermodynamics [ISBN]

J. Walraven, Quantum gases [http]

G.T. Landi, Grand canonical ensemble [http]

7.5.2 on ideal quantum gases

V.S. Bagnato et al., Bose-Einstein Condensation in an External Potential [DOI]

D.A. Butts et al., Trapped Fermi gases [DOI]

R.J. Dodd et al., Two-gas description of dilute Bose-Einstein condensates at finite
temperature [DOI]

http://isbnsearch.org/isbn/978-0471862567
http://isbnsearch.org/isbn/978-0471415268
http://isbnsearch.org/isbn/978-0471987567
http://isbnsearch.org/isbn/978-0935702187
https://staff.fnwi.uva.nl/j.t.m.walraven/walraven/Publications_files/2019-Quantum-Gases.pdf
http://www.fmt.if.usp.br/~gtlandi/courses/grand-canonical-ensemble.pdf
http://doi.org/10.1103/PhysRevA.35.4354
http://doi.org/10.1103/PhysRevA.55.4346
http://doi.org/10.1088/0953-4075/32/16/310


310 CHAPTER 7. STATISTICAL THERMODYNAMICS



Chapter 8

Appendices to ’Statistical
Physics’

8.1 Quantities and formulas in statistical physics

8.1.1 Statistical formulas

Stirling’s formula is,

lnn! = n lnn− n+O(lnn) or n! ≃
√
2πnnne−n . (8.1)

Note that O(lnn) = lnn+ln 2π
2 ln 2 +O( 1n ).

8.1.2 Polylogarithm

The polylogarithm (or Joncquière’s function) is a function defined as,

Liη(Z) ≡
∞∑

t=1

Zt

tη
=

1

Γ(η)

∫ ∞

0

xη−1dx

Z−1ex − 1
. (8.2)

It serves to express the Bose and Fermi functions used in quantum statistics,

g(±)
η (Z) = ±Liη(±Z) . (8.3)

The upper sign holds for bosons, the lower for fermions.

8.1.2.1 Riemann zeta-function

The definition of the Riemann zeta-function is,

gξ(1) = ζ(ξ) . (8.4)

8.1.2.2 Bose/Fermi function

According to (8.3) the Bose-Fermi functions are given by,

g±ξ (Z) =
1

Γ(ξ)

∫ ∞

0

xξ−1dx

Z−1ex ∓ 1
=

∞∑

ℓ=0

(±Z)ℓ
ℓξ

, (8.5)
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where the second equation represents an expansion. The derivative satisfies a useful
relationship,

∂g±ξ (Z)

∂Z
=

∞∑

ℓ=0

∂

∂Z

(±Z)ℓ
ℓξ

=

∞∑

ℓ=1

±(±Z)ℓ−1

ℓξ−1
=

1

Z

∞∑

ℓ=1

(±Z)ℓ
ℓξ−1

=
g±ξ−1(Z)

Z
. (8.6)

The relationship can also be derive via partial integration exploiting,

d

dx

−Z
Z−1ex + 1

=
ex

(ex/Z ∓ 1)2
. (8.7)

We calculate,

∂g±ξ (Z)

∂Z
=

1

Γ(ξ)

∫ ∞

0

−xξ−1 ∂
∂Z (Z

−1ex ∓ 1)

(Z−1ex ∓ 1)2
dx =

1

Z2Γ(ξ)

∫ ∞

0

xξ−1 ex

(Z−1ex ∓ 1)2
dx

(8.8)

=
xξ−1ex

(ex/Z ∓ 1)2

∣∣∣∣
∞

0

− 1

Z2Γ(ξ)

∫ ∞

0

(ξ − 1)xξ−2 −Z
Z−1ex ∓ 1

dx

= 0 +
1

ZΓ(ξ − 1)

∫ ∞

0

xξ−2

Z−1ex ∓ 1
dx =

g±ξ−1(Z)

Z
.

8.1.2.3 Sommerfeld expansion

Another useful relationship is the Sommerfeld expansion, which holds for Fermi func-
tions,

∫ ∞

0

η(x)dx

ex−y + 1
=

∫ y

0

η(x)dx+

∫ ∞

0

η(y + x)ξ−1dx

ex + 1
−
∫ x

0

η(y − x)ξ−1dx

ex + 1
(8.9)

≈
∫ y

0

η(x)dx+ π2

6 η
′(x) + ...

holds for z ≫ 1 and yields,

fξ(e
y) ≈ xξ

Γ(ξ + 1)

(
1 +

π2ξ(ξ − 1)

6x2
+

7π4ξ(ξ − 1)(ξ − 2)(ξ − 3)

360x4
+ ...

)
. (8.10)

For small z both functions converge towards,

cξ(z) =
1

Γ(ξ)

∫ ∞

0

xξ−1dx

z−1ex
= cξ−1(z) = z . (8.11)

8.2 Special topic: Microcanonical ensembles

The microcanonical ensemble is used to represents the possible microstates of a me-
chanical system whose total energy E is exactly specified. The system is assumed
to be isolated in the sense that it cannot exchange energy or particles with its envi-
ronment, so that the energy of the system does not change with time. The primary
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macroscopic variables of the microcanonical ensemble are the total number of parti-
cles N in the system, the system’s volume V , as well as the total energy E in the
system.

In the microcanonical ensemble an equal probability ρmc(E) is assigned to every
microstate whose energy falls within a range centered at E. All other microstates are
given a probability of zero. Since the probabilities must add up to 1, the probability
is the inverse of the number of microstates W within the range of energy,

ρmc =W−1 . (8.12)

The range of energy ∆E is then reduced in width until it is infinitesimally narrow,
still centered at E. The microcanonical ensemble is obtained in the limit of this
process. For a given mechanical system (fixed N , V ) and a given range of energy,
the uniform distribution of probability ρmc over microstates maximizes the ensemble
average −⟨ln ρmc⟩.

8.2.1 Density of states

We consider an isolated system with N particles and energy E in a volume V . By
definition, such a system exchanges neither particles nor energy with the surround-
ings. The assumption, that thermal equilibrium implies that the distribution function
ρmc(q, p) of the system is a function of its energy 1,

ρmc(r, p) = ρ(H(r, p)) ,
d

dt
ρmc(r, p) =

∂ρ

∂H
Ė ≡ 0 , (8.13)

leads to to a constant ρmc(r, p), which is manifestly consistent with the ergodic hy-
pothesis and the postulate of a priori equal probabilities, i.e. a uniform distribution
of microstates.

Now, we consider a small but finite energy shell [E,E +∆E] close to the energy
surface. The microcanonical ensemble is then defined by,

ρmc(r, p) =
1

W (E, V,N)
f(H(r,p)−E

∆E ) with f(x) = θ( 12 − |x|) . (8.14)

In this expression,

W (E, V,N) =

∫

2|H(r,p)−E|<∆E

d3Nrd3Np (8.15)

∆E→0−→
∫
δ(E −H(r, p))∆Ed3Nrd3Np ≡ η(E)∆E

is the phase space volume occupied by the microcanonical ensemble, that is, the
volume of the shell bounded by the two energy surfaces with energies E and E+∆E.
The dependence on the spatial volume V comes from the limits of the integration
over dri,

η(E) ≡
∫
δ(E −H(r, p))d3Nrd3Np . (8.16)

1See e.g. Lecture by C. Gros.

https://itp.uni-frankfurt.de/~gros/Vorlesungen/TD/8_Microcanonical_ensemble.pdf
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8.2.2 Entropy

The expectation value of a classical observable O(q, p) can be obtained by averaging
over the probability density ρ(q, p) of the microcanonical ensemble,

⟨O⟩ =
∫
ρmc(r, p)O(r, p)d3Nrd3Np =

1

W (E, V,N)

∫

2|H(r,p)−E|<∆E

O(r, p)d3Nrd3Np .

(8.17)
The entropy can, however, not be obtained as an average of a classical observable. It
is instead a function of the overall number of available states.

The entropy is, according to Boltzmann’s postulate , proportional to the loga-
rithm of the number of available states included in the phase space volume W ,

S = kB ln
W (E, V,N)

W0(N)
. (8.18)

Note that the normalization constant W0(N) introduced above cancels the dimen-
sions of W (E, V,N). Also, the number of particles N being one of the fundamental
thermodynamic variables, the functional dependence of W0(N) on N is important.
Let us now discuss the ramification of this postulate.

8.2.2.1 Incompleteness of classical statistics

Importantly,W0(N) cannot correctly be derived within classical statistics. In quantum
statistics we will derive later,

W0(N) = h3NN ! . (8.19)

We consider this value also for classical statistics, noting that the factor h3N defines
the reference measure in phase space and that N ! is the counting factor for states
obtained by permuting particles supposed to be indistinguishable. Even though one
may be in a range of temperature and density where the motion of molecules can be
treated to a very good approximation by classical mechanics, one cannot go so far
as to disregard the essential indistinguishability of the molecules; one cannot observe
and label individual atomic particles as though they were macroscopic billiard balls.

We will discuss later the Gibbs paradox, which arises when one regards the con-
stituent particles as distinguishable. In this case there would be no factor N ! in
W0(N).

8.2.2.2 Entropy as an expectation value

We rewrite the definition (8.18) of the entropy as,

S = −kB
∫

2|H(r,p)−E|<∆E

ρmc(r, p) ln[W0(N)ρmc(r, p)]d
3Nrd3Np , (8.20)

where we have used that ρmc(q, p) =W (E, V,N)−1 within the energy shell and that

∫
ρmc(r, p)d

3Nrd3Np =
1

W (E, V,N)

∫

2|H(r,p)−E|<∆E

d3Nrd3Np = 1 . (8.21)
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We hence have 2,

S = −kB ln⟨W0(N)ρ(r, p)⟩ . (8.22)

8.2.2.3 Thermodynamic consistency of the entropy definition

Since we have introduced the entropy definition in an ad-hoc way, we need to convince
ourselves that it describes the thermodynamic entropy as a state function. The en-
tropy must therefore fulfill the requirements of (1) additivity, (2) consistency with the
definition of the temperature, (3) consistency with the second law of thermodynamics,
and (4) adiabatic invariance.

(1) Additivity, Gibbs’ paradox. The classical Hamiltonian H(r, p) = Hkin(p) +
Hint(r) is the sum of the kinetic energy and of the particle-particle interaction.
The condition,

E < Hkin(p) +Hint(r) < E +∆E (8.23)

limiting the available phase space volume W (E, V,N) on the energy shell, as
defined by (8.15) could then be fulfilled by a range of combinations of Hkin(p)
and Hint(r).

The law of large numbers, which we will discuss in Sec. 8.2.5, implies however
that both the kinetic and the interaction energies take well defined values for
large particle numbers N .

The interaction between particles involves only pairs of particles, with the re-
maining N − 2 ≃ N particles moving freely within the available volume V .
This consideration suggest together with an equivalent argument for the kinetic
energy that the phase space volume of the energy shell scales like

∫

E<H(r,p)<E+∆E

d3Nrd3Np =W (E, V,N) ∼ V NwN (E/N, V/N) . (8.24)

We will verify this relation in Sec. 8.2.5 for the classical ideal gas. This assump-
tion may not hold in the presence of long range interactions.

Using scaling relation (8.24) for the volume of the energy shell and the assump-
tion that W0(N) = h3NN ! we then find that the entropy defined by (8.18) is
extensive,

S = kB ln
V NwN (E, V,N)

h3NN !
= kBN

(
ln
V

N

w

h3
+ 1

)
≡ kBN s(E/N, V/N) ,

(8.25)
where we have used the Stirling formula (8.1). The extensivity of the entropy
result in (8.25) from the fact that V N/N ! ≃ (V/N)N . Without the factor N ! in
W0(N), which is however not justifiable within classical statistics, the entropy
would not be extensive. This is the Gibbs paradox.

2The entropy coincides hence with Shannon’s information-theoretical definition of the entropy,
apart from the factors kB and W0(N).
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Two subsystems with particle numbers N1 and N2 have identical thermody-
namic properties, if their intensive variables are the same, via temperature T ,
pressure P , particle density N/V , and energy density E/N [see illustration in
Fig. 8.1(a)]. It then follows directly from (8.25) that,

S(E, V,N) = kB(N1 +N2)s(E/N, V/N) = S(E1, V1, N1) + S(E2, V2, N2) .
(8.26)

That is, in the case of identical thermodynamic states the entropy is additive.

Figure 8.1: (a) Two subsystems sharing the same volume. (b) Two subsystems in thermal
contact.

Two systems defined by E1, V1, N1 and respectively E2, V2, N2 in thermal con-
tact may allow energy such that the total energy E = E1 + E2 is constant [see
illustration in Fig. 8.1(b)]. For the argument of the entropy we have then,

W (E, V,N)

W0(N)
=
∑

E1

W (E1, V1, N1)

W0(N1)

W (E − E1, V2, N2)

W0(N2)
. (8.27)

The law of large numbers tells us that the right-hand-side is sharply peaked
at its maximum value E1 = Emax and that the width of the peak has a width
scaling with

√
Emax. We hence have,

S(Emax) < S(E,N, V ) < kB ln
√
Emax + S(Emax) , (8.28)

where the first inequality is due to the fact that a single term is smaller than
the sum of positive terms. The second inequality in (8.28) results when when
one replaces the sum on the r.h.s. of (8.27) by the product of the width

√
Emax

of the peak and its height. We have defined in (8.28)

S(Emax) = kB ln
W (Emax, V1, N1)

W0(N1)

W (E − Emax, V2, N2)

Γ0(N2)
, (8.29)

from which follows that the entropy for two systems in thermal contact is addi-
tive S(E, V,N) = S(E1, V1, N1)+S(E2, V2, N2). Note that the entropy S(Emax)
is extensive and that the term ∼ ln(Emax) in (8.28) is hence negligible in the
thermodynamic limit N →∞.

(2) Consistency with the definition of the temperature. Two systems with
entropies S1 = S(E1, V1, N1) and S2 = S(E2, V2, N2) in thermal contact may
exchange energy in the form of heat, with the total entropy,

0 = dS =
∂S1

∂E1
dE1 +

∂S2

∂E2
dE1 , dE1 = −dE2 , (8.30)
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becoming stationary at equilibrium. Note that the total energy E1 + E2 is
constant. The equilibrium condition (8.30) implies that there exists a quantity
T , denoted temperature, such that

∂S1

∂E1
=

1

T
=
∂S2

∂E2
. (8.31)

The possibility to define the temperature, as above, is hence a direct consequence
of the conservation of the total energy. From the microcanonical definition of
the entropy one only needs that the entropy is a function only of the internal
energy, via the volume Γ(E, V,N) of the energy shell, and not of the underlying
microscopic equation of motion.

(3) Consistency with the second law of thermodynamics. The statistical
entropy defined by (8.18) need to satisfy the second law of thermodynamics
saying that, ’if an isolated system undergoes a process between two states at
equilibrium, the entropy of the final state cannot be smaller than that of the
initial state.’

Both the energy E and the number of particle N stay constant during a free
expansion, defined by the absence of external heat transfer,

δQ = 0 . (8.32)

According to (8.24), the phase space volume W (E, V,N) of the energy shell
increases when the volume increases from Vi to Vf. Since according to (8.18) the
entropy increases with the phase space volume, while the normalization factor
W0(N) remains constant, we have 3,

S(E, Vf, N) > S(E, Vi, N) . (8.33)

(4) Thickness of the energy shell. The definition of the entropy (8.18) involves
the volume in state space W (E, V,N) of a shell of width ∆E centered around
the energy E. It seems therefore that the entropy S = S∆E(E, V,N) depends
on an unspecified parameter ∆E. The question then arises whether the entropy
then not uniquely specified.

For small ∆E we may use the approximation

W (E, V,N) ≃ η(E)∆E , (8.34)

where η(E) is the density of states, as defined previously in (8.16). In order to
decide whether a given ∆E is small or large, we compare it to some reference
energy ∆E0. One may take e.g. ∆E0 ∼ kBT , which corresponds in order of
magnitude to the thermal energy of an individual particle.

The entropy involves the logarithm of W (E, V,N),

ln
W (E, V,N)

W0
= ln

η(E)∆E∆E0

W0∆E0
= ln

η(E)∆E0

W0︸ ︷︷ ︸
∝N

+ ln(∆E/∆E0) , (8.35)

3Dynamical constraints (viz bouncing from the wall) are mitigated when the volume is increased.
The second law is equivalent to saying that the entropy rises when dynamical constraints are elimi-
nated.
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where we have taken care that the arguments of the logarithms are dimension-
less. The key insight resulting from this representation is that the exact value
of both ∆E and ∆E0 is irrelevant in the thermodynamic limit N →∞ as long
as 4,

| ln(∆E/∆E0)| ≪ N . (8.36)

We may also consider the limit of large ∆E to the extend that we may substitute
the phase space volume W (E, V,N) of the energy shell by the phase space
volume of the sphere ,

Φ(E) ≡
∑

E

W (E) =

∫ E

0

η(E)dE . (8.37)

Now, the volume and surface of a phase space sphere with radius R of dimension
3N scale respectively like R3N and R3N−1 (see Eq. (8.48) below). This scaling
leads to,

lnΦ(E) ∼ lnR3N = 3N lnR (8.38)

lnW (E, V,N) ∼ lnR3N−1∆ = (3N − 1) lnR+ ln∆ ∼ 3N lnR ∼ 3N lnR .
(8.39)

Hence,

lnW (E, V,N) ≃ lnΦ(E) , (8.40)

where we have disregarded the normalization factorW0, did not perform here an
analysis of the units involved, and neglected in particular the reference energy
∆0.

8.2.3 Calculating with the microcanonical ensemble

In order to perform calculations in statistical physics one proceeds through the fol-
lowing steps:

1. Formulation of the Hamilton function H(r, p) = H(r1, ..., r3N , p1, ..., p3N , z),
where z is some external parameter, e.g. volume V . H(r, p) specifies the micro-
scopic interactions.

2. Determination of the phase space W (E, V,N) and calculation of the density of
states,

ρ(E, V,N) =

∫
d3Nr

∫
d3Npδ(E −H(r, p)) . (8.41)

3. Calculation of the entropy from the volume Φ(E) of the energy sphere via

S(E, V,N) = kB ln
Φ(E)

W0
. (8.42)

4In quantum statistics this condition is ensured by energy quantization.
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4. Calculation of P , T , and µ,

1

T
=

(
∂S

∂E

)

V,N

, − µ

T
=

(
∂S

∂N

)

E,V

,
P

T
=

(
∂S

∂V

)

E,N

. (8.43)

5. Calculation of the internal energy,

E = ⟨H⟩ = E(S, V,N) . (8.44)

6. Calculation of other thermodynamic potentials and their derivatives by appli-
cation of the Legendre transformation,

F (T, V,N) = E − TS (8.45)

H(S, P,N) = E + PV G(T, P,N) = E + PV − TS .

7. One can calculate other quantities than the thermodynamic potentials, for in-
stance, probability distribution functions of certain properties of the system,
e.g., momenta/velocity distribution functions. If the phase space density of a
system of N particles is given by,

ρmc(r, p) = ρmc(r1, ..., rN ,p1, ...,pN ) , (8.46)

then the probability of finding particle i with momentum p is,

ρi,mc(p) = ⟨δ(p− pi)⟩ (8.47)

=

∫
d3q1...d

3qNd
3p1...d

3pNρmc(r1, ..., rN ,p1, ...,pi, ...,pN )δ(p− pi) .

Example 54 (Hyperspheres): Let us calculate for later purposes the volume,

Ωn(R) =

∫
∑n

i=1 x
2
i<R

2

dnx = RnΩn(1) (8.48)

of a hypersphere of n dimensions and radius R. We notice that the volume
Ωn(1) of the sphere with unity radius enters the determinant of the Jacobian
when transforming Euclidean to spherical coordinates via,

dnx = dx1...dxn = Ωn(1)nR
n−1dR . (8.49)

This transformation is valid if the integrand depends exclusively on the radius
R.
In order to evaluate (8.48) we make use of the fact that we can rewrite the
Gaussian integral, ∫

R3

e−(x21+...+x
2
N )dx1...dxn = πn/2 (8.50)

as

πn/2 =

∫ ∞

0

e−R
2

Ωn(1)nR
n−1dR (8.51)

= nΩn(1)

∫ ∞

0

e−yy(n−1)/2 dy

2
√
y
= n

2
Ωn(1)

∫ ∞

0

e−yyn/2−1dy ,
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where we have used
∑
i x

2
i = R2 ≡ y and 2RdR = dy. With the definition,

Γ(z) =

∫ ∞

0

xz−1e−xdx , (8.52)

of the Γ-function, comparing (8.50) and (8.50) we obtain,

Ωn(1) =
πn/2

(n/2)Γ(n/2)
. (8.53)

Note that we evaluated the volume of a hypersphere for formally dimensionless

variables xi.

8.2.4 Classical ideal gas

We consider now the steps given in the last section in order to analyze an ideal gas
of N particles in a volume V , defined by the Hamilton function,

H(r, p) =

N∑

i=1

p2
i

2m
, (8.54)

where m is the mass of the particles.
We will make use of (8.40), namely that the volume W (E, V,N) of the energy

shell E < H < E +∆E can be replaced by the volume of the energy sphere,

Φ(E) =
x

∑N
i=1 p

2
i≤2mE

d3Nrd3Np = V N
∫
∑N

i=1 p
2
i≤2mE

d3Nr = V NW3N (
√
2mE) ,

(8.55)
when it comes to calculating the entropy in the thermodynamic limit. We have
identified the last integral in (8.55) as the volume of a 3N -dimensional sphere with
radius

√
2mE. Using (8.48) and (8.51),

W3N (
√
2mE) =

√
2mE

3N
W3N (1) with W3N (1) =

π3N/2

(3N/2)Γ(3N/2)
, (8.56)

we obtain,

Φ(E) = V NW3N (1)
√
2mE

3N
. (8.57)

8.2.4.1 Entropy

Using (8.57) we find,

S(E, V,N) = kB ln
Φ(E)

h3NN !
= kB ln

V NW3N (1)
√
2mE

3N

h3NN !
(8.58)

for the entropy of a classical gas. It is easy to check, that the argument of the
logarithm is dimensionless as it should be.

For large N ≫ 1, one may use the Stirling formula (8.1), to expand the Γ-function
for integer argument as,

ln Γ(N) = ln(N − 1)! ≃ (N − 1) ln(N − 1)− (N − 1) ≃ N lnN −N , (8.59)
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in order to simplify the expression for S(E, V,N). Using (8.19) we perform the fol-
lowing algebraic transformations to W3N (1),

lnW3N (1) = ln
π3N/2

(3N/2)Γ(3N/2)
= 3N

2 lnπ −
[
3N
2 ln 3N

2 − 3N
2

]
(8.60)

= N
[(

2π
3N

)3/2
+ 3

2 +O( lnNN )
]
.

We insert this expression in Eq. (8.58) and obtain,

S = kBN


ln B(2mE)3/2

h3
+ ln

(
2π

3N

)
+

3

2
− (lnN − 1)︸ ︷︷ ︸

lnN !/N


 . (8.61)

Rewriting (8.61) as,

S = BN

{
ln

[(
4πmE

3h2N

V

N

)3/2
]
+

5

2

}
, (8.62)

we obtain the Sackur-Tetrode equation.
Now we can differentiate the Sackur-Tetrode equation to obtain the caloric equa-

tion of state (??) for the ideal gas,

1

T
=

(
∂S

∂E

)

V,N

= NkB
3

2

1

E
, E = 3

2NkBT , (8.63)

as well as the thermal equation of state for the ideal gas,

P

T
=

(
∂S

∂V

)

E,T

=
kBN

V
, PV = NkBT . (8.64)

Example 55 (’Classical’ Sackur-Tetrode equation): Note that, if we hadn’t
considered the factor N ! when working out the entropy, then one would obtain,

Sclassical = kBN

{
ln

[(
4πmE

3h2N
V

)3/2
]
+

3

2

}
, (8.65)

With this definition, the entropy is non-additive, i.e.,

S(E, V,N) ̸= Ns(E
N
, V
N
) , (8.66)

as mentioned previously. This was realized by Gibbs paradox, who introduced

the factorN ! and attributed it to the fact that the particles are indistinguishable.

8.2.5 Quantum statistics

The quantum mechanics the microcanonical density operator and partition function
are given by,

ρ̂mc = 1
Ξmc

∑
k |ψk⟩f(E−εk

∆E )⟨ψk|

Ξmc =
∑
k f(

E−εk
∆E ) with f(x) = θ( 12 − |x|)

. (8.67)
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8.2.5.1 Applicability

Because of its connection with the elementary assumptions of equilibrium statistical
mechanics (particularly the postulate of a priori equal probabilities), the microcanoni-
cal ensemble is an important conceptual building block in the theory and is sometimes
considered to be the fundamental distribution of equilibrium statistical mechanics. It
is also useful in some numerical applications, such as molecular dynamics. On the
other hand, most nontrivial systems are mathematically cumbersome to describe in
the microcanonical ensemble, and there are also ambiguities regarding the definitions
of entropy and temperature. For these reasons, other ensembles are often preferred
for theoretical calculations.

The applicability of the microcanonical ensemble to real-world systems depends
on the importance of energy fluctuations, which may result from interactions between
the system and its environment as well as uncontrolled factors in preparing the sys-
tem. Generally, fluctuations are negligible if a system is macroscopically large, or if it
is manufactured with precisely known energy and thereafter maintained in near iso-
lation from its environment. In such cases the microcanonical ensemble is applicable.
Otherwise, different ensembles are more appropriate, such as the canonical ensemble
(fluctuating energy) or the grand canonical ensemble (fluctuating energy and particle
number).

8.2.5.2 Phase transitions and thermodynamic analogies

Under their strict definition, phase transitions correspond to non-analytic behavior in
the thermodynamic potential or its derivatives. Using this definition, phase transitions
in the microcanonical ensemble can occur in systems of any size. This contrasts with
the canonical and grand canonical ensembles, for which phase transitions can occur
only in the thermodynamic limit– i.e. in systems with infinitely many degrees of
freedom. Roughly speaking, the reservoirs defining the canonical or grand canonical
ensembles introduce fluctuations that ’smooth out’ any non-analytic behavior in the
free energy of finite systems. This smoothing effect is usually negligible in macroscopic
systems, which are sufficiently large that the free energy can approximate non-analytic
behavior exceedingly well. However, the technical difference in ensembles may be
important in the theoretical analysis of small systems.

The volume entropy Svol and associated temperature Tvol form a close analogy to
thermodynamic entropy and temperature. It is possible to show exactly that,

dE = TvoldSvol − ⟨P ⟩dV , (8.68)

where ⟨P ⟩ is the ensemble average pressure, as expected for the first law of thermo-
dynamics. A similar equation can be found for the surface entropy and its associated
temperature Tsur, however the ’pressure’ in this equation is a complicated quantity
unrelated to the average pressure.

The microcanonical Tvol and Tsur are not entirely satisfactory in their analogy to
temperature. Outside of the thermodynamic limit, a number of artefacts occur.

• Nontrivial result of combining two systems: Two systems, each described by
an independent microcanonical ensemble, can be brought into thermal contact
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and be allowed to equilibriate into a combined system also described by a mi-
crocanonical ensemble. Unfortunately, the energy flow between the two systems
cannot be predicted based on the initial T ’s. Even when the initial T ’s are
equal, there may be energy transferred. Moreover, the T of the combination is
different from the initial values. This contradicts the intuition that temperature
should be an intensive quantity, and that two equal-temperature systems should
be unaffected by being brought into thermal contact.

• Strange behavior for few-particle systems: Many results, such as the micro-
canonical equipartition theorem acquire a one- or two-degree of freedom offset
when written in terms of Tsur. For a small systems this offset is significant, and
so if we make Ssur the analogue of entropy, several exceptions need to be made
for systems with only one or two degrees of freedom.

• Spurious negative temperatures: A negative Tsur occurs whenever the density
of states decreases with energy. In some systems the density of states is not
monotonic in energy, and so Tsur can change sign multiple times as the energy
is increased. The preferred solution to these problems is to avoid using the
microcanonical ensemble. In many realistic cases a system is thermostatted to
a heat bath so that the energy is not precisely known. Then, a more accurate
description is the canonical ensemble or grand canonical ensemble, both of which
have complete correspondence to thermodynamics.

8.2.6 Exercises

8.2.6.1 Ex: Ideal gas in a uniform gravitational field in the microcanon-
ical description

Calculate the microcanonical phase space volume, the velocity distribution, and the
kinetic temperature explicitly for an ideal gas in a uniform gravitational field.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Appendix_MicroGassystem01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Appendix_MicroGassystem01.pdf
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Preface to the part Atomic and Molecular Physics

In quantum mechanics (see Chp. 3) we have learned how to handle rotationally
symmetric systems and deduced Bohr’s atom model for the case of Coulombian poten-
tials. Real atoms are of course much more complicated and exhibit a complex energy
level structure, which necessitates a deepening of the theory of atomic physics.

Important corrections arise from relativistic effects, such as the fact that electrons
have a spin. These corrections will be presented in chapter 9. In Chp. 10 we will dis-
cuss the impact of external electric and magnetic fields on the atomic level structure.
When several electrons are present in the shell, their mutual interaction and quan-
tum statistical effects (already introduced in Chp. 7) must be accounted for, as will
be shown in 11. Interactions between atoms may lead to the formation of molecules,
rudimentarily discussed in Chp. 12 or collisions discussed in Chp. 13.
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Chapter 9

Electron spin and the atomic
fine structure

The energy structure of hydrogen calculated by Bohr’s model from the non-relativistic
Hamiltonian agrees very well with the experimental measurements. However, in high-
resolution experiments, small deviations were observed as energy shifts and splittings
of spectral lines. These deviations, called fine structure, were not predicted by theory,
which suggests that there are weak additional effects that do not strongly affect the
position of the spectral lines but remove the energy degeneracy of the orbital quantum
number ℓ: E = En,ℓ.

As a possible explanation we have the fact that the electrons present relativistic
mass and momentum. In order to estimate the relevance of relativistic corrections
let us estimate the electron velocity in the fundamental hydrogen states given by
E1 = −ℏ2/2mea

2
B. Using the definitions of the Bohr radius, aB = 4πε0ℏ2/(mee

2),
and the fine structure constant

α ≡ e2

4πϵ0ℏc
≃ 1

137
, (9.1)

we obtain,

v =

√
2E1

me
=

ℏ
meaB

=
e2

4πε0ℏ
= αc , (9.2)

which shows that the electron velocity is very high and that relativistic effects may
indeed be non negligible.

9.1 The Dirac equation

9.1.1 The Klein-Gordon equation for bosons

The Schrödinger equation for a free particle is based on the non-relativistic energy-
momentum dispersion relation,

E =
p2

2me
. (9.3)

and the definitions of the quantum operators for energy and momentum,

Ê = ıℏ
∂

∂t
and p̂ = −ıℏ∇ . (9.4)

329



330 CHAPTER 9. ELECTRON SPIN AND THE ATOMIC FINE STRUCTURE

As already discussed in Sec. 1.3.2 we can, in order to find a relativistic wave equation,
try the approach of inserting the quantum operators into the relativistic energy-
momentum relation 1.

E2 = c2p2 +m2
ec

4 . (9.5)

We obtain, [
1

c2
∂2

∂t2
−∇2 +

(mec

ℏ

)2]
ψ = 0 . (9.6)

This is the Klein-Gordon equation. The stationary solution of this equation is a
spherical wave,

ψ = ψ0
1

r
e−2πr/λC , (9.7)

where λC = h/mec is the Compton wavelength. We show this in Exc. 9.1.5.1. For
example, in the case of heavy bosonic particles, such as a field of π-mesons, ψ is the
Yukawa potential.

In the framework of the standard model, it is believed that matter is composed
of two fundamental types of particles, bosons and fermions. Bosons are exchanged
between fermions conveying the interaction between them. A typical example is
the one of two electrons whose Coulomb interaction is mediated by the exchange
of photons. Bosons obey the Klein-Gordon equation, fermions the Dirac equation
derived in the following section.

9.1.2 The Dirac equation for fermions

In 1928 Paul Dirac, at the age of 26, developed an approach to a relativistic wave equa-
tion which differed from the Klein-Gordon equation. Motivated by the observation
that the photon, being the relativistic particle par excellence, obeys a linear energy-
momentum relation of the form ω = ck, he attempted to derive a linear dispersion
relation in E and p for heavy particles via the following ansatz:

E = α0mec
2 + α1cpx + α2cpy + α3cpz . (9.8)

Replacing energy and momentum with their respective operators 2,

ıℏ
∂

∂t
ϕ = α0mec

2ϕ− ıcℏ
(
α1

∂

∂x
+ α2

∂

∂y
+ α3

∂

∂z

)
ϕ . (9.9)

We must now ensure that the relativistic energy-momentum condition (9.5) be satis-
fied.

Example 56 (Derivation of the Dirac equation): Taking the square on the
right-hand side of the equation (9.9),

[α0mec
2 − ıcℏ(α1∂x + α2∂y + α3∂z)][α0mec

2 − ıcℏ(α1∂x + α2∂y + α3∂z)]

= m2
ec

4α2
0 − ıcℏmec

2[(α0α1 + α1α0)∂x + (α0α2 + α2α0)∂y + (α0α3 + α3α0)∂z]

− c2ℏ2[α2
1∂

2
x + α2

2∂
2
y + α2

3∂
2
z ]

− c2ℏ2[(α1α2∂x∂y + α2α1∂y∂x) + (α2α3∂y∂z + α3α2∂z∂y) + (α3α1∂z∂x + α1α3∂x∂z)] .

1Using the covariant notation with pµ ≡ (E/c,p): pµpµ = E2/c2 − p2 = m2
ec

2 is a Lorentz
invariant.

2We introduce the abbreviation ∂k ≡ ∂
∂xk
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For this expression to be identical to the relativistic energy-momentum condition
(9.5),

m2
ec

4 − c2ℏ2[∂2
x + ∂2

y + ∂2
z ] ,

we need to postulate for all i = 0, .., 3, that αiαj + αjαi = 2δij .

Obviously, the condition
[αi, αj ]+ = 2δij (9.10)

can not be satisfied if the αi are numbers. The idea of Dirac was to interpret the
variables αi as matrices. These matrices act as operators on appropriate states, which
are no longer scalar wavefunctions but vectors. Each component of the vector is a
wavefunction in the usual sense. The Hilbert space is extended to be the product
space of the usual spatial wavefunctions and a finite-dimensional vector space.

Example 57 (Calculation with matrices of operator): To give an idea of
how the algebra works we consider a general situation. As the operator we
choose the product, (

0 1

1 0

)
∂

∂x

and as the wavefunction vector we choose,(
eık1x

eık2x

)
.

Applying the operator on the state vector we get,(
0 1

1 0

)
∂

∂x

(
eık1x

eık2x

)
=

(
0 ∂

∂x
∂
∂x

0

)(
eık1x

eık2x

)
=

(
0 + ∂

∂x
eık2x

∂
∂x
eık1x + 0

)
=

(
ık2e

ık2x

ık1e
ık1x

)
.

The matrices αi must satisfy the condition (9.10). It is possible to show that this
requires at least four-dimensional matrices of the following form:

α0 =

(−I 0

0 I

)
and αj =

(
0 σj
σj 0

)
, (9.11)

where j = x, y, z = 1, 2, 3. In this notation the components of the matrices are
themselves matrices, i.e. the Pauli spin matrices defined in (1.154). The state vector
must also have four dimensions,

⃗⃗
Φ(r, t) =

(
ϕ⃗(r, t)

χ⃗(r, t)

)
with ϕ⃗(r, t) =

(
ϕ1(r, t)

ϕ2(r, t)

)
and χ⃗(r, t) =

(
χ1(r, t)

χ2(r, t)

)
. (9.12)

ϕj are called large components, χj are called small components. This designation is
explained later. Combining the matrices αj to a three-dimensional vector α⃗, we can
now write the Dirac equation (9.9) like,

ıℏ∂t
⃗⃗
Φ(r, t) =

(
mec

2α0 + cα⃗ · p̂
) ⃗⃗
Φ(r, t) . (9.13)
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Or, using the notation (9.11) and combining the Pauli matrices σj to a three-dimensional
vector σ⃗, we can write the Dirac equation as:

ıℏ
∂

∂t

(
ϕ⃗

χ⃗

)
=

[
mec

2

(−I 0

0 I

)
+ c

(
0 σ⃗ · p̂

σ⃗ · p̂ 0

)](
ϕ⃗

χ⃗

)
. (9.14)

The non-diagonal matrix, (
0 σ⃗ · p̂

σ⃗ · p̂ 0

)
(9.15)

couples large and small components.

Example 58 (Covariant and relativistically invariant form of Dirac’s
equation): To demonstrate its relativistic invariance it is useful to rewrite the
Dirac equation in a way in which time and space appear on equal footings. For
this we introduce new matrices,

γ0 ≡ α0 and γk = γ0αk . (9.16)

We obtain,

γ0 =

(
−I 0

0 I

)
and γk =

(
0 σk
−σk 0

)
. (9.17)

We also define another important matrix by,

γ5 ≡ ıγ0γ1γ2γ3 =

(
0 I
I 0

)
. (9.18)

With this, using Einstein’s notation 3, the Dirac equation (9.12) adopts the
form,

ıℏγµ∂µψ −mecψ = 0 . (9.19)

The complete system is summarized in the Minkowski metrics of time-space in
the form,

[γµ, γν ]+ = 2ηµν , (9.20)

for µ, ν = 0, .., 5, that is, all matrices γk anticommute.
The Dirac equation can now be interpreted as an eigenvalue equation, where
the rest mass is proportional to the eigenvalue of a momentum quadrivector,
the proportionality constant being the speed of light:

p̂opψ = mecψ , (9.21)

Using ∂
/
in the Feynman slash notation, which includes the γ-matrices, as well

as a summation over the components of the spinor in the derivative, the Dirac
equation becomes:

ıℏ∂
/
ψ −mecψ = 0 . (9.22)

A fundamental theorem states that, if two distinct sets of matrices are given,
which both satisfy Clifford’s relations, then they are connected to each other by
a similarity transformation:

γ′µ = S−1γµS . (9.23)

3∂0 ≡ 1
c
∂t
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If, in addition, the matrices are all unitary, as is the case of Dirac’s set, then S
is unitary,

γ′µ = U†γµU . (9.24)

9.1.2.1 Anti-particles

Disregarding for a moment the non-diagonal matrix, the Dirac equation separates
into two independent equations,

ıℏ
∂ϕ⃗

∂t
= mec

2ϕ⃗ and ıℏ
∂χ⃗

∂t
= −mec

2χ⃗ . (9.25)

These are eigenenergy equations with the eigenvalues mec
2 and −mec

2. The state
with negative energy is interpreted as anti-particle. Therefore, the non-diagonal ma-
trix mixes particles and anti-particles. We will study in Exc. 9.1.5.2 the so-called
Zitterbewegung as a solution of the Dirac equation.

9.1.2.2 Particles and anti-particles in the non-relativistic limit

To reduce the Dirac equation to the non-relativistic Schrödinger equation, we first
need to get rid of the rest energy. To do so, we separate a fast oscillation, whose
frequency corresponds to the rest mass of the electron via the following ansatz, where
u and v vary slowly in time:

⃗⃗
Φ(r, t) = e−ıω0t

(
u(r, t)

v(r, t)

)
, ℏω0 = mec

2 , (9.26)

with the temporal derivative,

ıℏ
˙⃗
Φ⃗ =

[
mec

2

(
u

v

)
+ ıℏ

(
u̇

v̇

)]
e−ıω0t . (9.27)

We insert this into the Dirac equation,

[
mec

2

(
u

v

)
+ ıℏ

(
u̇

v̇

)]
e−ıω0t =

[
mec

2

(
u

−v

)
+ cσ⃗ · p̂

(
v

u

)]
e−ıω0t (9.28)

finally obtaining,

ıℏu̇ = c(σ⃗ · p̂)v , ıℏv̇ = c(σ⃗ · p̂)u− 2mec
2v . (9.29)

Since u and v only vary slowly in time, the derivatives on the left-hand side are small
quantities. However, the condition that both derivatives must vanish is too strong,
because it leads to the trivial solution u = 0 and v = 0. We find the first non-trivial
solution by the condition v̇ = 0. The second equation then becomes,

v =
1

2mec
(σ⃗ · p̂)u . (9.30)
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Inserted into the first equation,

ıℏu̇ = c
(σ⃗ · p̂)2
2mec

u . (9.31)

We need, therefore, to evaluate the expression (σ⃗ · p̂)2,

σ⃗ · p̂ =

( −p̂z p̂x + ıp̂y
p̂x − ıp̂y p̂z

)
and (σ⃗ · p̂)2 = p̂2

(
1 0

0 1

)
. (9.32)

Inserted into the differential equation (9.31) for u we obtain precisely the Schrödinger
equation for a free particle,

ıℏu̇ =
p̂2

2me
u . (9.33)

Let us return to the question, why we call u the strong component. We have from
the equation (9.30),

v†v =
1

(2mec)2
(σ⃗ · p̂)2u†u =

1

2mec2
p̂2

2me
u†u , (9.34)

and since p̂2

2me
≪ mec

2 follows immediately v†v≪ u†u.
In this non-relativistic approximation the components u are much larger than the

components v. The mixture between particles and antiparticles only matters when
p̂2

2me
≃ mec

2, resp., 1
2mev

2 ≃ mec
2 or |v| ≃ c. The electron only receives small

positronic contributions as it approaches the speed of light. In the ground state of
the hydrogen atom the electron has a velocity of of v = αc ≃ c/137. That is, the
contribution of the weak components is small, but present.

Example 59 (Vanishing rest mass): Let us note that for the case of vanishing
rest mass, me = 0, the Dirac equation (9.14) dramatically simplifies. Taking the
time derivative of the upper equation (9.14) and inserting the lower equation
(9.14), we find,

1

c2
∂2

∂t2
ϕ⃗ =

1

c2
cσ⃗ · p̂
ıℏ

∂

∂t
χ⃗ = − (σ⃗ · p̂)2

ℏ2
ϕ⃗ = − p̂2

ℏ2
ϕ⃗ = ∇2ϕ⃗ . (9.35)

I.e. we recover a Helmholtz type wave equation.

9.1.2.3 The spin

We consider the operator defined by [232, 233],

Ŝ ≡ ℏ
2
ˆ⃗σ , (9.36)

and we calculate the commutation relations between its components. From the defi-
nitions of the Pauli matrices (1.154) we obtain the rule,

[Ŝx, Ŝy] =
ℏ2

4

(
0 1

1 0

)(
0 ı

−ı 0

)
− ℏ2

4

(
0 ı

−ı 0

)(
0 1

1 0

)
=

ℏ2

4

(−2ı 0

0 2ı

)
= ıℏŜz .

(9.37)
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In general terms the following holds true: [Ŝi, Ŝj ] = ϵijkıℏŜk. It is interesting
to compare this with the commutation relation for the orbital angular momentum
[L̂i, L̂j ] = ϵijkıℏL̂k. The coincidence suggests a generalization of the concept of an-
gular momentum: We now call angular momentum operator every three-dimensional
vector operator satisfying this commutation relation 4. We consider the eigenvalue
equation for ŝz, which is incorporated in the Dirac equation,

Ŝzϕ⃗ = ℏ
2

(−1 0

0 1

)(
ϕ1
ϕ2

)
=MSℏ

(
ϕ1
ϕ2

)
. (9.38)

The eigenvalues are obviously MS = ± 1
2 . The angular momentum related to the

matrices Ŝ is obviously half-integer. We are dealing here with a new type of angular
momentum, which is not included in the usual definition of orbital angular momentum
L̂ = r × p̂. The new angular momentum is called intrinsic angular momentum or
spin of the particle. The spin represents a new structure or dimension additional to
space comparable to the polarization of light. The photons of a circularly polarized
light beam also contribute to an intrinsic angular momentum, which however in this
case is integer.

In Exc. 9.1.5.3 we will see that neither L̂z nor Ŝz are constants of motion of the
Hamiltonian (9.14), but the sum Ĵz ≡ L̂z + Ŝz,

[Ĵz, Ĥ] = 0 . (9.39)

9.1.2.4 The stationary Dirac equation

By a similar treatment as in the Schrödinger equation one can deduce a stationary
Dirac equation (9.13) via a separation of the time variable. Making for the time an
exponential ansatz,

ϕ⃗(r, t) = ϕ⃗(r)e−ıEt/ℏ and χ⃗(r, t) = χ⃗(r)e−ıEt/ℏ , (9.40)

we obtain coupled stationary equations for the large and small components,

(E −mec
2)ϕ⃗(r) = cσ · p̂χ⃗(r) and (E +mec

2)χ⃗(r) = cσ · p̂ϕ⃗(r) . (9.41)

9.1.3 The relativistic electron in a central Coulomb field

9.1.3.1 Minimal coupling

In atomic physics we are mainly interested in electrons bound to a potential (e.g.,
generated by an atomic nucleus), that is, we must introduce electromagnetic forces
into the Dirac equation. Therefore, we now consider the interaction of a charged
particle with an electromagnetic field given by the vector potential A and by the
electrostatic potential U , such that the electric and magnetic fields,

E⃗ = −∇U − ∂A

∂t
and B⃗ = ∇×A , (9.42)

4This concept can be derived from the requirement of symmetry under rotation of space as
discussed in Sec. 1.7.
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allow to calculate the Coulomb-Lorentz force. In the Hamiltonian formulation of
electrodynamics the interaction can be described simply by the transition 5,

p̂ −→ p̂− qA ≡ π⃗ and Ĥ −→ Ĥ + qU . (9.43)

called the minimal coupling. We briefly mentioned this already in Sec. 1.7.4, and the
rules will be derived in Sec. 10.1. In addition to the substitution of the momentum,
we must add the scalar potential qU , and we obtain the Dirac equation for a particle
inside an applied electromagnetic field,

ıℏ
˙⃗
Φ⃗ =

(
mec

2α0 + cα⃗ · π⃗ + qU
) ⃗⃗
Φ , (9.44)

in generalization of Eq. (9.13).

9.1.3.2 Solving the stationary Dirac equation

Let us, for now, disregard external magnetic fields, A = 0. Then, the stationary Dirac
equation (9.41) becomes,

[E − qU(r)−mec
2]ϕ⃗(r) = cσ · p̂χ⃗(r) (9.45)

[E − qU(r) +mec
2]χ⃗(r) = cσ · p̂ϕ⃗(r) .

For the Coulomb potential,

qU(r) = − 1

4πϵ0

e2

r
(9.46)

the Dirac equation can be solved algebraically [234, 341, 346, 294] 6. The calculation
is more complicated than the resolution of the Schrödinger equation for hydrogen
derived in Secs. 3.1.4 and 3.2.1 and will be sketched in the following.

Example 60 (Dirac equation in spherical coordinates): The goal of the
following calculation is to express the Dirac equation for an electron in a central
Coulomb field in spherical coordinates, i.e. r and p̂r = −ıℏ∂r instead of p̂. The
starting point is the Dirac equation (9.14),

ıℏ∂t ⃗⃗Φ(r, t) = Ĥ
⃗⃗
Φ(r, t) , (9.47)

with the Hamiltonian in the minimal coupling (9.43),

Ĥ ≡ mec
2α0 + cα⃗ · [p̂− qA(r)] + qU(r) (9.48)

with A = 0 and U(r) = − e2

4πε0r
.

We adopt the standard procedure from non-relativistic physics, which consists
in rewriting the Hamiltonian in terms of observables, which commute with the
Hamiltonian 7.

5In quadrivetorial notation: πµ = pµ − qAµ with pµ =

(
E/c

p̂

)
and Aµ =

(
U/c

A

)
.

6See also http://einstein.drexel.edu/∼bob/Term Reports/Whitehead 3.pdf
7Typical examples are the Hamiltonian of the harmonic oscillator (2.84) written in terms of

n̂ ≡ â†â or the Hamiltonian of the hydrogen atom (3.34) written in terms of L2.

http://einstein.drexel.edu/~bob/Term_Reports/Whitehead_3.pdf
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The goal is to calculate the quantity α⃗ · p̂ appearing in the above Hamiltonian.
As a first steps we define the following quantities,

L̂ ≡ r× p̂ satisfying L̂× L̂ = ıℏL̂

Ŝ ≡ ℏ
2
ς⃗ ≡ ℏ

2
γ5α⃗

Ĵ ≡ L̂+ Ŝ

ℏj′ ≡ α0(γ5α⃗ · L̂+ ℏ)

rε ≡ α⃗ · r

. (9.49)

remembering that γ5 = −ıα1α2α3 =

(
0 I
I 0

)
is the transformation exchanging

particles and anti-particles. The first important relationship we have to derive
is,

(α⃗ ·B)(α⃗ ·C) = (B ·C) + ıγ5α⃗ · (B×C) . (9.50)

It holds for [α⃗,B] = 0 = [α⃗,C] and will be proven in 9.1.5.4. Exploiting this
relationship, we see that the scalar quantity ε satisfies,

ε2 =
1

r2
(α⃗ · r)2 =

1

r2
[r · r+ ıα⃗ · (r× r)] = 1 . (9.51)

Furthermore, with the definition of j′ we show,

rεα⃗ · p̂ = (α⃗ · r)(α⃗ · p̂) = r · p̂+ ıγ5α⃗ · (r× p̂) (9.52)

= r · p̂+ ıγ5α⃗ · L = rp̂r + ıα0ℏj′ − ıℏ ,

where the relationship r · p̂ = rp̂r is verified in Exc. 9.1.5.5(c). Hence,

α⃗ · p̂ = ε

(
p̂r +

ıℏ(α0j
′ − 1)

r

)
, (9.53)

The final radial Hamiltonian is,

Ĥ = mec
2α0 + cε

(
pr − ıℏ

r

)
+
ıcεα0ℏj′

r
− e2

4πε0r
. (9.54)

For now the choice of the quantities ε and j′ must seem arbitrary, so we will
have to discover their properties. We will see that j′ is a non-zero integer related
to the total angular momentum j. The following properties will be proven in
Exc. 9.1.5.5(a) and (b),

(ℏj′)2 = J2 + ℏ2
4

(9.55)

[ℏj′, Ĥ]− = [ε, Ĥ]− = [α0, Ĥ]− = 0 .

Hence, we got a collection of radial variables being constants of motion of the

Dirac Hamiltonian.

Example 61 (Resolving the spherical Dirac equation): We will now search
a solution to the spherical Dirac equation with the Hamiltonian (9.54). Noticing
that the matrix α0 is diagonal and the matrix ε counter-diagonal (just like the
Dirac matrices α⃗), we may break down the stationary radial Dirac equation
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into 2 by 2 matrices. Using the fact that ε commutes with all other terms and
anti-commutes with α0 and that ε−1 = ε† is a unitary transformation, we may
go to a new basis via,(

mec
2 − e2

4πε0r
−ıcpr − c ℏr − c

ℏj′
r

icpr + c ℏ
r
− c ℏj′

r
−mec

2 − e2

4πε0r

)(
ϕ⃗

εχ⃗

)
= E

(
ϕ⃗

εχ⃗

)
. (9.56)

Substituting α = e2

4πε0ℏc
and a± ≡ ℏ

mec∓E/c (that is, ±mec
2 − E ≡ ± ℏc

a±
), we

find, (
1
a+
− α

r
− d
dr
− j′+1

r

d
dr
− j′−1

r
− 1
a−
− α

r

)(
ϕ⃗

εχ⃗

)
= 0 . (9.57)

Assuming the existence of solutions of the form,(
ϕ⃗

εχ⃗

)
=
e−r/a

r

(
f⃗

g⃗

)
, (9.58)

where a ≡ √a+a− = ℏ
(
m2
ec

2 − E2

c2

)−1

[that is, d
dr

e−r/a

r
= e−r/a

r

(
− 1
a
− 1

r

)
],

we find, (
1
a+
− α

r
− d
dr
− 1

a
− j′

r

d
dr
− 1

a
− j′

r
− 1
a−
− α

r

)(
f⃗

g⃗

)
= 0 . (9.59)

Next we expand the unknown function f⃗ and g⃗ as series,

f⃗(r) =

∞∑
s=−∞

fsr
s and g⃗(r) =

∞∑
s=−∞

gsr
s . (9.60)

These are then substituted into our system of equations. In order for the equa-
tion to go to zero as required, each term in the resulting series must separately
go to zero. The coefficient of the rs terms are,

fs
a+
− αfs+1 − (s+ 1 + j′)gs+1 +

gs
a

= 0 (9.61)

gs
a−
− αgs+1 − (s+ 1− j′)fs+1 +

fs
a

= 0 .

These can be combined by multiplying the first equation (9.61) by a and and
the second by a− and then subtracting the former from the latter. Exploiting
a
a+

=
a−
a
, this gives us an expression directly relating the fs coefficients with

the gs coefficients,

[αa− a+(s− j′)]fs + [αa− + a(s+ j′)]gs = 0 . (9.62)

To obtain the values of the coefficients we consider the boundary conditions.
The functions f⃗(r) and g⃗(r) must go to zero at r = 0, because the functions

ϕ⃗ and χ⃗ would otherwise diverge there due to the r−1 term. This means that
there is some smallest s below which the series does not continue. We call this
s0, and it has the property,

fs0−1 = gs0−1 = 0 . (9.63)



9.1. THE DIRAC EQUATION 339

Plugging this into the equations (9.61), we find,

αfs0 + (s0 + j′)gs0 = 0 (9.64)

αgs0 − (s0 − j′)fs0 = 0 .

Combining these equations we can write the value s0 in a very simple form,

s0 =
√
j′2 − α2 . (9.65)

This places a lower bound on the series. Note that this bound becomes imaginary
if α > j′. This will be discussed in more detail shortly.
The upper bound of the series is also useful. It can be shown that the series must
terminate if the energy eigenvalue is to be less than mec

2 [234]. The implication
of this result is that if the series terminates at index s1 such that,

fs1+1 = gs1+1 = 0 . (9.66)

Then, using equations (9.61) and (9.62), we have,

s1
a

=
1

2

(
1

a−
− 1

a+

)
α =

E

ℏc
α , (9.67)

where we have used the definitions of the coefficients a± to expand them. Squar-
ing this expression and expanding a using its definition, we get,

s21

(
mec

2 − E2

c2

)
= α2E

2

c2
. (9.68)

This can be solved for the energy eigenvalues,

E = ±mec
2

(
1 +

α2

s21

)−1/2

. (9.69)

Note that the ’negative energy’ solution corresponds to positron energy levels.
From here forward, we drop the negative root and look only at the electron
solution.
The two end points of the series, the indices s0 and s1 are separated by an
integer number of steps. Calling this integer n′ we can write,

s1 = n′ + s0 = n′ +
√
j′2 − α2 . (9.70)

Plugging this into (9.69) gives a result for the energy eigenvalues in terms of
only the two quantum numbers n′ and j′,

En′,j′ = mec
2

1 + α2(
n′ +

√
j′2 − α2

)2


−1/2

.

This is the final result quoted for the energy eigenvalues of the hydrogenic atom
by Dirac [234]. It turns out that later developments in the field [341, 346] prefer
to use an equivalent set of quantum numbers that maps more closely to the
familiar ones. The number j′ is closely related to the total angular momentum
quantum number j. j′ has the range 1, 2, 3, while j has the range 1

2
, 3

2
, 5

2
. It

is natural, and in fact correct, to make the identifications,

j′ = j + 1
2
, (9.71)
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and
n′ = n− j′ = n− j − 1

2
, (9.72)

for the principal quantum number n [341]. Combining these two adjustments
with equation (9.71), we get the Sommerfeld fine-structure formula,

En,j = mec
2

1 + α2(
n− j − 1

2
+
√

(j + 1
2
)2 − α2

)2


−1/2

, (9.73)

with j =
∣∣ℓ± 1

2

∣∣ and ℓ = 0, 1, ... The derivation of the form of the actual wave

functions ϕ⃗(r) and χ⃗(r) is very tedious [341] and will not be reproduced here.

The energy predicted by the Sommerfeld fine-structure formula (9.73) depends on
two quantum numbers. The degeneracy of the orbital angular momentum j is lifted,
and the new quantum number besides the main quantum number n is that of the
total angular momentum j. The intransparent expression can be expanded by α,

En,j ≃ mec
2

[
1− α2

2n2
− α4

2n3

(
1

j + 1/2
− 3

4n

)]
. (9.74)

The second term reproduces the energy of Bohr’s model, but there are correction
terms proportional to α4. We will show in Secs. 9.1.4, that the energy levels, called
fine structure, result from several relativistic corrections of different origins.

In the expression (9.74) for the electron energy in the Coulomb potential, the last
term is positive and proportional to 1/n4. It describes relaxation of the binding due
to the contribution of weak components. The term containing the quantum number
j is called the spin-orbit coupling. To better understand this contribution we must
first analyze more deeply the matrices σ⃗.

9.1.3.3 Dirac’s Hamiltonian in the sub-relativistic limit

Defining the energy E′ = E − mec
2, the stationary Dirac equation (9.45) for an

electron of charge q = −e in an external electrostatic potential U(r) can be written,

[E′ − qU(r)]ϕ⃗ = cσ⃗ · p̂χ⃗ and [E′ − qU(r) + 2mec
2]χ⃗ = cσ⃗ · p̂ϕ⃗ . (9.75)

resolving the second equation for the wavefunction χ⃗ and substituting it into the first,

E′ϕ⃗ = qU(r)ϕ⃗+ σ⃗ · p̂ 1

2me

(
1 +

E′ − qU(r)

2mec2

)−1

σ⃗ · p̂ϕ⃗ . (9.76)

In the non-relativistic limit,

E′ − qU ≃ p̂2

2me
≪ mec

2 , (9.77)

we get by Taylor expansion of the second term in the bracket,

E′ϕ⃗ ≃ qU(r)ϕ⃗+ σ⃗ · p̂ 1

2me

(
1− E′ − qU(r)

2mec2

)
σ⃗ · p̂ϕ⃗ . (9.78)
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Now, σ⃗ · p̂ is an operator entity, which acts on the subsequent operators and wave-
functions. We thus have to apply the product rule, (σ⃗ · p̂)U(r)ψ = U(r)(σ⃗ · p̂)ψ +
[(σ⃗ · p̂)U(r)]ψ, in equation (9.78),

E′ϕ⃗ ≃ qU(r)ϕ⃗+ 1
2me

(
1− E′−qU(r)

2mec2

)
(σ⃗ · p̂)2 ϕ⃗+ q

4m2
ec

2 [(σ⃗ · p̂)U(r)](σ⃗ · p̂)ϕ⃗ . (9.79)

In the following we will make use of a general relationship which is similar to (9.50),

(σ⃗ ·B)(σ⃗ ·C) = (B ·C) + ıσ⃗ · (B×C) . (9.80)

It holds for [σ⃗,B] = 0 = [σ⃗,C] and will be demonstrated in Exc. 9.1.5.4. The rela-
tionship yields,

(σ⃗ · p̂)2 = p̂2 and [σ⃗ · p̂U(r)](σ⃗ · p̂) = p̂U(r) · p̂+ ıσ⃗ · [p̂U(r)× p̂] , (9.81)

so that expressing the momentum operator by p = −ıℏ∇ wherever it acts on the
potential,

E′ϕ⃗ ≃ qU(r)ϕ⃗+ 1
2me

(
1− E′−qU(r)

2mec2

)
p̂2ϕ⃗− ℏ2q

4m2
ec

2∇U(r) ·∇ϕ⃗+ ℏ
4m2

ec
2 σ⃗ · [∇U(r)× p̂]ϕ⃗ .

(9.82)
Also, with U(r) = U(r),

∇U(r) =
∂U

∂r
∇r = ∂U

∂r

r

r
and ∇U(r) · ∇ =

∂U

∂r
êr · ∇ =

∂U

∂r

∂

∂r
. (9.83)

We get,

E′ϕ⃗ = qU(r)ϕ⃗+
1

2me

(
1− E′ − qU(r)

2mec2

)
p̂2ϕ⃗− ℏ2

4m2
ec2

∂qU

∂r

∂

∂r
ϕ⃗+

ℏq
4m2

ec2
σ⃗ ·
[
1

r

∂U

∂r
r× p̂ϕ⃗

]
≃
(

p̂2

2me
+ qU(r)− p̂4

8m3
ec2

+
q

2m2
ec2

1

r

∂U

∂r
s · l− ℏ2q

4m2
ec2

∂U

∂r

∂

∂r

)
ϕ⃗ . (9.84)

where we again applied the non-relativistic approximation (9.77) in the second line
and made use of the definitions Ŝ = ℏ

2 σ⃗ and L̂ = r× p̂. The term in the bracket can
be used as the Hamiltonian allowing to calculate the fine structure as first-order per-
turbations to the non-relativistic energy levels obtained from non-relativistic theory,

Ĥ ≃ p̂2

2me
− 1

4πε0

e2

r
− p̂4

8m3
ec

2
− e

2m2
ec

2

1

r

∂U

∂r
Ŝ · L̂− ℏ2e

4m2
ec

2

∂U

∂r

∂

∂r
. (9.85)

The first two terms are those arising from Bohr’s atom model, the third one is a
correction due to the relativistic velocity of the electron, the forth comes from the
electron’s spin-orbit coupling, and the fifth is called the Darwin term. All contri-
butions represent perturbations to the non-relativistic Schrödinger theory of Bohr’s
atom and will be discussed extensively in Secs. 9.2. We will show in 9.1.5.6 that L̂2,
Ŝ2, and Ĵ2 are constants of motion of the above Hamiltonian.
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9.1.4 The Pauli equation

When we calculated the electron’s energy in the Coulomb potential (9.85), we only
considered the electrostatic potential of the nucleus, letting the potential vector A be
zero. As long as we do not apply an external magnetic field this is correct, because the
internal magnetism of the atom is already completely enclosed in the Dirac equation.
On the other hand, we know that the atom contains moving charges, that is, currents
which generate magnetic fields 8. Furthermore, the spins of the electron and of the
proton produce magnetic moments, which ought to interact with the magnetic fields.
Hence, the existence of magnetic effects in an atom is to be expected.

These magnetic effects can be discussed in a more transparent way applying a
Schrödinger-like equation with minimal coupling to electromagnetic fields (9.43) to

a two-component spinor ϕ⃗. This Schrödinger-like equation can be obtained from
Dirac’s equation (9.75) via a stronger non-relativistic approximation, which consists
in completely neglecting the weak component [E′ − qU(r)]χ⃗. On the other hand, we
allow for the existence of magnetic fields via the substitution p̂ → π⃗. The equation
for the strong component (9.76) then becomes,

E′ϕ⃗ = qU(r)ϕ⃗+
(σ⃗ · π⃗)2
2me

ϕ⃗ . (9.86)

We can again apply the formula (9.80) to calculate,

(σ⃗ · π⃗)2ψ = π⃗2ψ + ıσ⃗ · (π⃗ × π⃗)ψ = π⃗2ψ + ıqσ⃗ · [−p×A(r)−A(r)× p̂]ψ (9.87)

= π⃗2ψ − ℏqσ⃗ · {∇ × [A(r)ψ] +A(r)×∇ψ}
= π⃗2ψ − ℏqσ⃗ · [∇×A(r)]ψ = [p− qA(r)]2ψ − ℏqσ⃗ · B⃗(r)ψ .

In the case of an electron (e = −q) we obtain the so-called Pauli equation,

E′ϕ⃗ =

[
1

2me
(−ıℏ∇+ eA)

2
+

eℏ
2me

σ⃗ · B⃗ − eU(r)

]
ϕ⃗ , (9.88)

which corresponds to a Schrödinger-like equation for a two-component spinor ϕ⃗ with
the Hamiltonian,

Ĥ ≃ p̂2

2me
− 1

4πε0

e2

r
− ıℏe

2me
(∇ ·A+A · ∇) + e

me
S · B⃗ , (9.89)

neglecting terms in A2. Note however, that the kinetic energy is calculated with the
momentum projected onto the spin, σ⃗ · π⃗. The third term can be simplified within the
Coulomb gauge ∇ ·A = 0 yielding,

Ĥint =
e

me
(A · p̂) . (9.90)

The Pauli equation serves for a classical (non-relativistic) approach to the elec-
tron’s spin-orbit coupling, as we will see below and in the discussion of the fine
structure in Sec. 9.2.2.

8The spin of the electron does not generate a magnetic field, in contrast to the angular momentum
caused by its orbital motion. It only interacts with the environment through the requirement of
symmetrization for being a fermion.
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9.1.4.1 Dipole moment of the orbital angular momentum

The rotational motion of a charge, −e, creates a current I, corresponding to a current
density,

j(r′) = Iêϕδ(r − r′)δ(z′) = −e
v

2πr
δ(r − r′)δ(z′) . (9.91)

Hence, the dipole moment caused by the circular motion of an electron is,

µ⃗ℓ =
1

2

∫

V

r× j(r′)d3r′ (9.92)

=
1

4π
r×

∫ 2π

0

dϕ′
∫ ∞

−∞
dz′
∫ ∞

0

r′dr′
−ev
r
δ(r − r′)δ(z′) = −1

2 er× v =
−e
2me

L ,

with the angular momentum L = r × mev. The quotient γe ≡ −e/2me is called
gyromagnetic ratio of the electron. We often use the Bohr magneton, µB ≡ ℏe/2me,
which represents the elementary unit of spin,

µ⃗ℓ
µB

= −gℓ
L̂

ℏ
. (9.93)

The g-factor of a system having any angular momentum L̂ is defined as a propor-
tionality constant between the normalized dipole moment and the normalized angular
momentum. gℓ ≡ µℓ

ℓµB
= 1 takes into account possible corrections between our classi-

cal derivation and quantum mechanics.

9.1.4.2 Pauli’s model of spin-orbit coupling

The aim of this section is to demonstrate the relationship between the spin-orbit
coupling term in Dirac’s Hamiltonian (9.85) and the spin-magnetic field coupling
term in Pauli’s Hamiltonian (9.89).

A comparison of Pauli’s expression with the energy of a magnetic moment in the
field B⃗,

Ĥℓs = −µ⃗s · B⃗ , (9.94)

suggests the following connection between the spin and the magnetic moment:

−µ⃗s · B⃗ =
eℏ
2me

σ⃗ · B⃗ =
e

me
Ŝ · B⃗ . (9.95)

We conclude, that the electron carries, besides mass, charge and spin, also a magnetic
dipole moment,

µ⃗s
µB

= − e

meµB
Ŝ = −2 Ŝ

ℏ
, (9.96)

For the g-factor of the electron, we obtain ge = 2 9. Neutron and proton are also
fermions with spin 1

2 , but they do not obey the Dirac equation! Their g-factors are

9The exact value is ge ≡ µs
sµB

= 2.002319314... The deviation ge − 2 ≃ α
π

− 0.164α
2

π2 is due to

the coupling of the spin to the fluctuations of the electromagnetic vacuum. We need to use quantum
electrodynamical methods to calculate the corrections.
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gproton = 5.5858 and gneutron = −3.8261. The large deviation from g = 2 points to
the existence of an internal structure.

The rapid motion of the electron within the electrostatic field E⃗ of the nucleus pro-
duces, following the theory of relativity, in the electron’s reference frame a magnetic
field B⃗′ with which the electronic spin can interact. As we will show in Exc. 9.1.5.7,
the field seen by the electron can be approximated in first order in v/c by,

B⃗′ ≃ v

c2
× E⃗ . (9.97)

With this the interaction energy (9.94) becomes,

Ĥℓs = −µ⃗s · B⃗′ =
e

mec2
s · (v × E⃗) = − e

m2
ec

2
s · (p̂×∇U) (9.98)

= − e

m2
ec

2
s ·
(
p̂× r

r

∂U

∂r

)
= − 1

m2
ec

2r
Ŝ · L̂∂V (r)

∂r
,

with V (r) = −eU(r).
The resulting interaction energy coincides, apart from a factor 1

2 [814], with the one
obtained in the from Dirac’s equation (9.85). The deviation, called Thomas factor, is
due to the necessity to transform back into the inertial system of the nucleus. This
transformation, called Thomas precession, must be done by a Lorentz transformation,
which is not trivial with electron continuously changing its propagation direction on
its circular orbit. The transformation introduces the additional factor of 1

2
10.

9.1.5 Exercises

9.1.5.1 Ex: Yukawa potential

Show, that Yukawa’s potential satisfies the Klein-Gordon equation.

9.1.5.2 Ex: Zitterbewegung

Zitterbewegung is a hypothetical rapid motion of elementary particles, in particular
electrons, that obey the Dirac equation. The existence of such motion was first pro-
posed by Erwin Schrödinger in 1930 as a result of his analysis of the wave packet
solutions of the Dirac equation for relativistic electrons in free space, in which an
interference between positive and negative energy states produces what appears to be
a fluctuation (at the speed of light) of the position of an electron around the median,
with a frequency of 2mec

2/ℏ, or approximately 1.6 · 1021 rad/s. For the hydrogen
atom, the Zitterbewegung produces the Darwin term which plays the role in the fine
structure as a small correction of the energy level of the s-orbitals.
Use the Heisenberg equation to derive, from Dirac’s Hamiltonian, equations of motion
for the position operator r̂ and the ’velocity operator’ ˆ⃗α. Solve the equation of motion
and identify the Zitterbewegung.
Zitterbewegung of a free relativistic particle has never been observed. However, it has
been simulated in experiments engineered to obey equations similar to Dirac’s. First,

10This is a kinematic effect in space-time: the Lorentz transformations for systems moving with
non-collinear velocities can not simply be concatenated, but must be rotated, too [294, 425].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_PotencialYukawa.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices00.pdf
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with a trapped ion, by putting it in an environment such that the non-relativistic
Schrödinger equation for the ion has the same mathematical form as the Dirac equa-
tion (although the physical situation is different) [315]. Then, in 2013, it was simulated
in a setup with Bose-Einstein condensates [505].

9.1.5.3 Ex: Constants of motion of Dirac’s Hamiltonian 1

Show that L̂z with L̂ ≡ r× p̂ and Ŝz with Ŝ ≡ ℏ
2γ5α⃗ defining γ5 ≡ −ıα1α2α3 are not

constants of motions, but Ĵ = L̂+ Ŝ, that is,

[Ĥ, Ĵz] = [Ĥ, L̂z + Ŝz] = 0 . (9.99)

9.1.5.4 Ex: Calculating with Dirac matrices

a. Prove that, if [B, σ⃗] = 0 = [C, σ⃗] where σ⃗ are the Pauli matrices, then,

(σ⃗ ·B)(σ⃗ ·C) = B ·C+ıσ⃗ · (B×C) . (9.100)

b. Prove that, if [B, α⃗] = 0 = [C, α⃗] where α⃗ are the Dirac matrices, then,

(α⃗ ·B)(α⃗ ·C) = B ·C+ıγ5α⃗ · (B×C) . (9.101)

c. Show that the spin defined as,

S = ℏ
2 ς⃗ where ς⃗ ≡ γ5α⃗ = I⊗ σ⃗ (9.102)

obeys different commutation rules than the Dirac matrices.
d. Conclude that,

(ς⃗ ·B)(ς⃗ ·C) = B ·C+ıς⃗ · (B×C) . (9.103)

9.1.5.5 Ex: Constants of motion of Dirac’s Hamiltonian 2

In this exercise we will prove the relationships (9.55):
a. Prove,

(ℏj′)2 = Ĵ2 + ℏ2

4 . (9.104)

b. Prove,

[ℏj′, Ĥ]− = 0 . (9.105)

c. Prove,

r · p̂ = −ıℏr ∂
∂r

. (9.106)

d. Prove,

[ε, Ĥ]− = 0 . (9.107)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices03.pdf
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9.1.5.6 Ex: Constants of motion in the L̂ · Ŝ-coupling

Consider a particle of mass µ described by the Hamiltonian Ĥ = − ℏ2

2µ∇2 + V (r) +

ξ(r)L̂ · Ŝ, being V (r) a central potential, L̂ and Ŝ its orbital angular momentum and
spin.
a. Obtain the commutation relations [L̂, Ĥ], [Ŝ, Ĥ] and [L̂+S, Ĥ] for the cases without
and with spin-orbit interaction ξ(r)L̂ · Ŝ introduced by relativistic corrections.
b. Calculate [L̂2, Ĥ], [Ŝ2, Ĥ] and [Ĵ2, Ĥ].

9.1.5.7 Ex: Magnetic field generated by the orbiting proton at the lo-
cation of the electron

Calculate the magnetic field generated by the orbiting proton as it is perceived by the
electron.

9.2 Fine structure of hydrogen-like atoms via TIPT

The wave equation that simultaneously satisfies the requirements of quantum mechan-
ics and special relativity is the Dirac equation. In free space including electromagnetic
interactions it describes all massive particles of semi-integer spin with parity as a sym-
metry, such as electrons and quarks. It was the first theory to fully explain special
relativity in the context of quantum mechanics. The Dirac equation describes the fine
structure of the hydrogen spectrum in a completely rigorous manner. The equation
also implied the existence of a new form of matter, antimatter, previously unsus-
pected and unobserved. The equation also justifies a posteriori the introduction of
spinors, that is, of the vector wavefunctions introduced by Pauli in a heuristic way.
We have seen in the last section that, in the limit of high but non-relativistic veloci-
ties, the Dirac equation adopts the form of a Schrödinger equation with the modified
Hamiltonian (9.85) 11,

Ĥ = Ĥ0 + Ĥrel + Ĥℓs + Ĥdw + Ĥlamb (9.108)

=

(
p̂2

2me
− Ze2

4πε0r

)
− p̂4

8m3
ec

2
+

1

2m2
ec

2

1

r

dV

dr
L̂ · Ŝ+

πℏ2

2m2
ec

2

Ze2

4πε0
δ3(r) + Ĥlamb .

We will discuss the various terms in the following sections. Note that the expression
for the Darwin term differs from that of (9.85). We will see in Exc. 9.2.6.1, that they
are, in fact, equivalent.

9.2.1 Correction for relativistic velocities

The first correction in the expression, Ĥrel in Eq. (9.108), comes from the expansion
of the relativistic energy for small velocities up to second order,

Ekin =
√
p2c2 +m2

ec
4 ≃ mec

2 +
p2

2me
− p4

8m3
ec

2
+ ... . (9.109)

11From now in we will frequently drop the ’hat’ on quantum operators, when their nature is clear
in the context.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_RelativisticHydrogen01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_RelativisticHydrogen01.pdf
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The correction is of the order of magnitude,

Hrel

H0
=

p4

8m3
ec

2

p2

2me

=
v2

4c2
≃ α2

4
≈ 0.01% . (9.110)

Due to the degeneracy of these states, it would be appropriate to use perturbation
theory with degenerate states. However, as Ĥrel only depends on spatial coordinates
commuting with l and s (see Exc. 9.1.5.6), the degeneracy is not very important, since
Ĥrel is already diagonal in the base |n, ℓ,m⟩, that is, ⟨n, ℓ,m|n′, ℓ′,m′⟩ = δℓℓ′δmm′ .
Starting from,

Ĥrel = −
p̂4

8m3
ec

2
= − 1

2mec2

(
p̂2

2me

)2

= − 1

2mec2

(
Ĥ0 +

Ze2

4πε0r

)2

(9.111)

= − 1

2mec2

(
Ĥ0 −

2Enn
2

r̃

)2

,

with r̃ ≡ Zr
aB

and using as an abbreviation the energies of hydrogen following Bohr’s
model,

En = ⟨n, ℓ|Ĥ0|n, ℓ⟩ = −
Z2e2

4πε0

1

2aBn2
= −mec

2

2

Z2α2

n2
. (9.112)

We have

∆Erel = ⟨n, ℓ|Ĥrel|n, ℓ⟩ (9.113)

= − 1

2mec2

[
⟨n, ℓ|Ĥ2

0 |n, ℓ⟩ − ⟨n, ℓ|
4Enn

r̃
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+ 4E2

nn
4 1
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]
,

using the eigenvalues calculated in (3.53). Finally, we obtain the following relativistic
correction,

∆Erel = En(Zα)
2

[
1

n(ℓ+ 1
2 )
− 3

4n2

]
. (9.114)

Obviously, the degeneracy with respect to the angular momentum ℓ is lifted by this
correction.

9.2.2 Correction due to spin-orbit coupling

The second correction, Ĥℓs in the expression (9.108), called spin-orbit interaction, is
a relativistic correction due to the fact that the electron moves rapidly within the
electrostatic field E⃗ generated by the nucleus. Considering the fundamental orbit
and the fact that the angular momenta are of the order of ℏ we can estimate the
importance of this effect,
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2
≈ 0.01% . (9.115)
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Example 62 (Classical derivation of the spin-orbit interaction): In the
following, we will derive the expression (9.98) for the spin-orbit interaction en-
ergy from classical arguments borrowed from electrodynamic theory. Seen from
the rest system of the electron being at position x = 0, it is the proton that
orbits around the electron. This orbit creates a current, −j(r′), which generates
a magnetic field. Following the Biot-Savart’s law the potential vector and the
amplitude of the field are,

A(x) =
µ0

4π

∫
V

−j(r′)d3r′
|x− r′| , (9.116)

respectively,

B⃗(x) = ∇x ×A(x) =
µ0

4π

∫
V

(x− r′)× j(r′)

|x− r′|3 d3r′ (9.117)

= −µ0

4π

∫ ∞

−∞
dz′
∫ ∞

0

r′dr′
∫ 2π
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dϕ
(x− r′)× v

|x− r′|3
Ze

2πr
δ(r − r′)δ(z′)

=
Zeµ0

4π

(x− r)× v

|x− r|3 ,

where we replaced the expression for the current density (9.91). With the
expression for the Coulomb potential between the electron and the proton and
its radial derivative,

V (r) =
−Ze2
4πε0r

,
1

r

dV (r)

dr
=

Ze2

4πε0r3
, (9.118)

we have at the position of the electron,

B⃗(0) = Zeµ0

4π

−r× v

r3
= −ε0µ0

e

r× v
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dV (r)

dr
(9.119)

= − 1

ec2
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dV (r)
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= − 1

emec2r

dV (r)

dr
L .

The advantage of maintaining the general potential V in the formula is, that
this expression also holds for more complicated atoms with many electrons,
where the potential may deviate considerably from the Coulombian potential.
Note, that the magnetic field is very strong, B ≃ ξ(aB)ℏ/µB ≈ 5T. Inserting the
magnetic field into Pauli’s expression (9.94) together with the magnetic moment
of the spin (9.96) we arrive at,

Ĥℓs = −µ⃗s · B⃗(0) = 1

m2
ec2

S · L1

r

dV (r)

dr
. (9.120)

where we still have to apply the corrective Thomas factor of 1
2
.

The interaction operator can be written,

Ĥℓs = ξ(r)L̂ · Ŝ , (9.121)

with the abbreviation,

ξ(r) ≡ −1
2m2

ec
2r

dV
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2α2n2
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1

r̃3
, (9.122)
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with r̃ ≡ Zr/aB and using the formulas (3.53).
After the introduction of the spin, the Hilbert space of the particles’ wavefunctions

must be extended. The wavefunctions are now products of spatial wavefunctions and
spin eigenvectors:

|n, ℓ,mℓ,ms⟩ = Rnℓ(r)Yℓm(θ, ϕ)

(
s1
s2

)
. (9.123)

The new Hilbert space is the tensorial product of position space and spin space. The
radial Hamiltonian for the hydrogen atom including the centrifugal term and the
spin-orbit coupling now takes the form:

Ĥ =
p2

2m
+ V (r) +

L̂2

2mer2
+ ξ(r)L̂ · Ŝ . (9.124)

We may again consider the energy term Vℓs as a small perturbation, and calculate
it using unperturbed wavefunctions,

∆Eℓs = ⟨n, ℓ, s,mℓ,ms|Vℓs|n, ℓ, s,mℓ,ms⟩ (9.125)

= ⟨n, ℓ|ξ(r)|n, ℓ⟩⟨ℓ, s,mℓ,ms|Ŝ · L̂|ℓ, s,mℓ,ms⟩ .

Assuming a Coulombian potential, we first look at the radial part (9.122), which can
easily be calculated using the formulae (3.53),

⟨n, ℓ|ξ(r)|n, ℓ⟩ = EnZ
2α2n2

ℏ2
1

n3ℓ(ℓ+ 1
2 )(ℓ+ 1)

. (9.126)

To diagonalize the angular part of the Hamiltonian, we need the common wavefunc-
tions of L̂2 and L̂ · Ŝ. We can rewrite the coupling term as:

L̂ · Ŝ = 1
2 (Ĵ

2 − L̂2 − Ŝ2) . (9.127)

In the common eigensystem of Ĵ2, L̂2, and Ŝ2 the Hamiltonian, therefore, is diagonal.
We know the basis of this system from the theory of the addition of angular momenta.
The states of the basis are linear combinations of the functions |n, ℓ,mℓ,ms⟩. Since
the spins precess around each other, L̂z and Ŝz are not good observables, the non-
coupled basis is not appropriate. But Ŝ2, L̂2, and Ĵ2 are good observables. In the
coupled basis {n, (ℓ, s)j,mj},

⟨n, (ℓ, s)j,mj |Ŝ · L̂|n, (ℓ, s)j,mj⟩ = ℏ2

2 [j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)] . (9.128)

Since j = ℓ± 1/2, we find that every level splits into two levels, one with the energy
Enℓ+ℓζnℓ and the degeneracy 2ℓ+2 and the other with the degeneracy Enℓ−(ℓ+1)ζnℓ
with the degeneracy 2ℓ, where we introduced the abbreviation,

ζnℓ ≡ ℏ2

2 ⟨ξ(r)⟩ . (9.129)

All in all, we get an energy correction due to the spin-orbit interaction of,

∆Eℓs = −En(Zα)2
j(j + 1)− ℓ(ℓ+ 1)− 3

4

2nℓ(ℓ+ 1/2)(ℓ+ 1)
. (9.130)
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Note, that the coupling L̂ · Ŝ lifts the degeneracy with respect to L̂, but not with
respect to L̂z (see Fig. 9.1). As we have already seen in Exc. 9.1.5.6, in the presence
of an energy associated with the L · S coupling, only the total angular momentum
L+ S is a constant of motion.

9.2.3 Non-local electron-core interaction

Let us now discuss the third correction in the expression (9.108). The electron-nucleus
interaction that we have considered so far is local, that is, the interaction at the point r
sensed by the electron depends essentially on the field at that point in space. However,
when relativistic theory is correctly applied, the electron-nucleus interaction becomes
non-local, and the electron is then affected by all values of the nuclear field in a
region around r 12. The size of this region is of the order of the Compton wavelength
of the electron, λC/2π ≡ ℏ/mec. This correction was introduced by Sir Charles
Galton Darwin through a substitution in the Dirac equation that solved the problem
of normalization of the wavefunction.

Imagine that instead of the potential V (r), the potential of the electron is given
by the integral, ∫

f(r′)V (r+ r′)d3r′ , (9.131)

where f(r′) is a radially symmetric and normalized density-type function that takes
significant values only in the vicinity of r within a volume (λC/2π)

3 centered at r′ = 0.
Expanding the potential V (r+ r′) near the origin,

V (r+ r′) = V (r) + [r′ · ∇r]V (r) + 1
2! [r

′ · ∇r]2V (r) + ... , (9.132)

and inserting into the integral,∫
f(r′)V (r+ r′)d3r′ (9.133)

= V (r)

∫
f(r′)d3r′ +

∫
r′f(r′)d3r′ · ∇rV (r) + 1

2!

∫
r′2f(r′)[êr′ · ∇r]2d3r′V (r) + ...

= V (r) + 0 + 1
2!

∫
r′2f(r′)d3r′∇2V (r) + ... .

The second term is null due to the parity of f(r′) and the third produces the Darwin
correction using V (r) = V (r). Letting the function be constant within the volume,
f(r) ≃ f0, and with the normalization,

1 =

∫ ℏ/2mec

−ℏ/2mec

∫ ℏ/2mec

−ℏ/2mec

∫ ℏ/2mec

−ℏ/2mec

f(r)dxdydz = f0

(
ℏ
mec

)3

, (9.134)

we get the integral

∫
r2f(r)d3r =

∫ ℏ/2mec

−ℏ/2mec

∫ ℏ/2mec

−ℏ/2mec

∫ ℏ/2mec

−ℏ/2mec

f(r)r2dxdydz =

(
ℏ

2mec

)2

. (9.135)

12The smearing out of the electron’s position is also known as Zitterbewegung. See Exc. 9.1.5.2.
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Also,

∇2V (r) = −e∇2 Ze

4πε0r
= −eϱ(r)

ε0
= −Ze

2δ3(r)

ε0
. (9.136)

Hence,

∫
f(r′)V (r+ r′)d3r′ = − Ze2

4πε0r
+

πℏ2

2m2
ec

2

Ze2

4πε0
δ3(r) + ... , (9.137)

which is precisely the electrostatic energy with the Darwin correction in the expres-
sions (9.85) and (9.108).

To estimate the importance of this effect we inserting the wavefunctions (3.52)
evaluated at the origin,

⟨Ĥdw⟩ =
∫
d3rψ∗

nℓm(r)
πℏ2

2m2
ec

2

Ze2

4πε0
δ3(r)ψnℓm(r) (9.138)

=
πℏ2

2m2
ec

2

Ze2

4πε0
|ψn00(0)|2δℓ0δm0 =

πℏ2

2m2
ec

2

Ze2

4πε0

Z3

πn3a3B
δℓ0 .

We obtain,

Hdw

H0
=

πℏ2

2m2
ec

2
Ze2

4πε0
1
πa3B

e2

4πε0aB

=
ℏ2

2m2
ec

2

Z

a2B
=
α2

2
≈ 0.01% . (9.139)

Darwin’s correction vanishes for angular momentum ℓ > 0, such that,

∆Edw = ⟨Ĥdw⟩ = −En
(Zα)2

n
δℓ0 . (9.140)

9.2.4 Summary of the corrections

Combining the l · s and relativistic corrections, we obtain,

∆Efs = ∆Erel +∆Eℓs +∆Edw (9.141)

= En(Zα)
2

[
1

n(ℓ+ 1
2 )
− 3

4n2

]
− En(Zα)2

j(j + 1)− ℓ(ℓ+ 1)− 3
4

2nℓ(ℓ+ 1
2 )(ℓ+ 1)

− En(Zα)2

= En(Zα)
2





1
nj − 3

4n2 − j(j+1)−(j− 1
2 )(j+

1
2 )− 3

4

2n(j− 1
2 )j(j+

1
2 )

− 1 para ℓ = j − 1
2

1
n(j+1) − 3

4n2 − j(j+1)−(j+ 1
2 )(j+

3
2 )− 3

4

2n(j+ 1
2 )(j+1)(j+ 3

2 )
− 1 para ℓ = j + 1

2

= En(Zα)
2

[
1

n(j + 1
2 )
− 3

4n2
− 1

]
.

That is, the levels are now degenerate in j (see Fig. 9.1) 13. Obviously the levels
which are most affected by relativistic corrections are those with low values of n and
ℓ.

The levels are labeled by nℓj . For example, the state 3d5/2 has the main quantum
number n = 3, the orbital angular momentum ℓ = 2, and the total angular momentum

13It is interesting that the quantum treatment presented here, including relativistic corrections,
coincidentally agrees with the corrections of Arnold Johannes Wilhelm Sommerfeld.
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Figure 9.1: Hydrogen levels in the presence of various combinations of relativistic corrections.

j = 5/2. For large n or j the fine structure disappears. The new energy scheme is
shown in Fig. 9.1. We note that, taking into account all relativistic corrections (but
without the Lamb shift), we still have a partial degeneracy of the quantum number j.
For example, the states 2s1/2 and 2p1/2 have the same energy. This is a particularity
of the hydrogen atom.

9.2.5 Lamb shift

Only remains to discuss the fourth correction, Ĥlamb in the expression (9.6). The
origin of the Lamb shift lies in quantum electrodynamics. Being due to the quantum
nature of the electromagnetic field, this correction is not predicted within the Dirac
equation.

We may imagine the Coulomb force between charged particles being mediated by
a continuous exchange of virtual photons. But each isolated charge also continuously
emits and reabsorbs virtual photons, with the result that the position of the electron
is smeared over a region of 0.1 fm. This reduces the overlap between the electronic
orbits and the nucleus. Hence, the Lamb shift causes corrections that are stronger
for small n and small ℓ. For example in hydrogen, the 2p1/2 is 4.4 · 10−6 eV = 1GHz
below the 2s1/2 (see Fig. 9.1).

9.2.6 Exercises

9.2.6.1 Ex: The Darwin term

Show that the expressions for the Darwin correction (9.85) and (9.108) are equivalent.

9.3 Hyperfine structure

Rutherford’s measurements suggested a point-like and infinitely heavy atomic nu-
cleus. In fact, the mass is finite and the nuclear charge is distributed over a finite
volume and often in a non-isotropic manner, which leads to multipolar interactions
with the electrons. In addition, many nuclei have a spin that can interact with the
magnetic moment of the electrons. The energy corrections due to these effects are
called hyperfine structure 14.

14See [163] p. 1229 and [837] p. 23 for further reading.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_RelativisticHydrogen00.pdf


9.3. HYPERFINE STRUCTURE 353

Because many of the following considerations will remain valid for many-electron
systems to be discussed later, we will switch to a notation denoting by L̂ the total
orbital angular momentum of the electronic shell, Ŝ the total spin of the electronic
shell, and Ĵ the total angular momentum of the electronic shell, remembering that
for hydrogen Ŝ = ℏ

2
ˆ⃗σ.

9.3.1 Coupling to the nuclear spin

9.3.1.1 Dipole moment of the nuclear spin

The nucleus may also have an angular momentum interacting with the angular mo-
mentum of the electrons. However, the momentum depends inversely on the masses.
That is, the angular momentum of the nucleus is µN/µB = me/mp ≃ 10−3 times
smaller, where µN = ℏe/2mp is an abbreviation called nuclear magneton. Thus, we
can assume that the interaction between the nucleus and the electron will not inter-
fere with the L · S-coupling between the orbital angular momentum and the spin of
the electron. The spin of the nucleus will be oriented along the total momentum of
the electrons Ĵ. However, this interaction will have the ability to lift the hydrogen
degeneracy, even though the splitting will only be hyperfine. Indeed, the order of
magnitude of hyperfine splitting is 10−6 eV.

Analogously to the expressions (9.93) and (9.96), we write the dipole moment of
the nucleus,

µ⃗I
µN

=
e

2mpµN
gpÎ = gp

Î

ℏ
, (9.142)

where gp ≡ µI/I is once again a factor taking into account possible corrections be-
tween the classical derivation and quantum mechanics 15.

9.3.1.2 Hyperfine splitting

In the derivation of the Pauli equation (9.89) from the Dirac equation (9.76) we
discarded non-relativistic terms and reintroduced electronic spin-orbit coupling by
hand allowing for A(r, t) ̸= 0. By an analogous calculation directly applied to the
Dirac equation we may unravel the hyperfine structure. Instead of setting the vector
potential to A(r, t) = 0, as we did in (9.45), we now generalize the Dirac equation
(9.76),

E′ϕ⃗ = qU(r)ϕ⃗+ σ⃗ · π⃗ 1

2me

(
1 +

E′ − U(r)

2mec2

)−1

σ⃗ · π⃗ϕ⃗ . (9.143)

Assuming ⟨qA⟩ ≪ ⟨p⟩, we may only retain terms to the lowest order in A and neglect

terms containing qAE′−U(r)
2mec2

. Using the result of the calculation (9.87),

(σ⃗ · π⃗)(σ⃗ · π⃗) = [p− qA]2 − ℏqσ⃗ · B⃗ , (9.144)

15In fact, the proton factor g is anomalous, gp = 5.58, which reduces the fraction µl/µI . For the
neutron we have: gn = −3.83
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we find the generalization of the total energy (9.85),

Ĥ ≃ [p̂− qA(r)]2

2me
− 1

4πε0

e2

r
− p̂4

8m3
ec

2
− e

2m2
ec

2

1

r

∂U

∂r
Ŝ·L̂− ℏ2e

4m2
ec

2

∂U

∂r

∂

∂r
− ℏq
2me

σ⃗·B⃗(r) ,
(9.145)

and expanding the bracket

[p− qA]2 ≃ p2 − qp ·A− qA · p = p2 − 2qA · p (9.146)

in the Coulomb gauge, we see that two new terms are added to the energy called the
hyperfine structure,

Ĥ = ĤB + Ĥfs + Ĥhfs

with Ĥhfs = ĤLI + ĤSI =
e
me

A(r) · p̂+ 2µB

ℏ Ŝ · B⃗(r)
, (9.147)

with µ⃗S = − e
me

Ŝ.
Up to now we did not say anything about the origin of the magnetic field. We

only notice that any magnetic field will interact with the electron’s orbit and with its
spin. We now make use of our knowledge that the proton has a spin of its own which
produces, at the position of the electrons, a magnetic vector potential,

A(r) =
µ0

4π

µ⃗I × r

r3
, (9.148)

interacting with the angular momentum of the electron L̂ in the form,

ĤLI =
e

me
A · p̂ =

e

me

µ0

4πr3
(µ⃗I × r) · p̂ (9.149)

=
e

me

µ0

4πr3
µN

ℏ
gp(̂I× r) · p̂ =

µ0

2πr3
µB

ℏ
µN

ℏ
gpL̂ · Î ,

using the definition of Bohr’s magneton.
In addition, the potential vector (9.148) generated by the nuclear spin produces a

magnetic field [425],

B⃗ = ∇×A =
µ0

4πr3
[3(µ⃗I · êr)êr − µ⃗I ] + 2

3µ0µ⃗Iδ
3(r) , (9.150)

as will be shown in Exc. 9.3.3.1. This field interacts with the spin of the electron Ŝ in
the form,

ĤSI = −µ⃗S · B⃗ = − µ0

4πr3
[3(µ⃗I · êr)(µ⃗S · êr)− (µ⃗S · µ⃗I)]− 2

3µ0µ⃗S · µ⃗Iδ3(r) (9.151)

=
µ0

4πr3
µB

ℏ
ge
µN

ℏ
gp

[
3(̂I · êr)(Ŝ · êr)− (Ŝ · Î)

]
+ 2

3µ0geµB
Ŝ

ℏ
· gpµN

Î

ℏ
δ3(r) ,

inserting the expressions (9.96) and (9.142). The first term gives the energy of the
nuclear dipole in the field due to the electronic orbital angular momentum. The
second term gives the energy of the ’finite distance’ interaction of the nuclear dipole
with the field due to the electron spin magnetic moments. The final term, often known
as the Fermi contact term relates to the direct interaction of the nuclear dipole with
the spin dipoles and is only non-zero for states with a finite electron spin density at
the position of the nucleus (those with unpaired electrons in s-subshells).

We now discuss the two cases in which ℓ = 0 or ℓ ̸= 0 separately in the following
subsections [163, 715, 425].
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9.3.1.3 Orbital angular momentum ℓ = 0

For vanishing orbital angular momenta, ℓ = 0, we only need to consider the con-
tribution ĤSI . Furthermore, this contribution will be dominated by the Dirac term,
because the s-orbitals have a high probability at the nuclear region, but fall off quickly
at larger distances. Hence,

ĤSI ≃ 2
3µ0geµB

Ŝ

ℏ
· gpµN

Î

ℏ
δ3(r) . (9.152)

Defining the complete total angular momentum of the atom,

F̂ ≡ Î+ Ŝ , (9.153)

we calculate from (9.151),

∆Eℓ=0
hfs = ⟨(S, I)F,mF |ĤSI |(S, I)F,mF ⟩ =

2µ0gegpµBµN

3ℏ2
⟨S · I⟩⟨δ3(r)⟩ (9.154)

= 2
3µ0gegpµBµN[F (F + 1)− I(I + 1)− S(S + 1)]

∫
ψ∗
n00(r)δ

3(r)ψn00(r)d
3r

= 2
3µ0gegpµBµN[F (F + 1)− I(I + 1)− S(S + 1)]

∣∣∣∣ 1√
π

(
Z
naB

)3/2∣∣∣∣
2

.

As an example consider the hyperfine structure of the state 1s1/2 of the hydrogen

atom. With J = I = 1
2 and Z = n = 1 we obtain (see Exc. 9.3.3.2),

∆Eℓ=0
hfs (F = 1)−∆Eℓ=0

hfs (F = 0) = 2
3µ0geµBgpµN 2 1

π

(
Z
naB

)3
(9.155)

=
2gegpm

2
ec

2

3mp
α4 ≈ (2πℏ) · 1.420GHz .

The experimental value is 1.4204057518GHz. This frequency corresponds to the
spectral line used in radio astronomy, where the measurement of the angular distri-
bution of this radiation allows the mapping of the spatial distribution of interstellar
hydrogen.

9.3.1.4 Orbital angular momenta ℓ ̸= 0

In the case ℓ ̸= 0 both contributions, ĤSI and ĤLI have to be considered, however,
we may neglect the Dirac term, because the orbitals with orbital angular momentum
have vanishing probabilities at the nuclear region. Combining the two terms (9.149)
and (9.151), we obtain,

ĤJI = ĤLI + ĤSI =
µ0

4πr3
µB

ℏ
ge
µN

ℏ
gp

[
3(̂I · êr)(S · êr) + L · Î− Ŝ · Î

]
(9.156)

=
µ0

4πr3
µB

ℏ
ge
µN

ℏ
gpN̂ · Î ,

introducing N̂ as a quantity that only depends on the electronic shell:

N̂ ≡ 3(Ŝ · êr)êr + L̂− Ŝ . (9.157)
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Generalizing the complete total angular momentum of the atom (9.153),

F̂ ≡ Î+ Ĵ , (9.158)

is useful for calculating the coupling Î · Ĵ = 1
2 (F̂

2 − Î2 − Ĵ2). Now, as the L · S-
coupling is strong, we project the two angular momenta onto the total electronic
angular momentum Ĵ,

N̂ −→ N̂ · Ĵ
|J|

Ĵ

|J| , Î −→ Î · Ĵ
|J|

J

|J| . (9.159)

We get for the coupling between the projected spins (9.159) of the electronic layer
and the nucleus,

N̂ · Î −→ (N̂ · Ĵ)(̂I · Ĵ)
|J|2 =

(N̂ · Ĵ)(F̂2 − Î2 − Ĵ2)

2|J|2 . (9.160)

We calculate

∆Eℓ ̸=0
hfs = ⟨((L, S)J, I)F,mF |ĤJI |((L, S)J, I)F,mF ⟩ (9.161)

=
µ0

4π

µB

ℏ
ge
µN

ℏ
gp

〈
N̂ · Î
r3

〉

−→ µ0

4π

µB

ℏ
ge
µN

ℏ
gp

N · J[F (F + 1)− I(I + 1)− J(J + 1)]

2J(J + 1)

(
Z

aB

)3
n

n4L(L+ 1
2 )(L+ 1)

.

Introducing the interval factor,

AJ ≡
µ0

4π

µB

ℏ
ge
µN

ℏ
gp

(
Z

aB

)3
N · J

2J(J + 1)

n

n4L(L+ 1
2 )(L+ 1)

, (9.162)

as a quantity that only depends on the electronic shell, we can write

∆Eℓ ̸=0
hfs = AJ

2 [F (F + 1)− J(J + 1)− I(I + 1)] . (9.163)

This formula includes the case ℓ = 0 with the interval factor calculated from (9.154).

Note, that the J ·I-coupling breaks the degeneracy of Ĵ in the hydrogen atom, but
not of Ĵz. We can derive the following interval rule,

∆EF+1 −∆EF = AJ(F + 1) . (9.164)

Besides the magnetic interaction between the angular momenta of the nucleus
and the electronic shell there is an interaction between the nucleus, when it is not
spherically symmetric, and the shell. This interaction causes deviations from the
interval rule and an additional splitting of the hyperfine states.
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9.3.2 Electric quadrupole interaction

The fact that the nucleus is not perfectly spherical gives rise to new electron-nucleus
corrections that are called quadrupolar interaction. The starting point is,

Ĥquad = − 1

4πε0

e2

|re − rN |
− 1

4πε0

e2

|re|
, (9.165)

where re is the electronic coordinate and rN is the nuclear coordinate, both having
their origin in the center mass of the nucleus. For re > rN this interaction can be
obtained after several mathematical steps as [560],

Ĥquad = BJ
3(̂I · Ĵ)(2Î · Ĵ+ 1)− 2Î2Ĵ2

2I(I − 1)2J(J − 1)
, (9.166)

where BJ is called the constant of the quadrupolar electron-nucleus interaction. With
this expression we can calculate,

∆Equad = ⟨IJKmK |Ĥquad|IJKmK⟩ = BJ

3
2K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
,

(9.167)
where K ≡ 2⟨Ĵ · Î⟩ = F (F + 1) − I(I + 1) − J(J + 1). It is important to remember
that a nucleus with I = 0 or I = 1

2 has no quadrupole moment, BJ = 0. Also for
J = 1

2 there will be no contribution.

Joining the contributions Ĵ · Î of Eq. (9.163) and the quadrupolar contribution
(9.167), the hyperfine structure can be described by,

∆Ehfs = ∆EJI +∆Equad (9.168)

=
AJ
2
K +

BJ
8IJ(2I − 1)(2J − 1)

[3K(K + 1)− 4I(I + 1)J(J + 1)] ,

where the constants AJ and BJ depend on the atom and the total electronic angular
momentum.
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Table 9.1: List of atomic data [786] showing the natural linewidth of the D2 line,
frequencies of the D1 and D2 lines, and the hyperfine splitting.

Element γD2/2π D1 D2 νHFS [S1/2]

[MHz] [cm−1] [cm−1] [MHz]
1H 99.58 82264.000 82264.366 1420.4
2H 99.58 82264.000 82264.366 −
6Li 5.92 14901.000 14901.337 228.2
7Li 5.92 14901.000 14901.337 803.5

23Na 10.01 16956.000 16973.190 1771.6
39K 6.09 12985.170 13042.876 461.7
40K 6.09 12985.170 13042.876 −1285.8
41K 6.09 12985.170 13042.876 254.0
85Rb 5.98 12578.920 12816.469 3035.7
87Rb 5.98 12578.920 12816.469 6834.7
133Cs 5.18 11182.000 11737.000 9192.6
135Cs 5.18 11182.000 11737.000 −

In Excs. 9.3.3.3 and 9.3.3.4 we determine the hyperfine structures of sodium and
rubidium atoms.

9.3.3 Exercises

9.3.3.1 Ex: Field of a magnetic moment

a. Calculate the vector potentialA(r) and the magnetic dipole moment µ⃗ produced by
an orbiting electron by Biot-Savart’s law using the expansion of |r−r′|−1 in Legendre
polynomials.
b. Calculate the magnetic field B⃗(r).

9.3.3.2 Ex: Probability for finding the electron near the nucleus

Calculate the expectation value ⟨δ(3)(r)⟩nℓm for encountering the electron of a hydro-
gen atom close to the nucleus.

9.3.3.3 Ex: Hyperfine structure of sodium

Determine the hyperfine structure of the 2S and 2P states of the sodium atom in-
cluding energy shifts. See Tab. 16.1 for the hyperfine constants AJ and BJ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_CampoMomentomagnetico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_HyperfineStructure01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_SodioHiperfino.pdf
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Table 9.2: Hyperfine constants of some alkaline atoms.

atom n AJ(n
2S1/2) AJ(n

2P1/2) AJ(n
2P3/2) BJ(n

2P3/2)

[MHz·h] [MHz·h] [MHz·h] [MHz·h]
1H, I = 1

2 1 1420 46.17 −3.07 −0.18
6Li, I = 1 2 152.137 17.386 −1.155 −0.10
7Li, I = 3/2 2 401.75 46.17 −3.07 −0.18

3 13.5 −0.96
23Na, I = 3

2 3 885.82 94.3 18.65 2.82

4 202 28.85 6.00 0.86
85Rb, I = 5

2 5 1011.9 120.7 25.029 26.03

6 239.3 39.11 8.25 8.16
87Rb, I = 3

2 5 3417.3 409.1 84.852 12.510

6 809.1 132.5 27.70 3.947

9.3.3.4 Ex: Hyperfine structure of rubidium

Given the following energy distances νF,F ′ of the hyperfine levels of the rubidium
isotopes 87Rb and 85Rb [59],

87Rb, S1/2 splits into ν1,2 = 6834.7MHz
87Rb, P3/2 splits into ν0,1 = 72.3MHz, ν1,2 = 157.1MHz, ν2,3 = 267.2MHz
85Rb, S1/2 splits into ν1,2 = 3035.7MHz
85Rb, P3/2 splits into ν1,2 = 29.4MHz, ν2,3 = 63.4MHz, ν3,4 = 120.7MHz ,

calculate the positions of the barycenters.

9.3.3.5 Ex: Two particles

Consider a two-particle system of masses µ1 and µ2, exposed to a central potential
V (r) and an interaction potential V (|r1 − r2|) which only depends on the distance
between the particles. The Hamiltonian of the system in the interaction representation

is H = H1 +H2 +V (|r1− r2|) with Hℓ = − ℏ2

2µℓ
∇2
ℓ +V (rℓ), ℓ = 1, 2, ... Show that the

individual angular momenta Lℓ are not, in general, constants of the motion, unlike
the total angular momentum L = L1 + L2.

9.4 Exotic atoms

’Normal’ atoms consist of a nucleus made of protons and neutrons and an electronic
shell. But other two-particle systems are possible, e.g. where the nucleus or electron
is replaced by another hadron or lepton (anti-proton, positron, muon, etc.). Such a
system is called exotic atom. Atoms in Rydberg states also belong to this category.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_RubidioHiperfino.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_MomentoangularDuasparticulas.pdf
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9.4.1 Positronium and muonium

Positronium (e+e−) is a hydrogen-like system consisting of leptons, that is, an electron
and a positron, which is the antiparticle of the electron. The muonium (µ+e−) is
similar to positronium, except that here the positron is replaced by a muon whose
mass is mµ+ = 207me. Leptons are, according to the present understanding, particles
without internal structure. Both systems are unstable: the two particles annihilate
each other producing γ-photons. The energy levels and orbits of the two particles
are similar to that of the hydrogen atom. However, because of the reduced mass, the
frequencies of the spectral lines are less than half of the corresponding hydrogen lines.

The fundamental state of positronium, like that of hydrogen, has two possible
configurations depending on the relative orientation of the electron and positron spins.
The singlet state with antiparallel spins (S = 0,Ms = 0) is known as para-positronium
(p-Ps) and denoted by 1S0. It has an average lifetime of

τ =
2ℏ

mec2α5
= 124.4 ps (9.169)

and decays preferably in two gamma rays with energy of 511 keV each (in the center-
of-mass). The triplet state with parallel spins (S = 1,Ms = −1, 0, 1) is known as
ortho-positronium (o-Ps) and denoted as 3S1. It has an average life of 138.6 ns, and
the most common form of decay produces three photons. Other forms of decay are
negligible. For example, the decay channel producing five photons is 10−6 times less
likely. Measurements of these lifetimes and the positronium energy levels have been
used in precision tests of quantum electrodynamics.

While the precise calculation of the positronium energy levels is based on the
Bethe-Salpeter equation, the similarity between positronium and hydrogen allows for
an approximate estimate. In this approach, the energy levels are suppodsed to be
different from those of hydrogen because of the difference in the value of the reduced
mass µ, used in the energy equation. Since µ = me/2 for positronium, we have

En = − µq4e
8h2ε20

1

n2
= −1

2

meq
4
e

8h2ε20

1

n2
=
−6.8 eV
n2

. (9.170)

A di-positronium molecule, that is, a system of two bound positronium atoms,
has already been observed. Positronium in high energy states has been conjectured
to become the dominant form of atomic matter in the universe in the very distant
future if the proton decay becomes tangible.

9.4.2 Hadronic atoms

In contrast to leptons (such as the electron e−, the positron e+ and the muons µ+

and µ−) that participate only in electromagnetic interactions and weak interactions,
hadrons also participate in strong (nuclear type) interactions. There are two types of
hadrons, baryons (such as the proton p and antiproton p̄, the neutron n and antineu-
tron n̄, hyperons Σ, Ξ, ...) that have semi-integer spin and behave like fermions and
mesons (like the π-meson, K-meson, ...) that have an integer spin. Every negatively
charged hadron can be used to form a hydrogen-type hadronic atom. These systems
contain a nucleus and negative hyperon and are known as hyperonic atoms. All of
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these are unstable and due to the fact that they have a sufficiently long lifetime, some
of their spectral lines have now been observed.

Since the hadrons interact strongly with the nucleus, the theory developed for hy-
drogen systems (in which only exist Coulomb interaction) can not be directly applied.
In this way the values shown in Tab. 9.3 give only an estimate of the ’radius’ and the
ionization potential of the hadronic atoms pπ−, pκ−, pp̄ and pΣ−.

Table 9.3: Main features of some exotic atoms.

system reduced mass radius aµ Ip
pe− 1836/1837 ≈ 1 ≈ aB = 1 e2/2aB ≈ 0.5

e+e− 0.5 2 0.25

µ+e− 207/208 ≈ 1 1 0.5

pµ− ≈ 186 5.4 · 10−3 93

pπ− ≈ 238 4.2 · 10−3 119

pκ− ≈ 633 1.6 · 10−3 317

pp̄ ≈ 928 1.1 · 10−3 459

pΣ− ≈ 1029 9.7 · 10−3 515

9.4.3 Muonic hydrogen

The muon mass is mµ = 207me. When a muon is attached to a proton we have

muonic hydrogen. Its size is smaller because of the reduced mass aµ = aB
1/me

1/mµ+1/mp

and the binding energy and the energies of excitation are greater for the same reason.
F.ex. while for H = p+e− the transition 2S − 2P1/2 is at 10 eV ≜ 121 nm, for p+µ−

it is at 1900 eV. Muonic atoms are interesting because they have amplified Lamb
shifts, hyperfine interactions, and quantum electrodynamical corrections. Therefore,
the displacement due to the finite distribution of charges in the proton rp = 0.8 fm
should influence the spectrum. While in p+e− the 2S level is shifted upward by the
Lamb shift by a value of 4.4×10−6 eV, in p+µ− it is shifted down by a value of 0.14 eV.
In Exc. 9.4.5.2 we calculate the spectrum of the muonic hydrogen and in Exc. 5.1.3.3
we compare the energy corrections due to the finite extension of the nuclei for muonic
and for standard hydrogen in first order TIPT.

9.4.4 Rydberg atoms

An atom excited to a state whose main quantum number is very high is called Rydberg
atom. These atoms have a number of peculiar properties, including high sensitivity to
electric and magnetic fields, long decay times, and wavefunctions that approximate
classical electron orbits. The inner electrons protect the outer electron from the
electric field of the nucleus such that, from a distance, the electric potential looks
identical to that seen by the electron of a hydrogen atom.

Despite its flaws, Bohr’s atom model is useful in explaining these properties. In
Exc. 1.1.6.6 we derive Bohr’s expression for the orbital radius in terms of the principal
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quantum number n:

r =
4πε0n

2ℏ2

e2m
. (9.171)

Thus, it is clear why Rydberg atoms have peculiar properties: the radius goes as n2

(such that for example the state with n = 137 of hydrogen has a radius of ∼ 1mm)
and the geometric cross section goes as n4. Thus, Rydberg atoms are extremely large,
with loosely bound valence electrons that are easily perturbed or ionized by collisions
or external fields.

Since the binding energy of a Rydberg electron is proportional to 1/r, and therefore
falls as 1/n2, the spacing between energy levels falls as

∆E = E1

(
1

(n+ 1)2
− 1

n2

)
n→∞−→ E1

(
− 2

n3
+

3

n4
+ ...

)
(9.172)

leading to less and less spaced levels. These Rydberg states form the Rydberg series.

9.4.4.1 Correspondence principle in Rydberg atoms

To calculate the oscillation frequency of an electron confined to a proton, we use the
classical planetary model,

mω2
n =

e2

4πε0r
and mωr2 = nℏ . (9.173)

Eliminating r,

ωn =
me4

(4πε0)2n3ℏ3
. (9.174)

Radiation of this frequency will be emitted by an atomic antenna. On the other hand,
the Bohr model predicts frequencies between orbitals,

ωn =
En+1 − En

ℏ
=

me4

2(4πε0)2ℏ2

(
1

(n+ 1)2
− 1

n2

)
n→∞−→ me4

2(4πε0)2ℏ2
2

n3
. (9.175)

9.4.4.2 Production of Rydberg atoms

In the hydrogen atom only the ground state (n = 1) is actually stable. Other states
must be excited by various techniques such as electron impact or charge exchange. In
contrast to these methods, which produce a distribution of excited atoms at various
levels, the optical excitation method allows to produce specific states, but only for
alkali metals whose transitions fall into frequency regimes which are accessible to
lasers.

9.4.4.3 Potential in a Rydberg atom

The valence electron in a Rydberg atom with Z protons in the nucleus and Z − 1
electrons in closed layers sees a spherically symmetric Coulomb potential:

UC = − e2

4πε0r
. (9.176)
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The similarity of the effective potential ’seen’ by the outer electron and the authentic
hydrogen potential suggests a classical treatment within the planetary model. There
are three notable exceptions:

• An atom can have two (or more) electrons in highly excited states with com-
parable orbital radii. In this case, the electron-electron interaction gives rise to
a significant deviation from the hydrogen potential. For an atom in a multiple
Rydberg state the additional term Uee includes a sum over each pair of highly
excited electrons:

Uee =
e2

4πε0

∑

i<j

1

|ri − rj |
. (9.177)

• If the valence electron has very low angular momentum (interpreted classically
as an extremely eccentric elliptical orbit), it can pass close enough to the nucleus
to polarize it, giving rise to an additional term,

Upol = −
e2αd

(4πε0)2r4
. (9.178)

• If the outer electron penetrates the inner electronic shells, it sees more of the
charge of the nucleus and therefore feels a larger force. In general, the modifi-
cation of the potential energy is not simple to calculate and should be based on
some knowledge of the nucleus’ geometry.

In hydrogen the binding energy is given by:

EB = −E1

n2
. (9.179)

The binding energy is weak at high values of n, which explains the fragility of the
Rydberg states that can easily be ionized, e.g. by collisions.

Additional terms modifying the potential energy of a Rydberg state require the
introduction of a quantum defect, δℓ, in the expression for the binding energy:

EB = − E1

(n− δℓ)2
. (9.180)

The long lifetimes of Rydberg states with high orbital angular momentum can be
explained in terms of overlapping wavefunctions. The wavefunction of an electron in
a state with high ℓ (large angular momentum, ’circular orbit’) has little overlap with
the wavefunctions of the internal electrons and therefore stays relatively unperturbed.
Also, the small energy difference between adjacent Rydberg states decreased the decay
rate according to the result (16.40).

9.4.4.4 Rydberg atoms in external fields

The large distance between the electron and ionic nucleus in a Rydberg atom gives
rise to an extremely large electric dipole moment d. There is an energy associated
with the presence of an electric dipole in an electric field E⃗ , known as Stark shift,

ES = −d · E⃗ . (9.181)



364 CHAPTER 9. ELECTRON SPIN AND THE ATOMIC FINE STRUCTURE

Depending on the sign of the projection of the dipole moment onto the vector of the
local electric field, the energy of a state increases or decreases with the intensity of the
field. The narrow spacing between adjacent levels n in the Rydberg series means that
the states can approach degeneracy even for relatively weak fields. Theoretically, the
force of the field in which a level crossing would occur (assuming no coupling between
the states) is given by the Inglis-Teller limit,

FIT =
e

12πε0a20n
5
. (9.182)

In hydrogen the pure Coulomb potential does not couple the Stark states of an n
level, which results in a real crossover. In other elements, deviations from the ideal
1/r-potential allow for avoided crossings.

9.4.5 Exercises

9.4.5.1 Ex: Positronium

Calculate and compare the fine and hyperfine structure of positronium.

9.4.5.2 Ex: Muonic hydrogen

Muonic hydrogen consists of a proton and a negatively charged muon. Calculate the
binding energy of the ground state of muonic hydrogen in eV and write down the
ground state’s wavefunction.

9.5 Further reading

T. Mayer-Kuckuk, Atomphysik, Teubner Studienbücher (1985) [ISBN]

Ch.J. Foot, Atomic Physics [ISBN]

I.I. Sobelman, Atomic Spectra and Radiative Transitions [ISBN]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_ExoticPositronium.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_HidrogenioMuonico.pdf
http://isbnsearch.org/isbn/978-3-519-33042-4
http://isbnsearch.org/isbn/978-0-198-50696-6
http://isbnsearch.org/isbn/978-1-483-15972-0


Chapter 10

Atoms with spin in external
fields

The atomic fine structure was derived in the last chapter under the assumption that
all electric and magnetic fields arise from the motion and spin of the electrons in the
atomic shell and the nuclear spin. In this chapter, we will extend the treatment to
include the reaction of the electrons to external electrostatic or electromagnetic fields.
In this context, we will discuss the Zeeman and the Stark effect.

10.1 Charged particles in electromagnetic fields

10.1.1 Lagrangian and Hamiltonian of charged particles

A charge subject to an electromagnetic field feels the Lorentz force,

F = qE⃗ + qṙ× B⃗ , (10.1)

where

E⃗ = −∇Φ− ∂A

∂t
and B⃗ = ∇×A , (10.2)

where Φ and A are called scalar and vector potential, respectively.

It is important to realize here, that the momentum p not only involves the momen-
tum of the particle mv, but the field also carries a momentum qA(r). As we learned
in electrodynamics it is possible to derive the Lorentz force from a Lagrangian for the
electronic motion,

L(ri, ṙi) =
m

2
ṙ2 − qΦ(r) + qṙ ·A(r) . (10.3)

With this aim we first determine the momentum by,

pi =
∂L
∂ṙi

= mṙi + qAi , (10.4)

and the Hamiltonian by,

H =
∑

i
piṙi −L(ri, ṙi) = (mv+ qA) · ṙ− m

2
ṙ2 + qΦ− qṙ ·A =

m

2
v2 + qΦ . (10.5)

365
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That is,

H(ri, pi) =
1

2m
(p− qA)2 + qΦ . (10.6)

The following equations hold,

ṙi =
∂H
∂pi

and ṗi = −
∂H
∂ri

. (10.7)

The first equation is easily verified by inserting the Hamiltonian (10.5). The second
leads to the Lorentz force,

Fi = mv̇i = ṗi − qȦi = −
∂H
∂ri
− qȦi = qEi + q(v × B⃗)i , (10.8)

where the last step of the derivation will be shown in the Exc. 10.1.3.1 using the
Coulomb gauge ∇ ·A = 0.

10.1.2 Minimal coupling

Note that the same result (10.6) can be obtained by a canonical substitution,

mv −→ p− qA and H −→ H+ qΦ . (10.9)

This substitution rule, called minimal coupling, can be applied in quantum mechanics,

mv̂ −→ −ıℏ∇− qA and Ĥ −→ Ĥ + qΦ . (10.10)

In the case of the electron (q = −e) trapped in a central Coulomb potential

qΦ = − Ze2

4πε0r
and in the presence of any magnetic potential A, we thus obtain,

Ĥ =
me

2
v̂2 + qΦ =

−ℏ2
2me
∇2 − ıℏe

2me
A · ∇ − ıℏe

2me
∇ ·A+

e2A2

2me
+ qΦ . (10.11)

The fourth term called diamagnetic term is quadratic in A and usually so small
that it can be neglected. The second and third terms describe the interaction of the
electron through its momentum p̂ with the potential vector A produced by magnetic
moments inside the atom or outer magnetic fields. Within the Coulomb gauge we
have (∇ ·A)ψ = (A · ∇)ψ + ψ(∇ ·A) = (A · ∇)ψ, such that,

Ĥint =
e
me

A · p̂ . (10.12)

Example 63 (Interaction Hamiltonian in dipolar approximation): Note
that the Hamiltonian (10.11) is not the only one correctly describing the system,
since we may apply a unitary gauge transformation, as shown in (1.332). With
the particular choice for the gauge field,

χ(r, t) ≡ −A(r, t) · r ,

assuming that the potential only weakly varies in space, such that,

∇χ(r, t) ≃ −A(r, t) and
∂χ(r, t)

∂t
= −r · ∂A(r, t)

∂t
= −r · E⃗(r, t) ,
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we get with d ≡qr,

Ĥ =
1

2me
(p̂− qA+∇χ)2 + qΦ+ q

∂χ(r, t)

∂t
(10.13)

≃ p̂2

2me
+ qΦ− d · E⃗(r, t) .

This is the interaction Hamiltonian in the dipolar approximation.

10.1.3 Exercises

10.1.3.1 Ex: Lagrangian of an electron in the electromagnetic field

a. Show that the Lagrangian (10.3) reproduces the Lorentz force (10.1).
b. Show that the Hamiltonian (10.5) reproduces the Lorentz force (10.1).

10.1.3.2 Ex: Atom-field coupling

We determine here the coupling Hamiltonian for an atom in a classical field under
two equivalent forms (we have only considered the quantum case in the course). We
consider the case of the simplest hydrogen atom, with a single electron (reduced mass
m, charge q = −e) bound to a proton by the Coulomb potential Φ. This atom
interacts also with a laser wave, whose potential and scalar vectors are V (r, t) and
A(r, t).
1. Derive the complete classical Hamiltonian of the atom from the standard form of
the classical Lagrangian of a charge in a field: L = T −q(V +Φ)+qv ·A. What is the
link between the electron’s velocity and its momentum (conjugate with its position)?
2. Show that the quantum Hamiltonian is thus:

Ĥ =
1

2m
(P− qA(R, t))2 + qΦ(R) + qV (R) .

3. Show that in the Coulomb gauge, ∇ ·A = 0, V can be set to zero without loss of
generality.
4. Show that in the Coulomb gauge, A · P = P · A. Develop accordingly the full
Hamiltonian.
5. Under which hypotheses does Ĥ reduce to Ĥ = Ĥ0 − (q/m)P ·A(0, t), where Ĥ0

is the free atomic Hamiltonian?
We now transform the Hamiltonian under the more standard dipole form using the
Göppert-Mayer transformation. We restart from the full Hamiltonian, with all terms
including V (r, t).
6. We neglect the terms quadratic in A. The atom being small compared to the
optical wavelength, give the Hamiltonian obtained by expanding A and V to the
lowest relevant order. Use the notation D = qR.
7. Show that a proper gauge transformation cancels A(0, t).

8. Show that in this new gauge, the Hamiltonian reads Ĥ = Ĥ0 −D · E⃗(0). Is this
result gauge-dependent?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_LagrangianoEletron.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_LagrangianoEletron02.pdf
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10.2 Interaction with magnetic fields

10.2.1 Normal Zeeman effect of the fine structure

The dipole moments of atoms can interact with external magnetic fields. The inter-
action leads to a shift of levels, which depends on the magnetic quantum number.
Thus, the ultimate degeneracy in the energetic structure of the atom is lifted. This
is called Zeeman splitting. We consider a uniform magnetic field B⃗ = Bêz with the
potential vector,

A = 1
2 B⃗ × r = −B

2 (−yêx + xêy) . (10.14)

Thus the interaction energy between the electron and the field is given by the Hamil-
tonian (10.12),

V̂Zeem(B) = −
ıℏe
me

A · ∇ = − ıℏe
2me

(B⃗ × r) · ∇ = − ıℏe
2me
B⃗ · (r×∇) (10.15)

= − e

2me
B⃗ · L̂ = −µB

ℏ
gLL̂ · B⃗ = −µ⃗L · B⃗ = −µB

ℏ
L̂zB ,

with gL = 1 using the relation (9.93), µ⃗L = e
2me

L, between the angular momentum of
the electron and the resulting magnetic moment. This relationship holds for an atom
without spin (two electrons can couple their spins to a singlet state) and no hyperfine
structure (or an unresolved hyperfine structure). The energies are therefore,

∆EZeem(B) = −
µB

ℏ
B⟨n,L,mL|L̂z|n,L,mL⟩ = −µBmLB . (10.16)

In the Excs. 10.2.7.1 and 10.2.7.2 we represent the interaction between an atomic
angular momentum and a magnetic field in different bases characterized by different
quantization axes.

10.2.2 Anomalous Zeeman effect

The anomalous Zeeman effect occurs when the ensemble of electrons has a spin. Using
the already known expressions for the dipole moments of the orbital momentum and
the spin of the electron, we obtain for the magnetic dipole moment,

ˆ⃗µJ = ˆ⃗µL + ˆ⃗µS =
µB

ℏ
gLL̂+

µB

ℏ
gSŜ =

µB

ℏ
(L̂+ 2Ŝ) , (10.17)

with gL = 1 and gS = ge = 2. We can see that the dipole moment of the atom is not
parallel to the total momentum, Ĵ = L̂+ Ŝ.

When the magnetic field is weak, V̂ℓs ≫ V̂Zeem(B), the total momentum Ĵ will be
a good observable. Therefore, we must first project the momenta L̂ and Ŝ onto Ĵ,

L̂ −→
(
L̂ · Ĵ

|J|

)
Ĵ
|J| and Ŝ −→

(
Ŝ · Ĵ

|J|

)
Ĵ
|J| , (10.18)
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before projecting the result onto the B⃗-field. The potential is,

V̂Zeem(B) = − ˆ⃗µJ · B⃗ = −µB

ℏ
(L̂+ 2Ŝ) · B⃗ −→ −µB

ℏ

[(
L̂ · Ĵ

|J|

)
Ĵ
|J| · B⃗ + 2

(
Ŝ · Ĵ

|J|

)
Ĵ
|J| · B⃗

]
= − µB

ℏ|J|2
[
L̂ · Ĵ+ 2Ŝ · Ĵ

]
Ĵ · B⃗ = − µB

ℏ|J|2
1

2

[
Ĵ2 + L̂2 − Ŝ2 + 2(Ĵ2 + Ŝ2 − L̂2)

]
Ĵ · B⃗

= −µB

ℏ
1

2

3Ĵ2 − L̂2 + Ŝ2

|Ĵ|2
Ĵ · B⃗ . (10.19)

And the energy is,

∆EZeem(B) =
〈
µB

ℏ

(
1 +

J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

)
Ĵ · B⃗

〉
. (10.20)

Introducing the Landé factor,

gJ ≡ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)]

2J(J + 1)
, (10.21)

we can write

∆EZeem(B) = −
µB

ℏ
gJ⟨Ĵz⟩B = −µBgJmJB . (10.22)

This expression describes the anomalous Zeeman effect, for which S ̸= 0. For the
normal Zeeman effect, for which the spin is zero, we find again gJ = 1.

Figure 10.1: Coupling angular moments for the effect (a) Normal Zeeman effect, (b) anoma-
lous Zeeman effect, (c) Paschen-Back effect, (d) Zeeman effect of the hyperfine structure,
and (e) Paschen-Goudsmith effect.

10.2.3 Paschen-Back effect and intermediate magnetic fields

A very strong external magnetic field (> 1 T), such that V̂ℓs ≪ V̂Zeem(B), can break
the L̂ · Ŝ-coupling. Both spins L̂ and Ŝ now couple separately to the field,

L̂ −→
(
L̂ · B⃗

|B⃗|

)
B⃗
|B⃗| and Ŝ −→

(
Ŝ · B⃗

|B⃗|

)
B⃗
|B⃗| . (10.23)

Therefore,

V̂PB(B) = −
µB

ℏ
(L̂+ 2Ŝ) · B⃗ −→ −µB

ℏ

[(
L̂ · B⃗

|B⃗|

)
B⃗
|B⃗| + 2

(
Ŝ · B⃗

|B⃗|

)
B⃗
|B⃗|

]
· B⃗ , (10.24)

such that
∆EPB(B) = −µB(mL + 2mS)B . (10.25)

This is the Paschen-Back effect.
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10.2.3.1 Fine structure in the intermediate magnetic field regime

The derivations we have made so far have focused on simple situations well described
by CSCOs in various coupling schemes. The projections on the different quantization
axes [the total spin (10.18) in the Zeeman case or the applied magnetic field (10.23)
in the Paschen-Back case] ensure that the Hamiltonians V̂ℓs and V̂Zeem(B) in these
CSCOs are described by diagonal matrices. However, in regimes intermediate between
Zeeman and Paschen-Back, V̂ℓs ≃ V̂Zeem(B), it is generally not possible to find a
diagonal representation.

In order to calculate the energy spectrum in intermediate regimes we must, there-
fore, determine all the components of the matrix,

V̂ℓs + V̂Zeem(B) = ξ(r)L̂ · Ŝ+
µB

ℏ
(L̂+ 2Ŝ) . (10.26)

Using L̂± ≡ L̂x ± ıL̂y and Ŝ± ≡ Ŝx ± ıŜy, we can easily rewrite the energy in the
following way,

V̂ℓs + V̂Zeem(B) = ξ(r)
(
L̂zŜz +

1
2 L̂+Ŝ− + 1

2 L̂−Ŝ+

)
+
µB

ℏ
(L̂+ 2Ŝ) · B⃗ . (10.27)

This operator acts on the uncoupled states,

∆Eℓs +∆EZeem(B) (10.28)

= ⟨L′m′
L;S

′m′
S |ξnl(L̂zŜz + 1

2
L̂+Ŝ− + 1

2
L̂−Ŝ+) + µB(L̂z + 2Ŝz)B|LmL;SmS⟩

= ℏ2ξnl
(
mLmSδmL,m

′
L
δmS ,m

′
S
+ 1

2
L+S−δmL,m

′
L
−1δmS−1,m′

S
+ 1

2
L−S+δmL−1,m′

L
δmS ,m

′
S
−1

)
+ ℏµB(mL + 2mS)BδmL,m

′
L
δmS ,m

′
S
,

with the abbreviations L± ≡
√
L(L+ 1)−mL(mL ± 1). The energies are now the

eigenvalues of this matrix. The factor ξnl is usually determined experimentally by
letting B = 0. In Exc. 10.2.7.3 we calculate the re-coupling of the spins of two electrons
in an external magnetic field.

Figure 10.2: Transition between the Zeeman regime and the Paschen-Back regime for the
case L = 1 and S = 1/2.
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10.2.4 Zeeman effect of the hyperfine structure

When the energy of the interaction with the magnetic field is comparable to the
hyperfine interactions, but much weaker than that of the fine interactions, the fields
do not disturb the coupling between the total electronic momentum Ĵ and the spin
of the nucleus Î. Hence, J, I, F, and mF are good quantum numbers. Therefore, to
calculate the interaction energy,

V̂hfs + V̂Zeem(B) = V̂hfs − ˆ⃗µF · B⃗ , (10.29)

where ˆ⃗µF is the total magnetic momentum,

ˆ⃗µF = ˆ⃗µJ + ˆ⃗µI = −
µB

ℏ
gJ Ĵ+

µN

ℏ
gpÎ . (10.30)

we project the nuclear spin and the total electronic momentum separately in the
direction of F̂,

Ĵ −→
(
Ĵ · F̂

|F|

)
F̂
|F| and Î −→

(
Î · F̂

|F|

)
F̂
|F| . (10.31)

Note the negative sign in (10.30) due to the negative charge of the electron. The
Landé factor gJ [see (10.21)] is the one caused by the coupling of the orbital angular
momentum L̂ and the electron spin Ŝ and depends on the state under consideration.
Thereby,

V̂Zeem(B) =
[
−µB

ℏ
gJ

(
Ĵ · F̂

|F|

)
F̂
|F| +

µN

ℏ
gp

(
Î · F̂

|F|

)
F̂
|F|

]
B⃗ (10.32)

=

(
− µB

ℏ|F̂|2
gJ Ĵ · F̂+

µN

ℏ|F̂|2
gpÎ · F̂

)
(B · F̂z) .

Using Ĵ · F̂ = 1
2 (F̂

2 + Ĵ2 − Î2) and Î · F̂ = 1
2 (F̂

2 − Ĵ2 + Î2) we write,

V̂Zeem(B) = −
µB

ℏ
gJ

F̂2 + Ĵ2 − Î2

2|F|2 BF̂z + gp
µN

ℏ
F̂2 − Ĵ2 + Î2

2|F̂|2
BF̂z , (10.33)

such that

∆Ehfs +∆EZeem(B) ≃ ∆Ehfs + µBgFmFB , (10.34)

using the Landé factor gF for the state F ,

gF ≃ gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
− gp

µN

µB

F (F + 1)− J(J + 1) + I(I + 1)

2F (F + 1)
,

(10.35)
where the second term can be neglected.

The splitting of electronic states with the momentum F̂ into 2F + 1 sublevels
mF = −F, .., F is called Zeeman effect of the hyperfine structure. The result (10.32)
only applies to weak magnetic fields. For strong fields the Zeeman splitting becomes
a Paschen-Back splitting of the hyperfine structure.
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10.2.5 Paschen-Back effect of the hyperfine structure

When the interaction with the magnetic field exceeds the hyperfine interaction, the
nuclear spin Î decouples from the total momentum Ĵ, and both couple separately to
the external magnetic field,

Ĵ −→
(
Ĵ · B⃗

|B⃗|

)
B⃗
|B⃗| and Î −→

(
Î · B⃗

|B⃗|

)
B⃗
|B⃗| . (10.36)

The Zeeman effect of the hyperfine structure becomes a hyperfine structure of the
Zeeman effect, also called Paschen-Back effect of the hyperfine structure or Paschen-
Goudsmith effect. We can diagonalize the potential on a basis, where I,mI , J , and
mJ are good quantum numbers. Using the expression (9.168) but disregarding the
quadrupolar contribution to the hyperfine interaction, BJ ≃ 0, we obtain,

V̂hfs + V̂Zeem(B) = V̂hfs − (ˆ⃗µJ + ˆ⃗µI
≃ 0

) · B⃗ ≃ AJ
ℏ2

Ĵ · Î− ˆ⃗µJ · B⃗ (10.37)

−→ AJ
ℏ2

(
Ĵ · B⃗B

)
B⃗
B ·
(
Î · B⃗B

)
B⃗
B − µJzB =

AJ
ℏ2
Ĵz Îz +

µB

ℏ
gJ ĴzB ,

where we neglect the interaction of the dipole moment of the nucleus with the external
magnetic field, µ⃗I ≃ 0. We obtain for strong magnetic fields,

∆Ehfs +∆EZeem(B) ≃ AJmJmI + µBgJmJB . (10.38)

The re-coupling of the state |FmF ⟩ to |mImJ⟩ in strong magnetic fields is described
by Clebsch-Gordan coefficients,

|FmF ⟩ =
∑

mI+mJ=mF

|mImJ⟩⟨mImJ |FmF ⟩ . (10.39)

Example 64 (Nuclear magnetic resonance): In Eq. (10.37) we have ne-
glected the nuclear dipole moment for being small in comparison to the elec-
tronic one. Taking it into account, we get an additional term V̂nmr,

V̂hfs+ V̂Zeem+ V̂nmr =
AJ
ℏ2

Ĵ · Î+µ⃗J ·B⃗+µ⃗I ·B⃗ =
AJ
ℏ2
Ĵz Îz+µJzB+µIzB . (10.40)

Considering a hydrogen atom 1H in a B⃗ = 10T strong magnetic field, we have
the following hierarchy of energies:

∆EZeem(B) = µBgemJ ≃ h · 140GHz (10.41)

∆Ehfs(B) ≃ h · 1.4GHz

∆Enmr(B) = µNgpmI ≃ h · 213MHz ,

where ge = 2.002.. is the g-factor of the electron and gp = 5.586.. of the proton.
Now, in large molecules the most electrons are paired, such that Ĵ = 0. In that
case, we are left with the interaction between the nuclear spin and the applied
magnetic field,

∆Enmr(B) = µNgImIB , (10.42)

where the g-factor of the nucleus gI must be looked up in data tables. This

is the regime where nuclear magnetic resonances (NMR) can be excited with a

large variety of applications in spectroscopy and imaging.
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10.2.5.1 Hyperfine structure in the intermediate field regime

Knowing the dipolar magnetic AJ and quadrupolar BJ interval factors, it is possible
to calculate the Zeeman shift of the hyperfine structure in magnetic fields intermediate
between the Zeeman and Paschen-Back regimes. For this, we must determine all the
components of the matrix V̂hfs+ V̂Zeem(B) and calculate the eigenvalues. The relevant
terms of the Eqs. (9.168) and the Eq. (10.36) are,

V̂hfs + V̂Zeem(B) =
AJ
ℏ2

Î · Ĵ+
BJ
ℏ2

6(̂I · Ĵ)2 + 3Î · Ĵ− 2Ĵ2Î2

2I(2I − 1)2J(2J − 1)
+ gJµBB⃗ · Ĵ− gIµNB⃗ · Î .

(10.43)
We develop the complete matrix representation of this Hamiltonian within the

uncoupled base, where mJ ,mI are good quantum numbers, introducing the abbrevi-
ations

I± ≡
√
I(I + 1)−mI(mI ± 1) and I±± ≡

√
I(I + 1)− (mI ± 1)(mI ± 2) .

(10.44)

The SU(2) algebra provides useful expressions, Î · Ĵ = ÎzĴz +
1
2 (Î+Ĵ− + Î−Ĵ+). The

elements of the matrix are,

⟨m′
Im

′
J |Hhfs +HB |mImJ⟩ =

[
AJ + 3BJ

2I(2I−1)2J(2J−1)

]
× (10.45)

×
{
mImJδm′

I
mI
δm′

J
mJ

+ 1
2
I+J−δm′

I
mI+1δm′

J
mJ−1 +

1
2
I−J+δm′

I
mI−1δm′

J
mJ+1

}
+ 6BJ

2I(2I−1)2J(2J−1)
⟨m′

Im
′
J |
(
I·J
ℏ
)2 |mImJ⟩

+
[
−BJ2I(I+1)J(J+1)

2I(2I−1)2J(2J−1)
+ (gJmJ − gIµNmI)µBB

]
δm′

I
mI
δm′

I
mI

where

⟨m′
Im

′
J |
(

Î·Ĵ
ℏ

)2
|mImJ⟩ =

[
(mImJ)

2 + 1
4I

2
−J

2
+ + 1

4I
2
+J

2
−
]
δm′

I mI
δm′

J mJ
+ (10.46)

+ 1
2 (m

′
Im

′
J +mImJ) I+J−δm′

I mI+1δm′
J mJ−1+

+ 1
2 (m

′
Im

′
J +mImJ) I−J+δm′

I mI−1δm′
J mJ+1+

+ 1
4I+J−I++J−−δm′

I mI+2δm′
J mJ−2+

+ 1
4I−J+I−−J++δm′

I mI−2δm′
J mJ+2 .

The matrix ⟨m′
Im

′
J |Hhfs +HB |mImJ⟩ is divided into 2F + 1 diagonal blocks, each

labeled mF . The total number of levels is,

∑
F=|I−J|,..,I+J

2F+1 = (2I+1)(2J+1) =
∑

mF=|−F,..,F |

 ∑
mI=|−I,..,I|, mJ=|−J,..,J|, mI+mJ=mF

1

 .

In this form the matrix can be programmed, e.g. using computational software
such as MATLAB, and all eigenvalues of the Hamiltonian for any state 2S+1XJ and
nuclear spin I can be calculated numerically. Obviously, the eigenvalues follow from a
diagonalization of the matrix and do not depend on the chosen base. Fig. 10.3 shows
the result obtained for 6Li (I = 1) in the states 2s 2S1/2 and 2s 2P3/2 (see Tab. 16.1).
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Figure 10.3: (code) Hyperfine and Zeeman structure of the states 2s 2S1/2 and 2s 2P3/2 of
6Li, which has the nuclear spin I = 1.

Example 65 (Fully stretched states): It is interesting to analyze the so-called
fully stretched Zeeman states defined by F = I + J and |mF | = F . For these
states, the spin K defined in (9.167) becomes,

K ≡ 2⟨Ĵ · Î⟩ = F (F + 1)− I(I + 1)− J(J + 1)

= (I + J)(I + J + 1)− I(I + 1)− J(J + 1) = 2JI ,

and the hyperfine structure (9.168) becomes,

∆Ehfs =
AJ
2
K+

BJ
8I(2I − 1)J(2J − 1)

[3K(K+1)−4I(I+1)J(J+1)] = AJIJ+
BJ
4
.

That is, the hyperfine structure does not depend on the F quantum number
at any B-field amplitude, which means that the mJ , mI , and mF will be good
quantum numbers at arbitrary B-field strengths. So see this, we calculate the
Landé-factor (10.35),

gF = gJ
J

F
− gJ µN

µB

I

F
,

and consider the particular Zeeman state mF = F , mJ = J , and mI = I,

V̂hfs + V̂Zeem(B) = AJIJ + BJ
4

+ gJµBB⃗ · Ĵ− gIµNB⃗ · Î
= AJIJ + BJ

4
+ µBgFmFB = AJIJ + BJ

4
+ (µBgJJ − µNgJI)B .

The energy displacement of the fully stretched states is always linear in the

magnetic field. We can also look at the matrix elements I+ = 0 and I− =
√
2I

and note that all non-diagonal terms vanish.

When one of the spins, J or I, is equal to 1/2 only two possible hyperfine states
exist: F = I ± J . For this case there is an approximate analytic formula called the
Breit-Rabi formula [49], which will be derived in Exc. 10.2.7.4,

∆Ehfs +∆EZeem(B) = ⟨AJ

ℏ2 Î · Ĵ+ gJµBB⃗ · Ĵ− gIµNB⃗ · Î⟩ (10.47)

= −AJ
4

+ µNgNmFB ±
AJ(I +

1
2 )

2

√
1 +

4mF

2I + 1
x+ x2 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Staticfields_HyperLithium.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Staticfields_HyperLithium.m
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with the abbreviation x ≡ 2(µBgJ−µNgI)B
AJ

. Resolve also Exc. 10.2.7.5.

Atoms with paired electrons have no spin and therefore no magnetic dipole mo-
ment. For example, helium or strontium in their ground state 1S0. These systems are
diamagnetic due to the Hamiltonian term (10.11) being quadratic in B⃗, as we shall
see in Exc. 10.2.7.6.

10.2.6 Landau levels in two-dimensional systems subject to
magnetic fields

Magnetic field can also have interesting effects in artificial atoms, e.g. quantum
dots. An important example is the formation of Landau levels. We consider a two-
dimensional system of non-interacting particles with charge q and spin S confined to
an area A = LxLy in the xy plane. We apply a uniform magnetic field,

B⃗ = Bêz (10.48)

along the z axis. The Hamiltonian of this system is,

Ĥ = 1
2m (p̂− qÂ)2 , (10.49)

where p̂ is the operator of the canonical momentum and Â is the potential vector,
related to the magnetic field by B⃗ = ∇× Â. The vector potential,

A = 1
2



−By
Bx
0


 (10.50)

reproduces the field (10.48). However, we have the freedom of choosing the potential
vector, given by the gauge transformation, to add the gradient of a scalar field, for
example,

χ ≡ 1
2Bxy =⇒ ∇χ = 1

2



By
Bx
0


 =⇒ A′ ≡ A+∇χ = Bxêy . (10.51)

The potential vector A′ gives the same magnetic field and only changes the general
phase of the wavefunction, but the physical properties do not change. In this gauge,
which is called Landau gauge, the Hamiltonian is,

Ĥ =
p̂2x
2m

+
1

2m

(
p̂y −

qB
c
x̂

)2

. (10.52)

The operator p̂y commutes with this Hamiltonian, since the ŷ operator is absent due
to the choice of the gauge. Thus, the operator p̂y can be replaced by its eigenvalue
ℏky. Hence, by introducing the cyclotron frequency,

ωc ≡
qB
mc

, (10.53)
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we obtain,

Ĥ =
p̂2x
2m

+
mω2

c

2

(
x̂− ℏky

mωc

)2

. (10.54)

This is exactly the Hamiltonian of the quantum harmonic oscillator, except that the
minimum of the potential is displaced in position space by the value,

x0 ≡
ℏky
mωc

. (10.55)

To find the energies, we note that the translation of the potential of the harmonic
oscillator does not affect the energies. The energies of this system are therefore
identical to those of the standard quantum harmonic oscillator,

En = ℏωc
(
n+ 1

2

)
, (10.56)

for n ≥ 0. Since the energy does not depend on the quantum number ky, we will
have degeneracy. To derive the wavefunctions, we remember that p̂y commutes with
the Hamiltonian. Then the wavefunction splits into a product of eigenstates of the
momentum in y-direction and eigenstates of the harmonic oscillator |ϕn⟩ shifted by a
value x0 in x-direction:

Ψ(x, y) = eıkyyϕn(x− x0) . (10.57)

That is, the state of the electron is characterized by two quantum numbers, n and ky.
Each set of wavefunctions with the same n is called Landau level. Effects due

to Landau levels are only observed, when the average thermal energy is lower than
the separation of the energy levels, which means that low temperatures and strong
magnetic fields are required. Each Landau level is degenerate, because of the second
quantum number ky which, for being confined in the xy plane, can adopt the values,

ky =
2πN

Ly
, (10.58)

with N ∈ N. The allowed values of N are further restricted by the condition that the
center of mass of the oscillator, x0, must be physically inside the system, 0 ≤ x0 < Lx.
Using (10.55) this gives the following range for N ,

0 ≤ N <
mωcLxLy

2πℏ
. (10.59)

For particles with charge q = Ze, the upper limit in N can simply be written as
a ratio of fluxes,

Z
Φ

Φ0
=
ZBLxLy
(hc/e)

= Nmax , (10.60)

where Φ0 = h/2e is the fundamental flux quantum and Φ = BA the flux through the
system (with area A = LxLy). Thus, for particles with spin S, the maximum number
of particles per Landau level is,

Nmax = Z(2S + 1)
Φ

Φ0
. (10.61)
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10.2.6.1 Integer and fractional quantum Hall effect

In general, Landau levels are observed in electronic systems with Z = 1 and S = 1/2.
As the magnetic field increases, more and more electrons can fit a certain Landau
level. The occupation of the highest Landau level ranges from entirely full to entirely
empty, leading to oscillations in various electronic properties (see de Haas-van Alphen
effect, Shubnikov-de Haas effect and quantum Hall effect. The most direct observation

Figure 10.4: Scheme of the Quantum Hall effect.

of the Landau levels is done via the quantum Hall effect. To discuss this effect let us
briefly recapitulate the Hall effect. In the scheme of Fig. 10.4, charges are deviated
by the Lorentz force exerted by an applied magnetic field B⃗ from a driven current
density jx into a current density jy until a sufficient amount of surface charge density
has accumulated to generate an electric field exerting a Coulomb force on the charges
which neutralizes the Lorentz force, F = q(E⃗ + v × B⃗) = 0. Resolving this condition
by v, we obtain for the current density,

j = ϱqv = ϱq
E
B êx = ς E⃗ , (10.62)

where the last equation is Ohm’s law and

ς =

(
ςxx ςxy
−ςxy ςyy

)
and ϱ = ς−1 =

1

ς2xx + ς2yy

(
ςxx −ςxy
ςxy ςyy

)
(10.63)

the conductivity and the resistivity, respectively. The Hall resistivity does therefore
depend linearly on the magnetic field,

ϱxy =
E
j
=
B
ϱq

. (10.64)

In two-dimensional systems this is, however, not observed. Instead, plateaus
emerge whenever the magnetic field is ramped across a value where a new Landau
level is possible binding one more electron,

ϱxy =
2πℏ
e2

1

ν
with ν ∈ Z . (10.65)
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Figure 10.5: (code) Scheme of the quantum Hall effect.

10.2.7 Exercises

10.2.7.1 Ex: Zeeman effect with different quantization axes

The Zeeman effect can be described in several ways depending on the choice of the
quantization axis. Consider a magnetic field B⃗ = Bxêx and calculate the interaction
Hamiltonian V (B) = −µ⃗J · B⃗
a. choosing the quantization axis êx in the direction of the magnetic field,
b. choosing the quantization axis êz perpendicular to the direction of the magnetic
field.

10.2.7.2 Ex: Zeeman shift and quantization axes

Choosing the fixed quantization axis êz and a magnetic field B⃗(r) in an arbitrary
direction, calculate the Hamiltonian of the Zeeman interaction with an angular mo-
mentum J = 1 and show that the energy shift depends only on absolute value |B⃗(r)|.

10.2.7.3 Ex: Coupling of two electrons

Consider a two-electron system.
a. Show that the operator (ℏA/ℏ2)̂s1 · ŝ2 distinguishes the triplet from the singlet
states.
b. Consider now, that the electrons are exposed to a magnetic field B applied in the
direction êz, so that they acquire the interaction energy with the field (µBB/ℏ)(g1ŝ1z+
g2ŝ2z). Obtain the matrix associated with the total Hamiltonian and demonstrate
that in the regime ℏA≫ µBB, the representation that favors the total momentum is
more adequate.
c. Show that in the regime ℏA≪ µBB, it is convenient to use the representation that
privileges the individual spins of the total momentum.
d. Analyze the intermediate regime ℏA ≃ µBB.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Staticfields_QuantumHallEffect.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EixoQuantizacao1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EixoQuantizacao2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_AcoplamentoEletrons.pdf
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10.2.7.4 Ex: Breit-Rabi formula

Derive the analytical Breit-Rabi formula for the hyperfine structure (10.47) supposing
J = 1

2 .

10.2.7.5 Ex: Reciprocal pollution of the Paschen-Back and Zeeman
regimes

a. Determine the interaction matrix ⟨m̃Jm̃I |V̂hfs + V̂Zeem(B)|mJmI⟩ of an atom with
electron spin J and nuclear spin J in the decoupled base without considering the
quadrupolar terms.
b. Determine the interaction matrix explicitly for the case of 6Li (I = 1) in its ground
state 2S1/2 (AJ = h · 152.137MHz) for a magnetic field of B = 100 G.
c. For the system defined in (b) determine the eigenvalues E(B) of the interaction
matrix and the eigenvectors |α(B)⟩ on the decoupled base |mJmI⟩.
d. For the system defined in (c) determine the eigenvectors |α(B)⟩ in the coupled base
|FmF ⟩.
e. How good are the selection rules for transitions S1/2 − P3/2 in the intermediate
regime between Zeeman and Paschen-Back? We start by calculating the Zeeman
shifts for both levels (s denotes the structure S1/2, p the structure P3/2)

B⟨ms
Jm

s
I |Hhfs +HB |ms

Jm
s
I⟩B = Es(B)

B⟨mp
Jm

p
I |Hhfs +HB |mp

Jm
p
I⟩B = Ep(B) .

For the level P3/2 the interval factor is less. In particular for 6Li it is so small
that we are immediately in the Paschen-Back scheme. This means that the matrix

∞⟨m̃p
Jm̃

p
I |mp

Jm
p
I⟩B = δmp

J ,m̃
p
J
δmp

I ,m̃
p
I
is diagonal. The element of the transition matrix

is then,

B⟨mp
Jm

p
I |T (Eκ)

q |ms
Jm

s
I⟩B

=
∑
m̃s

J
m̃s

I

∑
m̃

p
J
m̃

p
I

∞⟨m̃p
Jm̃

p
I |mp

Jm
p
I⟩B ∞⟨m̃s

Jm̃
s
I |ms

Jm
s
I⟩B ∞⟨m̃p

Jm̃
p
I |T (Eκ)

q |m̃s
Jm̃

s
I⟩∞

=
∑
m̃s

J
m̃s

I

∞⟨m̃s
Jm̃

s
I |ms

Jm
s
I⟩B ∞⟨mp

Jm
p
I |T (Eκ)

q |m̃s
Jm̃

s
I⟩∞ .

The matrix elements in the pure Zeeman regime can be expressed by [Deh07, un-
published],

⟨F pmp
F |T (Eκ)

q |F sms
F ⟩ =0 ⟨mp

Jm
p
I |T (Eκ)

q |ms
Jm

s
I⟩0

=

(
Js κ Jp

ms
J sign(mp −ms) −mp

J

)2{
Jp Js κ

F s F p I

}2
(2F s + 1)(2Jp + 1)(2κ+ 1)

2I + 1
.

Discuss the pure Paschen-Back regime via ∞⟨mp
Jm

p
I |T

(Eκ)
q |ms

Jm
s
I⟩∞.

10.2.7.6 Ex: Diamagnetism of the ground states of H atoms

Calculate the quadratic Zeeman effect for the ground state of the hydrogen atom
caused by the (usually neglected) diamagnetic term of the Hamiltonian in first order
TPIT. Write down the energy shift as ∆E = −χ2B2 assuming a constant magnetic
field in order to obtain the diamagnetic susceptibility χ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_BreitRabi.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_ZeemanPollution.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_ZeemanPollution.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_SusceptiDiamagnetismo.pdf
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10.3 Interaction with electric fields

10.3.1 Stark Effect

Electric fields interact with the electrons of the atom. Describing the atom by its
dipole moment, according to (10.13), the interaction energy is,

V̂Stark = −d̂ · E⃗ . (10.66)

This is the Stark effect. This effect is usually weak, and its observation requires strong
fields or high spectral resolution. Stationary perturbation theory TIPT gives,

E(1)
n = ⟨ψ(0)

n | − d̂ · E|ψ(0)
n ⟩ = eEz

∫

R3

z|ψ(0)
n |2d3r = 0 , (10.67)

with d = −er and E⃗z = Ezêz. This only applies when the states have well-defined
parity and are NOT degenerate in ℓ. When they ARE degenerate in ℓ, which is the
case of hydrogen, the states have no defined parity (−1)ℓ. For example, the states
s and p contributing to the same state |ψn,j⟩ have different parities. In this case,
the condition (10.67) is not automatically satisfied, and the first perturbation order
yields a value. This is the case of the linear Stark effect. In the Excs. 10.3.2.1 and
10.3.2.2 we explicitly calculate the Stark energy shift for a hydrogen atom subject to
an electric field.

Other atoms do not have this degeneracy, and we must calculate the quadratic
Stark effect in second order TIPT,

|ψ(1)
n ⟩ = eEz

∑

n′ ̸=n
|ψ(0)
n′ ⟩
⟨ψ(0)
n′ |ẑ|ψ(0)

n ⟩
En − En′

. (10.68)

and

E(2)
n = e2E2z

∑

n′ ̸=n

|⟨ψ(0)
n′ |ẑ|ψ(0)

n ⟩|2
En − En′

. (10.69)

To simplify the matrix elements, we separate the radial part from the angular part,

⟨ψ(0)
n′ |ẑ|ψ(0)

n ⟩ = ⟨n′J ′m′
J |ẑ|nJmJ⟩ =

∫ ∞

0

r3Rn′J′RnJdr

∫
Y ∗
J′m′

J

z
rYJmJ

dΩ . (10.70)

The radial part, written as

⟨n′JJ ′||ẑ||nJJ⟩ ≡
∫ ∞

0

r3Rn′
JJ

′RnJJdr , (10.71)

and called the irreducible matrix element, no longer depends on the magnetic quantum
number. On the other hand, the angular part may be expressed by Clebsch-Gordan
coefficients, as will be discussed more extensively in Sec. 16.2.3. The result is called
Wigner-Eckart theorem,

⟨n′JJ ′m′
J |ẑ|nJJmJ⟩

⟨n′JJ ′||ẑ||nJJ⟩
=

∫
Y ∗
J′m′

J

z
rYJmJ

dΩ =
1

2J ′ + 1

(
J 1 J ′

mJ 0 −m′
J

)
. (10.72)
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With [ẑ, L̂z] = 0, which was shown in Exc. 3.3.4.2, and obviously [ẑ, Ŝz] = 0 we
find,

0 = ⟨J ′m′
J |[ẑ, Ĵz]|JmJ⟩ = (mJ −m′

J)⟨J ′m′
J |ẑ|JmJ⟩ . (10.73)

This means that for mJ ̸= m′
J , the matrix elements ⟨J ′m′

J |ẑ|JmJ⟩ should disappear.
Therefore, the matrix is diagonal inmJ . We consider dipole transitions with |J−J ′| ≤
1 1,

(
J 1 J + 1

mJ 0 −mJ

)
=

(J + 1)2 −m2
J

(2J + 1)(J + 1)
, (10.74)

(
J 1 J

mJ 0 −mJ

)
=

m2
J

J(J + 1)
,

(
J 1 J − 1

mJ 0 −mJ

)
=

J2 −m2
J

J(2J + 1)
.

States with the same |mJ | lead to the same quadratic Stark effect,

∆E ∼ A+B|mJ |2 . (10.75)

The factors A and B depend on the main quantum number n and also on L, S, J .
Moreover, they depend on the energy distance of all contributing levels, because of the
denominator in the perturbation equation (10.68). Only levels with different parity
(−1)L contribute. The formulae (10.74) will be derived explicitly in Exc. 10.3.2.3.

10.3.2 Exercises

10.3.2.1 Ex: Stark effect in hydrogen

Consider the hydrogen atom immersed in a uniform electric field E⃗ applied along the
êz-direction. The term corresponding to this interaction in the total Hamiltonian
is Ĥ(1) = −eE⃗ ẑ. For typical electric fields produced in laboratory, the condition
Ĥ(1) ≪ Ĥ0, which allows the use of TIPT, is satisfied. The effect of the perturbation
Ĥ(1), called Stark effect, is the removal of the degeneracy of some of the hydrogen
atom states. Calculate the Stark effect for the state n = 2.

10.3.2.2 Ex: Stark effect in the 1s hydrogen level

Calculate the Stark shift of the hydrogen ground state by taking into account the
contributions of the excited states n = 2, 3, ...

10.3.2.3 Ex: Stark effect

Derive the Eqs. (10.74) from the formula (6.7).

1For it is possible to show that ⟨n′
JJ

′||ẑ||nJJ⟩ = 0 for |J − J ′| > 1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EfeitoStark1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EfeitoStark2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EfeitoStark3.pdf
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10.4 Further reading

T. Mayer-Kuckuk, Atomphysik, Teubner Studienbücher (1985) [ISBN]

Ch.J. Foot, Atomic Physics [ISBN]

I.I. Sobelman, Atomic Spectra and Radiative Transitions [ISBN]

http://isbnsearch.org/isbn/978-3-519-33042-4
http://isbnsearch.org/isbn/978-0-198-50696-6
http://isbnsearch.org/isbn/978-1-483-15972-0


Chapter 11

Atoms with many electrons

The electronic shell of an atom consists of many electrons occupying different quantum
states and interacting with each other. Being fermions forced into the lowest energy
states of a tight potential imposed by their attraction to the Coulomb potential of a
nucleus, the electronic wavefunction must obey quantum statistical symmetrization
rules. The rules have been derived in Sec. ??, so that we can restrict here to a brief
recapitulation focusing to the case of an electronic shell. This will be done in Sec. 11.1.
In Sec. 11.2 we will discuss consequences of the symmetrization requirement at the
simplest possible case, which is the helium atom. In Sec. 11.3 we extend the discussion
to many-electron systems, which leads us finally to the explanation of the periodic
system of elements presented in Sec. 11.4.

11.1 Symmetrization of bosons and fermions

Quantum mechanics must be formulated in a way to avoid any possibility of distin-
guishing identical particles. However, the language of mathematics (based on ’clas-
sical’ letters and symbols) automatically assigns a particle to a wavefunction; for
example, ψa(x1) is the wavefunction a of particle 1 and ψb(x2) the wavefunction b of
particle 2. In the absence of interactions, the total wavefunction, Ψ = ψa(x1)ψb(x2),
solves the Schrödinger equation of two particles. Now, by changing the coordinates of
the particles we get a different state Ψ′ = ψa(x2)ψb(x1)

1. This erroneously suggests
that the wavefunction of a particle plays the role of a label (or ’soul’) characterizing
the particle beyond its set of quantum numbers. Why this is a problem, we will see
in the following example 2.

1We note that the states are orthogonal, because∫
Ψ∗(1,2)Ψ(2,1)dx1dx2 =

∫
ψ∗
a(x1)ψ

∗
b (x2)ψa(x2)ψb(x1)dx1dx2

=

∫
ψ∗
a(x1)ψb(x1)dx1

∫
ψ∗
b (x2)ψa(x2)dx2 = δna,nb .

2Ultimately, all this is simply a consequence of the uncertainty principle, which forbids us to
specify a wavefunction as a function of two non-commuting coordinates: We have to choose one
coordinate on which the wavefunction depends and treat the other as a quantum number, for ex-
ample, ψk(r) = eık·r or ψn(x) = cos nπx

L
. When we now exchange the coordinates of two particles

without changing their quantum numbers, we get obviously different states. In classical physics, the
wavefunction of a particle would be written ψ(x, p). If two classical particles are not distinct by any
other mean, an exchange of all their coordinates would reproduce exactly the same state.

383
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Example 66 (Indistinguishability of particles): We consider a system of
two non-interacting spinless particles in an infinite potential well. The total
wavefunction is,

Ψ(1,2) ≡ ψa(x1)ψb(x2) = C cos
naπx1
L

cos
nbπx2
L

(11.1)

with the energy,

Ea,b =
π2n2

a

2mL2
+

π2n2
b

2mL2
.

For observable quantities, such as |Ψ(1,2)|2, we must ensure, |Ψ(1,2)|2 = |Ψ(2,1)|2,
that is,

C2 cos2 naπx1
L

cos2 nbπx2
L

= C2 cos2 naπx2
L

cos2 nbπx1
L

,

but this is not valid for na ̸= nb. Only if na = nb, we have ψa = ψb. In this
case, the particles stay in the same state, and we do not need to worry about
indistinguishability:

Ψ(2,1) = ψa(x2)ψb(x1) = Ψ(1,2) and Ea,b = Eb,a .

However, the fact that this state is never observed with two electrons shows,

that theory must be corrected to allow for a true description of reality. Will

deepen this argument in Exc. 11.1.3.1.

We need to construct the total wavefunction in another way. Let us consider linear
combinations of Ψ(1,2),

ΨS,A ≡ 1√
2
(Ψ(1,2) ±Ψ(2,1)) = 1√

2
[ψa(x1)ψb(x2)± ψa(x2)ψb(x1)] . (11.2)

This (anti-)symmetrized represents a trick to eradicate the label sticking to the par-
ticles. For, under position exchange described by the operator Pxψa(x1)ψb(x2) ≡
ψa(x2)ψb(x1), the (anti-)symmetrized functions behave like 3,

PxΨS,A = ±ΨS,A while PxΨ(1,2) = Ψ(2,1) ̸= ∓Ψ(1,2) . (11.3)

The (anti-)symmetrized function solves the Schrödinger equation, as well. As [Ĥ,Px] =
0, we can say that the system exhibits an exchange symmetry or exchange degeneracy
upon particle exchange. Observables such as Ψ∗S,AΨS,A stay conserved, for example,
the probability

|ΨS,A|2 = 1
2

[
|ψa(x1)ψb(x2)|2 + |ψa(x2)ψb(x1)|2

]
(11.4)

± 1
2 [ψ

∗
a(x1)ψ

∗
b (x2)ψa(x2)ψb(x1) + ψ∗

a(x2)ψ
∗
b (x1)ψa(x1)ψb(x2)] = Px|ΨS,A|2

does not change, when we exchange x1 for x2. For x1 = x2, we observe,

|ΨS,A|2 = |ψa(x)ψb(x)|2 ± |ψa(x)ψb(x)|2 . (11.5)

That is, for a symmetric system, the probability of finding two particles at the same
location is doubled, whereas for an antisymmetric system, this probability is zero.

3To guarantee |PxΨS,A|2 = |ΨS,A|2, we have PxΨS,A = eıϕΨS,A. From this, PxPxΨS,A =
e2ıϕΨS,A = ΨS,A. Hence, PxΨS,A = ±ΨS,A.
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Wolfgang Pauli showed that the (anti-)symmetric character is related to the spin of
the particles. Particles with integer spin called bosons must be symmetric. Particles
with semi-integer spin called fermionsmust be antisymmetric. Electrons are fermions.
Therefore, in an atom, they can not be in the same state (location), but must be
distributed over a complicated shell of orbitals. We note, that this applies not only to
elementary particles, but also to composed particles such as, for example, atoms. We
will determine in Exc. 11.1.3.2 the bosonic or fermionic character of several atomic
species.

11.1.1 Pauli’s Principle

Two electrons with anti-parallel spins can be separated by inhomogeneous magnetic
fields, even if they are initially in the same place. Therefore, they are distinguishable
and the wavefunction need not be antisymmetric. But if we exchange the spin along
with the position, the particles must be indistinguishable. This must be taken into
account in the wavefunction by assigning a spin coordinate, ψa(x1, s1). The exchange
operator should now be generalized,

Px,sΨ(1,2) ≡ Px,sψa(x1, s1)ψb(x2, s2) = ψa(x2, s2)ψb(x1, s1) = Ψ(2,1) . (11.6)

We now assume that the electrons not only do not interact with each other, but
there is also no interaction between the position and the spin of each electron. That is,
for a while we will discard L ·S-coupling 4. We can then write the total wavefunction
of an electron as the product of a spatial function, ψ(x), and a spin function, χ(s) =
α ↑ +β ↓, where α and β are probability amplitudes of finding the electron in the
respective spin state, such that,

ψ(x, s) = ψ(x)χ(s) . (11.7)

For two particles, the total spin function is,

X(1,2) = χa(s1)χb(s2) . (11.8)

The (anti-)symmetrized version is

XS,A = 1√
2
(X(1,2) ±X(2,1)) = 1√

2
[χa(s1)χb(s2)± χa(s2)χb(s1)] , (11.9)

as we have already seen in Sec. 3.4.1. Since there are only two spin directions, there
are four possibilities to attribute the spins ↑ and ↓ to the functions χm(sn),

XS =





↑↑ = χ1,1
1√
2
(↑↓ + ↓↑) = χ1,0

↓↓ = χ1,−1

and XA = 1√
2
(↑↓ − ↓↑) = χ0,0 (11.10)

For the total wavefunction, which must be antisymmetric for electrons, there are two

4In the case of L · S-coupling, the total wavefunction can not be written as a product of spatial
and spin functions, but it must be antisymmetric anyway.
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possibilities,

ΘA =


ΨSXA = 1

2
(Ψ(1,2) +Ψ(2,1))(X(1,2) −X(2,1)) = 1√

2
[ψa(x1)ψb(x2) + ψa(x2)ψb(x1)]χ0,0

ΨAXS = 1
2
(Ψ(1,2) −Ψ(2,1))(X(1,2) +X(2,1)) = 1√

2
[ψa(x1)ψb(x2)− ψa(x2)ψb(x1)]


χ1,1

χ1,0

χ1,−1

.

(11.11)

That is, the two electrons may be in a triplet state with the antisymmetric spatial
wavefunction, or in a singlet state with the symmetric spatial wavefunction 5.

How to generalize these considerations to N particles? The symmetric wavefunc-
tions contain all permutations of the label ak, where we understand by ak the set of
quantum numbers unambiguously specifying the state of the particle k,

ΘS = N
∑

Px,sak

ψa1(x1)...ψaN (xN ) , (11.12)

with a normalization factor N 6. The (anti-)symmetrized wavefunction is obtained
from the Slater determinant,

ΘA = 1
N ! detψak(xn) =

1
N !

∣∣∣∣∣∣∣

ψa1(x1) · · · ψa1(xN )
...

. . .
...

ψaN (x1) · · · ψaN (xN )

∣∣∣∣∣∣∣
. (11.13)

This function satisfies

Px,sΘA,(1,..,i,j,..,N) = ΘA,(1,..,j,i,..,N) = −ΘA,(1,..,i,j,..,N) . (11.14)

The Slater determinant is zero, when two sets of quantum numbers are identical,
ai = aj . For example, for two electrons in an electronic shell, |ni, li,mi, si⟩ =
|nj , lj ,mj , sj⟩. This is Pauli’s strong exclusion principle:

The total wavefunction must be antisymmetric with respect to the ex-
change of any pair of identical fermions and symmetrical with respect to
exchange of any pair of identical bosons.

Pauli’s weak exclusion principle (usually sufficient for qualitative considerations) says
that two fermions in identical states can not occupy the same region in space. That
is, their Broglie waves interfere destructively, as if Pauli’s principle exerted a repulsive
interaction on the particles. This ’force’ has a great impact on the phenomenology of
the bonds between atoms, as we will discuss in the following sections.

11.1.2 Consequences for quantum statistics

The indistinguishability of quantum particles has interesting consequences on the
statistical behavior of bosons and fermions. This becomes obvious when we consider

5In the coupled image, the total spin S = s1+s2 can have the following values S = |s1−s2|, .., s1+
s2 = 0, 1. In the case S = 0 the magnetic quantum number can only have one value (singlet),mS = 0.
In the case S = 1 it can have three values mS = −1.0,+1 (triplet) (see Exc. 10.2.7.3).

6It is possible to show N =

√
Πm

k=1
nk!

N !
, where nk is the population of state ψak , that is, the

number of particles with the same set of quantum numbers ak.
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two particles 1 and 2 being able to adopt two different states a and b. Distinguishable
particles can be in one of the following four states,

Ψ = {ψa(x1)ψa(x2), ψa(x1)ψb(x2), ψb(x1)ψa(x2), ψb(x1)ψb(x2)} (11.15)

with the same probability of p = 1/4. When the quantum particles approach each
other, x1 ≃ x2, they must become indistinguishable. Bosonic indistinguishable parti-
cles can stay in one of the following three states,

Ψ = {ψa(x1)ψa(x2), 1√
2
[ψa(x1)ψb(x2) + ψb(x1)ψa(x2)], ψb(x1)ψb(x2)} (11.16)

with the same probability of p = 1/3. Finally, fermionic indistinguishable particles
can only be in one state,

Ψ = { 1√
2
[ψa(x1)ψb(x2)− ψb(x1)ψa(x2)]} (11.17)

with the probability of p = 1. We see that a simple two-particle system already
exhibits qualitative modifications of its statistical behavior. These differences generate
different physics as we deal with systems of large numbers of particles, as we can see
in the cases of the free electron gas and the Bose-Einstein condensate.

We finally note a result of the standard model of particle physics assigning a
fermionic character to all fundamental constituent particles of matter while the me-
diators of fundamental forces are always bosons.

11.1.3 Exercises

11.1.3.1 Ex: Indistinguishability of particles

Consider the observable quantity
∫ L/2
0

∫ L/4
0
|Ψ(x1, x2)|2dx1dx2 for the case of the

wavefunction defined in (11.1) and show, that it does depend on particle exchange.

11.1.3.2 Ex: Bosonic and fermionic isotopes

Consulting an isotope table determine the bosonic or fermionic character of the fol-
lowing atomic species: 87Sr, 86Sr, 87Rb, 39K, and 40K.

11.1.3.3 Ex: Interference of bosons and fermions

a. Consider two clouds of ultracold bosonic atoms (BECs at temperature T = 0)
moving into opposite direction with velocities v± = ±v, respectively. Describe the
matter wave interference pattern.
b. Repeat the consideration for the case of (i) fermionic clouds and (ii) only two
counterpropagating atoms. Is matter wave interference possible at all for fermions?

11.2 Helium

The simplest atom to discuss Pauli’s principle is helium. The helium atom has a
charged nucleus Z = +2e and mass mHe ≈ 4mH.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_Symmetrize01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_BosonFermion01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_BosonFermion02.pdf
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11.2.1 The ground state

The ground state of the helium atom brings together the two electrons, that is, (1s)2.
To treat the helium atom, we can, as a first trial, describe the atom by the Bohr
model, assuming independent electrons. Neglecting the electronic repulsion term
(which depends on r12 = |r1 − r2|), we can separate the total wavefunction:

Ψ(r1, r2) = Ψ1(r1)Ψ2(r2) , (11.18)

and we get two Schrödinger equations, the Hamiltonian being equal to the one of
hydrogen-like atoms:

[
− ℏ2

2µ
∇2
i −

e2

4πε0

Z

ri

]
Ψi(ri) = E(i)

n Ψi(ri) , (11.19)

with i = 1, 2. For hydrogen-like atoms we have,

E = E(1)
n + E(2)

n = EBZ
2

(
1

n21
+

1

n22

)
, (11.20)

with EB = −13.6 eV. With this, we get the energy for the ground state:

EHe(1s) = −2Z2EB = −108.8 eV . (11.21)

The value predicted by Bohr’s model is far from experimental reality: The ioniza-
tion energy measured for the first electron is 24.6 eV, for the second 54.4 eV, totaliz-
ing a binding energy for two electrons of −78.983 eV. This corresponds to an error
of about 38%. The lower energy of the first electron is due to the shielding of the
nucleus by the second.

11.2.1.1 First-order perturbation of the energy

Treating the repulsion term between the electrons as a perturbation [35] and using the
eigenfunctions of hydrogen atoms |n, ℓ,mℓ⟩, the total wavefunction is |n1, ℓ1,mℓ1 ;n2, ℓ2,mℓ2⟩,
we obtain as first order TIPT correction for the energy:

∆E = ⟨n1, ℓ1,mℓ1 ;n2, ℓ2,mℓ2 |
e2

4πε0r12
|n1, ℓ1,mℓ1 ;n2, ℓ2,mℓ2⟩ . (11.22)

This correction is called the Coulomb integral and has the value:

∆E =
e2

4πε0

∫
|Ψn1,ℓ1,mℓ1

(r1)|2
(

1

r12

)
|Ψn2,ℓ2,mℓ2

(r2)|2dV1dV2 . (11.23)

This integral is always positive. The term |Ψn1,ℓ1,mℓ1
(r1)|2dV1 is the probability of

finding the electron inside the volume element dV1 and, when multiplied by −e, gives
the charge associated with that region. Thus, the integral represents the Coulombian
interaction energy of the confined charges within the two volume elements dV1 and
dV2. ∆E is the total contribution to the potential energy. Calculating the Coulomb
integral for the ground state, which will be done in Exc. 11.2.3.1, we obtain,

∆E =
5Z

4

(
e2

4πε02aB

)
=

5Z

4
EB , (11.24)
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with aB the Bohr radius. ∆E corresponds to 34 eV. Thus, the ground state energy
is EHe(1s) = −108.8 eV+34 eV = −74.8 eV. Comparing with the experimental value
of −78.983 eV we still have an error around 5.3%.

11.2.1.2 Shielding of the nuclear charge

We can make the approximation in which we consider that each electron moves in a
Coulombian potential, with respect to the nucleus, shielded by the charge distribution
of the other electron [219]. The resulting potential will be generated by an effective
charge ζe ≡ (Z −B)e. The quantity B ∈ [0, 1] is called the shielding constant.

The first electron feels a total nuclear charge Ze, while the second feels an effective
nuclear charge ζe. We exchange Z for ζ in the energy term for hydrogen-like atoms,

En = −ζ EB

n2
, (11.25)

and the energy for the ground state becomes, assuming total shielding, B = 1,

E = E1 + E2 = −Z2EB − ζ2EB = −4EB − EB = −5EB = −67.5 eV . (11.26)

Comparing with the experimental value of −78.983 eV we have an error around 15%.
For a shielding constant of around B = 0.656 the experimental value is reproduced.
This means that the effective nuclear charge felt by the second electron is only partly
shielded by the former. The TPIT method (11.22) and the shielding concept (11.25)
can be combined in a variational calculation, where the effective charge ζ is the vari-
ational parameter. In Exc. 11.2.3.2 we study the reciprocal shielding of the electrons
at the example of the helium-type ion H−.

11.2.2 Excited states

Let us now investigate the excited states of helium, in particular those, where only one
electron is excited, the other one being in the ground state, (1s)1(2s)1 and (1s)1(2p)1.
All energies are considerably higher (weaker binding) than predicted by Bohr’s model
with Z = 2, because of the interaction with the other electron. Also, the (2s) and
(2p) levels are no longer degenerate, because the electrostatic potential is no longer
Coulombian (see Fig. 11.1).

As we have seen in the discussion of the fine structure of hydrogen, the energy
of the L · S-coupling given by (9.130) is ∝ En(Zα)

2 ∝ Z4. For helium which still
has a small Z, the energy of the coupling is weak (∼ 10−4 eV), so that we can count
on a direct coupling of the spins of the two electrons. If in an excited state the
orbits of the electrons are different, we can construct combinations of symmetric or
antisymmetric spatial wavefunctions ΨS,A, and therefore combinations XA,S of anti-
parallel or parallel spins. When the spins are parallel (S = 1), the spatial wavefunction
is antisymmetric, when they are antiparallel (S = 0), it is symmetric. From the
symmetry of the wavefunction depends the energy of the Coulombian interelectronic
interaction, because in the symmetric state the average distance of the electrons
is much smaller than in the antisymmetric state, where the total spatial function
disappears for zero distance. Consequently, the configuration (1s)1(2s)1 has two states
with S = 0 and S = 1, with energy ES=0 > ES=1. Likewise, all configurations are



390 CHAPTER 11. ATOMS WITH MANY ELECTRONS

Figure 11.1: Helium levels for the excitation of the first electron and allowed singlet and
triplet transitions. Note that the state (1s)↑↑ ≡ (1s)↑(1s)↑ does not exist, because it would
be totally symmetric.

split, as shown in Fig. 11.1. The energy difference (∼ 0.6 eV) is considerable and
larger than the energy of fine structure interaction. This explains why the two spins
first couple to a total spin, s1 + s2 = S, before this spin couples to the total orbital
angular momentum, S+ L = J. This is the L · S-coupling.

11.2.2.1 Exchange energy

The energy difference between the two states S = 0 and S = 1 is called exchange
energy. It comes out of a first-order perturbation calculation perfomed with sym-
metrized states. For example, for the two possible states (1s)1(2s)1, we write the
total antisymmetric wavefunctions,

ΘA
± = 1√

2
[ψ100(r1)ψ200(r2)± ψ100(r2)ψ200(r1)] · χA,S , (11.27)
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where the (+) sign holds for χA (S = 0) and the (−) sign for χS (S = 1). The energies
are,

∆ES,A = 1
2

∫
dr31

∫
dr32Θ

∗A
±

e2

4πε0|r1 − r2|
ΘA

± (11.28)

= 1
2

∫
dr31

∫
dr32

e2

4πε0|r1 − r2|
[|ψ100(r1)|2|ψ200(r2)|2 + |ψ100(r2)|2|ψ200(r1)|2]

± 1
2

∫
dr31

∫
dr32

e2

4πε0|r1 − r2|
2ψ∗

100(r1)ψ
∗
200(r2)ψ100(r2)ψ200(r1)

≡ ∆ECoulomb ±∆Eexchange .

The first integral,

∆ECoulomb =

∫
dr31

∫
dr32

e2

4πε0|r1 − r2|
|ψ100(r1)|2|ψ200(r2)|2 , (11.29)

is the Coulomb energy (11.23) between the electronic orbitals. We note that this part
can be calculated from the Hamiltonian using non-symmetrized orbitals. The second
integral,

∆Eexchange =

∫
dr31

∫
dr32

e2

4πε0|r1 − r2|
ψ∗
100(r1)ψ

∗
200(r2)ψ100(r2)ψ200(r1) , (11.30)

called exchange energy corresponds to the interference terms of the symmetrization
and must be added or subtracted according to their symmetry character. It is inter-
esting to note that up to this point the spin does not enter directly into the helium
Hamiltonian,

ĤS,A =
p21
2m

+
p22
2m

+ V (r1) + V (r2) + V (|r1 − r2|)±∆Eexchange , (11.31)

but only through the symmetry character of the spatial wavefunction. On the other
hand, on a much smaller energy scale, the spin enters through the L · S-interaction.

The potential is not spherically symmetric, the term r12 depends on the angle
between r1 and r2. Thus, the total wavefunction Ψ(r1, r2) is not separable into a
radial and an angular part. By consequence, unlike for hydrogen, the Schrödinger
equation with the Hamiltonian (11.21) has no analytical solution.

Example 67 (TIPT for excited helium states): We consider the two elec-
trons of a helium atom occupying different orbits described by wavefunctions
denoted by ψa(1) ≡ ψn1,ℓ1,mℓ1

(r1) and ψb(2) ≡ ψn2,ℓ2,mℓ2
(r2). Applying

the Hamiltonian without the interelectronic interaction term, the total states
Θ = ψa(1)ψb(2) and ψa(2)ψb(1) have the same energy Ea + Eb. To calculate
the energy correction, we use TIPT for degenerate states. We have to calcu-
late the secular determinant det(⟨n, ν|H(1)|n, µ⟩ − E(1)

n,µδµ,ν). The terms of the
perturbation matrix H(1) are:

H
(1)
11 = ⟨ψa(1)ψb(2)| e2

4πε0r12
|ψa(1)ψb(2)⟩

H
(1)
22 = ⟨ψa(2)ψb(1)| e2

4πε0r12
|ψa(2)ψb(1)⟩

H
(1)
12 = ⟨ψa(1)ψb(2)| e2

4πε0r12
|ψa(2)ψb(1)⟩ = H

(1)
21 .
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The terms J ≡ H
(1)
11 = H

(1)
22 are Coulomb integrals. The term K ≡ H

(1)
12 is

called exchange integral:

K =
e2

4πε0
⟨ψa(1)ψb(2)| 1

r12
|ψa(2)ψb(1)⟩ .

Hence, as J and K are positive, the determinant is:∣∣∣∣∣J − E K

K J − E

∣∣∣∣∣ = 0 ,

yielding,
E(1) = J ±K .

That is, the states that were previously degenerate with energy E = Ea + Eb
are now split into two states with energies E = Ea + Eb + J ± K. And the
corresponding eigenfunctions are:

ΨS,A(1, 2) =
1√
2
[ψa(1)ψb(2)± ψb(1)ψa(2)] .

This result shows that the repulsion between the two electrons breaks the degen-

eracy (of separable functions written in product form) into states with an energy

difference 2K. Note that the eigenfunctions are symmetric, which is discussed

in the next section.

11.2.2.2 The spectrum of helium

So far we have seen that, if the electrons are in the same orbital, we have an energy
term E = 2Ea + J and, when they are in different orbitals, we have E = Ea + Eb +
J ±K, with a separation between levels of 2K.

In practice, we consider only the excitation of one electron, because the energy
to excite the two electrons exceeds the ionization energy of the helium atom. To find
the selection rules for transitions between symmetric and antisymmetric states, we
calculate the dipole moment of the transition. For a two-electron system the dipole
moment is d̂ = −er1 − er2, which is symmetric with respect to a permutation of the
two electrons. The matrix element for the dipolar transition is:

⟨ΨA|d̂|ΨS⟩ = −e
∫

Ψ∗A(r1, r2)(r1 + r2)Ψ
S(r1, r2)dV1dV2 . (11.32)

If we exchange the electrons, the above integral changes sign, because ΨA(r1, r2)
changes sign. But the integral can not depend on the nomenclature of the integration
variables, so it must be zero. The transition between a symmetric and an antisymmet-
ric state can not occur. Looking at the spin wavefunction in Θ = ΨSχA or ΨAχS, we
find that transitions are only allowed between singlet states or between triplet states.
That is, there is a selection rule for the spin postulating ∆S = 0 7,8.

7Moreover, transitions between the states 1S0 and 3S1 are impossible, because they violate the
selection rule for the angular momentum, ∆L = ±1.

8We can understand the selection rules as follows: As long as the wavefunction can be written as
a product, Θ = Ψ(x)χ(s), the symmetry character is preserved for the two functions separately. The
eigenvalues of the operators Px and Ps are then good quantum numbers. But this only holds for
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Because of the differences observed in the singlet and the triplet spectrum of
helium, illustrated in Fig. 11.1, it was first believed that they belong to different
atomic species, called para-helium and ortho-helium. A chemical analysis showed
later that it was the same element.

11.2.3 Exercises

11.2.3.1 Ex: Helium atom

Compare the measured binding energy with the prediction of Bohr’s model considering
the inter-electronic interaction up to first order TIPT.

11.2.3.2 Ex: Shielding in helium

The helium atom (or helium-like atoms such as H−) has two interacting electrons in its
composition, which means that these systems have no exact solution. To circumvent
this problem we have to come up with a series of approximate methods for calculating
their eigenstates and their respective eigenenergies. Among these methods, a widely
used one, due mainly to its ease and practicality, is the variational method, in which we
calculate the fundamental state of a given problem through a test function that is not
a solution of the original problem. This method, when applied to a helium atom, uses
as test function the solution of the problem without coulombian interaction between
the electrons, which only feel the interaction with the original charge of the nucleus.
However, this method could be further improved if we considered an effective nuclear
charge, due to its interaction with the electrons themselves, and then obtaining the
test function. Apply this correction to the case of helium. Interpret the result. Help:

∫
sin θ2√

r21 + r22 − 2r21r
2
2 cos θ2

dθ2 =

√
r21 + r22 − 2r21r

2
2 cos θ2

r1r2
and

〈1
r

〉
=

Z

aB
.

11.3 Electronic shell structure

The interelectronic interaction and the need to antissimetrize the wavefunction of
the electrons both contribute to excessively increase the complexity of multielectronic
atoms. The Hamiltonian describing a multielectronic atom of atomic number Z,

Ĥ = Ekin + Vncl:ele + Vele:ele =

Z∑

i=1

p2i
2m
−

Z∑

i=1

Ze2

4πε0|ri|
+

Z∑

i<j=1

e2

4πε0|ri − rj |
, (11.33)

is extremely complicated to solve, even for the simplest case (Z = 2) we must use
approximation methods.

weak L · S-coupling. The electric dipole operator for the transition does not act on the spin (which
prevents the recoupling S = 1 ↔ S = 0 via E1-radiation) and also does not act on the symmetry
character of the orbitals (which prevents transitions ΨS ↔ ΨA).
In principle, this holds for any species of atoms with two valence electrons. In reality however, the
influence of the L ·S-coupling grows with Z, which weakens the interdiction of the intercombination
transition. In this case, only the operator Px,s yields good eigenvalues.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_AtomoHelio.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_KationHidrogen.pdf
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11.3.1 TIPT method

Note that, if we assume independent electrons (Vele:ele = 0), that is, each electron
moves independently of the others within the electrostatic potential generated by the
nucleus and the other Z−1 electrons, the problem would be solvable: We could solve
the Schrödinger equation for a product state of all the electronic wavefunctions, and
we would know the eigenfunctions and individual eigenenergies of each electron (as
for the hydrogen atom). In principle, we should use antisymmetric wavefunctions,
but as a first approach we can choose to only respect Pauli’s weak principle, that
is, assign an individual and unique set of quantum numbers to each electron. The
total energy would be the sum of the energy of every electron, and the associated
physical eigenstates would be obtained by means of an antisymmetrization of the
tensor product of the multielectronic state.

Thus, as a first approximation, we use the states of individual electrons (orbital
approximation) and consider Vele:ele(|ri − rj |) as a perturbation making use of time-
independent perturbation theory. However, this term is not small enough to justify
this procedure, since approximating

Vncl:ele ≃
Z2e2

aB
and Vele:ele ≃

Z(Z − 1)e2

2aB
, (11.34)

we realize that Vele:ele/Vncl:ele varies between
1
4 for Z = 2 and 1

2 for Z ≫ 1/2. For this
reason the use of alternative methods to describe multielectronic atoms is necessary.
Nevertheless, the set of quantum numbers derived from Bohr’s atomic model are still
the same as those used for many-electron atoms, and the orbitals are used as starting
points for more sophisticated methods.

To calculate most of the atomic properties we need reasonably realistic potentials.
The most important terms of the Hamiltonian are the Coulombian potential between
the nucleus and the electrons, Vne, being naturally spherical, and the interaction
potentials between the electrons, Vee, which we will try to approximate by a spherical
potential and treat the deviations caused by the approximation afterward. Knowing
the effect of the shielding of the nucleus by electronic charges, we already know the
asymptotes (see Fig. 11.2),

Veff = − Ze2

4πε0r
for r → 0 and Veff = − e2

4πε0r
for r →∞. (11.35)

11.3.2 Thomas-Fermi model for an electron gas

A first approach to getting a reasonable effective potential Veff is provided by the
Thomas-Fermi model. This is a semi-classical model that aims to roughly describe the
total energy of the electrons as a density functional of atomic/molecular electrons. It
serves as a basis for more sophisticated methods aiming at determining the electronic
structure, such as density functional theory (DFT), and the wavefunctions determined
by this method often serve as a starting point for the Hartree method discussed below.
One of the important predictions of the Thomas-Fermi model is that the average
radius of an atom depends on the nuclear charge as R̄ ∝ Z−1/3.
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Figure 11.2: (code) External potential (shielded Coulombian) VC ∝ e2

r
(blue, upper curve),

interior potential (non-shielded Coulombian for Z = 4) Vnsh ∝ Ze2

r
(green, lower curve), and

effective potential (red, middle curve).

The Thomas-Fermi model allows us to understand the electronic configuration of
the fundamental states and provides the basis for the periodic system of elements. In
this model, the electrons are treated as independent particles, on one side forming an
effective radial electric potential, on the other side being subjected to this potential.
Instead of requiring anti-symmetry of the wavefunction, it is only necessary to ensure
that all electrons are distinguished by at least one quantum number. The orbitals of
complex atoms are similar to the wavefunctions of hydrogen. So, we can use these
quantum numbers n, ℓ, mℓ, and ms for every electron.

However, the effective radial potential depends very much on the species and is
quite different from the Coulomb potential. So, the degeneracy in ℓ is lifted. In
general, electrons with small ℓ are more strongly bound, because they have a higher
probability of being near the nucleus, where the potential is deeper (see Fig. 11.2).
The same argument explains why electrons with small n are more strongly bound.
We will discuss these effects in more depth in Sec. 11.4.1 by comparing the excitation
levels of the valence electron in different alkalis.

11.3.2.1 Density of states in the Fermi gas model

Even though the real potential sensed by the electrons bound to a nucleus is very
different from the three-dimensional well, we can roughly imagine that the atom is
subdivided into small volumes, understood as box potentials, all filled with electrons.
From this we can calculate the distribution of the electronic charge, such that the
average local energy is homogeneous and the electronic cloud in equilibrium. The
distribution, in turn, serves to determine the shape of the electrostatic potential
which, when subdivided into small volumes filled with electrons, produces the same
charge distribution. This principle is called self-consistency.

According to the Fermi gas model, we consider an infinite potential well, that we
gradually fill up with electrons. The Pauli principle allows us to place at most two
electrons in each orbital,

Ψ = ψ1,↑(x1)ψ1,↓(x2)ψ2,↑(x3)ψ2,↓(x4) · .. . (11.36)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Multielectron_PotencialEfetivo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Multielectron_PotencialEfetivo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Multielectron_PotencialEfetivo.m
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This total wavefunction satisfies the weak Pauli principle, but is obviously not anti-
symmetric. The approximation is good, when the interaction between the electrons
is negligible. Otherwise, we need to consider the exchange energy terms. This model,
called Fermi gas model, is often used to describe the behavior of electrons that can
freely move within the conductance band of a metal.

We divide the atom into small volumes (cells) containing uniformly distributed
non-interacting electrons, whose total number is N , and we analyze each cell in-
dividually. The whole volume can be modeled by a box potential: V (r) = 0 for
0 ≤ x, y, x ≤ L and V (r) = ∞ in all other places. In this case we find the possible
states {|nx, ny, nz⟩} with nx, ny, nz = 1, 2, 3 and the single electron energies,

Enx,ny,nz
=

π2ℏ2

2meL2
(n2x + n2y + n2z) =

ℏ2

2me
k2
nx,ny,nz

, (11.37)

where k2
nx,ny,nz

= k2x + k2y + k2z = (nxπ
L )2 + (

nyπ
L )2 + (nzπ

L )2. Each set of values
k = (kx, ky, kz) corresponds to an accessible state of the system, and each state is
associated with a volume element (π/L)3 in k-space. Defining the density of states
η(E), we can express the total number of states below a particular energy E by,

n(E) =

∫ E

0

η(E′)dE′ ≡ 1

(2π)3

∫
d3rd3k =

L3

(2π)3
4π

∫
k2dk (11.38)

=
L3

(2π)3
4π

(
2me

ℏ3

)3/2 ∫ E

0

√
E′dE′ =

L3

3π2

(
2meE

ℏ3

)3/2

.

η(E)dE is the number of states with energies between E and E + dE.
At temperature T = 0 K all N electrons are in their energetically lowest available

state, obeying the Pauli exclusion principle and considering the spin. The energy of
the N -th electron (the most energetic one) is then called the Fermi energy EF. That
is, below EF all states are occupied, and all states above EF are unoccupied. The total
energy is given by the sum of the energies of the N less energetic states, and the final
physical state is given by the antisymmetrization of the corresponding wavefunction.
With the formula (11.38), we can express the Fermi energy via n(EF) ≡ N , such that,

EF =
ℏ2

2meL2
(3π2N)2/3 , (11.39)

so that the density of states can be expressed as,

η(E) =
dn(E)

dE
=

L3

2π2

(
2me

ℏ2

)3/2

E1/2 =
3N

2

E1/2

E
3/2
F

. (11.40)

11.3.2.2 Thomas-Fermi energy

Fermi’s box potential trick allowed us to model the impact of Pauli’s principle on
the spatial distribution of fermions in a restricted volume, but we did not take into
account yet the fact that electrons are charged and will interact. Hence, the energy
calculated so far is purely kinetic and will have to be complemented by potential
energy.
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The total kinetic energy of the electrons with the system in its ground state is,

Etot =

∫ EF

0

Eη(E)dE =
L3

2π2

(
2me

ℏ2

)3/2 ∫ EF

0

E3/2dE (11.41)

=
L3

5π2

(
2me

ℏ2

)3/2

E
5/2
F =

ℏ235/3π4/3

10me
L3

(
N

L3

)5/3

= CL3ρ5/3 ,

where ρ ≡ N/L3 is the density of electrons per unit volume and C just a proportion-
ality constant. Now understanding ρ as a quantity depending on position in space,
we calculate the total number of electrons as,

N =

∫

R3

ρ(r)d3r , (11.42)

and the kinetic energy density by,

ukin(r) = Cρ5/3(r) , (11.43)

such that the total kinetic energy of the electrons in the electronic shell is,

T [ρ] = C

∫
ρ5/3(r)d3r . (11.44)

The potential associated with the electron-nucleus interaction is,

Vep[ρ] = −
Ze2

4πε0

∫
ρ(r′)
r′

d3r′ =
∫
Vp(r

′)ρ(r′)d3r′ , (11.45)

with the electrical potential generated by the nucleus,

Φp(r) =
Vp(r)

−e =
Ze

4πε0

1

r
(11.46)

The potential associated with the electron-electron interaction is,

Vee[ρ] =
1

2

e2

4πε0

∫
ρ(r)ρ(r′)
|r− r′| d

3rd3r′ =
∫
Ve(r

′)ρ(r′)d3r′ , (11.47)

with the electrical potential generated by the electron cloud,

Φe(r) =
Ve(r)

−e = −1

2

e

4πε0

∫
ρ(r′)
|r− r′|d

3r′ (11.48)

Thus, the total energy (Thomas-Fermi energy) can be written as a functional of the
electronic density of the atom,

HTF[ρ] = T [ρ] + Vep[ρ] + Vee[ρ] . (11.49)
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11.3.2.3 Electronic density and the Thomas-Fermi equation

Exploiting the variational principle, we are interested in the electronic density ρ(r)
which minimizes the Thomas-Fermi energy. We can perform this process via Lagrange
multipliers under the constraint, that the number of electrons remains constant in the
atom. Thus,

0 = δ

{
HTF[ρ]− µ

(∫
ρ(r)d3r −N

)}
. (11.50)

Inserting the Thomas-Fermi energy (11.49) we calculate,

µ =
δ

δρ(r)

{
Cρ5/3(r) + Vp(r)ρ(r) + Ve(r)ρ(r)

}
= 5

3Cρ
2/3(r)+Vp(r)+Ve(r) . (11.51)

Resolving for the electronic density,

ρ(r) =

(
3

5C

)3/2

[µ− Vp(r)− Ve(r)]3/2 . (11.52)

The above expression is called the Thomas-Fermi equation and describes the electron
density of the atom in its ground state. The expression (11.48) can be rewritten as a
Poisson equation,

∇2Ve(r) =
e2

2ε0
ρ(r) , (11.53)

so that,

∇2Ve(r) =
e2

2ε0

(
3

5C

)3/2

[µ− Vp(r)− Ve(r)]3/2 . (11.54)

For the effective potential introduced via Veff = Vp + Ve, we find,

∇2Veff(r) = ∇2

(
− Ze2

4πε0

1

r

)
+∇2Ve(r) (11.55)

= −Ze
2

ε0
δ3(r) +

e2

2ε0

(
3

5C

)3/2

[µ− Veff(r)]3/2 .

We note that, with (11.50), we can identify the Lagrange multiplier µ as a chemical
potential. In particular, for non-interacting neutral atoms, we have µ = 0. In addition,
since for an atom both the potential and the electronic density must have spherical
symmetry, we can write for r ̸= 0,

1

r

∂2

∂r2
[rVeff(r)] =

e2

2ε0

(
3

5C

)3/2

[−Veff(r)]3/2 . (11.56)

We now make the ansatz,

Veff(r) ≡ −
Z

r
χ(αr) setting α ≡ 3e4/3

5Cε
2/3
0

Z1/3 . (11.57)

This transforms the expression (11.56) into,

∂2

∂r2
χ(αr) = − e2

Zε0

(
3Z

5C

)3/2
χ3/2(αr)

r1/2
, (11.58)
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or, substituting x ≡ αr,
d2χ

dx2
= −χ

3/2

x1/2
. (11.59)

It is important to note the last equation does not depend on the parameter Z,
thus being a general result for any neutral atom. The function χ(x) is determined
numerically, but we can analyze its asymptotic values given the expected behavior
of the effective potential Veff(r): for r → 0 we expect that Veff(r) = Vp(r), hence
χ(0) = 1. On the other hand, for r →∞, we expect Veff(r) = 0, hence χ(∞) = 0. Do
the Exc. 11.3.5.1.

With χ(x) known, we obtain the charge density ρ(x), and hence we are able to
calculate the total energy of the atom under investigation. Thus, it is possible to
show that [35],

HTF[ρ] = −0.7687
e2

4πε0aB
Z7/3 . (11.60)

It is important to highlight some points:

1. The result holds for neutral atoms.

2. There is no electronic shell structure assumed; apart from the fact that the
kinetic energy was derived in a way as to respect Pauli’s principle, the whole
calculation was done within the laws of classical electromagnetism; no quantum
mechanics was involved and, hence, no set of quantum numbers has been found.

3. Apart from the Pauli principle used to calculate the density of states (11.40),
quantum statistical effects of identical particles (such as wavefunction anti-
symmetrization) are not taken into account.

A more refined model which deals with third criticism and, in addition, is closer to
density functional theory (DFT) is the Thomas-Fermi-Dirac model.

11.3.3 Hartree method

The effective potential obtained from the Thomas-Fermi model can serve as a starting
point for quantum treatments. Assuming that all electrons are subject to the same
effective potential Veff, we numerically solve the Schrödinger equation for each electron
independently,

Ĥi =

(
− ℏ2

2m
∇2
i + Veff

)
ψi(ri) = eiψi(ri) . (11.61)

With this we calculate all energies and eigenfunctions (only the radial parts are of
interest) minimizing the total energy and respecting the weak Pauli principle, that is,
we classify the states in the order of increasing energies ei and fill them successively
with electrons. For the total wavefunction we obtain,

(
N∑

i=1

Ĥi

)
ΨN = EnΨN with ΨN = ψ1 · .. · ψN and En =

N∑

i=1

ei . (11.62)

With the eigenfunctions we calculate the charge densities e|ψj(rj)|2. We integrate the
interaction energy between these charge densities and the potentials exerted by the
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nucleus and all other electrons j ̸= i to obtain an effective potential that represents
an improved estimation for the electronic mean field,

Veff ←− −
Ze2

4πε0ri
+
∑

j ̸=i

∫
d3rj

e2

4πε0|ri − rj |
|ψj(rj)|2 . (11.63)

We replace that potential in the Schrödinger equation, and repeat the whole process
from the beginning, until the total energy

∑
i ei does not get any lower. This self-

consistent method is called Hartree method. Fock improved these calculations using
antisymmetric wavefunctions for the valence electrons. This method is called Hartree-
Fock method.

11.3.4 Hartree-Fock method

The Hartree-Fock method used to treat atomic or molecular many-body systems aims
at obtaining the electronic wavefunction of the system. Dealing with anti-symmetrized
wavefunctions, it represents a refinement of the Hartree method. The method is
based on the variational principle and on the assumption that we can write the global
wavefunction as a Slater determinant, with each electron occupying a specific orbital
state (spin-orbital) and interacting with an effective potential stemming from the
electrons which occupy other orbitals. Instead of solving the Schrödinger equation, we
must now solve a set of equations called Hartree-Fock equations of the type F̂ψk(1) =
ϵkψk(1). The method is performed iteratively until convergence of the atomic orbitals
and their respective energies is reached. The procedure is then called self-consistent :
Starting from an initial trial global wavefunction we calculate the effective potential
in each orbital and a new set of wavefunctions which, in turn, generate a new effective
potential. This new potential is then used in a new set of Hartree-Fock equations.

11.3.4.1 Hartree-Fock equations

To start with, we write the Hamiltonian (11.33) of a multi-electronic atom as [35],

Ĥ =

Z∑

i=1

ĥi +
1
2

∑

i ̸=j
V̂ij , (11.64)

where ĥi is the Hamiltonian only of the electron i, and V̂ij is the interaction term
between the electrons i and j. To implement the method we must suppose that the
multi-electronic state can be written as the product of the individual states of each
electron:

Ψ′(1, ..., Z) = ψ1(1)ψ2(2)...ψZ(Z) , (11.65)

where ψi(1) = ϕi(r1)χ(α) = ψαi (r1) represents the spin-orbital state of electron 1, that
is, the spatial wavefunction of the electron in the state i and with spin α. However, due
to the symmetrization postulate, the physical state of the system must be expressed
by a Slater determinant,

Ψ(1, ..., Z) =
1√
Z!

det [ψ1(1)ψ2(2)...ψZ(Z)] . (11.66)
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Now, we use the variational principle to minimize the expectation value of the ground
state energy by varying the functions ψk(n). In this way, the correct orbitals are those
that minimize the energy. The expectation value is written as,

E = ⟨Ψ|Ĥ|Ψ⟩ = ⟨Ψ|
Z∑

i=1

ĥi|Ψ⟩+ ⟨Ψ| 12
∑

i ̸=j
V̂ij |Ψ⟩ . (11.67)

It is possible to show that,

⟨Ψ|
Z∑

i=1

ĥi|Ψ⟩ =
Z∑

i=1

⟨ψi|ĥi|ψi⟩ and (11.68)

⟨Ψ| 12
∑

i ̸=j
V̂ij |Ψ⟩ = 1

2

Z∑

i,j

[⟨ψiψj |V̂ij |ψiψj⟩ − ⟨ψjψi|V̂ij |ψjψi⟩] .

Hence,

E =

Z∑

i=1

⟨ψi|ĥi|ψi⟩+ 1
2

Z∑

i,j

[⟨ψiψj |V̂ij |ψiψj⟩ − ⟨ψjψi|V̂ij |ψjψi⟩] . (11.69)

The above expression can be minimized via Lagrange multipliers under the constraint
that the states are orthogonal ⟨ψi|ψj⟩ = δij ,

δ



⟨Ψ|Ĥ|Ψ⟩ −

∑

i,j

ϵij [⟨ψiψj |V̂ij |ψiψj⟩ − ⟨ψjψi|V̂ij |ψjψi⟩]



 (11.70)

Thus, we obtain the following set of Hartree-Fock equations:

F̂ψk(1) = ϵkψk(1) where F̂ = ĥ1 +
∑

i

(2Ĵi − K̂i) (11.71)

is the Fock operator and ϵk is the energy associated with the spin-orbital ψk. The
operator Ĵi, called Coulomb operator, represents the mean potential sensed by electron
1 in the orbital k due to the presence of electron 2 in the orbital i:

Ĵiψk(1) =

{∫
ψ∗
i (2)V12ψi(2)dr2

}
ψk(1) . (11.72)

The operator K̂i, denominated exchange operator, is a consequence of the symmetriza-
tion process and therefore a purely quantum effect, that is, without classical analogue:

K̂iψk(1) =

{∫
ψ∗
i (2)V12ψk(2)dr2

}
ψk(1) . (11.73)

Once we know all wavefunctions, the energies of the orbitals can be obtained in the
following way:

∫
dr1ψ

∗
k(1)

{
ĥ1 +

∑

i

(2Ĵi − K̂i)

}
ψ∗
k(1) = ϵk

∫
dr1ψ

∗
k(1)ψk(1) = ϵk , (11.74)
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that is,

ϵk =

∫
dr1ψ

∗
k(1)ĥ1ψ

∗
k(1) +

∑

i

(2Ĵki − K̂ki) , (11.75)

where,

Ĵki =

∫
dr1ψ

∗
k(1)Ĵiψk(1) is the Coulomb integral (11.76)

K̂ki =

∫
dr1ψ

∗
k(1)K̂iψk(1) is the exchange integral .

The total atomic energy can be calculated by,

E = 2
∑

k

ϵk −
∑

k,i

(2Ĵki − K̂ki) . (11.77)

Furthermore, if assuming that, taking an electron away from the orbital ψk the elec-
tronic distribution remains unchanged, it is possible to associate the energy ϵk with
the ionization energy of the electron in this orbital, Ik ≃ ϵk. This equality is known
as Koopman’s theorem.

11.3.5 Exercises

11.3.5.1 Ex: Effective potential in the Thomas-Fermi model

Calculate numerically and plot the effective potential in the Thomas-Fermi model
from the differential equation (11.59) for Z = 40 [900].

11.4 The periodic system of elements

Completely filled principal layers n, ℓ are isotropic, ΨN (r) = Ψ(r), as we will show
in Exc. 11.4.4.1. It is important to distinguish three different energetic sequences:
1. Tab. 11.5 shows, for a given atom, the excited orbitals of the last electron. 2. The
energy sequence shown in Tab. 11.6 tells us in which orbital the next electron will be
placed, when we go to the next atom in the periodic table 11.8 which has one more
proton in the nucleus. 3. The inner electrons are subject to different potentials and,
hence, follow a different sequence energetic sequence: While for the inner electrons
we find,

En,ℓ < En,ℓ+1 ≪ En+1,ℓ , (11.78)

the sequence is partially inverted for the outermost electron. Note that it is the
outermost electrons that determine the chemical reactivity of the atom. The sequence
is illustrated in Fig. 11.4.

Noble gases have small radii, high excitation energies and high ionization energies.
The outermost electrons in a noble gas atom must overcome a large energy gap to
any higher quantum numbers. Halogens have strong electro-affinities, since the outer
electron layer (nmax) is incomplete and therefore malleable, such that an electron
approaching the halogen perceives the nuclear charge through a partially transparent
shield. Alkalis are similar to hydrogen and have excitation energies in the optical

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_ShellStructure01.pdf
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regime. Their fundamental state 2S1/2 is determined by a single valence electron in
the ℓ = 0 orbital. Unlike hydrogen, excitation energies are highly dependent on ℓ,
since orbits with small ℓ correspond to eccentric ellipses and have higher probabilities
to be in the unshielded region −Z2e2/r than orbits with large ℓ, who spend more
time in the shielded region −e2/r. For the same reason, energies corresponding to
larger n resemble more those of the hydrogen spectrum.

11.4.0.1 Inner shell electrons

The interior shell structure of the atoms can be analyzed by X-ray scattering. Elec-
trons decelerated by atoms emit a continuous spectrum called Bremsstrahlung, but
they can also expel electrons from the inner layers leaving a hole behind. When a
hole is filled by cascades of electrons falling down from higher layers, the atom emits
a specific X-ray spectrum (≈ 104 eV). The selection rules ∆ℓ = ±1 and ∆j = ±1
split the lines in two components. X-ray spectra of neighboring elements in the pe-
riodic table are very similar, because the inner layers not being shielded, they see a
potential close to ∝ Z2/r dominating the interaction with electrons from the outer
layers. Therefore, the Z-dependency of inner energy levels along a horizontal rows in
the periodic table is more or less ω ∝ Z2, as predicted by Bohr’s atomic model.

11.4.1 Electronic shell model

In the Fermi gas model, each of the energy levels contains several states, and each of
these states can be occupied by a single electron, according to the Pauli principle. In
this way, we obtain the electronic configuration for the atoms of the periodic system.
In this picture, the energies of the ground states of the elements, normalized by 1/Z2,
can be arranged in the scheme of Fig. 11.3.

Figure 11.3: Periodic order.

This only works for atoms with up to 18 electrons. When the layer 3p is completely
filled, the next to be occupied is not 3d but the 4s. The new scheme is illustrated
in Fig. 11.4. The anomalies beginning at Z = 18 arise due to electron-electron in-
teraction. The real potential evolves from one to the other Coulombian potential, as
distance from the nucleus is increased, as illustrated in Fig. 11.2. Near the nucleus,
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the electrons shield the positive charge less than for large distances r. Thus, those
states that have a high probability near the nucleus are energetically lowered. That
is,

E2s < E2p and E6s < E6p < E6d . (11.79)

The degeneracy of the orbital angular momentum in the Schrödinger model is thus
lifted. The shielding is, as can be seen in the example of the excited states of lithium,
a large effect in the range of some eV.

Figure 11.4: Illustration of the sequence of filling the orbitals with electrons.

The shielding also accounts for the anomalies in the periodic system, such as in
K or Ca. Since E4s < E3d, the 4s state is filled before the 3d. Similar anomalies
also occur in Rb (5s), Cs (6s), and Fr (7s). In rare earths the shielding effect is even
more pronounced. Here, the energy of the state 6s is even below the energy of the
4f , which means that the shells 6s, 5s, 5p, and 5d protect the 4f shell very well 9.
Resolve Exc. 11.4.4.2.

11.4.1.1 Alkalines

The electronic shell structure of alkalines consists of a completed noble gas shell and
an additional valence electron. Their spectrum is therefore very similar to hydrogen.
An empirical approach can be stressed to describe this feature,

En,ℓ = −
µEGc

2

2

Z2α2

(n−∆n,ℓ)2
, (11.80)

where µEG is the reduced mass relative to the noble gas shell and ∆n,ℓ is called
quantum defect. The quantum defect is tabulated for most alkaline states and is

9An example of this is Nd:YAG (Neodymium in Yttrium Aluminum Garnet). In this crystal,
optical transitions can be excited within the 4f shell of the Nd. However, these transitions are only
allowed due to perturbations of the crystalline field. The very strong shielding ensures a long life of
the excited state. For this reason this crystal is an excellent laser material.
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particularly important for low energy states. For sodium, for example, the values are:

ℓ n = 3 n = 4 n = 5 n = 6

s 1.37 1.36 1.35 1.34

p 0.88 0.87 0.86 0.86

d 0.10 0.11 0.13 0.11

f - 0.00 -0.01 0.008

For states with a large angular momentum, the quantum defect disappears. In
these states, the electron is far from the nucleus and the potential is similar to that of
hydrogen. Alkalines are currently widely studied in quantum optics laboratories, for
being comparatively simple, but having a sufficiently rich structure to be interesting.
The fundamental electronic transitions typically lie in the visible and near-infrared
spectral range and can be excited with comparatively simple laser sources. The
lifetime of excited states is typically longer than 20 ns, which corresponds natural
linewidths of approximately (2π) 10MHz.

11.4.1.2 Excited states

The experimentally easiest and most precise approach to determining orbital energies
consists in measuring excitation spectra of valence electrons. The diagram of Fig. 11.5
compares such excitation spectra for various alkaline atoms. Although this is not to
be confused with the binding energies of valence electrons of different atoms, it gives
us a qualitative idea of the impact of shielding and indicates, which orbital will be
occupied by the additional valence electron of the next species in the periodic table.

11.4.2 LS and jj-coupling

Following Hund’s rule, the L · S-coupling is energetically favorable compared to the
j · j-coupling, which means that the spins of the outermost electrons, that is, the
electrons outside of filled subshells (n, ℓ), prefer to orient their spins in parallel in
order to anti-symmetrize the spatial wavefunctions and thus maximize the distance
between the electrons. Every sub-layer of the series shown in Fig. 11.4 must be filled
in the listed order before placing new electrons in the next layer.

In the case of helium, we have seen that the Pauli principle first determines the
relative orientation of the electron spins. The spins si of the individual electrons
therefore add up to a total angular momentum S. The orbital angular momenta li also
adopt a relative orientation. It is determined by a residual spherically non-symmetric
Coulomb interaction: A certain combination L of orbital angular momenta leads to a
certain spatial distribution of the electrons and thus to a certain electrostatic energy
distribution.

The total spin S and the total orbital angular momentum L subsequently couple
to a total angular momentum J very similar to the l · s spin-orbit coupling in single
electron systems. States with different J then have the respective energies that the



406 CHAPTER 11. ATOMS WITH MANY ELECTRONS

Figure 11.5: Comparison of the excitation energies of the valence electron for several alkaline
atoms. Grey line are meant to guide the eye.

total spin S adopts in the field generated by the total orbital angular momentum L 10.

The above coupling scheme is called Russel-Saunders coupling or LS-coupling. It
works well when the spin-orbit coupling of individual electrons is small. In this case,
intercombination is forbidden, which means that there can be no electromagnetic
transition between states with different spins (see the case of metastable helium in
Sec. 11.2.2).

Since Eℓs ≃ (Zα)4 ≃ Z4, as shown in (9.130), for heavy atoms, the coupling
of an electronic spin to its own orbital momentum grows strongly with Z, as well
as the symmetrization and the exchange energy, which mutually orient the spins,
and the residual Coulomb interaction, which mutually couples the angular orbital
momenta. In this case, the orientation of Li relative to Si delivers more energy than
the exchange energy and the residual energy cost. Hence, the spin and the orbital
angular momentum of an individual electron couple first,

ji = li + si . (11.81)

10In addition, there are the small contributions due to li · lj-coupling and to si · sj-coupling, where
i ̸= j.



11.4. THE PERIODIC SYSTEM OF ELEMENTS 407

Figure 11.6: Illustration of Hund’s rule.

We obtain a new Hamiltonian of fine structure of the form,

Hfs ∝ ji · jj . (11.82)

Pure jj-coupling only exists for very heavy nuclei. Normally, we have a so-called
intermediate coupling, which is a mixture of LS and jj-coupling. This can consider-
able relax the intercombination prohibition. When the coupling is pure, we have the
following dipolar selection rules:

LS-coupling: ∆S = 0, ∆L = ±1, ∆ℓ = ±1
jj-coupling: ∆j = 0,±1 for one e−, ∆j = 0 for all others

In addition we have for the two couplings: ∆J = 0,±1, but J, J ′ = 0 is forbidden,
∆mJ = 0,±1 when ∆J = 0 but mJ ,mJ′ = 0 is forbidden.

11.4.3 Summary of contributions to the atomic energy levels

The total Hamiltonian of a single atom is composed of the kinetic energy of the
nucleus and the electrons, of various interaction potentials between the nucleus and
the electrons, and of interactions with various types of external electromagnetic fields.

Ĥ = − ℏ2

2m
∇2
R +

N∑

i=1

(
− ℏ2

2m
∇2
ri

)
+ V (r1, s1, .., rN , sN ) + Vext . (11.83)
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Figure 11.7: Hierarchy of coupling energies at the example of two electrons out of closed
shells, (2p)(3d), under the presumption of perfect jj-coupling (left) or LS-coupling (right).

Of course, with the presence of other atoms, other interactions may generate other
relevant contributions to the Hamiltonian.

The following interactions contribute to the potential V : The Coulomb interac-
tions,

Vncl:ele = −
Z∑

i=1

Ze2

4πε0|r− ri|
and Vele:ele =

Z∑

i<j=1

e2

4πε0|ri − rj |
, (11.84)

the antisymmetry of the wavefunction, that is, exchange integrals,

Vsym , (11.85)

the energies of spin-orbit couplings,

Vℓs = −
Z∑

i=1

1

e2m2c2
1

|r− ri|
dVC
dri

(li · si) , (11.86)

the energies of spin-spin couplings,

Vss =

Z∑

i̸=j=1

e2

m2

[
σi · σj
|ri − rj |3

− 3
[σi · (ri − rj)][σj · (ri − rj)]

(ri − rj)5

]
, (11.87)

the energies of orbit-orbit couplings,

Vll =

Z∑

i ̸=j=1

cij(li · lj) , (11.88)

interactions between the spin of the electrons and the nuclear spin and between the
orbital angular momentum of the electrons and the nuclear spin,

Vhfs =
A

ℏ2
J · I , (11.89)
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and relativistic corrections.
Vrel , (11.90)

In addition, static external fields may displace energy levels and can influence the
internal coupling of angular momenta and spins,

Vext = −d · E⃗ , − µ⃗ · B⃗ . (11.91)

What quantum numbers are good depends on the relative amplitudes of intra-
atomic interactions:
Case 1: fine structure with L · S-coupling plus Zeeman splitting of hyperfine struc-
ture: Vncl:ele, V

r
ele:ele ≫ V aele:ele, Vsym ≫ Vℓs ≫ Vhfs ≫ VB the quantum number are

|ni, ℓi,L,S,J,F,mF ⟩.
Case 2: fine structure with j · j-coupling plus Zeeman splitting of hyperfine struc-
ture: Vncl:ele, V

r
ele:ele ≫ Vℓs ≫ V aele:ele, Vsym ≫ Vhfs ≫ VB the quantum number are

|ni, ℓi, ji,J,F,mF ⟩.
Case 3: fine structure with L · S-coupling plus hyperfine structure of Zeeman split-
ting: Vncl:ele, V

r
ele:ele ≫ V aele:ele, Vsym ≫ Vℓs ≫ VB ≫ Vhfs the quantum number are

|ni, ℓi,L,S,J,mJ ,mI⟩.
Case 4: fine structure with L · S-coupling plus Paschen-Back splitting of fine struc-
ture: Vncl:ele, V

r
ele:ele ≫ V aele:ele, Vsym ≫ VB ≫ Vℓs ≫ Vhfs the quantum number are

|ni, ℓi,L,S,mL,mS ,mI⟩.

Vncl:ele splitting in n

coarse structure ↓
Vele:ele splitting in ℓ

↓
Vsym splitting in S ↘

↓ Vℓs splitting in ji
fine structure Vee splitting in L ↓

↓ Vsym, Vele:ele splitting in J

VLS splitting in J ↙
↓

hyperfine structure Vhfs splitting in F

↓
Zeeman effect VLS splitting in mF

11.4.4 Exercises

11.4.4.1 Ex: Filled electronic shells

Show at the example of hydrogen that completely filled electronic layer are isotropic.

11.4.4.2 Ex: Electronic excitation levels of alkaline

Explain why
a. state [Li] (2s)2S1/2 has lower energy than [H] (2s)2S1/2;

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_MultiElectron01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_MultiElectron02.pdf


410 CHAPTER 11. ATOMS WITH MANY ELECTRONS

b. state [Li] (2s)2S1/2 has lower energy than [Li] (2p)2PJ ;
c. state [Na] (4s)2S1/2 has lower energy than [Na] (3d)2DJ .

11.5 Further reading

P.W. Atkins and R.S. Friedman, (3rd ed. Oxford University (2001), Molecular Quan-
tum Mechanics [ISBN]

I.N. Levine, Allyn and Bacon, 7th ed. Pearson (1983), Quantum Chemistry [ISBN]

J.I. Steinfeld, The MIT Press, Cambridge (2005), Molecules and Radiation [ISBN]

B.H. Bransden, C.J. Joachain, John Wiley & Sons (1983), Physics of Atoms and
Molecules [ISBN]

p-table, Periodic Table [http]

http://isbnsearch.org/isbn/978-0-199-54142-3
http://isbnsearch.org/isbn/978-0-321-80345-0
http://isbnsearch.org/isbn/978-0-486-44152-8
http://isbnsearch.org/isbn/978-0-582-35692-4
https://ptable.com/
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Figure 11.8: Periodic table.
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Chapter 12

Molecular dimers

In systems of many particles (gases, fluids, or solids) interatomic interactions must
be considered. These interactions usually have electrostatic origins, but generally can
not be given in the form of closed expressions. For example, the collision of two atoms
i and j can occur in a multitude of channels, that is, interaction potentials V (ri−rj).
Interatomic forces do not only govern collisions, but can sustain molecular bound
states. This introduces new degrees of freedom in the systems of many particles
through possible excitations of vibration or rotation movements.
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Figure 12.1: (code) Example of an interatomic potential spaghetti: The lowest states of the

molecule 85Rb2.

In this course, we will not go beyond homo- or heteronuclear dimers, that is,
molecules consisting of two identical or different atoms.
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Figure 12.2: Approximations made in the molecular physics.

12.1 Molecular binding

12.1.1 Ionic and covalent binding

There are two fundamental ways of binding two atoms together, the ionic bond and
the covalent bond 1. The ionic bond is ruled by the quantities electroaffinity (EA),
electronegativity (EN), and ionization energy (IE):

• Ionization energy: This energy is needed for the release of an electron by a
neutral atom, e.g. Na + 5.1 eV→ Na+ + e−.

• Electroaffinity: This energy is released by the capture of an electron by a
neutral atom, e.g. Cl + e− → Cl− + 3.8 eV.

• Electronegativity: This quantity measures the stability of a valence orbital,
e.g. that of fluorine (3.98) is more stable than that of cesium (0.79), such that
fluorine holds its electrons tighter than cesium.

At short distances, the exchange of an electron between atoms can decrease energy.
The so-called ionic bond is then sustained by the Coulombian attraction between two
ions, and the binding energy can be estimated through electrostatic interaction.

Example 68 (Ionic binding in NaCl): For example, a sodium and a chlorine
atom gain energy by forming a molecule,

(12.1)

Na + 5.1 eV→ Na+ + e−

Cl + e− → Cl− + 3.8 eV

Na+ +Cl− → NaCl + 4.9 eV

−−−−−−−−−−−−−−−−−−−
Na + Cl→ NaCl + (−5.1 + 3.8 + 4.9) eV .

1We are not considering metallic bonds nor hydrogen bridge bonds, here.



12.1. MOLECULAR BINDING 415

The molecules are polar and, therefore, have a permanent electric dipole moment.
The bond has no preferential direction, since each atom is perfectly isotropic. There-
fore, this type is well suited for the construction of crystalline lattices.

Figure 12.3: Scheme for (a) ionic binding of NaCl and (b) covalent binding of H2.

To understand covalent bond, we consider the example H2
+ and estimate the in-

teraction energy for each distance R between the nuclei. In this case, in contrast to
atoms, the spherical symmetry is broken, and therefore the energy degeneracy with
respect to parity is abolished, that is, for wavefunctions ψ(−x) = ±ψ(x) the energies
vary differently with R. The even wavefunction, which has an increased probability of
the electron of being between the nuclei, is binding, which means that the interaction
potential exhibits a minimum at a certain distance. The odd wavefunction, which
disappears between the nuclei, is anti-binding, which means that the interaction po-
tential is repulsive at all distances. In fact, an electron located at the center between
two positive charges can overcome the Coulomb repulsion between the nuclei, whose
mutual distance is twice. Obviously, the energy can not fall below that of the fun-
damental state of He+, being approximately −4 × 13.6 eV. With two electrons, as
in the case of the neutral molecule H2, the anti-parallel orientation of the spins, ↑↓,
allows us to place the two electrons in the same orbital, while for parallel orientation,
↑↑, we expect anti-binding. Each electron without a partner in an orbital can form a
covalent bond, for example, phosphorus [P]=[Ne]3s23p↑↑↑ has three available orbitals
corresponding to different magnetic quantum numbers. The covalent bond is direc-
tional (sp1, sp2, or sp3 hybridization), which is essential for the molecular structure
such as in CH4. Do the Exc. 12.1.6.1.

12.1.2 Born-Oppenheimer approximation and the H2
+ molecule

The Born-Oppenheimer approximation in molecular physics consists in considering,
at first, the positions of the nuclei as being fixed in space. This allows us to study the
stationary states of the electrons subject to the potential created by the nuclei for a
given internuclear distance R. Varying R, the electronic energies (computed for a fixed
R) remain the same, because the electronic wavefunctions adjust instantaneously due
to their mass being much lower than that of the nuclei. The non-varying electronic
energies play the role of interaction potential energies between the nuclei [35].
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12.1.2.1 Separation of the center-of-mass

Let us consider two heavy masses, Ma,b = M separated by a distance R and inter-
acting through a potential Vnn(R). Furthermore, there is a light-weighted mass me

interacting with the other masses through Vne(r). The Hamiltonian is,

Ĥ =
−ℏ2
2M
∇2
a+
−ℏ2
2M
∇2
b+
−ℏ2
2me
∇2
e+Vnn(|Ra−Rb|)+Vne(|Ra−Re|)+Vne(|Rb−Re|) .

(12.2)
We transform to the center-of-mass system of the two heavy masses anchored at

Figure 12.4: System with two heavy and one light mass.

X ≡ MaRa+MbRb

M = 1
2 (Ra +Rb). The distance of the heavies is R ≡ Ra −Rb, and

the coordinate of the light mass counting from the center-of-mass is r = Ra− 1
2R−Re.

Introducing the reduced mass of the heavies Mr =
M
2 ,

[−ℏ2
2M
∇2
X +

−ℏ2
2Mr

∇2
R + Vnn(R) +

−ℏ2
2me
∇2
r + Vne(|r+ R

2 |) + Vne(|r− R
2 |)
]
Θ(X)Ψ(R,Re)

= EtotΘ(X)Ψ(R,Re) , (12.3)

Here, we made the ansatz for the total wavefunction Ψ = Θ(X)Ψ(R,Re), assuming
that the center-of-mass is only determined by the heavy masses,

−ℏ2
2M
∇2
XΘ(X) = EcmΘ(X) (12.4)

[−ℏ2
2Mr

∇2
R + Vnn(R) +

−ℏ2
2me
∇2
r + Vne(|r+ 1

2R|) + Vne(|r− 1
2R|)

]
Ψ(R,Re) = EΨ(R,Re) ,

where Etot = Ecm + E.

12.1.2.2 Adiabatic approximation

The Born-Oppenheimer approximation now consists in assuming that the movement
of the heavies is independent of the position of me, which allows us to separate the
corresponding wavefunction ϕ via the ansatz Ψ(R,Re) = ψ(R, r)ϕ(R). On the other
hand, the orbital ψ of the light mass me does not change much, when we vary the
distance of the heavies, ∇Rψ(R, r) ≃ 0. This is only valid, as long as the heavies are
inert on the time scale of the movement of me. Therefore, we can approximate the
second derivative,

∇2
R[ψ(R, r)ϕ(R)] = ϕ(R)∇2

Rψ(R, r) + 2[∇Rϕ(R)] · [∇Rψ(R, r)] + ψ(R, r)∇2
Rϕ(R)

≃ ψ(R, r)∇2
Rϕ(R) , (12.5)
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postulating that the first two terms are negligible compared to the third. We can
now separate the second equation (12.4) in two parts, the first being,

[−ℏ2
2me
∇2
r + Vne(|r+ 1

2R|) + Vne(|r− 1
2R|)

]
ψ(r,R) = ε(R)ψ(r,R) . (12.6)

We solve this equation for the electronic degree of freedom r by choosing a fixed
internuclear distance R, and we substitute in the second expression (12.4), which
gives,

[−ℏ2
2Mr

∇2
R + Vnn(R) + ε(R)

]
ϕ(R) = Eϕ(R) . (12.7)

Treating the interatomic distance R as a fixed parameter, the solution of Eq. (12.6)
provides the electronic orbitals and their energies ε(R). The Born-Oppenheimer po-
tential is composed of the electrostatic repulsive potential of the nuclei and the kinetic
energy of the electron, Vnn(R) + ε(R). In other words, the presence of the electrons
generates an additional interaction energy between the nuclei. By inserting this com-
plete interatomic potential into Eq. (12.7), we can determine its vibrational structure
ϕvib(R).

Fig. 12.5 shows an example of binary effective nuclear potentials, as a function of
the distance R between the two nuclei. Each curve corresponds to a different solution
of the electronic equation, that is, to a different electronic state. In many cases, such
nuclear potentials have a stable equilibrium region. The bound states located in these
regions are molecular bound states of two atoms.

Figure 12.5: Effective nuclear potentials for the interaction between two rubidium atoms
(Rb2).

In practice, the calculation of adiabatic Born-Oppenheimer potentials is difficult
and makes it the subject of sophisticated theories, such as the molecular orbital model
or the valence bond model 2. We study in Exc. 12.1.6.2 a generalization of the Born-
Oppenheimer approximation.

2Note that the Born-Oppenheimer approximation is no longer good in the presence of relativistic
or spin-orbit coupling effects.
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12.1.3 Linear combination of orbitals and the H2 molecule

In the following we will discuss the electronic structure of the simplest neutral molecule:
H2. For the low electron states of this molecule, the Born-Oppenheimer approxima-
tion is totally satisfactory, that is, we want to solve a Schrödinger type equation (12.6),
but with two electrons. We are, therefore, interested in the electronic Hamiltonian,

Ĥ = − ℏ2

2me
(∇2

1 +∇2
2) +

e2

4πε0

(
1
Rab
− 1

|r1−Ra| −
1

|r1−Rb| −
1

|r2−Ra| −
1

|r2−Rb| +
1
r12

)
,

(12.8)
where ’1’ and ’2’ denote the two electrons and ’a’ and ’b’ the nuclei.

This problem can not be solved analytically. The standard procedure begins with
choosing a suitable basis, i.e. a very compact basis which does not depend on the
configuration of the molecule. That is, we want the basis to be composed of functions
that do not depend on the distance between the two nuclei, Rab, to avoid calculations
for different bond lengths.

The most natural basis functions are the available atomic orbitals of the individual
hydrogen atoms. When the bond length is too large, the system approaches the limit
of two non-interacting hydrogen atoms. In this case, the electron wavefunction can
be approximated by the product of atomic orbitals (AO) of atom ’a’ and atom ’b’.
Therefore, the smallest basis that gives us a realistic picture of the fundamental state
of the H2 molecule must comprise two functions: |1sa⟩ and |1sb⟩. For finite bond
lengths, it is advisable to allow the AOs to polarize and deform in response to the
presence of the other electron (and the other nucleus). However, the |1sa⟩ and |1sb⟩
functions do not have to be exactly the hydrogenic eigenfunctions. It is sufficient
to require them to be similar to the 1s orbitals and be centered on them. Since the
actual shape of the orbitals is not yet fixed, we will give all the expressions in abstract
matrix form, leaving the spatial integration for once the shape of the orbitals has been
specified. This is the method of linear combination of atomic orbitals (LCAO).

12.1.4 Molecular orbital theory

We are now in a position to discuss the basic principles of the molecular orbital method
(MO), which is the basis of the theory of the electronic structure of real molecules.
The first step in any MO approach is to separate the Hamiltonian into two parts,
one part describing the electrons ’1’ and ’2’ separately and one part counting for the
interaction between them:

Ĥ = ĥ(1) + ĥ(2) + V̂12 +
e2

4πε0

1

Rab
with (12.9)

ĥ(i) = −ℏ2∇i
2me

− e2

4πε0

(
1

|ri −Ra|
+

1

|ri −Rb|

)
and V̂12 =

e2

4πε0

1

r12
,

where i = 1, 2. We must remember that, within the BO approximation, Rab is just
a number. We choose the Hamiltonian h(i) as the one-electron part of the complete
Hamiltonian in matrix representation on the minimum basis:

(
⟨1sa|ĥ|1sa⟩ ⟨1sa|ĥ|1sb⟩
⟨1sb|ĥ|1sa⟩ ⟨1sb|ĥ|1sb⟩

)
≡
(
ϵ hab
hab ϵ

)
, (12.10)
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defining the average one-electron energy ϵ ≡ ⟨1sa|ĥ|1sa⟩ and the non-diagonal cou-

pling (often called resonance integral) hab ≡ ⟨1sa|ĥ|1sb⟩ = ⟨1sa|ĥ|1sb⟩. We can im-
mediately diagonalize this matrix, the eigenvalues and the eigenvalues being:

ϵ± = ϵ± hab and |ϕ±⟩ ∝ 1
2 (|1sa⟩ ± |1sb⟩) . (12.11)

The one-electron effective Hamiltonian eigenstates are called molecular orbital (MO).
They are one-electron wavefunctions delocalized over the spatial regions of the molecule.

ha hb

Figure 12.6: Illustration of the atomic orbitals.

We need to first normalize the MOs, which is more complicated than it might
seem, because the AOs are not orthogonal. For example, when the atoms approach
each other, their AOs may have the shape shown in Fig. 12.6. However, by defining
the overlap integral by S ≡ ⟨1sa|1sb⟩, we can normalize as follows:

|ϕ±⟩ = 1√
2(1±S)

(|1sa⟩ ± |1sb⟩) , (12.12)

since,

⟨ϕ±|ϕ±⟩ = 1
2(1±S) (⟨1sa|1sa⟩ ± ⟨1sa|1sb⟩ ± ⟨1sb|1sa⟩+ ⟨1sb|1sb⟩) = 1 . (12.13)

These eigenfunctions merely show the symmetry of the molecule. The two hydrogen
atoms are equivalent and, therefore, the eigenorbital must give equal weight to each
1s orbital. Thus, our choice of the one-electron Hamiltonian does not really mat-
ter that much, because every one-electron Hamiltonian exhibiting the symmetry of
the molecule would give the same molecular orbitals. For historical reasons, |ϕ+⟩ is
denoted by |σ⟩ and |ϕ−⟩ by |σ∗⟩.

The second step in MO theory consists of constructing the determinant from the
MOs corresponding to the wanted states. For illustration we will look at the lowest
singlet state constructed from molecular orbitals. We note that hab < 0, such that
|σ⟩ has an energy inferior to |σ∗⟩. Neglecting the interaction, the lowest singlet state,

|ΦMO⟩ = |σ⟩|σ∗⟩ , (12.14)

is the molecular ground state of H2. To estimate the validity of the approximation,

we calculate the expectation value of the energy,
∣∣∣⟨σ|⟨σ∗|Ĥ|σ⟩|σ∗⟩

∣∣∣, decomposing the

wavefunction into spin and spatial parts, noting that the spin part is normalized:
∣∣∣⟨σ|⟨σ∗|Ĥ|σ⟩|σ∗⟩

∣∣∣ = ⟨σ(1)|⟨σ(2)|Ĥ|σ(1)⟩|σ(2)⟩⟨Φspin|Φspin⟩ (12.15)

= ⟨σ(1)|⟨σ(2)|Ĥ|σ(1)⟩|σ(2)⟩ .
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and this is the MO ground state for H2.  How good an approximation 
is it?  Well, we can compute the expectation value of the energy, 

σσσσ
el

Ĥ  as follows.  First, we decompose the wavefunction 

into spatial and spin parts and note that the spin part is normalized: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )21ˆ21

21ˆ21ˆ

σσσσ

σσσσσσσσ

el

spinspinelel

H

HH

=

ΦΦ=
 

Then, we note that ( ) ( ) ABel RVhhH /1ˆ2ˆ1ˆˆ
12 +++=  and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) σεσσ

σσσσσσσσ

≡=

=

11ˆ1

2211ˆ1211ˆ21

h

hh
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) σεσσ

σσσσσσσσ

≡=

=

22ˆ2

1122ˆ2212ˆ21

h

hh
 

( ) ( ) ( ) ( ) σσσσσσ JV ≡21ˆ21 12  

Taken together, these facts allow us to write: 

AB

AB

MOMOMOMOMOMOMOMO

R
J

R
Vhhh

1
2

1ˆˆˆˆ
12211

++=

+ΨΨ+ΨΨ+ΨΨ=ΨΨ

σσσε
 

Each of the first two terms is energy of a single electron (either 1 or 2) 

in the field produced by the nuclei ( ĥ ) while the third is the average 
repulsion of the two electrons. Note that the second and third terms 
are both positive, so binding has to arise from the one-electron piece. 
This is the MO energy for the ground state of H2.  For a reasonable 
choice of the 1s-like basis 
functions – it turns out to be 
more convenient to fit the 
exponential decay of the 
hydrogenic orbitals to a sum 
of Gaussians- we can use a 
computer to compute the 
unknowns above ( σε  and σσJ ) 

and plot the total energy as a 
function of RAB, we get the 
result pictured at right.  The 
exact adiabatic energy 

Figure 12.7: Total energy as a function of interatomic distance.

Hence, with (12.10) we get,

⟨σ(1)|⟨σ(2)|ĥ(2)|σ(1)⟩|σ(2)⟩ = ⟨σ(1)|σ(1)⟩⟨σ(2)|h(2)|σ(2)⟩ = ⟨σ(2)|h(2)|σ(2)⟩ ≡ ϵσ
⟨σ(1)|⟨σ(2)|ĥ(1)|σ(1)⟩|σ(2)⟩ = ⟨σ(1)|h(1)|σ(1)⟩⟨σ(2)|σ(2)⟩ = ⟨σ(1)|h(1)|σ(1)⟩ ≡ ϵσ
⟨σ(1)|⟨σ(2)|V̂12|σ(1)⟩|σ(2)⟩ ≡ Jσσ . (12.16)

Putting these facts together, we can write,

⟨ΦMO|Ĥ|ΦMO⟩ = ⟨ΦMO|ĥ1|ΦMO⟩+ ⟨ΦMO|ĥ2|ΦMO⟩+ ⟨ΦMO|V̂12|ΦMO⟩+
e2

4πε0Rab

= 2ϵσ + Jσσ +
e2

4πε0Rab
. (12.17)

Each of the first two terms represents the energy of a single electron (either 1 or 2)

in the field produced by both the nuclei (ĥ), while the third is the average repulsion
between the two electrons. Note that the first and second term are both positive,
such that the bond must come from the one-electron part. This is the MO energy
for the ground state of the H2. We can try a more reasonable ansatz for the 1s-
type basis functions 3 by determining the unknown quantities from above (ϵσ and
Jσσ) numerically and plot the total energy as a function of Rab (blue dotted curve
in Fig. 12.7). The exact adiabatic energy function determined from experimental
data (solid black curve) agrees well at low energies. Summarizing the results with
some key numbers, we note that MO theory predicts a bond distance of 0.072 nm
in reasonable agreement with the exact value of 0.074 nm. We can also compare the

3It turns out that it is more convenient to adjust the exponential decomposition of the hydrogenic
orbitals to a sum of Gaussians.
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binding energies,

De = EH2(Requil)− 2EH . (12.18)

MOs theory predicts a binding energy of 5.0 eV compared to the experimental value
of 4.75 eV. In view of the simplicity of the wavefunction and the absence of adjustable
parameters the agreement is not so bad. Unfortunately, far away from the equilibrium
distance, we have an unpleasant surprise: the molecule does not dissociate into two
hydrogen atoms!

1s

yb

1s

1s

|y|

1s s1s

s1s
*

ya

2

y

ybya y

|y|2

H H H2

E

Figure 12.8: Illustration of MO theory for a dimer of two equal atoms, each one with a
valence electron in the atomic 1s orbital: When the atoms approach, the atomic orbitals
form new molecular binding and anti-biding orbitals.

To get an idea of what is happening near dissociation, we expand the fundamental
MO state in terms of AO configurations:

|ΦMO⟩ ∝ |σ(1)⟩|σ(2)⟩|Φspin⟩ (12.19)

= 1
2(1+S) (|1sa(1)⟩+ |1sb(1)⟩)(|1sa(2)⟩+ |1sb(2)⟩)|Φspin⟩

= 1
2(1+S) (|1sa(1)⟩|1sa(2)⟩+ |1sa(1)⟩|1sb(2)⟩+ |1sb(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sb(2)⟩)|Φspin⟩ .

The two terms in the middle of the last line, called covalent configurations, are exactly
what we expect near dissociation: one electron in each hydrogen atom. However, the
first and last term (which are called ionic configurations) correspond to having two
electrons in one atom and none in the other, which gives us H+ and H− at dissoci-
ation! Since the weight of these terms is fixed, it is obvious that we got the wrong
wavefunction (and therefore the wrong energy) when dissociating the molecule. Near
the equilibrium point, the ionic terms contribute significantly to the true wavefunc-
tion, such that the MO theory is good at this point. But it is always terrible at
dissociation.
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12.1.5 Valence binding

An alternative to MO theory represents the valence bond theory (VB). Here, we use
significantly more physical intuition and discard the ionic configurations from the MO
wavefunction. Thus, the VB ground state wavefunction is:

|Ψ⟩ ∝ |1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩√
2

| ↑ (1)⟩| ↓ (2)⟩+ | ↓ (1)⟩| ↑ (2)⟩√
2

≡ |Ψspace⟩|Ψspin⟩ . (12.20)

VB theory assumes that this wavefunction is a good approximation to the true
wavefunction at all binding distances and not only at large distances Rab. To verify
this approximation, we can calculate the average energy for this VB state. First, we
normalize the VB wavefunction,

⟨Ψ|Ψ⟩ = ⟨Ψspace|⟨Ψspin|Ψspace⟩|Ψspin⟩ = ⟨Ψspace|Ψspace⟩ (12.21)

= 1
2 (⟨1sa(1)|⟨1sb(2)|+ ⟨1sb(1)⟨1sa(2)|) (|1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩)

= 1
2 (⟨1sa(1)|1sb(2)|1sa(1)⟩|1sb(2)⟩+ ⟨1sa(1)|1sb(2)|1sb(1)⟩|1sa(2)⟩
+⟨1sb(1)|1sa(2)|1sa(1)⟩|1sb(2)⟩+ ⟨1sb(1)|1sa(2)|1sb(1)⟩|1sa(2)⟩)

= 1
2 (1 + S2 + S2 + 1) = 1 + S2 .

Therefore, the correctly normalized VB wavefunction is:

|ΨVB⟩ =
1

2
√
1 + S2

(|1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩) (| ↑ (1)⟩| ↓ (2)⟩ − | ↓ (1)⟩| ↑ (2)⟩) .
(12.22)

Now we want to calculate ⟨Ĥel⟩ for this state. We note that the spin part does not
matter, since the Hamiltonian is independent of spin:

⟨ΨVB|Ĥ|ΨVB⟩ = ⟨Ψspin|⟨Ψspace|Ĥ|Ψspace⟩|Ψspin⟩ (12.23)

= ⟨Ψspace|Ĥ|Ψspace⟩⟨Ψspin|Ψspin⟩ = ⟨Ψspace|Ĥ|Ψspace⟩ .

The only remnant of the spin state is the fact that the spatial wavefunction is
symmetric, which is only possible when the spin part is antisymmetric. Treating each
term in ⟨Ĥ⟩ separately,

⟨Ψ|ĥ1|Ψ⟩ = 1
2 (⟨1sa(1)|⟨1sb(2)|+ ⟨1sb(1)|1sa(2)|) ĥ1 (|1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩)

= 1
2

(
⟨1sa(1)|1sb(2)|ĥ1|1sa(1)⟩|1sb(2)⟩+ ⟨1sa(1)|1sb(2)|ĥ1|1sb(1)⟩|1sa(2)⟩

+⟨1sb(1)|1sa(2)|ĥ1|1sa(1)⟩|1sb(2)⟩+ ⟨1sb(1)|1sa(2)|ĥ1|1sb(1)⟩|1sa(2)⟩
)

= 1
2 (ϵ+ Shab + ϵ+ Shab) , (12.24)

or,

⟨ΨVB|ĥ1|ΨVB⟩ =
ϵ+ Shab
1 + S2

. (12.25)
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Since the two electrons are identical, the elements of the ĥ2 are the same as those of
ĥ1. The only remaining term is the average value of the interaction:

⟨Ψ|V̂12|Ψ⟩ = 1
2 (⟨1sa(1)|⟨1sb(2)|+ ⟨1sb(1)|1sa(2)|) V̂12 (|1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩)

(12.26)

= 1
2

(
⟨1sa(1)|1sb(2)|V̂12|1sa(1)⟩|1sb(2)⟩+ ⟨1sa(1)|1sb(2)|V̂12|1sb(1)⟩|1sa(2)⟩

+ ⟨1sb(1)|1sa(2)|V̂12|1sa(1)⟩|1sb(2)⟩+ ⟨1sb(1)|1sa(2)|V̂12|1sb(1)⟩|1sa(2)⟩
)
.

The second and third terms are the same. They are called exchange integrals, because
the ’bra’ orbitals have switched order as compared to the ’kets’:

K = ⟨1sa(1)|1sb(2)|V̂12|1sb(1)⟩|1sa(2)⟩ = ⟨1sb(1)|1sa(2)|V̂12|1sa(1)⟩|1sb(2)⟩ .
(12.27)

The first and forth terms are also the same. They are called Coulomb integrals,
because they seem to be due to the Coulomb interaction between two charge densities:

J = ⟨1sb(1)|1sa(2)|V̂12|1sa(1)⟩|1sb(2)⟩ = ⟨1sa(1)|1sb(2)|V̂12|1sb(1)⟩|1sa(2)⟩ . (12.28)

Therefore, we have the result,

⟨ΨVB|V̂12|ΨVB⟩ =
J +K

1 + S2
. (12.29)

Adding all terms, we get:

⟨ΨVB|Ĥ|ΨVB⟩ = ⟨ΨVB|ĥ1|ΨVB⟩+ ⟨ΨVB|ĥ2|ΨVB⟩+ ⟨ΨVB|V̂12|ΨVB⟩+
1

Rab

= 2
ϵ+ Shab
1 + S2

+
J +K

1 + S2
+

1

Rab
. (12.30)

The Coulomb and exchange terms are positive. Nuclear repulsion is clearly positive.
Thus, the only terms that lead to binding in this picture are the average energy of
an electron ϵ and the resonance integral hab. If the first term is dominant, the bond
is due to electronic delocalization, since an electron located near one of the atoms
would only contribute the atomic value to ϵ, which does not imply a bound state. If
hab is large, the bond involves some resonance character, which can be related to the
familiar concept of resonance between different Lewis point structures.

A numerical evaluation of all integrals gives the potential curve presented in
Fig. 12.7 for VB theory. As expected, this simple VB wavefunction gives the cor-
rect dissociation threshold, where MO theory fails. In addition, the accuracy of the
simple VB result is surprisingly good even near the equilibrium distance: The VB
predicts a bond distance of 0.071 nm (compared to the correct value of 0.074 nm)
and De = 5.2 eV (compared to 4.75 eV). Thus, the VB wavefunction also gives a
good agreement without adjustable parameters. But more importantly, it indicates a
way of improving the wavefunction whenever we encounter an obvious error: in this
case, we saw that the description of the dissociation was weak, and we constructed a
VB ansatz curing the problem. This approach to VB is often generalized as follows
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when dealing with polyatomic molecules. We write the wavefunction as a product of
a spatial part and a spin:

|Ψ⟩ = |Ψspace⟩|Ψspin⟩ . (12.31)

The main assumption in VB theory is that the spatial part can be well represented
by a product of atomic-like functions. For example, for water, we would immediately
write a spatial part as:

|Ψspace⟩ ≃ |1sHa⟩|1sHb
⟩|1sO⟩|1sO⟩|2sO⟩|2sO⟩|2pxO⟩|2pxO⟩|2pyO⟩|2pyO⟩ . (12.32)

However, there are two things wrong with this wavefunction. First, we know that
atomic orbitals hybridize in a molecule. Therefore, we need to make appropriate
linear combinations of AOs (in this case sp3 hybrids) to obtain the hybridized AOs.
In this case, the four sp3 hybrids can be written symbolically as:

|sp3⟩ = cs,i|2s⟩+ cx,i|2px⟩+ cy,i|2py⟩+ cz,i|2pz⟩ . (12.33)

and therefore, a more appropriate spatial configuration is:

|Ψspace⟩ ≃ |1sHa⟩|1sHb
⟩|1sO⟩|1sO⟩|sp31O⟩|sp31O⟩|sp32O⟩|sp32O⟩|sp33O⟩|sp34O⟩ . (12.34)

The other problem with this state is that it lacks the adequate symmetry to describe
fermions; the general state must be antisymmetric. In the case of two electrons this
concept is easy to apply - singlets have symmetric space parts and triplets antisym-
metric ones. However, in the case of many electrons, the rules are not so simple;
in fact, the time of numerical computation grows exponentially with the number of
electrons.

Formally, we will leave the derivation at this point to defining an operator A which
’antisymmetrizes’ the wavefunction. In this case,

|Ψspace⟩ ≃ A
[
|1sHa

⟩|1sHb
⟩|1sO⟩|1sO⟩|sp31O⟩|sp31O⟩|sp32O⟩|sp32O⟩|sp33O⟩|sp34O⟩

]
.

(12.35)
In general, the results of VB theory are very accurate for small systems, where it can
be applied. The predicted bond lengths are rather short, and the binding energies
tend to be too small, but the results are nevertheless qualitatively excellent. In ad-
dition, the correct hybridized atomic orbitals fall directly off the calculation, giving a
good qualitative insight. Also, note that the atomic configurations should not change
(or very little) when the geometry of the molecule changes (since the orbitals depend
on the atom and not on the molecular structure). Therefore, these VB wavefunctions
have a strong connection to the diabatic states discussed above. However, the ex-
ponential amount of time that one must invest to perform these calculations makes
them impractical for most molecules of interest.

12.1.6 Exercises

12.1.6.1 Ex: Classical model of the covalent binding

Consider the molecule H+
2 with the two nuclei separated by 1 nm and an electron

located in the middle between the nuclei. Calculate the electrostatic force acting on
the nuclei.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_MolecularBond01.pdf
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12.1.6.2 Ex: Beyond the Born-Oppenheimer approximation for molecules

For molecules, the Born-Oppenheimer approximation may fail in some situations.
Therefore, it is common to use another approach known as Born-Huang. To illustrate
this approach, we consider a diatomic molecule in the laboratory frame.
a. Write down the many-body Hamiltonian of the molecule in atomic units.
b. If we change the coordinate system to the position of the center-of-mass of the
nuclei of the molecule, we eliminate the dependency on the global translation of the
molecule. The Hamiltonian is now given by,

− ∇
2
R

2µAB
−
∑

i,j

1

2M
∇i∇j −

∑

i

∇2
i

2
+ V

where that the Coulombian interactions are included in the fifth term. Write down
the time-independent Schrödinger equation for this molecule.
c. The Born-Huang approximation consists in assuming that the total wavefunction
can be expanded on a basis of wavefunctions of the nuclei and the electrons, that is,

Ψ(r,R) =
∑

k

|χk(R)⟩|ϕk(r,R)⟩ ,

where χ and ϕ are the wavefunctions of the nuclei and the electrons, respectively.
For the Schrödinger equation calculated in the previous item, use the Born-Huang
approximation and obtain the set of coupled equations

{∑

k

[
− 1

2µAB

(
∇2
R + ⟨ϕk|∇2

R|ϕk⟩+ 2⟨ϕk|∇R|ϕk⟩.∇R|
)]
−

∑

k


 1

2M


∑

i,j

⟨ϕi|∇i.∇j |ϕk⟩


+

1

2

∑

i

⟨ϕi|∇2
i |ϕk⟩ − ⟨ϕi|V |ϕk⟩|





 |χk⟩ = E

∑

k

|χk⟩

which includes, although approximately, the kinetic energy of nuclei and electrons.
Help: Use ∇2(αβ) = α∇2β + β∇2α+ 2∇α · ∇β.
d. Make a brief comparison between the Born-Huang approximation (and the coupled
equations obtained in the previous equation) and the Born-Oppenheimer approxima-
tion.

12.1.6.3 Ex: Classical model of the covalent bond

Calculate the energies of the ground state and the last bound state of the potential
Vn = − C

rn for any n.

12.1.6.4 Ex: Homonuclear collision

We consider the example of homonuclear collisions of 85Rb atoms. For ground state
collisions in the channel 3Σ+, |f = 2,mf = −2⟩, the long-range part of the potential is
fixed by C6 = 4550, C8 = 550600, and C10 = 7.67×107 [178, 700], where Rm = 9.8aB ,
Dm = 0.13, and Bm = 1/2.5aB . The potentials can be merged at a given distance
Rt = 27.6aB . Prepare a plot of potential.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_MolecularBond02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_MolecularBonds01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_ColisaoHomonuclear1.pdf
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12.2 Rovibrational structure of molecular potentials

The separation of the motion of the nuclei from the electronic dynamics made in the
Born-Oppenheimer approximation led to equations (12.6) and (12.7). In a preceding
section we analyzed in detail the equation (12.6) with the objective of understanding
the phenomenon of molecular binding.

In the following section we will analyze the equation (12.7), which determines the
motion of the nuclei. By separating the radii and angular parts of the motion, we will
discover vibrational and rotational states.

12.2.1 The radial and angular equations

The interaction between two identical atoms is described by the following Hamilto-
nian, where Mr = (M−1

a +M−1
b )−1 =M/2 is the reduced mass of the nuclei,

Ĥ =
P2

2Mr
+ Vmol(R) with Vmol(R) =

e2

4πϵ0R
+ VBO(R) . (12.36)

The interaction potential Vmol is composed of a repulsive internuclear Coulomb force
and a Born-Oppenheimer adiabatic potential due to the interaction of the electrons
with each other and with the two nuclei 4. The kinetic energy is that of the relative
motion (the center-of-mass motion has already been separated in Sec. 12.1.2, such that
this inertial system is free of translational kinetic energy). In spherical coordinates,

P2

2Mr
ϕ(R) = − ℏ2

2Mr

[
1

R

∂2

∂R2
[Rϕ(R)] +

1

R2

L̂2

ℏ2
ϕ(R)

]
. (12.37)

The wavefunction can be separated into an angular part and a radial part, ϕ(R) =
Rv(R)Yℓm(θ, ϕ). The angular part, which was discussed in Sec. 3.1.3, describes a
rigid rotation of the homonuclear atoms around their center-of-mass with the rotation
energy,

Vℓ(R) =
L2

2MrR2
=

ℏ2ℓ(ℓ+ 1)

2MrR2
, (12.38)

also called centrifugal barrier. The radial part is ruled by,

[
− ℏ2

2Mr

∂2

∂R2
+ Vℓ(R) + VBO(R)

]
uv(R) = Euv(R) , (12.39)

where uv(R) = rRv(R) is the radial wavefunction of nuclear motion. The interatomic
potential causes a motion of vibration. The vibrational states of the adiabatic poten-
tial are quantized and characterized by a well-defined vibrational energy. We will
discuss the ro-vibrational structure in the following sections.

4We note here that at great distances other forces called van der Waals forces dominate the
interatomic interaction. These will be discussed in Sec. 12.3.
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12.2.1.1 Rotational and vibrational bands

Molecules have much more degrees of freedom than atoms. For example, the atoms of
a molecular dimer may vibrate inside the mutual interaction potential. In the center-
of-mass system we can imagine these vibrations as oscillations of an atom with reduced
mass and quantized energy. The molecule can rotate and have a momentum of inertia.
These degrees of freedom contribute energies to the molecule’s Hamiltonian, either
directly or through interactions with other degrees of freedom. Therefore, molecular
spectra are characterized by a much greater complexity.

Figure 12.9: Molecular energy scales.

However, the energy regimes of the strongest excitations are quite different. A
typical range for binding energies (depth of the interatomic potential) is ∆Ep ≃
20..200 THz (0.1..1 eV) 5. Electronic excitations occur in the regime ∆Ee ≃ 100..1000 THz
(1..10 eV). The spacing between vibrational excitations typically is Ev+1−Ev ≃ THz
(0.01 eV). Finally, the rotational excitations are on the scale of Eℓ+1−Eℓ ≃ 100 MHz
(10−6 eV). Since at room temperature (a gas of molecules in thermal equilibrium
at T = 300 K) the energy is on a scale of 2.5 × 10−2 eV, the degree of freedom of
the electronic excitation is frozen, while a wide distribution of vibrational and rota-
tional states can be excited (e.g. by intermolecular collisions). The large difference of
scales facilitates their separation and, therefore, the identification of the origin of the
observed states in experimental measurements.

12.2.2 Vibrational molecular states

The potential energy of a molecule grows when the nuclei are displaced from their
equilibrium positions. When the displacement, x ≡ R − Re is small, we can expand
the potential energy,

Vmol(x) = Vmol(0) +
dVmol(0)

dx
x+

1

2

d2Vmol(0)

dx2
x2 + .. . (12.40)

5Electronically excited states (that is, one of the valence electrons moves to an excited orbital)
are more weakly bound, because the electrons are not in the most binding orbital.
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The equilibrium energy is not of interest here, and the first derivative disappears in
equilibrium. Therefore,

Vmol(x) ≃ 1
2k

2x2 with k ≡ d2Vmol(0)

dx2
. (12.41)

Using the effective mass we can write the Hamiltonian,

Ĥmol = −
ℏ2

2m1

d2

dx21
− ℏ2

2m2

d2

dx22
+

1

2
kx2 = − ℏ2

2Mr

d2

dx2
+

1

2
kx2 . (12.42)

The energy spectrum of this degree of freedom, therefore, is

Ev = ℏω(v + 1
2 ) . (12.43)

with ω =
√
k/Mr. That is, at the bottom of deep potentials, the energy levels are

equidistant.

0 2 4 6

R/Re

-10

-5

0

E

Figure 12.10: (code) Many potentials are approximately harmonic at the center such as,

for instance, the Morse potential (blue). The red curve shows the approximate harmonic

potential.

12.2.2.1 Anharmonic vibrations in the Morse potential

For larger displacements we can no longer despise the anharmonic terms in the Taylor
expansion. A better approximation is the Morse potential. This potential (blue in
Fig. 12.10), unlike the harmonic potential (red in Fig. 12.10), is characterized by an
asymptote for large interatomic distances. Therefore, it is often used as an analytical
approximation to molecular potentials,

VMorse = De(1− e−a(R−Re))2 , (12.44)

where r is the interatomic distance, re the equilibrium bond distance, De the depth
of the potential measuring from the dissociation limit, and a a parameter controlling
the range of the potential. At the bottom of the potential we can make the harmonic

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_Morse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_Morse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_Morse.m
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approximation, VMorse(R) ≃ k
2 (R−Re)2 with k = 2a2De. Rewriting the potential in

the form,
Ṽ (R) ≡ V (R)−De = De(e

−2a(R−Re) − 2e−a(R−Re)) , (12.45)

we see, that it is a combination of a short-range repulsive potential and long-range
attractive potential (similar to the Lennard-Jones’s potential).

The calculation of the energy spectrum of this potential is more difficult [190],

Ev = ℏω(v + 1/2)− ℏωχe(v + 1/2)2 −De, (12.46)

with ωχe ≡ ℏa2
2Mr

and ω ≡
√
k/Mr, but the availability of an analytical expression

is interesting for the calibration of numerical methods. The second term of the ex-
pression (12.46), which is proportional to the anharmonicity constant χe, becomes
dominant at high excitations. The potential is finite with a dissociation energy of,

D0 = De − E0 . (12.47)

The number of vibrational states is limited v = 0, 1, .., vmax. With E < 0, we find,

vmax <
1
xe
− 1

2 . (12.48)

Example 69 (Morse potential): To solve the Schrödinger equation(
− ℏ2

2m

∂2

∂R2
+ V (R)

)
Ψ(v) = EvΨ(v) ,

it is convenient to introduce new variables,

x ≡ aR , λ ≡
√
2mDe
aℏ

, εv ≡ 2m

a2ℏ2
Ev ,

such that,(
− ∂2

∂x2
+ V (x)

)
Ψn(x) = εnΨn(x) with V (x) = λ2

(
e−2(x−xe) − 2e−(x−xe)

)
.

The eigenvalues and eigenfunctions are [190]:

εn = 1− 1
λ2

(
λ− n− 1

2

)2
= 2

λ
(n+ 1

2
)2− 1

λ2 (n+
1
2
)2 and Ψn(z) = Nnz

λ−n− 1
2 e−

1
2
zL(2λ−2n−1)

n (z) ,

where z = 2λe−(x−xe) and Nn =
[
n!(2λ−2n−1)

Γ(2λ−n)

] 1
2
and,

L(α)
n (z) =

z−αez

n!

dn

dzn
(
zn+αe−z

)
=

Γ(α+ n+ 1)/Γ(α+ 1)

Γ(n+ 1)
1F1(−n, α+ 1, z) ,

is the generalized Laguerre polynomial. The matrix elements of the spatial
operator x̂ are (assuming m > n and N = λ− 1

2
),

⟨Ψm|x|Ψn⟩ = 2(−1)m−n+1

(m− n)(2N − n−m)

√
(N − n)(N −m)Γ(2N −m+ 1)m!

Γ(2N − n+ 1)n!
.

In the original variables the eigenenergies are:

Ev = ℏω(v + 1/2)− [ℏω(v + 1/2)]2

4De
,
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where v is the vibrational quantum number and ω = a
√

2De
m

. The energy

difference between adjacent levels decreases with v,

Ev+1 − Ev = ℏω − (ℏω)2 v + 1

2De
.

This fact describes well the vibrational structure of non-rotating molecules.
However, the equation fails above some value of v > vmax, where Evmax+1−Evmax

is zero or negative,

vmax =
2De − ℏω

ℏω
.

This failure is due to the finite number vmax of bound states in the Morse

potential. For energies above vmax all energies are possible, and the equation

for Ev is no longer valid.

12.2.2.2 Vibrational selection rules

Electromagnetic fields of the type E1, e.g., black body radiation, can induce transi-
tions between vibrational states and redistribute their populations such as to establish
a thermal equilibrium. However, as the stronger transitions are induced by dipole mi-
grations of charges, we need to analyze in more detail the selection rules imposed on
the dipole moment ⟨f |d|i⟩.

The states which are relevant for vibrational transitions are specified by |ϵ, v⟩,
where ϵ denotes the electronic state of the molecule, since the vibrational spectrum
depends on the electronic structure. The Born-Oppenheimer approximation allows us
to consider the slow vibrations separately from the dynamics of the electrons. The
time scale for electronic transitions is 1/∆Ee = 10−16 s-1, and for a nuclear vibration
it is 1/∆Ev = 10−13 s-1. For each internuclear distance the electrons form an adapted
stationary state, minimizing their energy for that distance. This is equivalent to
the formation of an adiabatic interaction potential between the nuclei on which the
nuclei can vibrate. To find out which vibrational transitions are possible, we need to
calculate the matrix,

⟨ϵ′, v′|d̂|ϵ, v⟩ = ⟨v′|d̂ϵ|v⟩ . (12.49)

The dipole moment, dϵ = ⟨ϵ|d̂|ϵ⟩, of the molecule depends on the distance of the
nuclei, since the electronic orbitals |ϵ⟩ depend on distance. Therefore, we can expand,

d̂ = d̂0 +
dd̂0

dx
x̂+

1

2

d2d̂0

dx2
x̂2 + .. . (12.50)

Therefore, the transition matrix is,

⟨ϵ′, v′|d̂|ϵ, v⟩ = d̂0δv,v′ +
dd̂0

dx
⟨v′|x̂|v⟩+ d2d̂0

dx2
⟨v′|x̂2|v⟩+ .. . (12.51)

The first term disappears, that is, transitions can only occur, when the dipole moment
varies with the distance. Therefore, homonuclear dimers do not undergo vibrational
transitions.

For heteronuclear molecules with electronic charges that do not depend on the
interatomic distance, the dipole moment varies linearly with small displacements. In
this case, we only need the second term of the expansion. Within the harmonic
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approximation, the position operator can be expressed by, x̂ ∝ â + â†. Therefore,
only transitions ∆v = ±1 are possible. However, due to anharmonicities, higher
order terms, x̂n ∝ (â+ â†)n become influential, and transitions with ∆v = ±2,±3, ..
become possible.

Thus, in anharmonic potentials, the vibrational selection rules are replaced by the
concept the overlapping wavefunctions called Franck-Condon factor.

Raman spectroscopy is a very useful tool to analyze ro-vibrational spectra. In this
method, inelastic Raman scattering gives rise to Stokes and anti-Stokes lines in the
spectrum at frequencies corresponding to ∆v = ±1,±2. The ground state spectrum
is asymmetric, because of the absence of the lower state. In homonuclear dimers, the
nuclear spins have a major impact on the Raman spectra. Parity considerations show
that there can only be odd or even lines.

12.2.3 The Franck-Condon principle

The intensity of molecular transitions are, qualitatively, described by the Franck-
Condon principle, whose classical formulation goes as follows:

The jump of an electron in a molecular transition occurs during a very
small time compared to the time scale of the nuclear motion, so that imme-
diately after the jump, the nuclei remain practically at the same positions
and at the same velocities as before the jump [390].

For this reason, the transitions are drawn vertically in the scheme of potentials shown
in Fig. 12.11(right). To yield considerable rates, transitions must occur when the
nuclear velocities in the two coupled states are similar, which is the case at the
classical turning points. At these points, the wavefunctions are maximal 6.

With this Franck-Condon principle, we can determine which are the strongest
transitions between vibrational levels of a molecule, as represented in Fig. 12.11(left).
In particular, we are interested in transitions between vibrational levels of different
electronic states.

The exact transition probabilities are calculated via the square module of the
transition dipole moment (TDM). The TDM is an out-of-diagonal matrix element of
the electric dipole operator M, given by:

MAB = ⟨Ψ(A)|M̂|Ψ(B)⟩ , (12.52)

being |Ψ(A)⟩ and |Ψ(B)⟩ two molecular states.
Still within the Born-Oppenheimer approximation, we can split the dipole moment

operator into two terms, a nuclear and an electronic term, according to:

M̂(r,R) = M̂e(r,R) + M̂n(R) . (12.53)

Thus, the TDM is:

MAB =

∫
Ψ(A)∗M̂Ψ(B)dRdr (12.54)

=

∫
M̂eψ

(A)∗
e ψ(B)

e ψ(A)∗
n ψ(B)

n dRdr +

∫
M̂nψ

(A)∗
n ψ(B)

n

∫
ψ(A)∗
e ψ(B)

e drdR .

6Note that the presence of a hyperfine structure can modify the selection rules.
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Figure 12.11: (Left, code) Molecular wavefunctions in a potential for three different
vibrational states. (Right) Pictorial representation of the classical statement of the
Franck-Condon principle. Transition (a) has high intensity (or probability), because
here both, the position and the relative velocity of the nuclei do not change. Transi-
tions (b) and (c) are unlikely, because they necessitate either a change in the position
of the nuclei (case b) or in velocity (case c).

Since the electronic wavefunctions of different states are orthogonal, it follows that∫
ψ
(A)∗
e ψ

(B)
e dr = 0, canceling the second term.

Looking at the first term, we note that the electronic dipole moment M̂e(r,R)
also depends on the nuclear coordinates as a parameter. The quantum formulation
of the Franck-Condon principle consists in stating that, in a molecular state, the
electronic dipole moment varies little with the nuclear coordinates. Thus, along with
the condition of the Born-Oppenheimer approximation, we can split the first TDM
term into electronic and nuclear integrals:

MAB =

∫
M̂eψ

(A)∗
e ψ(B)

e dr

∫
ψ(A)∗
n ψ(B)

n dR . (12.55)

Thus, we have a comparative expression for the transition probability given by:

PAB ∝ |MAB |2 =

∣∣∣∣
∫

M̂eψ
(A)∗
e ψ(B)

e dr

∣∣∣∣
2 ∣∣∣∣
∫
ψ(A)∗
n ψ(B)

n dR

∣∣∣∣
2

. (12.56)

The second factor in equation (12.56) is called Franck-Condon factor. When we
study the transitions between two electronic states, this factor compares the intensities
of the transitions between distinct pairs of vibrational levels.

Example 70 (Ultracold molecules): Ultracold molecules have been proposed

for a variety of applications, such as ultra high resolution spectroscopy [564],

test of fundamental laws of physics [217, 736], quantum computation [216] and

others[141]. Most of these applications, however, require that the molecular

sample be in a single quantum state. This is an experimental challenge, since

molecules have more degrees of freedom than atoms, such as rotation and vi-

bration.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AM_Molecule_FourierGrid.m
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To create a sample of molecules trapped in the ground state of vibration, a

possible method is to first produce the molecules from ultracold atoms using a

process called photoassociation, and then pump these molecules to the vibra-

tional ground state.

Photoassociation consists in the excitation of a pair of free atoms to the bound

state of an excited electronic potential by the absorption of a photon. The pair

then decays by spontaneous emission either back to the state of two free atoms

(which is not desirable), or to a bound state of the fundamental electronic po-

tential. For Rb2 molecules, photoassociation is efficient at certain frequencies

[569], with the A1Σ+
u potential as the excited state (see Fig. 12.12).

Soon after being formed, the molecules are usually in levels of high vibrational

energy (around ν ≈ 80), because these levels connect best (high Franck-Condon

overlap) to the excited state. The transfer of population to the fundamental

state of vibration is done by ’optical pumping’.

Vibrational cooling via optical pumping can be done by irradiating a broad fre-

quency band of light that excites transitions to vibrational levels of the excited

nuclear potential. These excited states are chosen such that their Franck-Condon

overlap with the ground states of lower vibrational energy is larger. As a con-

sequence, a molecule sent to an excited state returns with higher probability

to a level of lower vibrational energy. The absorption and emission cycles are

repeated, until the molecules reach the fundamental vibrational state.

Figura 3: Esquema da fotoassociação para formar moléculas de Rb2. No processo a), o par de átomos
livres absorve um fóton da radiação incidente, formando um estado ligado no potencial excitado.
Em seguida, em b), a molécula recém-formada decai por emissão espontânea para estados ligados do
potencial fundamental, ou ainda pode retornar a um estado de dois átomos livres.

4 Detecção molecular & alguns resultados

O método mais direto que utilizamos para se detectar moléculas se baseia na ionização molecular.
Aplica-se um campo elétrico na amostra molecular, e coloca-se um detector de íons na direção do
campo. Partículas que se ionizem adquirem uma carga líquida, sendo atraídas pelo campo e caindo
no detector de íons. Para promover a ionização de moléculas, aplica-se a luz de um laser pulsado
na amostra, cuja frequência pode ionizar as moléculas via processo de vários fótons (razão pela qual
a técnica recebeu o nome de "REMPI- resonantly enhanced multiphoton ionization). As moléculas
ionizadas pelo laser pulsado caem no detector em um intervalo de tempo bem de�nido após os pulsos
de luz, de forma que conhecendo os instantes em que os pulsos foram emitidos, é possível olhar apenas
para as moléculas e ignorar a maioria dos íons esporádicos que caem no detector.

Outra vantagem desse método de detecção é que a frequência de ionização depende do nível vi-
bracional das moléculas que se deseja ionizar. Ou seja, variando-se a frequência do laser ionizante,
encontramos diversos picos de intensidade de ionização, referente aos diversos estados vibracionais
em que as moléculas da amostra se encontram. Por essa razão, uma varredura do laser de ionização
pode ser chamada de "espectro vibracional", sendo este essencial para o nosso trabalho, pois de fato
desejamos estimar a população de moléculas que está (ou não) no estado fundamental de vibração.

Na �gura 5, encontra-se um espectro vibracional numa janela espectral relativamente curta, feito em
nosso laboratório. A esta fase, éramos capazes de promover um considerável resfriamento vibracional
das moléculas, sem contudo alcançar uma população macroscópica no nível fundamental de vibração.
Neste espectro, foi capaz de se identi�car um pico de ionização partindo do nível vibracional ν = 4 do
estado eletrônico fundamental.

5

Figure 12.12: Photoassociation scheme to form Rb2 molecules. In process (a), a pair of
free atoms absorbs a photon of the incident radiation, forming a bound state in the excited
potential. Then, in (b), the newly formed molecule decays by spontaneous emission to a
bound state of the fundamental potential, or it can return to a state of two free atoms.
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12.2.4 Rotational progression

Until now we neglected the centrifugal energy (12.38),

Vℓ(R) =
L2

2MrR2
=

ℏ2ℓ(ℓ+ 1)

2MrR2
. (12.57)

As we shall now see, this energy creates a substructure of the vibrational levels.
The moments of inertia in the three axes of space are,

Iqq =
∑

i

mir
2
i (q) . (12.58)

The kinetic energy of the rotation is,

Erot =
1
2

∑

q=1,2,3

mqv
2
q =

1
2

∑

q=1,2,3

Iqqω
2
q =

L2
x

2Ixx
+

L2
y

2Iyy
+

L2
z

2Izz
, (12.59)

with the angular momentum Lq = Iqqωq.
Many molecules have a symmetry axis, such that there are two different moments

of inertia, I⊥ ≡ Ixx = Iyy and I∥ ≡ Izz. Interpreting angular momenta as quantum
operators,

Ĥ =
L̂2

2I⊥
+

(
1

2I∥
− 1

2I⊥

)
L̂2
z . (12.60)

We must first consider the rotation of the molecule relative to the symmetry axis
of the molecule. Forgetting external fields we calculate the energy of the molecule
associated with the observables L̂2 with the quantum number ℓ and L̂z with the
quantum number K. We find the eigenvalues,

E(ℓ,K,Mℓ) =
ℏ2ℓ(ℓ+ 1)

2I⊥
+

(
1

2I∥
− 1

2I⊥

)
ℏ2K2 = Bℓ(ℓ+ 1) + (A−B)K2 , (12.61)

with ℓ = 0, 1, .., K = −ℓ, .., ℓ, and Mℓ = −ℓ, .., ℓ and introducing the rotational
constants, A ≡ ℏ2/2I∥ and B ≡ ℏ2/2I⊥. We then analyze this equation in the context
of applying an external field that defines both, the direction ê′z in the laboratory as
well as the projection of the angular motion L̂2 on this direction, mℓ. That is, we
have two axes, the internuclear axis êz and the rotation axis of the molecule ê′z.

Each level |ℓ,mℓ⟩ is 2(2ℓ + 1) times degenerate, because K = −ℓ, .., ℓ and K can
be positive or negative. Each level ℓ contains 2ℓ + 1 states. Note that for spherical
molecules, A = B, and the degree of freedom K disappears. In Exc. 12.2.6.2 we
calculate the rotational spectrum of a homonuclear diatomic molecule.

The rotational constant can be approximated by,

Erot =
ℏ2ℓ(ℓ+ 1)

2Mr⟨R2⟩ , (12.62)

where
√
⟨R2⟩ is the expectation value for the outer turning point of the vibrational

level. As an example, the rotational constant for the vibrational state of 87Rb2 which
is 5.9 cm−1 below the dissociation limit is Bv = νℓ=1

rot − νℓ=0
rot = 81 MHz. To be more

precise, we would need to calculate ⟨R2⟩v = ⟨ψv|R2|ψv⟩.
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Transitions between vibrational levels occur together with rotational transitions
∆ℓ = ±1. Therefore, the frequencies of transitions depend on the rotational constant
Bv, which depends on the vibrational state. The energies of the molecule are,

Ev,ℓ = ℏω(v+1/2)−ℏωxe(v+1/2)2+ ..+hcBvℓ(ℓ+1)−hcDvℓ
2(ℓ+1)2+ .. . (12.63)

Under the influence of a rapid rotation, the atoms of the molecule are subjected to
centrifugal force and, hence, are further away from each other 7.

Since at ambient temperatures many rotational levels are populated, we experi-
mentally observe many lines known as P -branch, when ∆ℓ = −1, as Q-branch, when
∆ℓ = 0, and as R-branch, when ∆ℓ = 1. See Exc. 12.2.6.3.

12.2.4.1 Rotational selection rules

For transitions between electronic states, the selection rules are ∆r = 0,±1. Rota-
tional transitions can occur between levels ∆r = ±1. ∆r = 0 is not allowed, because
it violates the conservation of parity. Note also that the nuclear isotope influences
the ro-vibrational levels via the reduced mass.

We consider a linear molecule in the state |ϵ, ℓ,Mℓ⟩, where ϵ denotes the electronic
and vibrational state of the molecule. To find out which transitions are possible, we
need to calculate the matrix,

⟨ϵ′, ℓ′,M ′
ℓ|d|ϵ, ℓ,Mℓ⟩ = ⟨ℓ′,M ′

ℓ|dϵ|ℓ,Mℓ⟩ , (12.64)

with dϵ = ⟨ϵ|d|ϵ⟩. Here, we apply the Born-Oppenheimer approximation, which
allows us to separate the dynamics of the electrons and also the vibrations of the
molecule, because these movements are so fast, that they are always in a steady state,
adiabatically following the slow movement of the rotation.

The selection rules can now be derived from the Wigner-Eckart theorem,

⟨ℓ′,M ′
ℓ|dϵ|ℓ,Mℓ⟩|2

|⟨ℓ′ ∥ dϵ ∥ ℓ,Mℓ⟩|2
=

1

2ℓ′ + 1

(
ℓ 1 ℓ′

mℓ κ −m′
ℓ

)
. (12.65)

We find ∆ℓ = 1 e ∆Mℓ = 0,±1. See Exc. 12.2.6.4.

12.2.5 Computation of vibrational states

12.2.5.1 Estimation of the localization energy

One consequence of Heisenberg’s uncertainty relation is that a certain localization
energy is always required to localize a particle. The zero-point energy of the harmonic
oscillator is an example: If the potential is shallower than this energy, it will not be
capable of localizing a particle.

As another example, let us consider the attractive potential,

V = −Cn
Rn

. (12.66)

7See [35], p.326
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The space available for the particle is limited between the classical turning point,
which for a given energy is Rt = (Cn/|E|)1/n. The momentum corresponding to this
energy is kt = (2mred|E|/ℏ2)1/2. Heisenberg’s uncertainty relation requires,

ktRt > π , (12.67)

that is, at least half of the wavelength must fit within the potential (between 0 and
Rt) at the height of the bound state. Therefore,

|E| > Eloc ≡
(

πℏ2

2mred

)1/(1−2/n)

C1/(1−n/2)
n . (12.68)

For a Coulomb potential, with n = 1 and C1 = e2/4πε0, we obtain the energy of
the ground state of the hydrogen atom,

E > E1 = − e2

4πε02aB

4

π2
, (12.69)

apart from a numerical factor. Note that the condition ktRt > 2n yields the correct
Bohr energies, E = E1/m

2.
For n = 2, we do not get a condition for the energy. For the Casimir-Polder

potential, n = 3 and C3 = 3ℏΓ/2k3, we obtain,

E < − π6ℏ6

8m3
redC

2
3

=
(πℏk)6

2m3
red(3ℏΓ)2

. (12.70)

This means that for n ≥ 3, in contrast to the Coulomb potential, to minimize the
momentum-position uncertainty, the binding energy must be lower than a certain
limit.

We find that for a Coulomb potential the state with the smallest momentum-
position uncertainty is the ground state. No other state can have a lower energy,
but there is an infinite number of states just below the threshold. In contrast, for
a 1/R3 potential the state with the smallest momentum-position uncertainty is the
least bound state. No other state can have a higher energy, but there is an infinite
number of states at the bottom of the potential. In other words, 1/R potentials do
not have a lid and 1/R3 potentials do not have a bottom.

12.2.5.2 The LeRoy-Bernstein method

The LeRoy-Bernstein method allows us to estimate the highest bound levels. It only
applies near the dissociation limit, where the semi-classical formula of quantization is
valid,

v + 1
2 =

√
8mred

ℏ2

∫ Rt

0

dR
√
E(v)− V (R) . (12.71)

Inserting the potential

V (R) = De −
Cn
Rn

, (12.72)
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we get

E(v∗) = De − Eloc

(
(n− 2)Γ

(
1 + 1

n

)
√
πΓ
(
1
2 + 1

n

) v∗
)2n/(n−2)

, (12.73)

where v∗ = vD − v is a number counting the vibrational levels from the top to the
bottom starting at the dissociation limit and Eloc is the localization energy calculated
in (12.68).
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Figure 12.13: (code) (a) Highest vibrational states of the (2)Σ+
u potential of Yb2 dimers

obtained by the LeRoy-Bernstein method. The magenta circle corresponds to the localization

energy calculated in (12.74). (b) Energies of the highest vibrational states as a function of

the vibrational quantum number v∗. The states inside the red box have been measured [809].

Again, for the Casimir-Polder potential we get [809],

E(v∗) = De −X0(vD − v)6 with X0 =
h6

m3
redC

2
3

(
Γ(4/3)

2
√
2πΓ(5/6)

)6

. (12.74)

Do the Exc. 12.2.6.5.

12.2.5.3 Open channels

For a given interatomic potential V (R), neglecting the spin structure [445], the relative
wavefunction of a two-atom system satisfies the Schrödinger equation,

[
− 1

2µ∆+ V (R)
]
ψ(R) = Eψ(R) . (12.75)

Separating the radial and angular contributions, ψ(R) ≡ Y (ϑ, φ)f(R)/R, we obtain,

[
− 1

2µ

∂2

∂R2
+ V (R) +

l(l + 1)

2µR2

]
f(R) = Ef(R) . (12.76)

Now, we introduce the local wavevector, k(R) =
√
2µ[E − V (R)]− l(l + 1)/R2 and

write,
f ′′ = −k2f . (12.77)

This differential equation can be solved numerically [see Fig. 12.14(a)].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_LongrangeLeRoyBernstein.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_LongrangeLeRoyBernstein.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_LongrangeLeRoyBernstein.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_LongrangeLeRoyBernstein.m
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Figure 12.14: (code) (a) Numerical computation of the relative wavefunction for a low energy

collision, E ≳ 0 and ℓ = 0. The blue curve shows the interatomic Li-Rb potential (a)3Σ,

the red curve illustrates the relative Broglie wavefunction of the molecule. The asymptote

of this extrapolated wavefunction (green curve) cuts the abscissa at as = −120aB , which
is just the scattering length for collisions in this channel. (b) Numerical computation of

the wavefunction for a vibrational state. The potential is an interpolation (black) between

a short-range Morse potential (green), and a long range potential (blue). The red curve

illustrates the relative wavefunction for the ninth vibrational state (counting from ground

state).

12.2.5.4 Milne equation

The Schrödinger equation,

[
d2

dR2
+ k(R)2

]
Ψ(R) = 0 with k(R) =

√
2mred

ℏ2 (E − V ) (12.78)

can be transformed using the following ansatz,

Ψ(R) ≡
√

2mred

πℏ2
α(R) sinβ(R) . (12.79)

Insertion yields,

(
α′′ + k2α− αβ′2) sinβ + (2α′β′ + αβ′′) cosβ = 0 . (12.80)

Setting the oscillatory terms separately to zero, we obtain,

β′′

β′ = −2α′

α
and α′′ + k2α− αβ′2 = 0 . (12.81)

The first differential equation is solved by,

β′ =
1

α2
that is β(R) =

∫
dR

α(R)2
. (12.82)

Insertion into the second one yields the so-called Milne equation ,

α′′ + k2α− 1

α3
= 0 . (12.83)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
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Example 71 (Milne equation for van der Waals potentials): Here, we
analyze the solution of the Milne equation for a C6-potential at very long range,
R → ∞, and vanishing temperature, E → 0. Semi-classically, the amplitude
αWKB(R) ≃ 1/

√
k(R) diverges asymptotically, so that,(

d2

dR2
− 2mredC6

ℏ2R6

)
α ≃ 0

with the solution for R≫ RB ,

α(R) = α∞
(
1− (R/RB)

4) with RB ≡
(
2mredC6

20ℏ2

)1/4

.

Substituting this into the phase equation,

β(R) = k∞(R∞ − as) +
∫ R

R∞

dR

α(R)2

≃ k∞(R∞ − as)− 1
α2
∞

∫ R∞

R

(
1 + 2

(
R
RB

)4)2

dR = k∞

(
R− as − 2

3

(
RB
R

)4
R

)
with β∞ = k∞(R∞ − as) and as is the s-wave scattering length.

12.2.5.5 Bound states

For bound states, we must simultaneously satisfy the eigenvalue problem. We can,
for example, guess an eigenvalue E, calculate the associated wavefunction f(R),
check whether it diverges for R → ∞, and vary E until f(R) no longer diverges.
Fig. 12.14(b) shows the wavefunction of a vibrational state obtained by solving the
Schrödinger equation and adjusting the energy until the function stops diverging in
the classically forbidden range.

12.2.5.6 The Fourier grid method

Another, extremely rapid, numerical method for determining the spectrum of vibra-
tional states of a potential, is the Fourier grid method. It is based on the discretization
of the Hamiltonian along the interatomic potential. We write the Hamiltonian as,

Hψ(R) = [T (R) + V (R)]ψ(R) = Eψ(R) , (12.84)

and put it in a matrix form using the set of functions of the basis ϕi(Rj) = δ(Ri−Rj)
with i = 1, .., N , where Ri = R0+i(RN−R0)/N . This problem has N eigenvalues Ei.
The Fourier grid method now evaluates the kinetic energy at each point in the grid.
We insert the local terms Hii = H(Ri) and the non-local terms Hij = H(Ri, Rj) into
the Hamiltonian, as well as the potential energies Vij = V (Ri)δij . The kinetic energy
is the inverse Fourier transform from momentum space of Trs = T (kr)δrs = (k2r/2µ)δrs
and becomes [575, 550, 250],

Hij =
π2

4µ(RN −R1)2
(−1)i−j

(
1

sin2 π(i−j)2N

− 1

sin2 π(i+j)2N

)
for i ̸= j (12.85)

Hij =
π2

4µ(RN −R1)2

(
2N2 + 1

3
− 1

sin2 πi
2N

)
+ V (Ri) for i = j .



440 CHAPTER 12. MOLECULAR DIMERS

To improve the wavefunction, we can interpolate,

ψ(q) =
∑n

j=1
ψ(qj) sinc

π(q − qj)
∆q

. (12.86)

The method can be extended to coupled channels σ = A,B via,

H{iσ}{jτ} = Tijδστ + Vστ (Ri)δij . (12.87)

The Hamiltonian has the general form,

H =

(
T 0

0 T

)
+

(
VA 0

0 VB

)
+

(
WAA WAB

WAB WBB

)
, (12.88)

where all matrices Vk and Wk are diagonal 8.
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Figure 12.15: (code) Numerical computation of the wavefunction using the Fourier grid

method at example of the interatomic potential Li-Rb (1)1Π. (a) Short range Morse potential

(green), long range (blue), interpolation (black) and [480]. (b) Vibrational wavefunctions,

(c) external turning point (red) and center of mass (green), (d) rotational progression, and

(e) Franck-Condon overlap with the tenth vibrational state.

12.2.6 Exercises

12.2.6.1 Ex: Transitions between vibrational states

Calculate the dipole moment between two arbitrary vibrational states of (a) a har-
monic potential and (b) a Morse potential.

8Note that the Fourier grid method can be improved by using a grid with spacings adjusted to
the potential gradient [477, 820, 521].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_RoVibration01.pdf
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12.2.6.2 Ex: Rotational spectrum of diatomic molecules

Calculate the rotational spectrum for a diatomic molecule from the result (12.59).

12.2.6.3 Ex: Ro-vibrational spectrum

Determine the frequency spectra of ro-vibrational transitions for the branches P , Q,
and R.

12.2.6.4 Ex: Rotational spectrum

Determine the rules and the spectrum of rotational transitions for a spherical molecule.

12.2.6.5 Ex: Momentum-position uncertainty for various potentials

a. Calculate the momentum-position uncertainty in Fock states of a 1D harmonic
oscillator.
b. Calculate the radial momentum-position uncertainty of the Bohr levels (ℓ = 0) in
a hydrogen atom.
c. Calculate the radial momentum-position uncertainty of the vibrational states of
two bound atoms numerically.
d. Interpret the results.

12.3 Van der Waals forces and spin coupling

The individual atoms have a complex substructure due to the angular momenta of the
electronic motion, its spins and the nuclear spin. All of these angular momenta can
interact, couple and generate new energy terms, which need to be taken into account
when calculating the various potentials of interatomic interaction,

Ĥ =
P2

2Mr
+VCoulomb(R)+

∑

k=1,2

(
V

(k)
hfs + V

(k)
Zeem

)
+Vdipole,spin:spin(R)+Vdipole,spin:orbit(R) ,

(12.89)
where k labels the two atoms. The Coulomb interaction for interacting alkaline gases
can be expressed as:

VCoulomb(R) = V S=0
CoulombPS=0 + V S=1

CoulombPS=1 . (12.90)

The projectors PS=0,1 will be required to expand the Hilbert space for the degrees of
freedom of the spins.

The van der Waals forces include all intermolecular forces. These are long-range
forces that occur between mutually induced atomic dipoles 9.

9They also occur, in a pure form, in optical resonators such as in the Casimir effect. Since the
lowest frequency in a cavity is ω =

√
2πc/L, the zero point energies inside and outside the cavity are

different. This causes an attractive force between the cavity mirrors ∼ 1/r3, 1/r4.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_RoVibration02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_RoVibration03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_RoVibration04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_RoVibration05.pdf
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12.3.1 Analytical models for short and long-range potentials

In general, the potentials are estimated by ab initio Hartree-Fock calculations. A
short-range potential, or Morse potential, can be approximated by,

VMorse = Dm

([
1− e−Bm(R−Rm)

]2
− 1

)
. (12.91)

Here, Bm is the width of the minimum, Rm the position of the minimum, Dm the
length. A long-range potential can be written,

VvdW(R) = De −
C6

R6
− C8

R8
− C10

R10
. (12.92)

De is the energy of dissociation. The van der Waals coefficients Ck, which determine
the potential shape at large distances, can be calculated using other methods with
higher precision. To obtain a closed formula, the short and long range parts can be
joined by,

V = VMorseF + VvdW(1− F ) , (12.93)

where F ≡ e−(R/Rt)
10

.

The situation is different for collisions of identical atoms, one in the ground and
the other in an excited state. In this case, an additional Movre-Pichler potential
dominated by a coefficient C3 arises,

V evdW = −C3

R3
. (12.94)

The interaction is interpreted as an exchange of excitation between resonances of
two neighboring atoms and can be derive from the vectorial Green tensor for the
interaction between two classical dipoles 10. In the limit of small distances as compare
to an optical wavelength, kR≪ 1, we find,

V evdW(R) = −3

2
λΓ(0)ê∗dReGb(r, r′, ω)êd = −

3

2
λΓ(0) 2

k3R3

k

4π
≡ C3

R3
. (12.95)

Hence, the potential depends mainly on the decay rate Γ,

C3 =
3ℏΓ
2k3

, (12.96)

and as it comes into play at larger distances, orbital characteristics will only cause
minor deviations of the C3 coefficient from the value (12.96).

In contrast, excited state collisions of different species are non-resonant, and hence
C3 = 0.

10See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 7.3.1.3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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12.3.2 Spin coupling in dimers, molecular quantum numbers

We consider two interacting alkaline atoms, each being described by a set of quantum
numbers of internal angular momenta, they couple their spins:

li angular momentum of the individual atom (12.97)

si electronic spin

ii nuclear spin

li + si = ji total electronic angular momentum

ji + ii = fi total angular momentum .

When the atoms approach each other, at intermediate distances, they couple their
spins:

ℓ ⊥ êz molecular rotation (12.98)

Λ ≡ |ML|êz projection of L onto the interatomic êz

Σ ≡MS êz projection of S onto the interatomic êz

Ω ≡ Λ+Σ projection of L+ S onto the interatomic êz .

At short distances, they form a molecular dimer described by the quantum numbers:

L = l1 + l2 total electronic angular momentum (12.99)

S = s1 + s2 electronic spin

I = i1 + i2 nuclear spin

f = f1 + f2 total angular momentum or (L,S)k+ I

J = Ω+ ℓ

F = f + ℓ .

The quantum numbers couple like,

l1 + l2 = L
êz−→ Λ

+ + + +

s1 + s2 = S
êz−→ Σ

= = = =

j1 + j2 = j
êz−→ Ω + ℓ = J

+ + + +

i1 + i2 = I I

= = = =

f1 + f2 = f + ℓ = F

(12.100)

Obviously, the atomic angular momentum is no longer a conserved quantity, but
its projection onto the interatomic molecular axis is. The various possibilities how L,
S, and j are projected onto the internuclear axis or directly couple to the rotational
angular momentum ℓ are handled by Hund’s cases (a) to (e). The spin coupling is
described by {9j}-symbols, as discussed below.
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12.3.3 Hund’s coupling cases

The coupling force between atomic spins depends on the distance between the atoms.
Due to the variety of spins appearing in atoms, there are many possibilities how they
can couple. These were classified by Hund into five cases.

Figure 12.16: Hund’s coupling cases.

12.3.3.1 Hund’s case (a)

The molecular interaction is so strong that L and S couple to the z-axis instead of
coupling to each other. This case is analogous to the Paschen-Back effect,

L→ Λ and S→ Σ (12.101)

((Λ,Σ)Ω, ℓ)J .

A common notation is to label the states Λ = Σ,Π,∆, .... That is, in the symbol
X(2S+1ΛΩ)

±
σ , where σ = g, u is the inversion symmetry, X,A,B, .. and a, b, .. are

the singlet and triplet series starting from the lowest energy levels. An alternative
notation is to assign labels ordered by energy X = (1), (2), ... Finally, ± is the
symmetry upon reflection. For example, X1Σ+

g .

12.3.3.2 Hund’s case (b)

L is projected onto the z-axis before coupling to ℓ. The resulting angular momentum
afterward directly couples to S.

L→ Λ (12.102)

((L, ℓ)k,S)J .
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12.3.3.3 Hund’s case (c)

L and S couple together instead of projecting themselves onto the z-axis. This case
is analogous to the Zeeman effect,

(L,S)j→ Ω (12.103)

(Ω, ℓ)J .

A common notation is to label the states by Ω = 0, 1, 2, .... That is, in the symbol
X(Ω)±s , the letter X = 1, 2, .. is a label ordered by energy. For example 2(0−g ).

12.3.3.4 Hund’s case (d)

L is not projected on the z- axis, but directly couples to the rotational angular
momentum. The resulting angular momentum afterward only couples to the S

((L, ℓ)k, )J . (12.104)

12.3.3.5 Hund’s case (e)

L and S mutually couple as in the case (c), but are not projected on the z-axis, but
couple directly with ℓ, which is quantized,

((L,S)j, ℓ)J . (12.105)

12.3.4 Molecular hyperfine structure

The scattering length in specific channels can be expressed via singlet and triplet
scattering lengths,

a|f1,mf1⟩+|f2,mf2⟩ = PS=0as + PS=1at . (12.106)

The projectors are PS = |⟨S|(f1f2)f⟩|. According to [125, 577] the recoupling from
the uncoupled hyperfine representation into the short range representation is given
by,

⟨SmS ImI ℓ
′mℓ′ |f1mf1 f2mf2 ℓmℓ⟩ = δℓℓ′δmℓm′

ℓ

∑

f,mf

⟨SmS ImI |fmf ⟩⟨f1mf1 f2mf2|fmf ⟩×

×





s1 s2 S

i1 i2 I

f1 f2 f





√
ŜÎ f̂1f̂2

(
1− (1− δf1f2)(−1)S+I+ℓ√

2− δf1f2

)
.

(12.107)

The last bracket is dropped for unsymmetrized recoupling. We will study examples
of spin recoupling in the ground state channels in Exc. 12.3.5.1, 12.3.5.2, and 12.3.5.3.

12.3.5 Exercises

12.3.5.1 Ex: Spin recoupling of identical 87Rb ground state channels

a. Unravel the molecular hyperfine structure of identical 87Rb ground state channels.
b. Project the collisional channels |f1mf1 f2mf2⟩ = |1− 1 1− 1⟩ and |22 22⟩ on the
singlet and triplet potentials, S = 0, 1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_HyperRecoupling01.pdf
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12.3.5.2 Ex: Spin recoupling of 6Li87Rb ground state channels

a. Unravel the molecular hyperfine structure of 6Li87Rb ground state channels.
b. Project the collisional channels on short range potentials.

12.3.5.3 Ex: Hyperfine structure of 6Li23Na and 6Li87Rb

a. Unravel the molecular hyperfine structure of 6Li23Na and 6Li87Rb bound state.
b. How about the open channels?

12.4 Further reading

et al., [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_HyperRecoupling02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_HyperRecoupling03.pdf
http://doi.org/


Chapter 13

Collisions

Until now, we mostly restricted our studies to individual atoms or molecules. In
practice, however, we investigate atomic or molecular gases by spectroscopic methods.
The constituents of thermal gases are constantly in motion. They are subject to
Doppler-shifts of their spectral lines and they collide with each other. Colliding
atoms often get so close, that the electronic orbitals affect each other, which leads to
distortions of the interaction potentials, spectral lineshifts and modifications of the
interatomic forces. These are the topics to be addressed in the present chapter.

Figure 13.1: Atoms may interact via exchange of (a) virtual photons or (b) real photons.

13.1 Motion of interacting neutral atoms

The following sections, devoted to the relative motion of two neutral atoms, are
adapted from J. Walraven’s excellent lectures on Quantum Gases available at [850].
The atoms are presumed to move slowly, typically at large separation, and to interact
pair wise through a potential of the Van der Waals type. The term slowly refers to,

kthermr0 ≪ 1 where λtherm =
2π

ktherm
=

√
2πℏ2
mkBT

(13.1)

is the thermal de Broglie wavelength and r0 the range of the interaction potential.
As the Van der Waals interaction gives rise to elastic collisions, the total energy
of the relative motion is conserved in time. As the potential energy vanishes at
large interatomic separation the total energy is usually expressed in the form E =
ℏ2k2/2mr. This implies that also the wavenumbers for the relative motion before
and after the collision must be the same and shows that, far from the potential
center, the collision can only affect the phase of the wavefunction - not its wavelength.
Apparently, the appearance of a shift in phase relative to the free atomic motion

447
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provides the key to the quantum mechanical description of elastic collisions. This
being said, we postpone the discussion of the actual collisional behavior to Sec. 13.2.
First we prepare ourselves for this discussion by analyzing the stationary states for
the motion in the presence of an interaction potential.

An important simplifying factor in the description of ultracold collisions is the
emergence of universal behavior in the relative motion of the atoms. The latter
applies to low-energy collisional states as well as to weakly bound states. Universal
means in this context that, asymptotically (for r ≫ r0), the wavefunctions become
independent of the details of the interaction potential but can be characterized in
terms of a few parameters, each representing some characteristic length scale of the
collisional system. In other words, very different short-range physics can give rise to
the same scattering behavior. From a theory point of view this universality has the
enormous advantage that the essential features of ultracold collisions can be described
with the aid of simple model potentials for which analytical solutions can be obtained.

In our analysis of the collisional motion three characteristic length scales will
appear, the interaction range r0 the scattering length a and the effective range re, each
expressing a different aspect of the interaction. The range r0 is the distance beyond
which the interaction may be neglected even for k → 0. The second characteristic
length, the s-wave scattering length a, acts as an effective hard-sphere diameter. It
is a measure for the interaction strength and determines the collision cross section in
the limit k → 0 as will be elaborated on in Sec. 13.2. The third characteristic length,
the effective range re expresses how the potential affects the energy dependence of
the cross section and determines when the k → 0 limit is reached.

The s-wave scattering length is the central parameter for the theoretical descrip-
tion of bosonic quantum gases. It determines both the thermodynamic and the col-
lisional properties of these gases. In single-component fermionic gases the s-wave
scattering length plays no role because the wavefunction for the relative motion of
the atoms has to be antisymmetric. In two-component fermionic gases this restriction
is absent for collisions between atoms of different components. As a consequence, in
these systems the inter-component s-wave scattering length determines the collision
related properties - for instance the thermalization rate.

In Sec. 13.1.1 we show how the phase shift appears as a result of interatomic
interaction in the wavefunction for the relative motion of two atoms. For free particles
the phase shift is zero. An integral expression for the phase shift is derived. In
Sec. 13.1.2 and beyond we specialize to the case of low-energy collisions (kr0 ≪ 1).
The basic phenomenology is introduced and analyzed for simple model potentials like
the hard-sphere (Sec. 13.1.2) and the spherical well (Sec. 13.1.3), where the existence
of a short range is manifest. For the discussion of arbitrarily shaped potentials, we
refer to the script [850].
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13.1.1 The collisional phase shift

13.1.1.1 Schrödinger equation

The starting point for the description of the relative motion of two atoms at energy
E is the Schrödinger equation (3.33),

[
1

2mr

(
p2r +

L2

r2

)
+ V (r)

]
ψ(r, ϑ, φ) = Eψ(r, ϑ, φ) . (13.2)

Here mr is the reduced mass of the atom pair and V (r) the interaction potential. As
discussed in Sec. 3.1.3 the eigenfunctions ψ(r, ϑ, φ) can be separated in a radial and a
angular part, ψ = Rℓ(r)Yℓm(ϑ, φ), where the functions Yℓm are spherical harmonics
and the functions Rℓ(r) satisfy the radial wave equation,

[
ℏ2

2mr

(
− d2

dr2
− 2

r

d

dr
+
ℓ(ℓ+ 1)

r2

)
+ V (r)

]
Rℓ(r) = ERℓ(r) . (13.3)

By the separation procedure the angular momentum term is replaced by a repulsive
effective potential,

Vrot(r) =
ℏ2ℓ(ℓ+ 1)

2mrr2
, (13.4)

representing the rotational energy of the atom pair at a given distance and for a given
rotational quantum number ℓ. In combination with an attractive interaction it gives
rise to a centrifugal barrier for the radial motion of the atoms. This is illustrated in
Fig. 13.2 for the example of hydrogen.

Figure 13.2: Example showing the high-lying bound states near the continuum of the singlet
potential 1Σ+

g (the bonding potential) of the hydrogen molecule; v and J are the vibrational
and rotational quantum numbers, respectively. The dashed line shows the effect of the
J = 3 centrifugal barrier. The presence of a rotational barrier gives rise to an exponential
suppression of the radial wavefunction for r < rtp and is negligible at distances where the
interaction becomes noticeable r ≪ r0.
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To analyze the radial wave equation we introduce reduced energies,

ε =
2mrE

ℏ2
=

{
k2 for k > 0

−κ2 for k < 0
and Ṽ (r) =

2mrV (r)

ℏ2
, (13.5)

choosing k and κ as real positive number. This puts Eq. (13.3) in the form,

R′′
ℓ +

2

r
R′
ℓ +

[
ε− Ṽ (r)− ℓ(ℓ+ 1)

r2

]
Rℓ = 0 . (13.6)

With the substitution uℓ(r) = rRℓ(r) it reduces to a 1D Schrödinger equation,

u′′ℓ +

[
ε− Ṽ (r)− ℓ(ℓ+ 1)

r2

]
uℓ = 0 . (13.7)

13.1.1.2 Low-energy limit: the s-wave regime

For two atoms with relative angular momentum ℓ > 0 there exists a distance rtp,
called the classical turning point, below which the rotational energy exceeds the total
energy E,

k2 =
ℓ(ℓ+ 1)

r2tp
. (13.8)

This is illustrated in Fig. 13.2. In the classically inaccessible region of space (r < rtp)
the radial wavefunction is exponentially suppressed 1. Combining Eq. (13.8) with the
condition (13.1) we obtain the inequality,

kr0 =
√
ℓ(ℓ+ 1)

r0
rtp
≪ 1 , (13.9)

which implies that, for ℓ ̸= 0, the classical turning point is found at a distance much
larger than the range r0 of the interaction. As the range r0 defines the distance beyond
which the potential can be neglected, this inequality shows that the radial motion is
not affected by the presence of the potential V (r) in the radial wave equation. The
notable exception is the case ℓ = 0, where the barrier is absent and the potential gives
rise to a substantial distortion of the radial waves. In other words, for kr0 ≪ 1 phase
shifts (i.e. scattering) can only arise from collisions with zero angular momentum.
The range of collision energies where the inequalities (13.9) are valid is called the
s-wave regime.

13.1.1.3 Free particle motion

We first have a look at the case of free particles or particles in a homogeneous
potential, V (r) = V0. By introducing the dimensionless variable ϱ = kr, where
k ≡

√
2m(E − V0)/ℏ2, the radial wave equation (13.6) can be rewritten in the form

of the spherical Bessel differential equation,

R′′
ℓ +

2

ϱ
R′
ℓ +

[
1− ℓ(ℓ+ 1)

ϱ2

]
Rℓ = 0 . (13.10)

1At this point we exclude tunneling through the barrier and the occurrence of shape resonances.
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Here, the derivatives are with respect to the new variable.
The general solution of Eq. (13.10) for angular momentum ℓ is a linear combina-

tion of two particular solutions, one regular with amplitude Aℓ, the spherical Bessel
function jℓ(ϱ), and one irregular with amplitude Bℓ, the spherical Neumann function
nℓ(ϱ):

Rℓ(ϱ) = Aℓjℓ(ϱ) +Bℓnℓ(ϱ) = cℓ[cos ηℓ jℓ(ϱ) + sin ηℓ nℓ(ϱ)] , (13.11)

where the new parameters cℓ and ηℓ, defined by

Aℓ ≡ cℓ cos ηℓ and Bℓ ≡ cℓ sin ηℓ , (13.12)

represent the amplitude cℓ and the asymptotic phase ηℓ of the wavefunction. Note
that this equation is singular in the origin except for the case of vanishing phase shifts.
Therefore, in the case of free particles we require ηℓ = 0 for all angular momentum
values ℓ. This implies that the general solution reduces to the regular one,

Rℓ(ϱ) = cℓ cos ηℓ jℓ(ϱ) . (13.13)

13.1.1.4 Significance of the phase shifts

To investigate the effect of a short-range interaction potential V (r) we return to the
radial wave equation (13.6). As the potential is of short range it may be neglected for
r ≫ r0 and the general solutions coincide with those of the spherical Bessel equation,

Rℓ(k, r) −→
r≫r0

cℓ[cos ηℓ jℓ(kr) + sin ηℓ nℓ(kr)] . (13.14)

For r ≫ 1/k the spherical Bessel and Neumann functions assume their asymptotic
form and we find,

Rℓ(k, r) −→
kr→∞

cℓ
kr

[cos ηℓ sin(kr − 1
2ℓπ) + sin ηℓ cos(kr − 1

2ℓπ)] (13.15)

=
cℓ
kr

sin(kr + ηℓ − 1
2ℓπ) .

where we introduced a the constant ηℓ representing the asymptotic phase shift. For
a given value of k this phase shift fixes the general solution of the radial wavefunction
Rℓ(k, r) up to an ℓ dependent normalization constant cℓ. Note that in view of the
k dependence of the phase shift, Rℓ is a function of k and r rather than a function
of the product kr. Whereas in the case of free particles the phase shifts must all
vanish, in the presence of the interaction they provide the proper asymptotic form
of the distorted waves. The non-zero asymptotic phase shift is the signature of the
interaction at short distance; the motion becomes free-particle like (undistorted) only
at large distance from the scattering center. In elastic scattering the relative energy
ℏ2k2/2m is conserved; hence, asymptotically also k and the de Broglie wavelength.
This leaves only the asymptotic phase of the wave to be affected.

Example 72 (Scattering matrix): Rewriting Eq. (13.15) in complex notation,

Rℓ(k, r) ≃
r→∞

cℓ
2k
ı

e−ıηℓ e−ı(kr− 1
2
ℓπ)

r
− eiηℓ e

ı(kr− 1
2
ℓπ)

r

 , (13.16)
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we see that for r → ∞ the stationary solution Rℓ(k, r) can be regarded as
an ’incoming’ spherical wave interfering with an ’outgoing’ spherical wave. It
is convention to choose the phase of the normalization constant such that the
phase of the incoming wave is zero,

Rℓ(k, r) ≃
r→∞

c′ℓ
2k
ı

[
e−ıkr

r
− e−ıℓπe2ıηℓ e

ıkr

r

]
, (13.17)

Apart from the sign, the ratio of the phase factors of the outgoing over the
incoming wave is,

Sℓ = e2ıηℓ . (13.18)

This quantity is called the scattering matrix (S matrix) or, better, the l-wave

contribution to the S matrix. Being unitary it does not suffer from the diver-

gences of the ratio Bℓ/Aℓ = tan ηℓ. In the present context the name scattering

matrix is a bit heavy because we only have a single matrix element (1×1 matrix).

The term matrix finds its origin in the description of scattering of particles with

an internal degree of freedom (like spin), for which the phase factor is replaced

by a unitary matrix.

13.1.2 Hard-sphere potentials

We now turn to analytical solutions for model potentials in the limit of low energy.
We first consider the case of two hard spheres of equal size. These can approach each
other to a minimum distance equal to their diameter a. For r ≤ a the radial wave
function vanishes, Rℓ(r) = 0: Outside the hard sphere we have free atoms, V (r) = 0,
with relative wave number k = [2mrE/ℏ2]1/2. Thus, for r ≤ a the general solution for
the radial wave functions of angular momentum ℓ is given by the free atom expression
(13.11), which asymptotically this takes the form (13.15) of a phase-shifted spherical
Bessel function,

Rℓ(k, r) = cℓ[cos ηℓ jℓ(kr) + sin ηℓ nℓ(kr)] ≃
r→0

cℓ
kr

sin(kr + ηℓ − 1
2ℓπ) . (13.19)

To determine the phase shift we require as a boundary condition that Rℓ(k, r) vanishes
at the surface of the hard sphere (see Fig. 13.3),

cos ηℓ jℓ(ka) + sin ηℓ nℓ(ka) = 0 . (13.20)

Hence, the phase shift follows from the expression,

tan ηℓ =
jℓ(ka)

nℓ(ka)
. (13.21)

This expression allows to derive asymptotic expressions (for ka≪ 1 and for ka≫ 1)
for the radial wave function (13.19), as will be shown in Exc. 13.1.5.1.

13.1.2.1 s-wave phase shifts for hard spheres

For the case ℓ = 0, inserting the analytical expressions for the Bessel and von Neu-
mann function, (13.19) becomes without approximation,

R0(k, r) =
c0
kr

(cos η0 sin kr + sin η0 cos kr) =
c0
kr

sin(kr + η0) . (13.22)
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Figure 13.3: (code) Radial wavefunctions (ℓ = 0) for various values of k (down to the

k → 0 limit) in the case of a hard sphere potential. The boundary condition is fixed by the

requirement that the wavefunction vanishes at the edge of the hard sphere, R0(ka) = 0.

The phase shift follows from the boundary condition R0(k, a) = 0, which can be
written in the form,

cos η0 sin ka+ sin η0 cos ka = 0 . (13.23)

Hence, the phase shift is

η0 = −ka . (13.24)

With this expression Eq. (13.22) reduces to

R0(k, r) =
c0
kr

sin[k(r − a)] . (13.25)

This expression is exact for any value of k, as announced above. The linear k de-
pendence of η0 simply expresses its definition in which the shift of the wave (by a) is
compared to the de Broglie wavelength λdB , η0 = −2πa/λdB . As a consequence the
phase shift vanishes for k → 0,

lim
k→0

η0(k) = 0 . (13.26)

This result is obvious when comparing the finite shift a to the diverging wavelength
λtherm. Interestingly, in the limit k → 0 the expression (13.25) becomes k independent,

R0(r) ∼
k→0

1− a

r
for a ≤ r ≪ 1/k . (13.27)

This important result is illustrated in Fig. 13.3. In the limit k → 0 the wavefunction
is essentially constant throughout space (up to a distance 1/k →∞ at which it starts
to oscillate), except for a small region of radius a around the potential center.

13.1.3 Spherical wells with a flat bottom

The second model potential to consider is the spherical well of range r0 sketched in
Fig. 13.4,

Ṽ (r) =

{
2mrV0/ℏ2 = Ṽ0 = −κ20 for r ≤ r0
0 for r > r0

. (13.28)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_HardcorePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_HardcorePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_HardcorePotential.m


454 CHAPTER 13. COLLISIONS

Here |U0| = κ20 is called the well depth (κ0 is chosen to be real and positive, κ0 > 0).
The energy of the continuum states is given by ε = k2. In analogy, the energy of the
bound states is written as,

εb = −κ2 . (13.29)

We now have to solve the radial wave equation (13.6) with the spherical well potential
(13.28). Since the potential is constant inside the well (r ≤ r0) the wavefunction has
to be free-particle like with the wave number given by,

K+ =
√

2mr(E − V0)/ℏ2 =
√
κ20 + k2 . (13.30)

As the wavefunction has to be regular in the origin, inside the well it is given by,

Rℓ(r) = Cℓjℓ(K+r) for r ≤ r0 , (13.31)

where Cℓ is a normalization constant. This expression holds for E > V0 (both E > 0
and E ≤ 0).

Outside the well (r > r0) we have for E > 0 free atoms, Ṽ (r) = 0, with relative
wavevector k = [2mrE/ℏ2]1/2. Thus, for r > r0 the general solution for the radial
wave functions of angular momentum ℓ is given by the free atom expression (13.11),

Rℓ(k, r) = cℓ[cos ηℓ jℓ(kr) + sin ηℓ nℓ(kr)] for r > r0 . (13.32)
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Figure 13.4: (code) (Left) Scheme of the flat bottom potential. (Right) (a) Radial
wavefunctions for square wells: (a) continuum state (ε = k2 > 0); (b) Zero energy
state (ε = k2 = 0) in the presence of an asymptotically bound level (ε = −κ2 = 0);
(c) bound state (ε = −κ2 < 0). Note the continuity of R0(r) and R′

0(r) at r = r0.
The wavefunctions are not normalized and are shifted relative to each other only for
reasons of visibility.

The full solution [see Fig. 13.4(a)] is obtained by the continuity conditions for
Rℓ(r) and R

′
ℓ(r) at the boundary r = r0. These imply continuity of the logarithmic

derivative with respect to r,

K+
j′ℓ(ϱi)
jℓ(ϱi)

=
R′
ℓ(r)

Rℓ(r)

∣∣∣∣
r=r0

= k
cos ηℓ j

′
ℓ(ϱe) + sin ηℓ n

′
ℓ(ϱe)

cos ηℓ jℓ(ϱe) + sin ηℓ nℓ(ϱe)
, (13.33)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_FlatBottomPotential.m
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where we defined the abbreviations ϱi ≡ K+r0 and ϱe ≡ kr0. This ratio suffices to
determine ηℓ independently of the normalization constants Cℓ and cℓ. Once the phase
shift is known, the relation between Cℓ and cℓ follows from the continuity condition
for Rℓ(r). Furthermore, it shows that the asymptotic phase shift ηℓ can take any
(real) value depending on the depth of the well. In view of the importance of the S
matrix in scattering theory Sec. 13.2, it is advantageous to determine e2ıηℓ rather than
ηℓ itself. Expressing sin ηℓ and cos ηℓ in terms of eıηℓ and e−ıηℓ Eq. (13.33) becomes,

K+∂ϱ ln jℓ(ϱi) = k
e2ıηℓh

(2)′
ℓ (ϱe) + h

(1)′
ℓ (ϱe)

e2ıηℓh
(2)
ℓ (ϱe) + h

(1)
ℓ (ϱe)

, (13.34)

with the definition of the Hankel functions of the first and second kind: h
(1,2)
ℓ ≡ jℓ ±

inℓ. Solving for e2iηℓ this leads to the following expression for the ℓ-wave contribution
to the S matrix,

e2iηℓ = −h
(1)
ℓ (ϱe)

h
(2)
ℓ (ϱe)

K+∂ϱ ln jℓ(ϱi)− k∂ϱ lnh(1)ℓ (ϱe)

K+∂ϱ ln jℓ(ϱi)− k∂ϱ lnh(2)ℓ (ϱe)
, (13.35)

where the expression ∂ϱ ln stands for the logarithmic derivative. This expression may
look a bit heavy, but is valuable as it represents the exact result for arbitrary ℓ.
In Exc. 13.1.5.2 we simplify this formula for ℓ = 0. As the formula (13.35) lacks
transparency from the physical point of view, we analyze in the coming sections the
case ℓ = 0 directly discussing the radial wavefunctions uℓ.
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Figure 13.5: (code) The s-wave scattering length a normalized on r0 as a function of the

depth of a spherical square potential well (blue curve). Note that, typically, a ≃ r0 (green

line), except near the resonances at κ0r0 = (n+ 1
2
)π being an integer.

13.1.3.1 s-wave scattering (E > 0)

The analysis of spherical well potentials becomes particularly simple for the case
ℓ = 0. Let us first consider the case E > 0, for which the radial wave equation can
be written as a 1D-Schrödinger equation (13.7) of the form,

u′′0 + [k2 − Ṽ (r)]u0 = 0 . (13.36)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_FlatBottomScattLength.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_FlatBottomScattLength.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_FlatBottomScattLength.m
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The solution is,

u0(kr) =

{
C0 sin(K+r) for r ≤ r0
c0 sin(kr + η0) for r > r0

. (13.37)

To determine η0(k) it is sufficient to apply the boundary condition for continuity of
the logarithmic derivative at the edge of the well,

u′0
u0

∣∣∣∣
r=r0

= K+ cotK+r0 = k cot(kr0 + η0) . (13.38)

Note that this expression coincides with the general result given by Eq. (13.33) for
the case ℓ = 0; i.e. the boundary condition of continuity for u′0/u0 coincides with that
for R′

0/R0, as we know from a calculation left to Exc. 13.1.5.3. Furthermore, for a
vanishing potential (κ0 → 0) we have K+ → k and the boundary condition properly
yields a zero phase shift (η0 = 0).

At this point we introduce the effective hard-sphere diameter a(k) to describe, in
analogy with Eq. (13.24), the behavior of the phase shift,

η0(k) ≡ −ka(k) . (13.39)

By this procedure we extract the linear k dependence as well as the negative sign from
the phase shift. This is a good idea because the linear k-dependence does not arise
from the potential but simply from the definition of the phase in which, as discussed
earlier, the shift of the wave is compared to the de Broglie wavelength. In the limit
k → 0, we have K+r0 → κ0r0 and with the definition,

a ≡ lim
k→0

a(k) = − lim
k→0

η(k)/k (13.40)

the boundary condition (13.38) becomes,

u′0
u0

∣∣∣∣
r=r0

= κ0 cotκr0 =
1

r0 − a
. (13.41)

Solving for a we find,

a = r0

(
1− tan γ

γ

)
, (13.42)

where the dimensionless positive quantity,

γ ≡ κ0r0 (13.43)

is called the well parameter. As shown in Fig. 13.5, the value of a can be positive,
negative or zero depending on the value of γ. Therefore, rather than using the pictorial
term effective hard-sphere diameter the name scattering length is used for a. Next to
the range, the scattering length represents the second characteristic length that can be
associated with the interaction potential. As the name suggest, it is a measure for the
scattering behavior of atoms, and we elaborate on this in Sec. 13.2. Also, in Sec. ??
we will show that a is also a measure for the effective strength of the interaction.

Fig. 13.5 and Eq. (13.42) show that a is typically a quantity of the size of r0,
although for γ = tan γ it is zero and for γ = (ν + 1

2 )π, with ν being an integer,
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it diverges. The latter condition points to a resonance phenomenon occurring when
(with increasing γ) a new bound level enters the potential well. For the square
well potential the scattering length is mostly positive; it is negative in the regions
with γ < tan γ, which become narrower for increasing γ. This unlikely occurrence
of negative a is atypical for the general case; e.g. for Van der Waals potentials the
probability to find a negative scattering length is 25% .

For r ≥ r0 the radial wavefunction corresponding to Eq. (13.37) is of the form,

R0(k, r) =
c0
kr

sin[kr − ka(k)] . (13.44)

Recalling the definitions (13.39) and (13.40) we find that for k → 0 this radial wave-
function becomes k-independent,

R0(r) ∼
k→0

1− a

r
for r0 < r ≪ 1

k
. (13.45)

The latter two expressions for the radial wavefunction have the same formal appear-
ance as the hard sphere results (13.25) and (13.27). However, whereas the diameter
of the hard-sphere has a fixed value, the scattering length for the well depends on γ.
As shown in Fig. 13.6, for positive scattering length the s-wave has a characteristic
node at r = a; for negative scattering length this becomes a virtual node.

Importantly, because Eq. (13.45) reaches the asymptotic value 1 only for distances
r ≫ a, the use of this equation in the modeling of dilute gases is only justified if a is
much smaller than the interparticle spacing,

na3 ≪ 1 . (13.46)

Otherwise, the interaction with neighboring atoms will distort the relative motion
of the colliding pair. This violates the binary scattering approximation on which
Eq. (13.45) is based. The dimensionless quantity na3 is called the gas parameter.
When its value is small, the gas is called nearly ideal or weakly interacting 2.

13.1.3.2 Bound s-levels (E ≤ 0)

Let us turn to the case E ≤ 0. We shall show that the divergences of the scattering
length obtained by analyzing the continuum states (E > 0) result from the appearance
of the next bound s-level when increasing the well parameter. The 1D Schrödinger
equation takes the form,

u′′0 + [−κ2 − Ṽ (r)]u0(r) = 0 . (13.47)

where ε = −κ2 is the discrete energy eigenvalue of a bound state with ℓ = 0. The
solutions are of the type (see Fig. 13.29),

u0(k, r) =

{
C0 sinK−r for r ≤ r0
c0e

−κr for r ≤ r0
(13.48)

2Note that weakly interacting does not mean that that the potential is ’shallow’. Any gas can be
made weakly interacting by making the density sufficiently small.
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Figure 13.6: Reduced radial wavefunctions u0(r) for continuum states (ε > 0) in the k → 0
limit for increasing well depth near the threshold value κ0r0 = (n + 1

2
)π: (a) presence of

an almost bound state (a < 0); (b) presence of zero-energy resonance (κvb = 0, a → ±∞);
(c) presence of a weakly bound state (a > 0); (d) deeper binding of the least bound state.
For r > r0 the wavefunction is given by u0(r) = c0(r − a); hence, the value of a is given
by the intercept with the horizontal axis. This gives rise to a characteristic node at r = a,
which is real for a > 0 (just as for hard spheres of diameter a), but virtual for a < 0. The
wavefunctions are not normalized.

where κ > 0 because the bound state wavefunction has to be normalized. The bound
state energy is obtained by requiring the continuity of the logarithmic derivative when
connecting the inner part of the wavefunction to the outer part,

u′0(r)
u0(r)

∣∣∣∣
r=r0

= K− cotK−r0 = −κ , (13.49)

where κ > 0 and

K− = [2mr(E − V0)/ℏ2]1/2 = (κ20 − κ2)1/2 . (13.50)

With decreasing γ, the least bound level disappears in the limit κ→ 0, K− → κ0. In
this limit Eq. (13.49) reduces to,

u′0(r)
u0(r)

∣∣∣∣
r=r0

= κ0 cotκ0r0 =
κ→0

0 , (13.51)

Increasing from zero the vibrational levels appear sequentially for

γ = (v + 1
2 )π , (13.52)

where v = 0, 1, .., rmax is the vibrational quantum number. This shows that a mini-
mum well parameter (γ = π/2) is required to bind the first state 3. For the least-bound
level, vmax, we have,

(vmax +
1
2 )π = Int ( γπ − 1

2 ) (13.53)

and the total number of bound s levels follows with,

Nb = vmax + 1 = Int ( γπ + 1
2 ) . (13.54)

3This conclusion cannot be extended to lower dimensions; in two dimensions bound states appear
for arbitrarily shallow potentials.
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The relation between κ and v for a given vibrational level depends on the ratio κ/K−
and is given by

cotK−r0 = − κ

K−
. (13.55)

Note that this relation corresponds to K−r0 ≃ (vmax+
1
2 )π for the least-bound state
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Figure 13.7: (code) Appearance and increase of binding of the first three bound levels for

increasing well depth. The quadratic dependence near threshold is universal (i.e. independent

of the well shape). The full crossover curve is obtained by numerical solution of Eq. (13.49)

and corresponds to a π/2 phase shift of K+r0 near threshold. The dashed line shows the

increase in well depth.

(κ/K− ≪ 1) and to K−r0 ≃ (vmax + 1)π for deeply bound levels (K−/κ≪ 1), as is
illustrated in Fig. 13.8(a).

13.1.3.3 Weakly bound s-level: halo states

For weakly bound s levels (0 < κr0 ≪ 1) we have K− → κ0 and Eq. (13.49) may be
approximated by

u′0(r)
u0(r)

∣∣∣∣
r=r0

= κ0 cotκ0r0 = −κ , (13.56)

Furthermore, we recall that in the presence of a weakly bound s-level the scattering
length is large and positive, a ≫ r0. From Eq. (13.41) we recall that for k → 0 the
logarithmic derivative also satisfies the relation

u′0(r)
u0(r)

∣∣∣∣
r=r0

= κ0 cotκ0r0 =
1

r0 − a
≃ −1

a
, (13.57)

Interestingly, for a ≫ r0 the logarithmic derivative of the continuum states becomes
independent of r0 and κ0; i.e. it becomes independent of the shape of the potential well.
As we shall see it only depends on the well parameter γ and not on the well shape.
This points to a universal limiting shape of the wavefunction for large scattering
length. As is sketched in Fig. 13.8(b), for decreasing κ the least-bound state turns
into a halo state; i.e. for κr0 ≪ 1 most of the probability of the bound state is found
in the classically inaccessible region outside the potential well, thus surrounding the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LeastBoundStates.m
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potential center like a halo. This behavior holds for arbitrary short-range potentials.

Figure 13.8: Bound states oscillate inside the well and decay exponentially outside the well:
(a) the boundary condition depends on the ratio κ/K−; (b) a slight reduction of the well
depth can turn the least bound state into a halo state.

With Eqs. (13.56) and (13.57) we have obtained two expressions for κ0 cotκ0r0 and
arrive at the conclusion that in the presence of a weakly bound state the scattering
length is given by,

a ≃
κ→0

1/κ . (13.58)

This expression reveals the tight relation between the binding energy of the least-
bound state, given by Eq. (13.29), and the scattering length,

Eb = −
ℏ2κ2

2mr
−→
κ→0
− ℏ2

2mra2
. (13.59)

13.1.3.4 s-wave resonances in the continuum: The Breit-Wigner formula

To obtain the k-dependence of the phase shift for large but otherwise arbitrary well
parameter (γ ≫ 1) we rewrite the boundary condition (13.38) in the form,

η0(k) = −kr0 + arctan
kr0

K+r0 cotK+r0
≡ ηbg + ηres . (13.60)

The first term of (13.60) is called the background contribution to the phase shift
and the second term the s-wave resonance contribution. Note that the background
contribution shows the same phase development as we found in Sec. 13.1.2 for hard
spheres. The phase development of the resonance contribution is shown in Fig. 13.9(a)
for the case of a large well parameter slightly detuned from the threshold value (at
γ = 31.5π ≈ 98.960169) such that the scattering length is negative (∆γ = −0.5).
For potentials with γ ≫ 1 the argument of the arctangent is predominantly small,
kr0/|K+r0 cotK+r0| ≪ 1, because

K+r0 = κ0r0(1 + k2/κ20)
1/2 > γ ≫ 1 . (13.61)

However, the argument of the arctangent diverges when cotK+r0 passes through zero;
i.e. for

K+r0 = (ṽ + 1
2 )π , (13.62)
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Figure 13.9: (code) (a) Resonance contribution to the s-wave phase shift η0(k) for a large

well parameter slightly detuned from the threshold value (at γ = 31.5π), such that the scat-

tering length is negative (∆γ = −0.5): The linear shift of the background contribution is

not included in the plot. Note that the π phase jumps arise from the modulo-π representa-

tion of the arctangent and do not represent an observable phenomenon; the physical phase

increases monotonically and equals ηres =
1
2
(modulo π) at the center of the resonances; (b)

contribution of the resonances to the effective hard sphere diameter a(k) = −η0(k)/k. As

(in this example) the lowest resonance is not close to threshold the resonant enhancement is

small, |ares(k)| = r0 ≪ 1.

where ṽ is an integer called the resonance index. This divergence is observed as a
small resonant enhancement of a(k), as shown in Fig. 13.9(b). The physical phase
is a continuous function of k, which changes by π when sweeping across the reso-
nance. Because the arctangent remains finite for cotK+r0 = 0 also the resonant
phase shift remains finite, having the value ηres(k) =

1
2π (modulo π) at the center of

each resonance.
In the remainder of this section we shall analyze the width and separation of the

s-wave resonances for the case γ ≫ 1. Since K+ ≥ κ0 ≥ K−, we have,

ṽ ≥ γ
π − 1

2 ≥ vmax , (13.63)

which shows that for γ ≫ 1 the value of ṽ is large (ṽmin ≥ ṽmax ≫ 1). Hence, the
resonance numbering starts where the numbering of bound states ends. To discuss
the resonances we denote the wavevectors k and K+ at resonance by kres and Kres ≡√
κ20 + k2res, respectively. The resonance energies εres = k2res satisfy the condition,

εres = K2
res − κ20 = (ṽ + 1

2 )π(
π
r0
)2 − κ20 ≥ 0 . (13.64)

The exceptional case for which the equal sign applies (ṽ = vmax) corresponds to a
resonant bound state (κ = 0) and the resonance is called a resonance at threshold or
zero-energy resonance (kres = 0).

Let us first analyze s-wave resonances for large well parameters (ṽ = vmax) and
far from threshold, (κ = 0). The energy spacing between two subsequent resonances
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Figure 13.10: (code) (a) Transition from bound states to Breit-Wigner s-wave resonances

plotted for ∆γ = −0.5 with respect to the threshold at γ = 31.5π (same conditions as

Fig. 13.9). The bound states are indicated as zero-width spikes at energies ε = −κ2, with

κ following from Eq. (13.49). For ε > 0 the plot is based on Eqs. (13.60). The width of

the resonances increases with the square root of the energy. Note that the band of energies

typical for the quantum gases (kr0 ≪ 1) corresponds to a narrow zone, unresolved on the

energy scale of the plot.

is,

∆εres = ε(ṽ+1)
res − ε(ṽ)res = 2(ṽ + 1)π

2

r20
≃ 2πγ

r20
. (13.65)

To analyze a given resonance we expandK+ cotK+r0 about the point of zero crossing.
For this purpose we introduce the notation,

K+ =
√
κ20 + (kres + δk)2 = Kres +

δk kres
Kres

, (13.66)

where δk = k−kres is called the detuning from resonance. Thus, restricting ourselves
to the low-energy (but not zero energy) s-wave resonances (1 < kresr0 ≪ Kresr0 ≃ γ),
we may approximate K+ cotK+r0 ≃ Kres cotK+r0. Expanding cotK+r0 about the
zero crossing at K+r0 = (ṽ+1/2)π and retaining only the linear term we obtain (see
Problem 3.4),

Kres cotK+r0 = −δk kresr0 . (13.67)

Hence, the diverging argument of the arctangent becomes,

tan ηres =
k

K+ cotK+r0
≃ − 1

δk r0
=
−(k + kres)

(k2 − k2res)r0
≃ −2kres/r0

ε− ε0
. (13.68)

The expansion (13.66) is valid over the full range of the resonant change in phase
provided the following condition holds,

δk r0 ≪
Kres

kres
≃ γ

kresr0
, (13.69)

which is satisfied for the lowest resonances as long as the well parameter is sufficiently
large (γ ≫ kresr0). As long as δk ≪ kres we may further approximate k ≃ kres. With
these approximations and after restoring the dimensions, Eq. (13.68) can be written
as a function of the energy E = ℏ22k2/2mr,

tan ηres =
k

K+ cotK+r0
≃ −Γ2

ε− εres
, (13.70)
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where
Γ/2 = 2kres/r0 (13.71)

is called the spectral width of the resonance. Comparing the expressions for Γ and
∆Eres we find that for given r0 the width Γ is independent of γ, whereas the resonance
spacing is proportional to γ . Thus, only for sufficiently large well parameters (γ ≫ 1)
the spectral width becomes smaller than the resonance spacing,

Γ≪ ∆εres ⇐⇒ kresr0 ≪ πγ . (13.72)

Knowing the tangent of ηres, we readily obtain the sine and Eq. (13.70) is replaced by
the Breit-Wigner formula,

sin2 ηres =
(Γ/2)2

(ε− ε0)2 + (Γ/2)2
. (13.73)

For optical resonances this energy dependence is known as the Lorentz lineshape. Note
that Γ corresponds to the full-width-at-half-maximum (FWHM) of this line shape.
The lowest energy resonances are plotted in Fig. 13.10 along with the highest-energy
bound states.

The resonance near threshold (almost bound level) deserves special attention,
as this type of resonance is the only one that can play an important role within the
band of energies relevant for the quantum gases (kr0 ≪ 1). Fig. 13.10 shows that near
the threshold (at γ = 31.5π) the resonance narrows down and becomes asymmetric,
which means that the Breit-Wigner lineshape is lost. Using Eq. (13.54) we calculate
ṽ = 31. The narrow line is reminiscent of a bound level but the scattering length is
negative (see Fig. 13.10). Under these conditions the wavefunction has a virtual node
at r = −|a| (see Fig. 13.29). Accordingly, the level is called a virtual level and the
wavefunction is said to represent a virtual bound state. In analogy with the bound
states its energy is written as ε = κ2res, where κ is to be defined later.

13.1.4 Other types of potentials

13.1.4.1 Zero-range potentials

An important model potential is obtained by considering a spherical well in the zero-
range limit r0 → 0. As illustrated in Fig.13.11, it is possible to construct a zero-range
well in such a way that the long-range properties of the wavefunction are unaffected;
i.e. the scattering length a and the binding energy ε = −κ2 of the least-bound state
remain unchanged.

For E < 0 this can be demonstrated with the aid of the boundary condition
(13.49),

−κ = K− cotK−r0 . (13.74)

Reducing the radius r0 the value of the binding energy ε = −κ2, can be conserved by
increasing κ0. In the limit r0 → 0 the well depth should diverge in accordance with,

− κ

K−
= cotK−r0 → 0 . (13.75)

This condition is satisfied for K−r0 ≃ π/2. To elucidate this point we consider the
least-bound level with vibrational quantum number v = vmax, for which K−r0 =
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Figure 13.11: Wavefunctions corresponding to the same binding energy (ε = −κ2) plotted
for three different values of r0. Outside r0 the wavefunctions fall off exponentially, always
with the same decay exponent κ; this is the essence of the Bethe-Peierls boundary condition.
The dashed lines show the extrapolation for r → 0. (a) reference case; (b) for κr0 ≪ 1 most
of the probability density of a bound state is found outside the well (halo state); (c) for
zero-range potentials (κr0 = 0) the oscillating part of the wavefunction is compressed into
a delta function and only the decaying exponent remains (universal limit). Note that these
wavefunctions do not share the same normalization.

(vmax + 1/2)π. Reducing r0 by a factor of 2 the wavenumber K− has to be doubled
to conserve the number of nodes in the wavefunction (i.e. to conserve vmax). This
means that the kinetic energy inside the well has to increases by a factor 4. Since for
the least-bound level we have K−r0 ≃ γ, it means that in this case the binding energy
can be conserved at effectively constant well parameter. Obviously, the freedom to
conserve (for decreasing r0) the binding energy of one of the levels can only be used
once. It does not hold for the other levels because the level separation diverges with
κ0. In the zero range limit the potential only supports a single bound state and the
wavefunction of that state is given by,

R0(r) = c0
e−κr

r
for r > 0 , (13.76)

and with κ > 0. Unit normalization,
∫
r2R2

0(r)dr = 1, is obtained for c0 =
√
2κ. For

E > 0 we can arrive at the same conclusion. The boundary condition for k →0 and
given value of r0 is given by Eq. (13.41), which we write in the form,

1

r0 − a
= κ0 cotκ0r0 . (13.77)

Reducing the radius r0, the scattering length a can be conserved by increasing κ0. In
the limit r0 → 0 the well depth should diverge in accordance with,

− 1

κ0a
= cotκ0r0 → 0 . (13.78)

This is again satisfied for κ0r0 ≃ π/2. In the zero-range limit the radial wavefunction
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for k → 0 is given by,

R0(k, r) =
1

kr
sin[k(r − a)] for r > 0 , (13.79)

which implies R0(k, r) ≃ 1− a/r for 0 < r ≪ 1/k.

13.1.4.2 Bethe-Peierls boundary condition

Note that Eq. (13.76) is the solution for E < 0 of the 1D-Schrödinger equation in the
zero-range approximation,

u′′0 − κ2u0 for r > 0 , (13.80)

under the boundary condition,

u′0
u0

∣∣∣∣
r→0

= −κ . (13.81)

The latter relation is called the Bethe-Peierls boundary condition and was first used
to describe the deuteron, the weakly bound state of a proton with a neutron [?]. It
shows that for weakly bound states the wavefunction has the universal form of a halo
state, which only depends on the binding energy, ε0 = −κ2 (see Fig. 13.11).

For E > 0 the 1D-Schrödinger equation in the zero-range approximation is given
by,

u′0 + k2u0 = 0 for r > 0 . (13.82)

The general solution is u0(k, r) = c0 sin[kr + η0]. Using the Bethe-Peierls boundary
condition we obtain,

k cot η0(k) = −κ , (13.83)

which yields after substituting η0(k → 0) ≃ −ka the universal relation between the
scattering length and the binding energy in the presence of a weakly bound s-level,
ε0 = −κ2 = −1/a2.

13.1.4.3 Power-law potentials

The general results obtained in the previous sections presumed the existence of a finite
range of interaction, r0. Thus far this presumption was based only on the heuristic
argument presented in Sec. ??. To derive a proper criterion for the existence of a
finite range and to determine its value r0 we have to analyze the asymptotic behavior
of the interatomic interaction [605]. For this purpose we consider potentials of the
power-law type,

V (r) = −Cs
rs

, (13.84)

where Cs = V0r
s
c is the power-law coefficient, with V0 ≡ |V (rc)| ≡ ℏ2κ2c/2mr the well

depth. These power-law potentials are important from the general physics point of
view, because they capture major features of interparticle interactions.

For power-law potentials, the radial wave equation (13.6) takes the form,

R′′
ℓ +

2

r
R′
ℓ +

[
k2 +

κ2cr
s
c

rs
− ℓ(ℓ+ 1)

r2

]
= 0 . (13.85)
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Figure 13.12: (code) Dependence of the scattering length on the potential depth.

Because this equation can be solved analytically in the limit k → 0 it is ideally suited
to analyze the conditions under which the potential V (r) may be neglected and thus
to determine r0. To solve Eq. (13.85) we look for a clever substitution of the variable
r and the function Rℓ(r) to optimally exploit the known r dependence of the potential
in order to bring the differential equation in a well-known form. To leave exibility in
the transformation we search for functions of the type,

Gℓ(x) = r−νRℓ(r) , (13.86)

where the power ν is to be selected in a later stage.

13.1.4.4 Computation of the scattering length

The scattering length depends on the binding energy Ev of weakly bound states. If a
is positive and much greater than the range of the potential, then [342, 290] (13.59),

Ev = −
ℏ2

2mra2
. (13.87)

More precisely, for a potential behaving at long range as,

V = −C6

R6
, (13.88)

we get,

Ev = −[(vD − v)H(mr, C6)]
−1/3 , (13.89)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_TuneScattlengthSimul.m
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where vD is the vibrational quantum number at the dissociation limit and H a con-
stant. Also,

a =
Γ(3/4)

2
√
2Γ(5/4)

(
2µC6

ℏ2

)1/4 [
1− tanπ(vD + 1

2 )
]
. (13.90)

13.1.4.5 Second method

It yields for γ = α, β,
d2

dR2 εγ(R) = 2mrV (R)εγ(R) . (13.91)

Successive approaches start with ε
(0)
α = R and ε

(0)
β = 1 and get superior orders via,

d2

dR2 ε
(k+1)
γ (R) = 2mrV (R)ε(k)γ (R) . (13.92)

We define δ
(k)
γ ≡ ε(k)γ − ε(k−1)

γ starting with δ
(0)
γ = ε

(0)
γ , such that,

d2

dR2 δ
(k+1)
γ (R) = 2mrV (R)δ(k)γ (R) . (13.93)

δα(R → ∞) = δβ(R → ∞) = 0. Since εα = limk→∞ ε
(k)
α , the wavefunction is thus

obtained from,

U(R) = α(1 + δ(1)α + δ(2)α + ..) + β(R+ δ
(1)
β + δ

(2)
β + ..) . (13.94)

This long-range expression must match the short-range value at a certain point R0:

U(R0) = αεα(R0) + βεβ(R0) . (13.95)

U ′(R0) = α d
dRεα(R0) + β d

dRεβ(R0)

and

a = −β
α

=
U(R0)

d
dRεα(R0)− U ′(R)εα(R0)

U(R0)
d
dRεβ(R0)− U ′(R)εβ(R0)

=

d
dR

εα(R0)
U(R0)

d
dR

εβ(R0)
U(R0)

. (13.96)

Let us consider a specific potential,

V (R) =
1

2
BRmre−ηR −

(
C6

R6
+
C8

R8
+
C10

R10

)
fc(R) (13.97)

fc(R) = θ(Rc −R)e−(Rc/R−1)2 + θ(R−Rc) .

At very long range we have V (R) ≃ −C6

R6 , such that,

δ(k+1)
γ =

∫ R

0

2mrV δ
(k+1)
γ dR = δ(k)γ (∞)−

∫ ∞

R

−2mrC6

R6
δ(k)γ dR (13.98)

= 2mrC6

∫ ∞

R

δ
(k)
γ

R6
dR .

In particular,

δ(1)α = 2mrC6
−1
4R4

, δ(2)α = (2mrC6)
2 −1
4 · 9R9

(13.99)

δ
(1)
β = 2mrC6

1

5R5
, δ

(2)
β = (2mrC6)

2 1

5 · 10R10
.
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13.1.4.6 Third method

To estimate the scattering length for a particular interaction consult [549, ?, 638].
Following [549] we write the Schrödinger equation in atomic units as,

d2U

dR2
= 2mrV (R)U(R) . (13.100)

The ansatz U(R) = αεα(R) + βεβ(R) with εα(R → ∞) = R and εβ(R → ∞) = 1
shows that a = −β/α is the desired scattering length.

13.1.4.7 Fourth method

The equation for the accumulated phase follows from the Schrödinger equation,

ϕ(r0) ≡
∫ r0

∞
k(r)dr (13.101)

k2(r) =
2mr

ℏ2

√
E − V (r)− ℏ2l(l + 1)

2mrr2
.

According to [638] we start resolving,

d

dR
δk,0(R) = −k−1V (R) sin2[kR+ δk,0(R)] . (13.102)

13.1.4.8 Pseudo potentials

As in the low-energy limit (k → 0) the scattering properties only depend on the
asymptotic phase shift it is a good idea to search for the simplest mathematical
form that generates this asymptotic behavior. The situation is similar to the case of
electrostatics, where a spherically symmetric charge distribution generates the same
far field as a properly chosen point charge in its center. Not surprisingly, the suitable
mathematical form is a point interaction. It is known as the pseudo potential and
serves as an important theoretical Ansatz at the two-body level for the description of
interacting many-body systems [276, 410]. The existence of such pseudo potentials is
not surprising in view of the zero-range square well solutions discussed in Sec. 13.6.2.

As the pseudo potential cannot be obtained at the level of the radial wave equation,
we return to the full 3D Schrödinger equation for a pair of free atoms,

(∇2 + k2)ψk(r) = 0 , (13.103)

where k =
√
2mrE/ℏ2 is the wavenumber for the relative motion. Restricting our-

selves to s-wave collisions we derived earlier the solution of this equation as being
given by ψk(r) = c0

kr sin kr. However, we are now looking a solution of the type
(13.37), which includes a phase shift η0,

ψk(r) =
c0
kr

sin(kr + η0) . (13.104)

Inserting this expression into the wave equation (13.103) we encounter the problem
that the solution is irregular in the origin when η0 ̸= 0. Apparently, we need to
complement the wave equation by a (pseudo-)potential to remove this problem.
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Our claim is now that the operator,

− 4π

k cot η0
δ3(r)

∂

∂r
r (13.105)

is the wanted s-wave pseudo potential Ṽ (r). That is, the wave equation,

(
∇2 + k2 +

4π

k cot η0
δ3(r)

∂

∂r
r

)
ψk(r) = 0 (13.106)

lets the phase-shifted wavefunction (13.104) be regular at the origin.
The presence of the delta function makes the pseudo-potential act as a boundary

condition at r = 0,

4πδ3(r)

k cot η0

[
∂

∂r
rψk(r)

]

r=r0

= 4πδ3(r)
c0
k

sin η0 (13.107)

= −4πδ3(r)c0
k

sin(ka) ≃
k→0
−4πac0δ3(r) ,

where we used the expression for the s-wave phase shift, η0 = −ka. This is the
alternative boundary condition we were looking for. Substituting this into Eq. (13.106)
we obtain the inhomogeneous equation

(∇2 + k2)ψk(r) ≃
k→0
−4πac0δ3(r) . (13.108)

This inhomogeneous equation has the solution (13.104), as demonstrated in Exc. 13.1.5.4.
For functions f(r) with regular behavior in the origin we have 4,

[
∂

∂r
rf(r)

]

r=0

= f(0) + r

[
∂

∂r
f(r)

]

r=0

= f(0) , (13.109)

and the pseudo potential takes the form of a delta function potential 5,

Ṽ (r) = − 4π

k cot η0
δ3(r) ≃

k→0
4πaδ3(r) , (13.110)

or, equivalently, restoring the dimensions,

V (r) =
g

2
δ3(r) with g =

4πℏ2

mr
. (13.111)

4Note that the wavefunction ψk is irregular,

δ3(r)
∂

∂r
[rψk(r)] = δ3(r)

∂

∂r

(
r
c0 sin(kr + η0)

kr

)
= δ3(r)c0 cos[k(r − a)] =

k→0
c0δ

3(r) .

On the other hand,

δ3(r)
∂

∂r
[rψk(r)] = δ3(r)

c0 sin(kr + η0)

kr
= δ3(r)

c0 sin[k(r − a)]

kr
=
k→0

c0δ
(3)(r)[1− a

r
] .

5Note that the dependence on the relative position vector r rather than its modulus r is purely
formal as the delta function restricts the integration to only zero-length vectors. This notation is used
to indicate that normalization involves a 3-dimensional integration,

∫
δ3(r)d3r. Pseudo potentials

do not carry physical significance but are mathematical constructions that can chosen such that they
provide wavefunctions with the proper phase shift.
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This expression, for na3 ≪ 1 valid in the zero energy limit, is convenient for calculating
the interaction energy, as will be shown in Sec. ??.

13.1.4.9 Coupling of potentials

When molecular potentials cross and couple via collisions, via radiative coupling, or
via a Feshbach resonance (cf. Sec. 13.4.2), new adiabatic potentials are formed. These
are obtained as the r-dependent eigenvalues of the coupling Hamiltonian,

Ĥcpl =

(
V1(R) Ω

Ω V2(R)

)
. (13.112)

Such calculations are known as coupled channels calculations.

r

V

Figure 13.13: (code) The coupling of molecular potentials (solid lines) generates new adia-

batic potentials (dash-dotted lines).

13.1.5 Exercises

13.1.5.1 Ex: Asymptotic radial function for hard-sphere potentials

Using asymptotic expressions for the Bessel and von Neumann functions derive the
radial function Rℓ(k, r) for the two limiting cases ka≪ 1 and ka≫ 1.

13.1.5.2 Ex: s-wave collision on flat bottom potentials

Simplify the scattering matrix (13.35) for the collisional flat bottom potential for the
case of s-wave collisions.

13.1.5.3 Ex: Equivalence of boundary conditions

Show that the radial wavefunction Rℓ and uℓ satisfy equivalent boundary conditions
at the surface of the spherical box potential.

13.1.5.4 Ex: Derivation of a linear expansion

Derive the linear expansion (13.67).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_CoupledPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_CoupledPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms04.pdf
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13.1.5.5 Ex: Pseudo-potential for s-wave scattering

Verify the equation (∇2 + k2)ψk(r) = 4πδ3(r) 1k sin η0 by direct substitution of the
solution (13.104) setting c0 = 1.

13.2 Scattering theory

In this chapter we discuss scattering by time independent potentials satisfying rV (r →
∞)→ 0, that is short-range potentials. Such a potential may have attractive regions
supporting bound states with energy E < 0. Here, however, we only consider states
E > 0. Since the potential is supposed independent of time, ∂tĤ = 0, we will focus
on time-independent problems,

Ĥψk(r) = Ekψk(r) , (13.113)

with Ĥ = p2/2m + V (r) and Ek = ℏ2k2/2m. The boundary conditions are given
by the scattering geometry in such a way that at long distances the wavefunction
behaves as (see Fig. 13.14),

ψk(r) ∼ eık·r + fk(Ω)
eıksr

r
. (13.114)

For elastic scattering processes we have ks = k. The scattering amplitude fk(Ω)
depends on the energy Ek and on the scattering solid angle. Experimentally, we
scatter individual particles described by wave packets. Since the scattering theory is
linear, we can describe the packets by superpositions of stationary solutions ψk

6.

Figure 13.14: Scattering of incident light (wavevector k0) by a potential V .

13.2.1 Lippmann-Schwinger equation

In order to consider the example of two particles involved in a collision we may go
into the center-of-mass system (using reduced masses), fix the origin of the coordinate
system on one of the particles, and analyze the trajectory of the second particle inside
the interaction potential.

The scattering theory is based on Green’s method, which we already know from
electrostatics. So, let us start of a brief reminder of the use of the Green’s function
as a method to solve electrostatic problems.

6Note that k is not a quantum number, since ψk contains momentum components ̸= k.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms05.pdf
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Example 73 (Green’s method in electrostatics): From Maxwell’s third
equation we obtain,

∇2ϕ(r) = −ε−1
0 ρ(r) .

Being defined by,

∇2G(r) = δ3(r) ,

the Green function is,

G(r) =
−1
4π

1

|r| .

With this, we find the solution of the Maxwell equation,

ϕ(r) =
(
−G ⋆ ε−1

0 ρ(r)
)
(r) = − 1

ε0

∫
V

ρ(r0)G(r−r0)d3r0 =
1

4πε0

∫
V

ρ(x)

|r− x|d
3x ,

known as Poisson’s law.

13.2.1.1 Green’s method in quantum mechanics

Green’s method can be used to solve Schrödinger’s equation with the boundary condi-
tion (13.114). We start from the reduced stationary Schrödinger equation (13.113) [813],

(∆ + k2)ψk(r) =
2m
ℏ2 V (r)ψk(r) . (13.115)

This equation is not a common eigenvalue problem, since any energy Ek generates a
solution. The equation (13.115) is a partial inhomogeneous differential equation with
the left side describing free propagation and the right side describing a source that
depends on the solution. Such differential equations are usually solved using Green’s
functions. We choose a point source and we solve,

(∆ + k2)G(r, k) = δ3(r) , (13.116)

along with the boundary conditions. The solution takes the form [88],

G(r, k) = − 1

4π

eık|r|

|r| , (13.117)

such that,

ψk(r) = eık·r +
(
G ⋆ 2m

ℏ2 V ψk

)
(r) = eık·r + 2m

ℏ2

∫

V

d3r′G(r− r′, k)V (r′)ψk(r
′) .

(13.118)
The equation (13.118) is called Lippmann-Schwinger equation. Of course, this equa-
tion does not solve, but only reformulate the problem taking into account the bound-
ary conditions. It is more appropriate for an implementation of approximations. See
Exc. 13.2.7.1 and 13.2.7.2.

Now let us consider the far field, r → ∞, to verify the asymptotic behavior and
find an expression for fk(Ω) as a function of V (r). For r →∞ we can approximate

k|r− r′| = kr
√
(êr − r′/r)2 = kr

√
1− 2êr · r′/r + (r′/r)2 ≃ kr − k′ · r′ ≃ kr ,

(13.119)
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with k′ ≡ kêr. With this the Lippmann-Schwinger equation (13.118) becomes,

ψ(r)→ eık·r − 2m

ℏ2

∫

V

1

4π

eık|r−r′|

|r− r′| V (r′)ψ(r′)d3r′ (13.120)

= eık·r − 2m

4πℏ2
eıkr

kr

∫

V

e−ık
′·r′V (r′)ψ(r′)d3r′ ≡ ψin + fk(Ω)

eıkr

r
,

giving, in comparison with the expression (13.114), the scattering amplitude,

fk(Ω) =
2m

4πℏ2

∫

V

e−ık
′·r′V (r′)ψ(r′)d3r′ . (13.121)

Starting from the wavefunctions ψin ≡ eık·r and ψs ≡ fk(Ω)eıkr/r we can calculate
the current densities,

Jin =
ℏ

2mı
(ψ†

in∇ψin − c.c.) =
ℏk
m

(13.122)

Js =
ℏ

2mı
(ψ†
s∂rψs − c.c.)êr =

ℏk′

m

1

r2
|fk(Ω)|2 +O(r−3) .

The number dI(Ω) of particles scattered per second into the solid angle dΩ is
simply dI(Ω) = |Js|r2dΩ. With this we can calculate the differential effective cross
section defined by the ratio between dI(Ω) and the number |Jin| of incident particles
per second,

dσ

dΩ
≡ dI(Ω)

|Jin|dΩ
= |fk(Ω)|2 . (13.123)

Finally we define the total effective cross section,

σ =

∫
dΩ|fk(Ω)|2 . (13.124)

13.2.2 Wave packets

We now let a wave packet defined at a time t = t0,

ψ(r, t0) =

∫
d3k

(2π)3
ake

ık·r , (13.125)

impinge on a scattering potential. The amplitude ak be concentrated around k0,
such that the wave packet approaches the scatterer with the velocity v0 = ℏk0/m.
The time evolution of the wavefunction ψ(r, t) determines the signal measured by a
detector at a later time t = t0. Our task is to determine ψ(r, t > t0). The scattered
states ψk solving the Schrödinger equation (13.113) are complete in the space of the
extended wavefunctions, and we can write the temporal evolution as,

ψ(r, t) =

∫
d3k

(2π)3
Akψk(r)e

−ıEk(t−t0)/ℏ . (13.126)
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At time t0 the results (13.125) and (13.126) must match. To verify this, we write
(13.125) replacing the plane wave eık·r using the Lippmann-Schwinger equation (13.118)
with Green’s function (13.117), and then we compare the coefficients,

ψ(r, t0) =

∫
d3k

(2π)3
ak

[
ψk(r) +

m

2πℏ2

∫
d3r′

eık|r−r′|

|r− r′| V (r′)ψk(r
′)

]
. (13.127)

The scattering process is illustrated in Fig. 13.15. To simplify the calculation of the

Figure 13.15: Scattering of wave packet at a potential.

second term in this equation, we assume that ψk is smooth, that is, there are no
resonances, such that we can approximate, ψk ≃ ψk0

. With k ≃ k · êk0 we obtain,
∫

d3k

(2π)3
ake

ık|r−r′|ψk(r
′) =

∫
d3k

(2π)3
ake

ık·(êk0
|r−r′|)ψk0

(r′) (13.128)

(13.125)
= ψ(êk0 |r− r′|, t0)ψk0(r

′) .

Here, ψ(êk0 |r− r′|, t0) is the incident wave package evaluated to the right, where by
definition it is ≃ 0. The expression (13.127) therefore has the form,

ψ(r, t0) =

∫
d3k

(2π)3
akψk(r) , (13.129)

and a comparison of the coefficients with (13.126) gives, Ak = ak. Finally, we evaluate
ψ(r, t) at the time of detection t > t0 to understand, that the above stationary analysis
is actually physically correct. According to (13.126) we have,

ψ(r, t) =

∫
d3k

(2π)3
Akψk(r)e

−ıEk(t−t0)/ℏ (13.130)

(13.120)(13.125)≃ ψ0(r, t) +

∫
d3k

(2π)3
ak
eıkr

r
fk(Ω)e

−ıEk(t−t0)/ℏ .

Hence, ψ0(r, t) describes the evolution of the wave packet without scatterer,

ψ0(r, t) =

∫
d3k

(2π)3
ake

ık·r

︸ ︷︷ ︸
ψ(r,t0)

e−ıEk(t−t0)/ℏ . (13.131)

If fk it’s smooth around k = k0, which allows us to place this amplitude (fk ≃ fk0)
in front of the integral, and with k ≃ k · k̂0 we obtain,

ψ(r, t)
t large
=⇒ ψ0(r, t)︸ ︷︷ ︸

packet not scattered

+
fk0(Ω)

r
ψ0(k̂0r, t)

︸ ︷︷ ︸
packet scattered

. (13.132)
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The scattering process is illustrated in Fig. 13.15: According to the last equation
the scattering process involves the superposition of the non-scattered packet and a
packet scattered in the direction Ω. The latter involves the amplitude Ψ0(k̂0r, t) of
a packet propagating in forward direction, which only needs to be evaluated at the
right time and distance. This packet will then be multiplied with the amplitude
describing the angular dependency fk0 ; the angle, therefore, only appears through
this amplitude and not in the wavefunction ψ0. In two situations the above analysis
can not be applied :

• when V is long-ranged, f.ex., V = 1/r,

• when the incident energy Ek is resonant.

13.2.3 Born approximation

The Lippmann-Schwinger equation suggests the following perturbative iteration called
Born series [88],

ψ(r) = ψin(r) +
(
G ⋆ 2m

ℏ2 V ψ
)
(r) (13.133)

= ψin(r) +
2m
ℏ2 (G ⋆ V ψin)(r) +

(
2m
ℏ2

)2
[G ⋆ V (G ⋆ V ψin)](r)

= ψin(r) +
2m
ℏ2

∫

V

G(r− r′)V (r′)ψin(r
′)d3r′

+
(
2m
ℏ2

)2 ∫

V

G(r− r′)V (r′)G(r− r′′)V (r′′)ψin(r
′′)d3r′d3r′′ .

In the so-called Born approximation we consider only the first perturbation order,
and inserting a plane wave, ψin(r) = eıkz/(2π)3/2, we obtain,

ψ(r) =
eıkz

(2π)3/2
− m

(2π)3/22πℏ2

∫

V

eık|r−r′|

|r− r′| V (r′)eıkz
′
d3r′ . (13.134)

The asymptotic behavior r ≫ r′, it follows with (13.119) using z′ = r′ ·êz and defining
ks = kêr and ki = kêz,

ψ(r) ≃ eıkz

(2π)3/2
− m

(2π)3/22πℏ2

∫

V

eık(r−r·r′/r)

r
V (r′)eık·r

′
d3r′ (13.135)

=
eıkz

(2π)3/2
+

m

(2π)3/22πℏ2
eıkr

r

∫

V

V (r′)eı(ki−ks)·r′d3r′

≡ 1

(2π)3/2

(
eıkz +

eıkr

r
f(ki, ks)

)
,

with

f(ki, ks) ≡
m

2πℏ2

∫

V

V (r′)eı(ki−ks)·r′d3r′ = − m

2πℏ2
⟨ks|Ṽ |ki⟩ .
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13.2.4 Spherical potentials

For spherically symmetric scattering potentials, V (r) = V (r), the Hamiltonian Ĥ =
p2/2m+ V (r) commutes with the rotation operators Uω⃗ = e−ıω⃗·L/ℏ around any axis
êω⃗. Therefore, we can separate the angular problem and decompose the scattering
problem following the irreducible representations of the rotation group. This partial
wave decomposition can be written,

ψk(r) =

∞∑

ℓ=0

(2ℓ+ 1)ıℓPℓ(cos θ)Rl(r) , (13.136)

where the factor (2ℓ + 1)iℓ is a convention facilitating the calculation later on. By
inserting this separation ansatz for the radial and angular variables into the stationary
Schrödinger equation (13.113), we obtain the radial Schrödinger equation,

[
∂2

∂r2
− ℓ(ℓ+ 1)

r2
+ k2

]
rRℓ(r) =

2m

ℏ2
V (r)rRℓ(r) , (13.137)

where ψk must satisfy the boundary conditions (13.114). Fortunately, we can also
expand the incident wave by partial waves 7,

eıkz = eır cos θ =

∞∑

ℓ=0

(2ℓ+ 1)ıℓjℓ(kr)Pℓ(cos θ) . (13.138)

We now use the result (13.138) to find the boundary conditions for the radial

waves Rℓ. In the infinity we have rV (r)
r→∞−→ 0. For this reason,

Rℓ(r)
r→∞−→ αℓ[h

(2)
ℓ (kr) + sℓh

(1)
ℓ (kr)] , (13.139)

where the Hankel functions h
(1,2)
ℓ (kr) ∼ e±ı(ρ−(ℓ+1)π/2) describe, respectively, incident

(h
(2)
ℓ ) and outgoing (h

(1)
ℓ ) spherical waves.

To determine the coefficients αℓ and sℓ we note first that, without potential,
V (r) = 0, the solution of the radial equation (13.137) is known,

Rℓ(r) = jℓ(kr) =
1
2 [h

(2)
ℓ (kr) + h

(1)
ℓ (kr)] , (13.140)

such that αℓ =
1
2 and sℓ = 1. For V (r) ̸= 0 the incident wave h

(2)
ℓ is the same, but

not the incident h
(1)
ℓ , which results in sℓ ̸= 1. However, particle number conservation

requires that the number of particles entering the potential is equal to the number of
particles coming out. That is, the total radial flow must be,

0 = jℓr(r) =
ℏ

2ım
[R∗
ℓ∂rRℓ −Rℓ∂rR∗

ℓ ] =
ℏ

4mkr2
[|sℓ|2 − 1] , (13.141)

7For the more general case of arbitrary vectors k e r, we use the addition theorem for Yℓm and
express Pℓ(cos θ) by spherical functions,

eık·r = 4π

∞∑
ℓ=0

ℓ∑
m=−ℓ

ıℓjℓ(kr)Y
∗
ℓm(Ωk)Yℓm(Ωr) .
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approximating 2Rℓ ≃ e−ı(kr+wℓ)

kr + sℓ
eı(kr+wℓ)

kr . Hence, |sℓ| = 1, that is,

sℓ = e2ıδℓ(k) , (13.142)

where δℓ(k) is the scattering phase. The scattering phase determines the solution
of the scattering problem, because it fixes the scattering amplitude: Evaluating the
solution (13.136) in the asymptotic limit by the formula (13.138),

ψk(r) ∼ 1
2

∞∑

ℓ=0

(2ℓ+ 1)ıℓPℓ(cos θ)[h
(2)
ℓ (kr) + e2iδℓh

(1)
ℓ (kr)] (13.143)

= eık·r + 1
2

∞∑

ℓ=0

(2ℓ+ 1)ıℓPℓ(cos θ)[e
2ıδℓ − 1]h

(1)
ℓ (kr) = eık·r + fk(θ)

eıkr

r
,

we obtain the scattering amplitude in the form 8

fk(θ) =
1
k

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ)e
ıδℓ sin δℓ . (13.144)

We call
e2ıδℓ − 1

2ik
=
eıδℓ sin δℓ

k
≡ fℓ (13.145)

the amplitude of the partial wave [858, 111].

13.2.5 Scattering phase and length

In summary, we can, within the Born approximation, express the collisional state of
any type of particles by isotropic potentials,

ψ(r) ∼ eık·r + eıkr

r
fk(Ω) . (13.146)

The scattering cross section can be written,

σ =

∫
dΩ|fk(Ω)|2 = 1

k2

∫
dΩ|

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ) sin δℓ|2 (13.147)

=
4π

k2

∑

ℓ

(2ℓ+ 1) sin2 δℓ = 4π
∑

ℓ

(2ℓ+ 1)|fℓ|2 .

The quantity

σℓ =
4π

k2
(2ℓ+ 1) sin2 δℓ =

4π

k2
(2ℓ+ 1)|fℓ|2 (13.148)

is called effective partial cross section. Obviously, σℓ ≤ 4π
k2 (2ℓ + 1) holds. The phase

shift e2iδℓ has a simple physical interpretation: We consider the function,

eıδℓjℓ(kr + δℓ) =
eıδℓ
2 [h

(2)
ℓ (kr + δℓ) + h

(1)
ℓ (kr + δℓ)] (13.149)

∼ eıδℓ

2

[
(−ı)ℓei(kr+δℓ)

kr + δℓ
+

(+ı)ℓe−ı(kr+δℓ)

kr + δℓ

]
kr≫δℓ−→ 1

2 [h
(2)
ℓ + e2ıδℓh

(1)
ℓ ] ∼ Rℓ .

8With h
(1)
ℓ ∼ (−ı)ℓ+1 eıkr

kr
.
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Now comparing the case V = 0 giving Rℓ(r) = jℓ(kr) with the case V ̸= 0 giving
Rℓ(r) ∼ eıδℓjℓ(kr + δℓ), we notice that a positive displacement, δℓ > 0, pulls the
wavefunction into the potential, while a negative displacement, δℓ < 0, pushes the
wavefunction out, as illustrated in Fig. 13.16.

Figure 13.16: Phase shift δℓ(k) of the scattered wavefunction. (a) An attractive potential
increases the kinetic energy and the wavefunction oscillates faster, which causes a positive
phase shift and a negative scattering length. (b) A repulsive potential slows down the wave-
function oscillation and produces a positive scattering length. (c,d) In an attractive potential
deep enough to support vibrational states, the wavefunction performs several oscillations.
The sign of the scattering length then depends on the distance of the last bound state to
the continuum.

13.2.6 Optical theorem

Consider the amplitude for forward scattering f(0) by writing its imaginary part as,

Im f(0) = 1
k

∑

k

(2ℓ+ 1)Pℓ(cos θ) sin
2 δℓ
∣∣
θ=0

= 1
k

∑

k

(2ℓ+1) sin2 δℓ ≡
k

4π
σ . (13.150)

With this we obtain the optical theorem,

σ = 4π
k Im f(0) . (13.151)

The deeper meaning of the optical theorem is the conservation of particle number:
The flux of scattered particles, (ℏk/m)σ = Isct, must be extracted from the incident
flux I0 by scattering, and therefore, is missing in the forward direction. It is the
interference of the scattered wave with the incident wave, which diminishes the non-
scattered wave and therefore creates a shadow of the scatterer in the forward direction.
The particles missing in the shadow of the scatterer are precisely those that have been
scattered. This is the message of the optical theorem, which is always valid in the
absence of possible (inelastic) processes leading to trapping or a transformation of the
particles.
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Table 13.1: List of scattering length for various alkaline species.

Element amixeds atriplets atripletp BFB,s−wave BFB,p−wave
[aB] [aB] [aB] [ G] [ G]

1H 1.23
2H −6.8
6Li −35 160, 186, 215
7Li 10 −27.3

23Na 52 85
39K 118 81.1
40K 158 1.7 −100 200 200
41K 225 286
85Rb −450 −363 156
87Rb 105 109.3 685.43, 911.74, 1007.34
133Cs −240 −350
135Cs 163 138

13.2.6.1 Born approximation for the scattering phase

The scattering problem can be considered as solved when we know the scattering
amplitude fk(θ), since this quantity gives us the flux measured by the detector. Now,
fk(θ) is known, when we know the scattering phases δℓ,k. These are, in general,
determined by integrating the radial equation (13.137). Here, we expect that only
angular momenta ℓ < kR0 (R0 is the range of potential) produce significant phase
shifts. Particles with larger angular momenta have collision parameters b ∼ ℓ/k
out of the potential reach. We notice that partial s-waves are always scattered,
whereas partial p-waves (or higher) are only weakly scattered when the energy is
weak, E < ℏ2/2mR2

0. In these cases an approximate calculation of δℓ is sufficient:

We insert (13.136) and eıkz =
∑
ℓ
1
2

√
4π(2ℓ+ 1)

∫ 1

−1
dzPℓ(z)e

ikz into (13.121) and
integration over Ω′ yields,

fk(θ) =
2m

4πℏ2

∫

V

e−ık
′·r′V (r′)ψ(r′)d3r′ (13.152)

= − 2m
ℏ2

∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)

∫ ∞

0

dr r2V (r)jℓ(kr)Rℓ(r) .

Comparing this formula with (13.144) we find,

eıδℓ sin δℓ = − 2mk
ℏ2

∫ ∞

0

dr r2V (r)jℓ(kr)Rℓ(r)
Rℓ≃jℓ≃ − 2mk

ℏ2

∫ ∞

0

dr r2V (r)j2ℓ (kr) .

(13.153)
The result (13.153) is the Born approximation for the scattering phase δℓ(k). Note
that Rℓ ≃ jℓ is not a good approximation, in ranges where V is large and Rℓ strongly
suppressed (f.ex., inside hard cores). For ℓ large we have jℓ ∼ rℓ, and δℓ is small for
a limited potential V (r).



480 CHAPTER 13. COLLISIONS

13.2.6.2 Analyticity of sℓ(E)

We consider a short-range potential that disappears at r > R0. The radial solution
out of the reach of the potential will then be given by,

Rℓ(r) =
1
2 [h

(2)
ℓ (kr) + sℓh

(1)
ℓ (kr)] , (13.154)

while for r < R0 the solution Rℓ must be found by integrating the radial equation
(13.137). The scattering phase sℓ must be chosen in a way that Rℓ and ∂rRℓ be
continuous at R0. The normalization factor vanishes in the logarithmic derivative,
such that,

γℓ ≡ ∂r lnRℓ|R−
0
=

1

Rℓ

∂Rℓ
∂r

∣∣∣∣
R−

0

=
∂rh

(2)
ℓ + sℓ∂rh

(1)
ℓ

h
(2)
ℓ + sℓh

(1)
ℓ

∣∣∣∣∣
R+

0

. (13.155)

Now 9

sℓ − 1 =
2(∂r − γℓ)jℓ
(γℓ − ∂r)h(1)ℓ

∣∣∣∣∣
R0

(13.156)

or with sℓ − 1 = 2ı
cot δℓ−ı expressing δℓ by γℓ,

cot δℓ =
(∂r − γℓ)nℓ
(∂r − γℓ)jℓ

∣∣∣∣
R0

. (13.157)

The partial effective cross section is,

σℓ =
4π

k2
(2ℓ+ 1) sin2 δℓ =

4π

k2
2ℓ+ 1

1 + cot2 δℓ
. (13.158)

Analyzing the expressions for sℓ(cot δℓ) and σℓ(cot δℓ) we find that

• for cos δℓ = ı the scattering phase sℓ has a pole and σℓ →∞;

• for cos δℓ = 0 the scattering phase is sℓ − 1 and σℓ = 4π(2ℓ+ 1)/k2 is maximal.

The poles of sℓ are just the bound states: A bound state asymptotically satisfies

Rℓ(r) ∼ h
(1)
ℓ (ıκr) ∝ e−κr with the binding energy EB = −ℏ2κ2/2m. The condition

of continuity is given by,

γℓ =
∂rh

(1)
ℓ

h
(1)
ℓ

∣∣∣∣∣
R0

, (13.159)

and the insertion into the general continuity condition (13.157) gives,

cot δℓ =
h
(1)
ℓ ∂rnℓ − nℓ∂rh(1)ℓ
h
(1)
ℓ ∂rjℓ − jℓ∂rh(1)ℓ

= ı . (13.160)

9We have for the spherical Hankel functions: h
(1,2)
ℓ (x) = jℓ(x)± ıyℓ(x).



13.2. SCATTERING THEORY 481

In the same way the zero crossings of cot δℓ correspond precisely to the scattering
resonances. To see this, we expand around a resonance,

cot δℓ(E) ≃ cot δℓ(Er)−
1

sin2 δℓ

dδℓ
dE

∣∣∣∣
Er

(E−Er) = −
dδℓ
dE

∣∣∣∣
Er

(E−Er) ≡ −
2

Γr
(E−Er) ,

(13.161)

defining the width Γr = 2
∂Eδℓ

∣∣∣
Er

of the resonance peak in the effective section σℓ in

the form,

σℓ =
4π

k2
(2ℓ+ 1)

(Γr/2)
2

(E − Er)2 + (Γr/2)2
. (13.162)

See Fig. 13.17,

sℓ − 1 =
−ıΓr

E − (Er − ıγr/2)
. (13.163)

The scattering phase δℓ increases by π. The value δℓ(E = 0) gives the number of
bound states, δℓ(0) = nℓboundπ.

6.4. ROTATIONSSYMMETRISCHE POTENTIALE V (R) 175

und einsetzen in die allgemeine Stetigkeitsbedingung (6.62) ergibt

cot δl =
h(1)

l ∂rnl − nl ∂rh
(1)
l

h(1)
l ∂rjl − jl ∂rh

(1)
l

h
(1)
l =jl+inl= i. (6.66)

Ebenso entsprechen die Nullstellen von cot δl gerade den Streuresonanzen:
wir entwickeln um die Resonanz herum,

cot δl(E) ≈ cot δl(Er)−
1

sin2 δl

dδl

dE

∣∣∣∣
Er

(E − Er)

= −dδl

dE

∣∣∣∣∣
Er

(E − Er) (6.67)

↓ mit: Γr =
2

∂Eδl

∣∣∣
Er

≡ − 2
Γr

(E − Er). (6.68)

Damit erhalten wir einen Resonanzpeak der Breite Γr im partiellen Wir-
kungsquerschnitt σl mit der Form

σl =
4π

k2
(2l + 1)

(Γr/2)2

(E − Er)2 + (Γr/2)2
, (6.69)

vgl. Abb. 6.6. Die Streuamplitude sl(E) hat einen Pol in der 2. Riemann-

σ l

(   +1)n

EC

E E

πn

π

lδ

ErrE

Er

Γr
Γr

Γ /2r−i

Abb. 6.6: Resonanzpeak der Breite Γr: Links der Wirkungsquerschnitt σl(E)
und rechts die Streuphase δl(E); in der Mitte ist die Lage des Poles in der
komplexen E-Ebene skizziert.

Ebene der komplexen Energieebene,

sl − 1 =
−iΓr

E − (Er − iΓr/2)
; (6.70)

Figure 13.17: Peak of the resonance of width Γr: (Left) effective cross section σℓ(E), (right)
scattering phase δℓ(E), and (center) scheme of the position of the pole in the complex energy
plane E.

13.2.7 Exercises

13.2.7.1 Ex: Green’s method

Show that, knowing the solution of (13.116), that is, knowing the Green function, we
can write the solution of the scattering problem (13.115) as,

ψk(r) = eık·r + 2m
ℏ2

∫
d3r′G(r− r′, k)V (r′)ψk(r) .

13.2.7.2 Ex: Green’s function

Calculate the Green function of the equation (13.116).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_MetodoGreen.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_FuncaoGreen.pdf
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13.2.7.3 Ex: Rutherford scattering

Consider the scattering of a particle of charge Q by a static charge distribution ρ(r) =
ρ0e

−αr totaling the charge Q′. Derive from (13.136) the formula (1.10) describing the
Rutherford scattering.

13.2.7.4 Ex: Scattering length for hard-core potentials

Calculate the scattering length for a spherical box barrier and a spherical box potential
as a function of potential depth (see also Excs. 3.1.5.4 and 3.1.5.5 and [849]).

13.3 Cold atomic collisions

Modern techniques developed in the area of atomic optics allow to cool atomic gases
to temperatures well below 1 µK. We use the expansions jℓ ∼ xℓ/(2ℓ + 1)!! and
nℓ ∼ (2ℓ− 1)!!/xℓ+1 in the equation (13.157), and obtain for kR0 ≪ 1,

cos δℓ ≃
2ℓ+ 1)!!(2ℓ− 1)!!

(kR0)2ℓ+1

ℓ+ 1 +R0αℓ(E)

ℓ−R0αℓ(E)
. (13.164)

A coarse approximation leads to

cos δℓ =
cos δℓ
sin δℓ

δℓ≪1≃ 1

sin δℓ
≃ 1

(R0k)2ℓ+1
, (13.165)

that is,
sin δℓ ≃ (R0k)

2ℓ+1 . (13.166)

In other words, the scattering phases decrease rapidly, in the regime of cold collisions,
with increasing ℓ, and ℓ = 0 type collisions dominate,

k cot δ0
αℓ(E)≃αℓ(0)≃ −1 +R0α0(0)

R2
0αℓ(E)

. (13.167)

The s-wave scattering length defined by,

as ≡
R2

0αℓ(E)

1 +R0α0(0)
=

sin δ0
k

(13.168)

then it is the only relevant parameter of the collision. For R0α0 ≫ 1 we find a ≃ R0.
For example, for a hard sphere we have Rℓ(R0) = 0, αℓ = ∞, a = R0 > 0 and
cot δ0 = −1/kR0. For small kR0 we obtain δ0 ≃ −kR0 < 0, which corresponds to
a negative phase shift for the repulsive potential, as expected. The effective cross
section is,

σ0 =
4π

k2
1

1 + cot2 δ0
≃ 4π

k2 + 1/a2s
. (13.169)

In comparison to the effective cross section for higher angular momenta, σℓ ∝ sin2 δℓ
k2

behaves like,
σℓ ∝ R2

0(R0k)
4ℓ → 0 . (13.170)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_EspalhamentoRutherford.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_ScatteringLength01.pdf
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In contrast, we find that the scattering at low energies has an s-wave character, σ
being dominated by σ0,

σ(E = 0) = 4πa2s . (13.171)

For a hard sphere (a = R0) we find an effective cross section four times larger than
classically expected (σcl = πR2

0).

a
s

V r( )

r

Figure 13.18: The cold collision can be described by a hard core potential.

In summary, for kinetic energies below the centrifugal barrier, only s-wave colli-
sions are significant. The higher-order partial waves are frozen behind the centrifugal
barrier. That is, the energy of cold collisions is not enough to excite a rotational
motion, not even the one with the lowest rotational energy allowed by quantum me-
chanics. Such a collision is called cold collision or s-wave collision.

The relative wavefunction tends asymptotically to ψ(R)
R→∞−→ k−1

dB sin [kdB(R− a)] T→0−→
R − a. This means that for temperatures so low that the length of the Broglie wave
of the relative motion is much longer than the potential range k−1

dB ≫ Rturning, the
scattering becomes independent of temperature, and the scattering length a becomes
well defined 10

Generally, a repulsive interaction potential corresponds to a positive scattering
length and an attractive potential to a negative one. However, if the attractive po-
tential supports bound states, the value of the scattering length depends on the energy
of the last bound state with respect to the dissociation threshold [849, 850].

13.3.1 Collision cross section, unitarity regime

Note that the scattering length a may have a value quite different from re, especially
in the presence of a Feshbach resonance. The meaning of universality, |a| ≫ re, is
that short-range properties play no role in the dynamics.

At low temperatures, kre → 0, we have the equation (13.169). In contrast, in the
unitarity limit, k →∞, but re → 0, we have,

σ =
8π

k2
, (13.172)

and the cross section becomes independent of atomic particularities. What the equa-
tion (13.169) says is, that the maximum attainable cross-section is limited to the

10At temperatures at which the trajectory of atoms is described by de Broglie waves the only
difference between an atom before and after an elastic collision is the phase shift δ0 of this wave.



484 CHAPTER 13. COLLISIONS

smallest of the values 8πa and 8π/k. Even though a(B) can be increased to divergent
values near a Feshbach resonance, for finite collision energies it will never exceed an
effective value aeff = 1/

√
a2 + 1/k2. For a thermal gas, k = ℏ−1

√
2πmkBT , while

for a pure condensate k = 2π/L, where L is the size of the condensate. Therefore,
the effective scattering length can not exceed the size of the condensate. Unitarity

also means that the kinetic energy exceeds the binding energy, kBT ≡ ℏ2k2

2m ≤ ℏ2

2ma2 .

10−2 100 102

T (μK)

10−12

10−10

10−8

10−6

σ
(c
m

2
)

Figure 13.19: (code) Temperature dependence of the collision cross section for various scat-

tering lengths. For higher scattering lengths, the unitarity limit is reached at lower temper-

atures.

The collision rate depends on the density, temperature and collisional cross section
[458],

γcoll.peak =
√
2σelastv̄n0 , (13.173)

γcoll.aver = γcoll.peak/2
√
2 .

Note that at the unitary limit, as v̄ ∝
√
T , we have that σelas ∝ T and n0 ∝ r̄−3 ∝

T−3/2, such that the collision rate is independent of temperature.
At low temperatures, k → 0, the delocalization of the colliding particles is greater

than its short-range structure. This is the Wigner threshold law [865, 858]. For
elastic collisions of neutral ground state atoms, the cross section (13.169) becomes
temperature-independent. Thus, the rate coefficient decreases as ⟨σv̄⟩ ∝

√
T , while

the collision rate increases as ⟨σv̄n0⟩ ∝ T−1.
For inelastic collisions, σ ∝ T−1. For three-body collisions see [271].

13.3.2 Collisions between identical particles

We consider collisions of two identical particles. Separating the center-of-mass coor-
dinates, R = r1 + r2, from the relative ones, r = r1 − r2, we see that R is symmetric
and r antisymmetric in r1 and r2. We separate the wavefunction into orbital and spin
parts,

Ψ(x1, x2) = eıP·Rψ(r)χ(s1, s2) . (13.174)

For indistinguishable particles the result of the scattering has the asymptotic form,

ψ(r) ∼ eık·r + f(θ)
eıkr

r
. (13.175)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Unitarity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Unitarity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Unitarity.m
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13.3.2.1 Spin 0 bosons

For bosons with spin 0 we have χ = 1 and, because of the symmetry of Ψ, holds
ψ(r) = ψ(−r). Consequently, we must symmetrize the result of the scattering. We
make use of the fact that the exchange of particles via r → −r in polar coordinates
corresponds to the transformation θ → π − θ, r → r,

ψ ∼ (eık·r + e−ık·r) + [f(θ) + f(π − θ)]e
ıkr

r
. (13.176)

For the effective differential cross section we obtain,

dσ

dΩ
= |f(θ) + f(π − θ)|2 = |f(θ)|2 + |f(π − θ)|2 + 2Re [f∗(θ)f(π − θ)] . (13.177)

The first two terms are classical. The third (interference) term appears because of
quantum statistics. The angles showing up in (13.177) are illustrated in Fig. 13.20.
For bosons, the interference terms double the cross section as compared to the classical
case, when θ = π/2,

dσ

dΩ
= 4|f(π2 )|2 . (13.178)

314 KAPITEL 12. IDENTISCHE TEILCHEN

Für den differentiellen Wirkungsquerschnitt erhalten wir

dσ

dΩ
= |f(θ) + f(π − θ)|2

= |f(θ)|2 + |f(π − θ)|2︸ ︷︷ ︸
klassische Terme

+2Re [f∗(θ)f(π − θ)].︸ ︷︷ ︸
Interferenzterme

(12.80)

Die Interferenzterme erscheinen als Folge der Teilchen-Statistik. Die in
(12.80) auftretenden Winkel sind in Abbildung 12.5 dargestellt. Durch die
Interferenzterme verdoppelt sich für Bosonen im Fall θ = π/2 der Wirkungs-
querschnitt gegenüber dem klassischen Resultat,

θ =
π

2
:

dσ

dΩ
= 4|f(π/2)|2. (12.81)

θ π − θ

Abb. 12.5: Die Symmetrisie-
rung der Streuwellenfunktion
erzeugt zwei Trajektorien mit
Streuwinkeln θ und π − θ die
kohärent zu addieren sind.

Für eine zentralsymmetrisches Potential V (r) gehen wir zur Partialwellen-
darstellung über,

f(θ) =
∑

l

il(2l + 1)flPl(cos θ)

↓ Pl(cos θ) = (−1)lPl(cos(π − θ))

f(θ) + f(π − θ) = 2
∑

l gerade

il(2l + 1)flPl(cos θ), (12.82)

und finden, dass nur gerade Drehimpulse l vorkommen (für ungerade l wech-
selt das Legendre Polynom das Vorzeichen und die Beiträge vernichten sich
gegenseitig).

Spin-1/2 Fermionen: Im Falle der Spin-1/2 Fermionen sind zwei Fälle
möglich:

Figure 13.20: The symmetrization of the collision wavefunction produces two paths with
angles θ and π − θ, which must be added coherently.

For the isotropic potential V (r) we use the partial wave representation,

f(θ) =
∑

ℓ

ıℓfℓPℓ(cos θ) . (13.179)

With Pℓ(cos θ) = (−1)ℓPℓ(π − cos θ) we get,

f(θ)− f(π − cos θ) = 2
∑

ℓpar

ıℓfℓPℓ(cos θ) , (13.180)

and we find that only even angular momenta appear 11

11For ℓ odd the Legendre polynomial changes sign, and the contributions vanish.
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13.3.2.2 Spin 1/2 fermions

In the case of fermions with spin 1
2 two situations are possible 12:

1. The singlet spin state χs =
1√
2
[(| ↑↓⟩−| ↓↑⟩] is antisymmetric and, consequently,

the orbital part,
ψ(r) = ψ(−r) (13.181)

must be symmetric. The cross section is the same as for spin 0 bosons,

dσ

dΩ

∣∣∣∣
s

= |f(θ) + f(π − θ)|2 . (13.182)

2. The triplet spin states,

χs =





| ↑↑⟩
1√
2
(| ↑↓⟩+ | ↓↑⟩)
| ↓↓⟩

(13.183)

require an antisymmetric orbital wavefunction, ψ(r) = −ψ(−r), and we obtain
a scattering amplitude, f(θ)→ f(θ)−f(π−θ), which only contains odd angular
momenta ℓ. With this, the cross section becomes,

dσ

Ω

∣∣∣∣
t

= |f(θ)− f(π − θ)|2 θ=π/2= 0 , (13.184)

Note that polarized fermions only scatter in channels of odd angular momenta:
cold bosonic atoms show a contact potential due to s-wave collisions (13.180)),
polarized fermionic atoms only interact weakly in the p-channel. In the case of
a statistically mixed ensemble of non-polarized fermions we have a the weighted
average,

dσ

dΩ
=

3

4

dσ

Ω

∣∣∣∣
t

+
1

4

dσ

Ω

∣∣∣∣
s

= |f(θ)|2 + |f(π − θ)|2 −Re [f∗(θ)f(π − θ)] . (13.185)

13.3.2.3 Molecular spectra

Here we consider rotational spectra of low energies Erot = ℏ2ℓ(ℓ+1)/2Θ≪ Eeletronico ∼
eV . In slow time scales we can consider the electronic shell to be rigid. We look at
two examples of molecules with bosonic and fermionic nuclei:

• Molecules (C12)2: the nuclei are 0-spin bosons, so only collisions with even ℓ
are allowed.

• Molecules H2: the nuclei are spin-
1
2 fermions, so we have for a spin wavefunction,

χ = χs : ℓ = even, para-hydrogen, χ = χt : ℓ = odd, ortho-hydrogen. (13.186)

The transformation of ortho-hydrogen into para-hydrogen is difficult (the nuclei
being well shielded), such that we observe two types of gases with,

Erot,para = 0,
3

Θ
,
10

Θ
,
21

Θ
, ...Erot,orto =

1

Θ
,
6

Θ
,
15

Θ
, ... . (13.187)

12This is analogous to the case of helium, where the spatial function of the state 2s2 ↑↑ is always
antisymmetric, but for the 2s ↑ 2p ↑ exist symmetric spatial orbitals.
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13.3.3 Collisions between hot atoms

Angular moments with ℓ ≤ kR0 should contribute a lot to σ, since the collision param-
eter is inside R0. For a hard sphere we have αℓ = ∞ and cot δℓ = nℓ(kR0)/jℓ(kR0).
With the asymptotic expressions of jℓ and nℓ we obtain cot δℓ ∼ − cot(kR0 − ℓπ/2),
that is, δ∼ − kR0 + ℓπ/2 (+π). With these scattering phases we can calculate the
scattering cross section,

σ ≃ 4π
k2

kR0∑

ℓ=0

(2ℓ+ 1) sin2 δℓ (13.188)

≃ 4π
k2

kR0∑

ℓ=0

(ℓ+ 1) cos2[kR0 − (ℓ+ 1)π/2] + ℓ sin2(kR0 − ℓπ/2)

= 4π
k2

kR0∑

ℓ=0

ℓ(cos2 +sin2) = 4π
k2
kR0(kR0 + 1)

2
= 2πR2

0 , (13.189)

which is the double of the classical value.

Figure 13.21: (a) Bound state for ℓ = 0. (b) Bound state for ℓ > 0 in a potential including
the centrifugal barrier ℏ2ℓ(ℓ+1)/2mr2. (c) Resonances for ℓ = 0 are broad and possibly not
defined with Γr > Er. A defined resonance with Γr < Er requires that |∂Eα0| be large. (d)
For ℓ > 0 we obtain narrow resonances called shape resonances, because the decay of the
state is suppressed by the centrifugal barrier.
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13.3.4 Ground state collisions

13.3.5 Hyperfine structure

We consider the scheme (12.100), we set lj = 0, and concentrate on s-waves, ℓ = 0,

s1 + s2 = S
ẑ−→ Ω

+ + +

i1 + i2 = I

= = =

f1 + f2 = f

(13.190)

At short distances the coupling ((S, I)f1, f2)f breaks up and a ((s1, s2)S, I)f coupling
emerges. This does not hold for fully stretched spin states f1 + f2 = f , because f
is a good quantum number at all distances (and small enough magnetic fields). In
contrast mf is a good quantum number at all distances and at all fields.

In order to obtain the potentials coupled by hyperfine interaction, we first calculate
for a single vibrational level the relative wavefunctions |ψ(f1,f2)f (R)⟩ from the known
perturbed but uncoupled potentials V (R) + Vhf , where,

Vhf = hahf,1s1·i1 + hahf,2s2·i2 . (13.191)

The antisymmetric part is negligible [840], so that Vhf ≃ 1
2hahf,1S · i1+ 1

2hahf,2S · i2.
Then couple the channels via,

|ψ(S,I)f (R)⟩ = A
∑

f1,f2

√
ŜÎ f̂1f̂2





s1 s2 S

i1 i2 I

f1 f2 f



 |ψ(f1,f2)f (R)⟩ (13.192)

|ψ(f1,f2)f (R)⟩ = A−1
∑

S,I

√
ŜÎ f̂1f̂2





s1 s2 S

i1 i2 I

f1 f2 f



 |ψ(S,I)f (R)⟩ .

which satisfies the orthogonality relation (see Tables in 6.2).

13.3.6 Scattering length in specific channels

The scattering length in specific channels can be expressed via singlet and triplet
scattering length,

a|f1,mf1⟩+|f2,mf2⟩ = PS=0as + PS=1at . (13.193)

The projectors are PS = |⟨S|(f1f2)f⟩|. According to [125] or [577] the recoupling
from the uncoupled hyperfine representation into the short range representation is
given by,

⟨SmS ImI ℓ
′mℓ′ |f1mf1 f2mf2 ℓmℓ⟩ = δℓℓ′δmℓm′

ℓ

∑

f,mf

⟨SmS ImI |fmf ⟩⟨f1mf1 f2mf2|fmf ⟩×

(13.194)

×





s1 s2 S

i1 i2 I

f1 f2 f





√
ŜÎ f̂1f̂2

(
1− (1− δf1f2)(−1)S+I+ℓ√

2− δf1f2

)
.
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The last bracket is dropped for unsymmetrized recoupling. Calculations have been
done for 87Rb collisions and for 6Li87Rb collisions. It turns out that the fully stretched
states have pure triplet character.

Note that in strong magnetic fields the coupling (i1, i2)I easily breaks up, and the
recoupling to be considered is rather ⟨SmS mi1 mi2 ℓ

′mℓ′ |f1mf1 f2mf2 ℓmℓ⟩.

13.3.7 Hyperfine coupling in magnetic fields

13.3.7.1 Zeeman splitting of bound states

The splitting of the bound state is described by [840],

H+
int = V +

hf + VZeeman (13.195)

= EB +
1

2
hahf,1S · i1 +

1

2
hahf,2S · i2 + µBB(gSS+ g1i1 + g2i2) ,

such that,

⟨m′
i1m

′
i2m

′
S |Hhfs +HB |mSmi2mi1⟩ (13.196)

= EB + (gSmS + gi1mi1 + gi2mi2)µBBδm′
i1 mi1

δm′
i2 mi2

δm′
S mS

+ 1
2h(ahf,1mi1mS + ahf,2mi2mS)δm′

i1 mi1
δm′

i2 mi2
δm′

S mS

+ 1
4hahf,1(i1,+S−δm′

S mS+1δm′
i1 mi1−1 + i1,−S+δm′

i1 mi1−1δm′
S mS+1)δm′

i2 mi2

+ 1
4hahf,2(i2,+S−δm′

S mS+1δm2 mi2−1 + i2,−S+δm′
i2 mi2−1δm′

S mS+1)δm′
i1 mi1

.

For an example on how to evaluate the matrix at various magnetic fields and obtain
the hyperfine structure of a bound state in the Zeeman and the Paschen-Back regime,
we propose the systems 6Li23Na and 6Li87Rb.

13.3.7.2 Magnetic dipole interaction

Reads,

Vdd =
µ0

4πR3
[µ1 · µ1 − 3(µ2 ·R)(µ2 ·R)] (13.197)

neglecting nuclear spin.

13.3.7.3 Second-order spin-orbit interaction

First-order spin-orbit interaction disappears for ground state collisions. But second-
order spin-orbit interaction may occur. These lead to inelastic losses (see next sec-
tion).
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13.3.7.4 Selection rules

The selection rules for bosonic homonuclear collisions are,

S = 0, .., s1 + s2 (13.198)

I = 0, .., i1 + i2

fj = |ij − sj |, .., ij + sj

|I − S| ≤ F ≤ I + S

|f1 − f2| ≤ F ≤ f1 + f2

(−1)I = (−1)S for all F

(−1)f1 = −(−1)f2 for all odd F .

What does they look like for fermions? What does they look like for heteronuclear
collisions?

13.3.8 Inelastic collisions

13.3.8.1 Spin changing collisions

These have their origin in spin exchange and spin dipole-dipole processes. Spin
exchange occurs when the colliding electronic clouds overlap. At short distances
the ((S, I)f1, f2)f breaks up and a ((s1, s2)S, I)f coupling remixes, as shown in
Exc. 12.3.5.1. Hence, collisions between atoms |f1,mf1⟩|f2,mf2⟩ are subject to spin
exchange induced by coupling of the spin states via the exchange interaction, e.g. |2, 1⟩|2, 1⟩ →
|2, 2⟩|2, 0⟩. Typical exchange rates are on the order of 10−10 cm3/s.

Since f is a good quantum number at all distances (for B = 0), spin exchange
processes conserve ℓ and f . Hence, the fully stretched spin states f1 + f2 = f cannot
decay into other states, except by higher-order processes, such as dipolar relaxation.
Consequently, the relaxation rates for |2, 2⟩+ |2, 2⟩ or |1,−1⟩+ |1,−1⟩ states are only
on the order of 10−15 cm3/s.

The cross section for inelastic spin exchange collisions is [861, 174],

σ =Mifπ(at − as)2 , (13.199)

where,

Mif =


 ∑

mS ,I,mI

(CS=0C
′
S=0 − CS=1C

′
S=1)



2

(13.200)

C = ⟨S,mS ; I,mI |F1m1;F2m2⟩ .

See also [759]. The reason for the above dependence can be understood as follows.
as and at determine the energy of the last bounds states of the singlet and triplet
potentials. The more those energies are different, the stronger the coupling ∝ |Et −
Es|−1. An alternative, physical picture is given in [126].
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13.3.8.2 Dipolar relaxation

The fully stretched spin states, such as 87Rb |f = 2,mf = 2⟩ are expected to be quite
stable. However, relativistic effects (retardation?) (and 2nd order spin-orbit coupling)
break the degeneracy of the molecule-fixed projection |Ω| = 0, 1 of the 3Σ potential
[577]. When the atoms approach their spins recouple, i.e. from [(s1, i1)f1 , (s2, i2)f2]f
towards [(s1, s2)s , (i1, i2)i]f as described by the 9j coefficients Eq. (13.190). Due to
the symmetry of the problem, f and its projection mf are good quantum numbers
at all distances. However, if there is a higher-order admixture of the orbit lj , the
symmetry is broken, and the quantum number depends on the coupling schemes.
Consequently, transitions between differentmf become possible, i.e. dipolar relaxation
may change f , mf or ℓ = 0, e.g. a collision can be s-wave in the entrance and d-wave
in the exit channel.

13.3.8.3 Three-body collisions

The trapped low-field seeking alkali gases are metastable versus 3-body recombination.
3-body recombination is the combination of two colliding atoms to a dimer in presence
of a third atom receiving the excess energy as kinetic energy and results in trap loss
of the molecule and of the atom. They are suppressed as the gas gets more and
more dilute since the rate goes like n3. There might be interesting 3-body resonance
phenomena like the Efimov state predicted for Helium droplets [257], [519] and recently
seen in experiment [487, 796, 111, 538].

3-body recombination is in contrast to the more controlled way of creating molecules
via photoassociation or coherent free-bound coupling.

Ultracold collisions are crucial for BEC. They provide the thermalizing elastic
collisions necessary for evaporative cooling, they are the cause for the condensate
self-energy and give rise to nonlinearities in the condensate dynamics. But they
are also interesting by themselves. The spectrum of two-body collisions exhibits
interesting features like shape- and Feshbach resonances [178, 415]. Their analysis
facilitates detailed conclusions on the nature of the interaction potentials. Three body
collisions are important to investigate, because they constitute a decay mechanism of
the intrinsically metastable system that represents a trapped Bose-gas.

Three body collisions are not a quantum statistical effect and don’t require the
presence of a BEC, but they occur only at very high densities comparable to those
necessary for BEC. It should be possible to detect them in photoassociation (PA)
spectra. Photoassociation provides a tool to explore the level structure of excited
states by shining in a laser with frequency ν tuned between the colliding channel
and a vibrational bound level of the excited state potential. Since the excited state
preferentially decays into the continuum, where the atoms have high kinetic energy,
the transition rate may be monitored via trap losses. Or we can shine in an additional
laser that further excites the excited atoms into the ionized continuum where they
can be registered by an ion detector.

Three-body photoassociation processes should reveal themselves by additional
lines in the two-body photoassociation spectra. Those lines should only appear at
very high densities and their strength should scale as the density cubed,

Rb+Rb+Rb+ hν → Rb∗3 . (13.201)
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13.3.8.4 Other processes

Majorana spin flips and collisions involving higher partial waves ℓ can eventually lead
to spin relaxation. In Eq. (12.100) we see that f is not necessarily a good quantum
number in contrast to F , |2, 2⟩|2, 2⟩ → |2, 1⟩|2, 0⟩+Erot. However, the particles must
tunnel across the centrifugal barrier, which sets temperature constraints.

13.3.8.5 Collisions between fermions

Very cold three-body collisions are suppressed for fermions, because two of them
necessarily must have the same quantum state, which violates the Pauli exclusion
principle. This is useful for employing Feshbach resonances to form molecular BECs
made of fermions.

13.3.9 Excited states collisions

13.3.9.1 Adiabatic potentials

We consider the scheme (12.100), we set I = 0, and we concentrate on s-waves, ℓ = 0,

l1 + l2 = L
ẑ−→ Λ

+ + + +

s1 + s2 = S
ẑ−→ Σ

= = = =

j1 + j2 = j
ẑ−→ Ω

(13.202)

The spin-orbit interaction splits the potential curves. The recoupling is described by,

|ψ(L,S)j(R)⟩ ∼
∑

j1,j2

√
L̂Ŝj1j2





l1 l2 L

s1 s2 S

j1 j2 j



 |ψ(j1,j2)j(R)⟩ . (13.203)

13.3.9.2 Homonuclear collisions

Let us consider the example of the fine structure in homonuclear 87Rb collisions.
Without hyperfine, rotational and Zeeman splitting the recoupling goes like illustrated
in Fig. 13.22.

From Fig. 13.22 we see that the molecular states are remixed at long range: Every
state 0−g , 0

−
u , 0

+
g , 0

+
u , 1g, 1u, 2g, 2u has several molecular states to which it connects,

e.g. 0−g connects within the fine structure to (2)3Σ+
g and (2)3Πg. Those multiplets

form a closed interacting subspace. According to Movre and Pichler [606, 821] we get
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Figure 13.22: Movre coupling scheme.

with ∆ = E(2P3/2)− E(2P1/2) =
3
2Aso,

0−σ =

(
E(3Πσ)− 1

3∆
√
2
3 ∆

−
√
2
3 ∆ E(3Σ+

σ )

)
, 0+σ =

(
E(3Πσ)− 1

3∆ −
√
2
3 ∆

−
√
2
3 ∆ E(1Σ+

σ )

)

(13.204)

1σ =



E(3Πσ)

1
3∆ − 1

3∆
1
3∆ E(1Πσ) − 1

3∆

− 1
3∆ − 1

3∆ E(3Σ+
σ )


 , 2σ =

(
3Πσ

)
.

At short range the potentials approximately go like,

E(1Σ+
g ), E(3Σ+

u ) ∝ 2C3/R
3 (13.205)

E(1Πu), E(3Πg) ∝ C3/R
3

E(1Πg), E(3Πu) ∝ −C3/R
3

E(1Σ+
u ), E(3Σ+

g ) ∝ −2C3/R
3 .

Inserting the short range potentials and defining X = σC3/3∆R
3, Y = E/∆ and
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σ = + for g and − for u,

0−σ =

(
3X + 1

3

√
2
3√

2
3 −6X + 2

3

)
, 0+σ =

(
3X + 1

3

√
2
3√

2
3 6X + 2

3

)
(13.206)

1σ =



3X + 1

3
1
3 − 1

3
1
3 −3X + 1

3 − 1
3

− 1
3 − 1

3 −6X + 2
3


 , 2σ = (3X + 1) .

Note that the structure looks very much like the transition from the Zeeman to the
Paschen-Back regime, where X plays the role of the magnetic field and Y the level
shift. The characteristic equations are,

Y 2 − (1− 3X)Y − 18X2 = 0 for 0−σ

Y 2 − (1 + 9X)Y + (4X + 18X2) = 0 for 0+σ

Y 3 + (−2 + 6X)Y 2 + (1− 8X − 9X2)Y + (2X + 6X2 − 54X3) = 0 for 1σ

Y − (1 + 3X) = 0 for 2σ
(13.207)

13.3.10 Heteronuclear collisions

For a collision in the channel 6Li P 87Rb S we get the {9j}-symbol,





l6 l87 L

s6 s87 S

j6 j87 j



 =





0 1 1
1
2

1
2 S

1
2 j87 j → Ω



 . (13.208)

We thus expect a fine structure j87 = 1
2 ,

3
2 at long range and exchange interactions

S = 0, 1 at short range. For the projection onto the internuclear axis |L− S| ≤ Ω ≤
L+ S.

Let Vk(R) be the uncoupled potentials and,

∆kl(R) = Dkl +Akl

(
[1− e−Bkl(R−Rkl)]2 − 1

)
(13.209)

the spin-orbit functions modeled as Morse potentials, where Dkl is related to the

fine-structure splitting, Dkl =
1
3 (Ek − El), for diagonal and, Dkl =

√
2
3 (Ek − El), for

off-diagonal elements. For heteronuclear molecules like 6Li87Rb we have matrices like
[74, 73],

H |3Σ+⟩ |3Π⟩ |1Σ+⟩ |3Π⟩ |3Σ+⟩ |1Π⟩ |3Π⟩ |3Π⟩

⟨3Σ
+

Ω=0−
| V (3Σ) ∆cb

√
2

⟨3Π
Ω=0−| ∆cb

√
2 V (3Π) − ∆bb

⟨1Σ
+

Ω=0+
| V (1Σ)(−2∆bb) −∆bb

⟨3Π
Ω=0+

| −∆bb V (3Π)
(
+∆bb

)
⟨3Σ

+
Ω=1

| V (3Σ) ∆cB ∆cb
⟨1ΠΩ=1| ∆cB V (1Π) −∆bB
⟨3ΠΩ=1| ∆cb −∆bB V (3Π)

⟨3ΠΩ=2| V (3Π) + ∆bb

(13.210)
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Figure 13.23: Movre type spin-orbit recoupling scheme for heteronuclear molecules.

for every fine structure. For example, there is a matrix for the two 6Li S1/2
87RbP1,3/2

asymptotes and another one for the 6Li P1/2,3/2
87Rb S1 asymptotes. Additional

terms enter via rotational effects [74].
Concretely,

∆bb(R→∞) =
1

3
(E3/2 − E1/2) (13.211)

∆cB(R→∞) =
1

3
(E3/2 − E1/2)

∆bB(R→∞) =
1

3
(E3/2 − E1/2)

∆cb(R→∞) =
1

3
(E3/2 − E1/2) .

13.3.10.1 Inelastic trap losses

Between ground and excited states fine changing collisions and radiative escape are
possible. Between two ground states only hyperfine changing collisions may occur.

The nature of the collision process, whether it is a one- 13, two-, or three-body
collision, reveals itself via the temporal behavior of trap losses. Using the abbrevia-

13By one-body collision we mean collisions with atoms of the background gas.
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Figure 13.24: (code) Adiabatic potentials.

tion,

⟨η⟩ ≡ 1

N

∫
η(r)n(r)d3r , (13.212)

we can write the loss rates due to inelastic one-, two-, and three-body collisions,

B⟨1⟩N , K⟨n⟩N , L⟨n2⟩N . (13.213)

the prefactors depend on the collision velocity (that is, the temperature of the sample)
and atomic parameters (for example, the collision cross section for two-body collisions,
which may itself depend on temperature). Hence, the total number of trapped atoms
evolves according to,

Ṅ = −B⟨1⟩N −K⟨n⟩N − L⟨n2⟩N . (13.214)

Assuming a gaussian density distribution,

n(r) =
N

(2π)3/2r̄3
e−r

2/2r̄2 , (13.215)

we calculate,

Ṅ = −BN − K

(4π)3/2r̄3
N2 − L

33/2(2π)3r̄6
N3 . (13.216)

Fig. 13.25 shows a simulation of Eq. (13.216).
For condensates in the Thomas-Fermi limit [771] found the following differential

equations for two- and three-body collisions,

Ṅ

N
= −Gc2N2/5 − 1

τ
and

Ṅ

N
= −Lc3N4/5 − 1

τ
. (13.217)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LiRbPotentialAdiabatic.m
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Figure 13.25: (code) One-, two-, and three-body losses.

13.3.11 Heteronuclear electric dipole moment

The electric dipole moment of a dimer is highest for big mass difference, as in the case
of LiRb and for low vibrational quantum number [481, 37]. The electric dipole moment
determines the rate for spontaneous and black-body radiation, n̄ = (e−βℏω − 1)−1,
induced transitions between rovibrational states [482], Γtotvlm = Γspntvlm + Γbbvlm. With
the transition rate between individual levels,

Γαvlm→v′l′m′ =
8π

3

ω3

hc3
|⟨|d|⟩|2 , (13.218)

we can estimate the rates for spontaneous emission,

Γspntvlm =
∑

v′l′m′
Γemvlm→v′l′m′ , (13.219)

and for black-body radiation,

Γbbvlm =
∑

v′l′m′

n̄Γemvlm→v′l′m′ +
∑

v′′l′′m′′

n̄Γabsvlm→v′′l′′m′′ . (13.220)

Note that selection rules require |l − l′| ≤ 1 and |m−m′| ≤ 1, rotational transitions
are inhibited by small ω3, spontaneous emission is high for intermediate levels for
which on one hand ω3 is large enough and enough final states are available.

From calculations of the R-dependence of the electric dipole moments [37] the
dipole moment of a specific vibrational state is easily estimated from,

d =

∫
ψ(R)Rψ(R)dR∫
ψ(R)ψ(R)dR

. (13.221)

In electric fields the dipole moments will lead to Stark shifts. For |d| = 1 Debye
in a field of 1 V/m we expect a Stark shift of HStark ≈ 500 kHz. It may be possible
to measure this by photoassociation spectroscopy. Note also that since homonuclear
dimers do not have a permanent electric dipole moment, transitions between vibra-
tional ground states are forbidden.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_InelasticLosses.m
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Figure 13.26: (code) (a) Dipole moment at the example of LiRb as a function of interatomic

distance. (b) Dipole moment at the example of LiRb as a function of vibrational quantum

number.

13.3.12 Exercises

13.3.12.1 Ex: Vibrational structure of LiRb

Calculations of the vibrational structures of several ground states of the heteronuclear
molecule LiRb.

13.4 Resonances in cold collisions

13.4.1 Shape resonances

The ’centrifugal’ term can give rise to repulsive walls for attractive potentials. Be-
hind these walls, quasi-bound states can develop and give rise to collision resonances.
That is, resonances emerge in the collision cross section as a function of the collision
temperature called shape resonances.

13.4.2 Feshbach resonances

The so-called Feshbach resonance is due to an energetic match between a collision
channel and a bound molecular state [277, 816, 818, 589, 274, 590, 841]. They allow
to vary the scattering length as almost arbitrarily from zero, where the atomic cloud
turns into an ideal gas, up to values exceeding the total size of the cloud.

The impact of a Feshbach resonance can be understood as a perturbation of the
collisional channel leading to a modification of the depth of the scattering potential.
When this leads to the promotion of one more vibrational state into (or from) the
continuum, this obviously leads to a dramatic modification of the scattering length
as

14

Let us consider two very cold atoms colliding on an attractive interatomic potential
V (R) (see Fig. 13.28,right). At long distances the relative wavefunction is a sine

14Note that the divergence of the scattering length is an artifact of the hard core approximation,
that is, the regularization of the interaction potential, since the matrix T by itself does not diverge.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LiRbDipolemoment.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LiRbDipolemoment.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LiRbDipolemoment.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_.pdf
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Figure 13.27: Classical illustration of a scattering resonance.

Figure 13.28: (a) The Feshbach resonance is due to a coincidence of collisional and bound
channels. (b) Feshbach resonance in 85Rb. The atoms collide in the hyperfine state F = 2,
and the resonant bound state is in the F = 3 multiplet (courtesy [178]).

characterized by the Broglie wave vector kdB . As the atoms approach each other, they
mutually accelerate, and the Broglie wave performs some small and rapid oscillations
within the potential. The number of nodes of the wavefunction within the potential
corresponds to the number of bound vibrational levels that the potential with a given
depth can support. The scattering length as is defined as the phase slip, which the
Broglie wave would acquire during the collision at the boundary kdB →∞.

With the possibility of gradually decreasing the depth of the molecular potential,
at some point the last state below the ionization threshold goes to the continuum of
unbound states, the wavefunction decreases the number of nodes by one unit, while
the scattering cross section crosses a singularity. In fact, the potential V (R) can
be manipulated with the help of radiation fields [274, 94, 590] or, near a collisional
Feshbach resonance, by magnetic fields [818, 819]. Feshbach resonances were predicted
in nuclear systems [277]. Its recent revival in the context of cold atomic collisions is due
to the prospect of its use for manipulating the scattering length and thus controlling
the mean-field energy of a Bose-Einstein condensate 15

15It is even possible to invert the sign of the scattering length. This was a prerequisite for conden-
sation of the atomic species of 85Rb [701]. In addition, Feshbach resonances are interesting because
they can install a coherent free-bound coupling between an open-channel of colliding atoms and a
bound molecular state of the same atoms, as shown in Fig. 13.28. This coupling can lead to the
creation of molecular condensates.
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Figure 13.29: (code) (a) Scattering length and (b) collision cross section upon crossing a

Feshbach resonance. The scattering length can be positive (solid red line) or negative (dashed

blue line). A movie on a simulation of a Feshbach resonance can be watched here (watch

movie).

The collisional Feshbach resonance arises when the energy of the state of two
colliding atoms coincides with the energy of a vibrational molecular level belonging
to a higher energy asymptote (see Fig. 13.28,right). This coincidence can strongly
perturb the collisional channel, because the resonance shifts the phase of the relative
de Broglie wavefunction and allows the atoms to tunnel into the molecular state
for a short period of time, the duration of which is determined by the Heisenberg
uncertainty relation. If the sum of the magnetic dipole moments of the atoms is
different from the dipole moment of the molecule, the resonance can be tuned via
external magnetic fields exploring the Zeeman effect. When a Feshbach resonance is
crossed, the scattering length crosses a singularity, as shown in Fig. 13.29(left) 16.

13.4.3 Exercises

13.5 Light-assisted collisions

13.5.1 Optical shielding

The adiabatic potential for ground state collisions can be manipulated using light
to admix an another potential. The laser light can either be blue-detuned to the
continuum of states of a repulsive excited state potential or red-detuned to vibrational
resonances of an attractive excited state potential [444, 274, 845, 858]. We can also
admix another ground state potential with two-photon Raman transitions.

At cold collisions, the atom undergoes Landau-Zener transitions between the
mixed states with the probability

PLZ = 1− exp
(
− 2πℏΩ2

DCv

)
, (13.222)

where

DC =
∣∣ d
dR [Ve(R)− Vg(R)]

∣∣
R=RC

(13.223)

16

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Feshbach.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Feshbach.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Feshbach.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AM_Collision_TuneScattlengthSimul_Movie.avi
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Feshbach.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AM_Collision_TuneScattlengthSimul_Movie.avi
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is the slope of the difference potential evaluated at the Condon point. In the dressed
states picture the dressed potentials display an avoided crossing. This modification
of the collisional potential modifies the dynamics of the collision and the scattering
length.

An example is the phenomenon of optical suppression or shielding. Here, two
colliding atoms are inhibited to approach farther than a certain distance defined by
the resonance condition set by a laser which is blue-detuned to a repulsive excited
potential. The inhibition is probed by a photoassociation laser tuned to a resonance
condition at smaller interatomic distances. The optical shielding scheme can be ex-
tended in the following way. Two lasers, one tuned to a repulsive another to an
attractive excited state potential resonant at different interatomic distances.

Figure 13.30: Molecular states (green and pink) resonantly coupled by a light field at the
Condon point form an avoided intersection in the dressed states basis. For red detuning
vibrational states can be populated, for blue detuning we get optical shielding.

13.5.2 Photoassociation during cold collisions

Ultra-cold collisions provide an interesting playground for studies on how light can be
used to control the result of inelastic or reactive collisions. Here we discuss as a specific
example photoassociation. The upper panel of Fig. 13.30 shows schematic curves of
(bare) potentials relevant to our discussion. Two atoms in the ground state form a
relatively shallow vibrational molecular ground state characterized by electrostatic
dispersion

Vg(r) = −
C6

R6
. (13.224)

or long-range van der Waals potential. Two other vibrational states arise from the
interaction of an excited atom with the ground state atom. The predominant term of
the interaction is the potential of resonant dipole-dipole interactions,

Ve(r) = D ± C3

R3
. (13.225)

which gives rise to an attractive and a repulsive potential. The R−3 dependence of
the resonant dipole interaction means that the associated potentials greatly modify
the asymptotic level even at internuclear distances, where the ground state van der
Waals potential is still relatively shallow. The photoassociation process involves a
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slow approach of two identical ground state atoms. A mono-modal optical field,
tuned to the red of the atomic resonance, is applied. When the two atoms reach an
internuclear distance R such that the energy of the applied field ℏω exactly coincides
with the potential difference Ve(R)−Vg(R), the probability of transferring population
from a fundamental molecular state to an excited molecular state is maximal. If now
the potential Vg(R) supports a vibrational state at the energy EC = Vg(RC), the
resonance condition is fulfilled,

Ve(RC)− Vg(RC) = ℏωC , (13.226)

and a transition can occur. The distanceRC is called Condon point, and it corresponds
to the classical outer turning point of the molecular potential [858]. In a quantum
picture the turning point corresponds to a maximum of the delocalized wavefunction
describing the vibration of the bound atoms.

Within quantum mechanics, the proper conventional way of calculating this prob-
ability follows the procedure elaborated in Sec. 16.1.1 for a two-level atom:

1. solve the time-independent molecular Schrödinger equation to obtain the vibra-
tional wavefunctions;

2. write down the coupled differential equations by describing the time dependence
of the expansion coefficients of the relevant vibrational wavefunctions;

3. solve for the coefficients and calculate the square of their absolute values;

4. integrate the transition probability inside a region ∆R around the Condon point,
where the transition probability is not negligible.

The dressed states picture illustrated in Fig. 13.30 allows to reduce this rather
laborious program, essentially, to a problem of a curve crossing of two levels. The
basis states are now product states made up of the field and the molecular levels.
Furthermore, we approximate the molecular states themselves as products of atomic
states. This approximation is justified by the long range, weakly perturbative influ-
ence of the van der Waals and resonant dipoles interactions. Calling the ground and
excited states |1⟩ and |2⟩, respectively, the dressed state molecular curves |2, 1, n⟩ and
|1, 1, n + 1⟩ intersect at the Condon point and optically couple to the applied field.
This optical coupling produces an avoided crossing near RC and mixes the states of
the molecule-field basis. The probability of traversing from one adiabatic molecular
state to another is expressed by the Landau-Zener formula as a function of the inter-
action strength, the relative velocity of the collision partners, and the relative slopes
of the two curves. Resolve Exc. 13.5.4.1.

13.5.2.1 Blue detuning

The S-matrix element describing the coupling of a ground state wavefunction by
Ψg(R,E) = ⟨R|Ψg(E)⟩ via a light field of frequency ωa to an excited state wavefunc-
tion ⟨R|Ψe(E + ωa)⟩ is,

Seg(E,∆a) = −2πıℏ⟨Ψe(E + ℏωa)|Ωeg(R)|Ψg(E)⟩ , (13.227)
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Figure 13.31: (code) Collisional and vibrational wavefunctions in C6 ground state and

C3 excited state potentials [444] in the presence of (a) blue and (b) red-detuned light

(C6 = 1500 a.u., C3 = 18 a. u., ∆a = (2π) 700GHz). The colored curves denote (red) the

wavefunction of two atoms colliding on their ground state with a velocity corresponding to

2µK, (blue) a wavefunction repelled from the excited state potential, (cyan) an unbound

wavefunction of the excited state potential, and (green) a vibrational wavefunction of the

excited state potential.

where the molecular Rabi frequency Ωeg(R) may differ from the atomic Rabi frequency
Ωa. Now, with the probability

Pe(E,∆a) = |Seg(E,∆a)|2 (13.228)

for the event by which two ground state atoms collide in a light field and produce
one excited and one ground state atom, both of which have enough kinetic energy to
escape any weak trapping potential, the event rate coefficient, averaged over ground
state velocities vg = ℏkg/mred, is

Ke(∆a) =

〈
πvg
k2g

Pe(E,∆a)

〉
. (13.229)

Assuming that the Rabi frequency does not depart much from its value near the
Condon point, Ωeg(R) ≃ Ωeg(RC) ≡ ΩC . Then,

Pe(E,∆a) = 4π2Ω2
CFeg(E,∆a) . (13.230)

where we defined the Franck-Condon overlap,

Feg(E,∆a) = |⟨Ψe(R,E + ℏωa)|Ψg(R,E)⟩|2 . (13.231)

It is now possible to show [444], that within the reflection approximation,

Feg(E,∆a) ≃
|Ψg(RC, E)|2

DC
. (13.232)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Wavefunctions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Wavefunctions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Wavefunctions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Wavefunctions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Wavefunctions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Wavefunctions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Wavefunctions.m
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I.e. the Franck-Condon factor is directly proportional to the square of the ground
state wavefunction. It only depends on the excited state through the slope term DC.

13.5.2.2 Red detuning

Bound states,

|Seg(E,∆a)|2 =
γpγs(E, v,∆a)

(E −∆a)2/ℏ2 + (γp + γs(E, v,∆a) + γ0)2/4
. (13.233)

with

γs(E, v,∆a) =
2π
ℏ |⟨Ψe(v)|ΩC |Ψg(E)⟩|2 ≃ 2π

ℏ Ω2
CFeg(E, v,∆a) (13.234)

vibrational spacing,
∂Ev
∂v

= ℏωvib ≃
Ev+1 − Ev

2
. (13.235)

In analogy to (13.232) we now get the Franck-Condon factor,

Feg(E, v,∆a) =
∂Ev
∂v

|ψg(RC, E)|2
DC

. (13.236)

Example 74 (Dimers): For a C6 ground state potential and a C3 excited state
potential at a given detuning ∆a the Condon point RC is given by,

∆a = Ve(RC)− Vg(RC) = − C3

R3
C

+
C6

R6
C

= − C3

R3
C

(13.237)

and the differential slope is,

DC =

∣∣∣∣ ddR (Ve(R)− Vg(R))
∣∣∣∣
R=RC

=
d

dR

(
−C3

R3
+
C6

R6

)∣∣∣∣
R=RC

(13.238)

=
3C3

R4
C

− 6C6

R7
C

≃ 3C3

R4
C

=
3|∆a|
RC

.

Hence, for red-detuning,

Feg(E,∆a) ≃ R4
C
|Ψg(RC, E)|2

3C3
= (C3/∆a)

1/3 |Ψg((C3/∆a)
1/3, E)|2

3|∆a|
. (13.239)

13.5.2.3 Photoassociation spectroscopy

Photoassociation is based on binary collisions. Transitions to excited states are fol-
lowed by spontaneous decay and can be monitored in trap loss experiments. An
alternative way, which suits especially well for sodium is photoassociative ionization.
The trap loss rate can be expressed as,

ṅ = −2Kpan
2 . (13.240)
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The event rate for photoassociation in a thermal cloud with Boltzmann velocity dis-
tribution is:

Kpa(T,∆1, I1) =

〈
πv

k2

∑

ℓ

(2ℓ+ 1)|S(E, ℓ,∆1, I1)|2
〉

, (13.241)

=
2πℏ
mredk

∑

ℓ

(2ℓ+ 1)

∫ ∞

0

|S(E, ℓ,∆1, I1)|2e−βEd(βE) ,

where the S-matrix is given by (13.233), γ1 is the spontaneous linewidth and γs(E, ℓ, I1)/2π ≈
Ω2

1|⟨b1|E, ℓ⟩|2 is the Franck-Condon overlap between the colliding channel and the
excited state bound level. For cold ultra-cold collisions, we may only consider s-
wave collisions, ℓ = 0. In the regime of Bose-Einstein condensation T ≲ 1µK and
n ≳ 1014 cm-3, we can replace e−βE → δ(E) and E → 0. The photoassociation rate
then simplifies to [127],

Kpa(∆1, I1) ≈
2πℏ
mredk

γ1γs

∆2 + 1
4 (γ1 + γs)2

. (13.242)

Thus the S-matrix is maximized in resonance and saturation, i.e. ∆1 = E and γs = γ1
so that |S|2 = 1, which case is called the unitarity limit. Note that increasing the
laser power beyond saturation, γs > γ1, decreases the photoassociation efficiency
again because of Autler-Townes splitting [738].

13.5.3 Two-color photoassociation

We can also shine in a second laser frequency tuned between the excited potential
bound state and a ground potential bound state. This second laser power broadens
the resonance and spoils the transition rate for the first laser. Following [94]:

Kpa(T,∆1,∆2, I1, I2) =

〈
πv

k2

∑

ℓ

(2ℓ+ 1)|S(E, ℓ,∆1,∆2, I1, I2)|2
〉

, (13.243)

where,

|S|2 =
(E −∆2)

2γ1γs

(E −∆+)2(E −∆−)2 + 1
4 (γ1 + γs)2(E −∆2)2

, (13.244)

where,

∆± = 1
2 (∆1 +∆2)± 1

2

√
(∆1 −∆2)2 + 4Ω2

12 . (13.245)

Note that γs(E, ℓ, I1)/2π ≈ Ω2
1 |⟨b1|E, ℓ⟩|2 and Ω12 = Ω2⟨b1|b2⟩. The one-color signal

follows with Ω12 → 0. Assuming the unitarity limit for the free-bound transition,
∆1 = E and γs = γ1 the two-color signal reads:

|S|2 =
1

1 + Ω4
12/(∆1 −∆2)2γ21

. (13.246)

The width of the two-color spectral lines is mainly limited by the Boltzmann
distribution of kinetic energies in the atomic cloud. At very low temperatures, we
may .... and the two-color resonance dip may be interpreted as a true dark resonance.
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Two-color PA lines have been observed for 85Rb in a FORT [305]. In order to
measure this for very low temperatures and even for condensates, one has to switch
to 87Rb in a dark MOT. A technical requirement is, of course, that the two lasers
involved in the Raman process be very stable, at least with respect to each other.
This is easiest achieved by using AOMs, which limits the range of levels to be studied
to a few GHz binding energy.

Another important aspect is the requirement of a reasonable Raman transition
probability, i.e. large Franck-Condon overlap between the collisional and the bound
excited state and between the two bound states. Note also that selection rules hold.

13.5.4 Exercises

13.5.4.1 Ex: Photoassociation

Consider a laser focused into a cold, confined cloud of Na atoms at a temperature of
450µK. For a detuning of 600MHz, calculate the laser intensity (in W/cm2) required
to produce a 25% probability of photoassociation. The transition moment (a.u.) of
Na is 2.55.

13.6 Further reading

13.6.1 on cold collisions

P.S. Julienne, Literature on cold binary collisions in a light field [DOI]

J.M. Vogels et al., Coupled Singlet-Triplet Analysis of Two-Color Cold-Atom Pho-
toassociation Spectra [DOI]

H. Ouerdane et al., Scattering Parameters for Cold LiRb and NaRb Collisions De-
rived from Variable Phase Theory [DOI]

M. Marinescu et al., Long-Range Potentials for Two-Species Alkali-Metal Atoms
[DOI]

S.B. Weiss et al., Calculation of the Interspecies S-Wave Scattering Length in an
Ultracold Na-Rb Vapor [DOI]

13.6.2 on Feshbach resonances

Ph.W. Courteille et al., Observation of a Feshbach resonance in Cold Atom Scattering
[DOI]

S. Inouye et al., Observation of Feshbach resonances in a Bose-Einstein condensate
[DOI]

C. Chin et al., Feshbach Resonances in Ultracold Gases [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_PhotoAssociation.pdf
http://doi.org/10.6028/jres.101.050
http://doi.org/10.1103/PhysRevA.61.043407
http://doi.org/10.1103/PhysRevA.70.022712
http://doi.org/10.1103/PhysRevA.59.390
http://doi.org/10.1103/PhysRevA.68.042708
http://doi.org/10.1103/PhysRevLett.81.69
http://doi.org/10.1038/32354
http://doi.org/10.1103/RevModPhys.82.1225
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Preface to the part Quantum Optics

Quantum optics is the field of physics which studies quantum characteristics of
light fields. We have seen in Sec. 2.6 how to describe light in quantum mechanics as
a quantum harmonic oscillator and introduced photon number states and coherent
superposition states. In Chp. 14 the lecture these concepts will be deepened and
extended to arbitrary photonic superposition states and to the coupling of different
light modes. In Chp. 15 we will discuss the dynamics of light fields in optical cavities,
their characterization, and their impact on the density-of-modes,
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Chapter 14

Quantized radiation fields

We begin this chapter with the quantization of the light field in Sec. 14.1 and then
present various ways of characterizing classical and quantum light fields in Secs. 14.2
and 14.3. In Sec. 14.4 we deepen the discussion for a particular type of quantum
correlations known as squeezed states of light and in Sec. 14.5 we turn our attention
to the coupling of different light modes via beam splitters.

14.1 Quantization of the electromagnetic field

We have already seen that the energy of a monochromatic light field with frequency
ω is quantized in small equal portions, such that the total energy is Nℏω, where N
is an integer number. The energy spectrum is the same as the one of the harmonic
oscillator. Therefore, we can identify a light mode with an oscillator and adopt the
entire formalism developed for the harmonic oscillator. The formalism will be assumed
as known in the following. We will, for simplicity use the term photon (respectively
phonon) for excitations of a harmonic oscillator mode. It is however important to be
aware that a photon is not a particle, as it simply disappears when performing the
transition from quantum to classical mechanics [497].

14.1.1 Field operators

The basic idea behind field quantization is the replacement of the classical harmonic
oscillators discussed in Sec. 2.5 by quantum oscillators. The simplest approach to
perform this quantization is to introduce the scalar potential Φ and the potential
vector A as done in electrodynamic theory 1. In free space, without charges nor
currents, and within the Coulomb gauge we have the solution of the wave equation
(16.5) generalized to a distribution of wavevectors k 2,

A(r, t) =
∑

k

ϵ⃗k[A
+
0ke

−ı(k·r−ωkt) +A−
0ke

ı(k·r−ωkt)] , (14.1)

where we already isolated the vectorial character due to the polarization ϵ⃗k of the light
mode k. Obviously, A−

0k = (A+
0k)

∗. As each amplitude and polarization of the wave

1See script on Electrodynamics: Electricity, Magnetism and Radiation (2025).
2The atom-light interaction may depend on the polarization of the light with respect to the

quantization axis of the atom, as defined e.g. by a magnetic field. In these cases we need to extend
the index k to include the polarization state (k, λ).

511

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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given by the vector potential Ak and A∗
k must satisfy the wave equation separately,

we arrive at the dispersion relation,

ωk = ck . (14.2)

With the results (16.7) and (16.8) we know that the energy in each radiative mode
containing nk photons is,

Ek = ℏωknk = ukV = 2ε0V ω
2
kA

2
0k = 2ε0V ω

2
k(A

−
0kA

+
0k +A+

0kA
−
0k) , (14.3)

where the bar denotes cycle-averaging. The second quantization now consists in
interpreting the mode as a quantum harmonic oscillator, that is, we understand the
observables as operators satisfying commutation rules, such as [Â−

0k, Â
+
0k′ ] ∝ δk,k′ ,

and hence being affected by quantum fluctuations:

Ĥk = ℏωk(n̂k + 1
2 ) = 2ε0V ω

2
k(Â

−
0kÂ

+
0k + Â+

0kÂ
−
0k) . (14.4)

We introduce normalized field operators following the commutation rule (2.85) via,

âk

√
ℏ

4ε0V ωk
≡ Â+

0k and â†k

√
ℏ

4ε0V ωk
≡ Â−

0k , (14.5)

such that,
Ĥk = ℏωk(â

†
kâk + 1

2 ) . (14.6)

The analogy allows us to interpret them as creation operator and annihilation operator
of photons. Finally, we can rewrite (14.1) as,

Âk(r, t) =
√

ℏ
4ε0V ωk

ϵ⃗k

[
âke

−ı(k·r−ωkt) + â†ke
ı(k·r−ωkt)

]
. (14.7)

We already know such combinations of operators and their complex conjugates from
the quantum harmonic oscillator (2.95).

In the Coulomb gauge, the electric and magnetic field operators for the cavity
modes can be constructed from,

ˆ⃗Ek = −∂Âk

∂t
= ı
√

ℏωk

2ε0V

(
âke

−ı(k·r−ωkt) − â†keı(k·r−ωkt)
)
ϵ⃗k

ˆ⃗Bk = ∇×Ak = ı
√

ℏωk

2ε0V

(
âke

−ı(k·r−ωkt) − â†keı(k·r−ωkt)
)
k× ϵ⃗k

. (14.8)

We can calculate the cycle-averaged energy of the k-th cavity mode from a quantum
version of Eq. (14.3),

Ēk = ε0
2

∫
⟨nk| ˆ⃗Ek · ˆ⃗Ek|nk⟩dV . (14.9)

The result (14.6) is exactly Planck’s quantum hypothesis (although strictly speak-
ing, he rather suggested a quantization of oscillators in the conducting walls of the
cavity, not of the field) on the distribution of the spectral intensity radiated by a black
body. We now can see that it follows naturally from the quantization of the cavity
field modes. With the results of the previous section the complete field Hamiltonian
reads,

Ĥfield =
∑

k

ℏωk(â
†
kâk + 1

2 ) . (14.10)

Solve Excs. 14.1.2.1 and 14.1.2.2.
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14.1.2 Exercises

14.1.2.1 Ex: Photon statistics

An optical resonator contains on average 10 photons in the mode TEM00q. What
is the probability of finding, at any time, 1 photon resp. 10 photons, when the light
is (a) thermal, (b) coherent? For case (a), what is the temperature of the light for
λ = 633 nm?

14.1.2.2 Ex: Photon wavefunction

a. Show that for the photonic wavefunction Ψ and the current density J [717],

Ψ = Ψ+ +Ψ− with Ψ± =
√

ε0
2 E⃗± ± ı

√
1

2µ0
B⃗± and σ̂Ψ± = ±Ψ±

J = Jf +∇× M⃗+
∂P⃗
∂t

,

where E⃗ ≡ E⃗+ + E⃗− and B⃗ ≡ B⃗+ + B⃗− are the real electric and magnetic fields of the
photon and σ̂ is the helicity, the Bialynicki-Birula-Sipe wave equation

ıℏ
∂Ψ

∂t
= ℏcσ̂∇×Ψ− ıℏ√

2ε0
J and ∇ ·Ψ = 0

is equivalent to the Maxwell equations.
b. Use the plane wavefunction

Ψ ≡
∑

s

∫
d3k
√

ℏω
(2π)3 e

ı(k·r−ωt)âksêks

to calculate the total energy Ĥ = 1
2

∫
d3r[Ψ†(r, t),Ψ(r, t)]+.

14.2 Density matrix

As long as we are only interested in coherent reversible processes the Schrödinger
equation suffices to describe the evolution of a system. A problem arises when we
want to describe dissipative processes, such as spontaneous emission or transmission
of photons through a cavity mirror. Dissipation is due to coupling of the degree of
freedom under investigation to other degrees of freedom imposed by the environment.
While the impact of dissipation on the state of the system can be important, the
impact of the system on the environment is generally negligible or not interesting.
Therefore, we would like to remove it from the equations of motion, while maintaining
its influence on the system. The disregarding of the environment represents a loss
of information on the state of the whole system plus reservoir, which transform an
initially pure state into a statistical distribution. This situation can not be described
by a single wavefunction, but only by a distribution of wavefunctions, and we can
only expect to calculate the probability of finding the system within this distribution.
The Schrödinger equation, therefore, no longer applies, and we need to trace the
time evolution of a system characterized by a density operator describing a statistical

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_LightStatistics01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_LightStatistics02.pdf
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mixture of quantum states. The equations which describe the time evolution of the
matrix elements of this density operator are called master equations, and we must
use them instead of the Schrödinger equation. We begin by reviewing the rudiments
of the density matrix theory.

14.2.1 The density operator

We define the statistical operator or density operator 3,

ρ̂ ≡
∑

k

pkP̂k where P̂k ≡ |ψk⟩⟨ψk| , (14.11)

where {|ψk⟩} is a complete set of orthonormal states of the system under study. We
consider a statistical distribution of these states with pj being the probability of
finding |ψj⟩ in the set. Obviously,

∑
k pk = 1. That is, the density operator acts on

a member of the set {|ψk⟩} in a way to extract the probability of finding the system
in |ψj⟩,

ρ̂|ψj⟩ =
∑

k

pk|ψk⟩⟨ψk|ψj⟩ = pj |ψj⟩ . (14.12)

If all members of the set are in the same state, for example |ψk⟩, the density
operator reduces to,

ρ̂ = |ψk⟩⟨ψk| , (14.13)

and the system is in a pure state with pk = δ1k. Each time a quantum state can be
expressed by a single wave function, it is a pure state, but it does not have to be an
eigenstate. Starting from the equation (14.12) we find,

⟨ψk|ρ̂|ψj⟩ = pjδkj . (14.14)

The diagonal elements of the density matrix are the probabilities of finding the system
in |ψj⟩, and assuming that all |ψk⟩ are orthonormal, the non-diagonal elements of the
incoherent sum (14.11) are necessarily zero 4, Besides that,

∑

k

⟨ψk|ρ̂|ψk⟩ = 1 , (14.15)

so that ρ̂ contains all available information about the system, that is, our knowledge
about its state. When the state of the system is unknown, ρ̂ describes the probability

3In the presence of degeneracy or a continuous spectrum we can generalize the definition:

ρ̂ ≡
∑
k

pkP̂k +

∫
pλP̂λdλ where P̂k ≡

∑
m

|km⟩⟨km| and P̂λ ≡
∫

|λµ⟩⟨λµ|dµ .

Here, m and µ are degenerate quantum numbers, m,n are discrete, and λ, µ are continuous quantum
numbers. The set of quantum numbers is complete, when∑

k,m
|km⟩⟨km| = I =

∫
|λµ⟩⟨λµ|dλdµ .

The degree of degeneracy of a state |k⟩ is Tr P̂k =
∑
m 1. The probability of finding the system in

the state |k⟩ is ⟨P̂k⟩ = pn
∑
m 1.

4This is simply because we constructed the density operator to be diagonal in the basis {|ψk⟩}.
It does not mean, that the density operator cannot have non-diagonal elements in another basis.
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of finding the system in each state. When the state is fully known, ρ̂ describes a pure
state, that is, a vector in the Hilbert space, which is unequivocally determined by a
complete set of observables with their respective quantum numbers.

The properties of the density operator are,

ρ̂ = ρ̂†

⟨ρ̂⟩ ≥ 0

Tr ρ̂ = 1

Tr ρ̂2 ≤ 1

det ρ̂ = 0

ρ̂ = ρ̂2 for a pure state

. (14.16)

Example 75 (Inhomogeneous atomic clouds): For example, a thermal

atomic cloud of N two-level atoms needs in general to be described by a density

operator, because the state of every atom is independent of the state of the other

atoms. If we knew that all atoms behave exactly in the same way, for instance,

when exposed to a radiation field, we could restrict to calculating the evolution

of a single atom and extrapolate to N atoms. However, atomic motion and

interatomic interactions often influence the dynamics in a way that the atoms

behave differently.

14.2.2 Matrix formalism

The next step is to develop matrix representations of the density operator by expand-
ing the state vectors |ψk⟩ in a complete orthonormal basis,

|ψk⟩ =
∑

n

cnk|n⟩ =
∑

n

|n⟩⟨n|ψk⟩ , (14.17)

using the completeness relation (1.183), that is,
∑
n |n⟩⟨n| = I, and defining,

cnk ≡ ⟨n|ψk⟩ (14.18)

as the projection of the state vector |ψk⟩ on the basis vector |n⟩. Now, we can write
the density operator matrix representation within the basis {|n⟩} using the definition
of ρ̂ in Eq. (14.11) and replacing |ψk⟩ and ⟨ψk| by their expansions (14.17):

ρ̂ =
∑

k

pk|ψk⟩⟨ψk| =
∑

k

pk
∑

m,n

|n⟩⟨n|ψk⟩⟨ψk|m⟩⟨m| =
∑

k

pk
∑

m,n

cnkc
∗
mk|n⟩⟨m| .

(14.19)
The matrix elements of ρ̂ in this representation are

ρnm ≡ ⟨n|ρ̂|m⟩ =
∑

k

pkcnkc
∗
mk (14.20)

with the diagonal elements ⟨n|ρ̂|n⟩ =∑k pk|cnk|2 and,

ρ∗nm = ⟨n|ρ̂|m⟩∗ =
∑

k

pkc
∗
nkcmk =

∑

k

pk⟨m|ψk⟩⟨ψk|n⟩ = ⟨m|ρ|n⟩ = ρmn , (14.21)

which means that the operator ρ̂ is Hermitian.
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Example 76 (Density operator for a single atom): For a very simple system
such as a single atom with several levels, that without spontaneous emission can
be described by a single wavefunction |ψ1⟩, we can let pk = δ1k. That is, the
equations (14.19) and (14.21) reduce to,

ρ̂ =
∑
m,n

cn1c
∗
m1|n⟩⟨m| and ⟨n|ρ|m⟩ = cn1c

∗
m1 . (14.22)

14.2.3 Measurement and trace

The sum of the diagonal elements of a matrix representing an operator is called the
trace. This quantity represents a fundamental property of the density operator, since
it is invariant with respect to any unitary transformation:

Tr ρ̂ ≡
∑

n

⟨n|ρ̂|n⟩ . (14.23)

With the definition of the density operator (14.11) we can write the Eq. (14.23) as,

Tr ρ̂ ≡
∑

n,k

pk⟨n|ψk⟩⟨ψk|n⟩ . (14.24)

Now, using the completeness relation,

Tr ρ̂ ≡
∑

n,k

pk⟨ψk|n⟩⟨n|ψk⟩ =
∑

k

pk⟨ψk|ψk⟩ = 1 , (14.25)

which shows that the trace of the density operator representation is always 1 regardless
of the basis of the matrix representation.

Example 77 (Density operator for a statistical mixture): Let us imagine
an experiment with a single three-level atom coupling a state |1⟩ to two other
possible states |2⟩ and |3⟩ via a π

2
-pulse, such that one of the two states,

|ψ1⟩ = 1√
2
(|1⟩+ |2⟩) or |ψ2⟩ = 1√

2
(|1⟩+ |3⟩)

be generated with equal probability. We also suppose that the performed ex-
periment doesn’t tell us which one of the two states was generated, so that we
have to describe the system by a density operator,

ρ̂ =
∑
k=1,2

1
2
|ψk⟩⟨ψk| = 1

2

[ |1⟩+ |2⟩√
2

⟨1|+ ⟨2|√
2

]
+ 1

2

[ |1⟩+ |3⟩√
2

⟨1|+ ⟨3|√
2

]
.

Choosing an obvious basis, we can represent the density operator by a matrix,

ρ̂ =

 1
2

1
4

1
4

1
4

1
4

0
1
4

0 1
4

 ,

for which we verify,
ρ̂ = ρ̂† and Tr ρ̂ = 1 ,

but,
ρ̂2 ̸= ρ̂ and Tr ρ̂2 = 5

8
≤ 1 .

Hence the state is not pure.
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Expectation values of observables are expressed by,

⟨Â⟩ =
∑

k

pk⟨ψk|Â|ψk⟩ . (14.26)

On the other hand,

ρ̂Â =
∑

k

pk|ψk⟩⟨ψk|Â , (14.27)

and in the basis {|n⟩},

⟨n|ρ̂Â|m⟩ = ⟨n|
∑

k

pk|ψk⟩⟨ψk|Â|m⟩ =
∑

k

pk⟨n|ψk⟩⟨ψk|Â|m⟩ =
∑

k

pk⟨ψk|Â|m⟩⟨n|ψk⟩ .

(14.28)
Now, along the diagonal, we have,

⟨n|ρ̂Â|n⟩ =
∑

k

pk⟨ψk|n⟩⟨n|Â|ψk⟩ . (14.29)

With the closure relation in the basis {|n⟩}, we now have 5,

Tr ρ̂Â =
∑

k

pk⟨ψk|Â|ψk⟩ = ⟨Â⟩ . (14.30)

The Eq. (14.30) says that the ensemble average of any dynamic observable Â can be
calculated from the diagonal elements of the operator matrix ρ̂Â: Since the trace is
independent of the basis (this will be shown in Exc. 14.2.4.1), each unitary transfor-
mation taking the matrix representation from a basis {|n⟩} to another one {|t⟩} leaves
the trace invariant. Using the definition of a unitary transformation we can easily
show that the trace of a cyclic permutation of a product is invariant. For example,

Tr [ÂB̂Ĉ] = Tr [ĈÂB̂] = Tr [B̂ÂĈ] , (14.31)

and in particular
Tr [ρ̂Â] = Tr [Âρ̂] = ⟨Â⟩ . (14.32)

In the Excs. 14.2.4.2 and 14.2.4.3 we apply the density operator to pure and mixed
states of a two-level system. In Excs. 14.2.4.4 and 14.2.4.5 we study thermal mixtures
and Exc. 14.2.4.6 Glauber states.

14.2.3.1 Measurement process

If an observable Â has a spectral representation Â =
∑
n an|an⟩⟨an| =

∑
n anP̂n, with

P̂n = |an⟩⟨an|, the measurement process will transform the density operator to,

ρ̂′ =
∑

n

P̂nρ̂P̂n . (14.33)

5In the presence of degeneracy or a continuous part of the spectrum we can generalize the definition
of the expectation,

⟨X̂⟩ ≡ Tr ρ̂X̂ =
∑
k,m

⟨km|ρ̂X̂|km⟩ .
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That is, after the measurement, the density operator becomes diagonal on the basis
of the eigenvalues of Â 6, as explained in Sec. 1.4.7. The expression can be thought
of as the mathematical formulation of von Neumann’s state reduction postulate.

We note that the density operator (14.33) describes the whole ensemble after
the measurement. The sub-ensemble corresponding to a particular result an of the
measurement is described by a different density operator,

ρ̂′n =
P̂nρ̂P̂n

Tr [ρ̂P̂n]
. (14.34)

This is true, when |an⟩ is the only eigenvector with the eigenvalue an. If not, P̂n in the
expression (14.34) should be replaced by the projection operator onto the sub-space
of an

7. In Exc. 14.2.4.7 we study the projection of Glauber states and in Exc. 14.2.4.8
of entangled states.

14.2.3.2 Entropy

In a very general sense, the entropy determines in what direction a reversible process
will take place. It is related to the size of the available phase space on both sides of
the reaction. For example, the coupling of discrete and continuous modes is governed
by entropy considerations.

Entropy measures of the lack of information about a system from which we only
know ⟨Ĥ⟩,

S ≡ −kB⟨ln ρ̂⟩ = −kB Tr (ρ̂ ln ρ̂) . (14.35)

The information entropy (or von Neumann entropy) of statistically independent sys-
tems ρ̂ ≡ ρ̂1 ⊗ ρ̂2 is additive S = S1 + S2. We can also define absolute temperatures
by T−1 ≡ ∂S/∂⟨Ĥ⟩. The entropy of a pure state is 0. Hamiltonian processes conserve
entropy, for they correspond to non-dissipative unitary transformations. On the other
side, relaxation increases the entropy and the phase space volume. Another common
definition is the so-called purity or Renyi entropy,

SR ≡ ⟨1− ρ̂⟩ = 1− Tr (ρ̂2) . (14.36)

Quantum states can exhibit coherences. For example, if we express a state |ψ⟩ on
a basis of eigenstates |1⟩ and |2⟩:

ρ̂ = |ψ⟩⟨ψ| =
( |⟨ψ|1⟩|2 ⟨1|ψ⟩⟨ψ|2⟩
⟨2|ψ⟩⟨ψ|1⟩ |⟨ψ|2⟩|2

)
. (14.37)

6A projective measure always increases entropy. The entropy of a pure state is zero, while that
of a mixture is always greater than zero. Therefore, a pure state can be converted into a mixture
by a measurement, but the reverse can not happen. Thus, the action of measuring induces an
irreversible change in the density matrix reminiscent of the collapse of the wavefunction. Strangely,
the measurement reduces the amount of information by quenching the quantum interference of the
compound system in a process called quantum decoherence. A subsystem can be taken from a mixed
state to a pure state only at the price of increasing the von Neumann entropy elsewhere in the global
system.

7In general, assuming that f is a function associating each observable Â with a number f(Â)
(which we may imagine as the expectation value), we can state the following: If f satisfies some
natural properties (such as the one to produce positive values for positive operators), then there

exists a unique density matrix ρ̂, such that f(Â) = Tr (ρ̂Â) for all Â. That is, every reasonable
’family’ of expectation values’ can be represented by a density matrix, which suggests that the
density matrix provides the most general description of a quantum state.
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The evolution of such a state is described by the von Neumann equation,

iℏ∂tρ̂(t) = [Ĥ, ρ̂(t)] . (14.38)

The measurement process is not described by this equation. A pure state will always
remain pure. If the eigenstates do not interact, the density operator will remain
diagonal. The von Neumann equation conserves the properties of hermiticity, ρ̂ = ρ̂†,
completeness, Tr ρ̂ = 1, and purity det ρ̂ = 0.

The density operator for a statistical mixture in a canonical ensemble (where S is
maximum, U is variable, and N is fixed) follows from a variational problem with the
Lagrange parameters δ(S − kBα⟨I⟩ − kBβ⟨Ĥ⟩) = 0, since Tr ρ̂ and ⟨Ĥ⟩ are fixed by
boundary conditions. We find,

ρ̂ =
1

Z
e−Ĥ/kBT with Z ≡ Tr e−Ĥ/kBT . (14.39)

We also have the expectation values, ⟨H⟩ = −∂ lnZ/∂β and (∆H)2 = −∂⟨Ĥ⟩/∂β
with the abbreviation β ≡ (kBT )

−1. All quantities are fixed, except the kinetic
energy, which balances the interaction with a heat bath. T is the only equilibrium
parameter. The density operator satisfies a Boltzmann distribution 8,

U = ⟨Ĥ⟩ = p2

2m
= − ∂

∂(1/kBT )
ln

∫
e−p

2/2mkBT dp =
kB
2
T . (14.40)

14.2.3.3 Systems and subsystems

Density operators are very useful for playing with systems and subsystems. Let us, for
instance, assume that we have two quantum systems defined on the Hilbert spaces H1

and H2. The composite system is then the tensor product H1⊗H2. We now suppose
that the compound system is in a pure state, |ψ⟩ ∈ H1 ⊗ H2. If the state can be
written in the form |ψ⟩ = |ψ1⟩⊗ |ψ2⟩, this means that the state of the first subsystem
is |ψ1⟩. However, in general, |ψ⟩ does not decompose like this. Of course, every vector
in H1⊗H2 is a linear combination of tensorial products of H1 and H2. If |ψ⟩ can not
be decomposed as a tensor product, we say that the two systems are entangled. In
this case, there is no reasonable way of associating a pure state |ψ1⟩ ∈ H1 to the state
ψ ∈ H1 ⊗ H2. If, for example, in the case of a two particle wavefunction Ψ(x1, x2)
there is no way to construct a wavefunction (i.e. a pure state) ψ1(x1) describing the
state of the first particle, then Ψ(x1, x2) ̸= ψ1(x1)ψ2(x2).

The point of the discussion is that, even if the total system is in a pure state, the
various subsystems that compose it will normally be in mixed states. On the other
hand, regardless of whether the composite system is in a pure or mixed state, we can
perfectly construct a density matrix that describes the state. Therefore, the use of
density matrices is inevitable. Let ρ̂ be the density matrix of the system composed
of two subsystems. Then the state in H2 is described by a reduced density operator
given by the partial trace of ρ̂ over H2. In the particular case, where the state the

8The von Neumann entropy S of a mixture can be expressed in terms of the eigenvalues or in
terms of the trace and the logarithm of the density operator ρ̂. Since ρ̂ is a semi-definite positive
operator, its spectrum λi, given by ρ =

∑
i λi|φi⟩⟨φi| where {|φi⟩} is an orthonormal basis, satisfies

λi > 0 and
∑
λi = 1. Then the entropy becomes S = −∑

i λi lnλi = −Tr (ρ ln ρ).
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density matrix has the form ρ̂ = ρ̂1 ⊗ ρ̂2, where ρ̂1 and ρ̂2 are the density matrices in
H1 and H2, then the partial trace is simply, TrH2

ρ̂ρ̂1.

14.2.4 Exercises

14.2.4.1 Ex: Trace of an operator

The trace of an operator Â is defined by Tr Â =
∑
n⟨n|Â|n⟩.

a. Show that the trace is independent of the chosen basis!
b. Show that Tr ÂB̂ = Tr B̂Â!

14.2.4.2 Ex: Pure states and mixtures

Consider a system of two levels coupled by a light mode. The Hamiltonian can be
written (ℏ ≡ 1),

Ĥ =

(
0 1

2Ω
1
2Ω ω0

)
.

Calculate ρ̂, ρ̂2 and ⟨Ĥ⟩ for the following two cases:
a. The atom is in a superposition state, |ψ⟩ = α|1⟩+ β|2⟩ and
b. the atom is a statistical mixture of eigenstates, ρ̂ = µ|1⟩⟨1|+ ν|2⟩⟨2|.

14.2.4.3 Ex: Mixture of states

A two-level atom is initially in a superposition of two states |ψ⟩ = 1√
2
|1⟩ + 1√

2
|2⟩.

An apparatus measures the populations of the states, but the experimenter forgot to
read the indicated result.
a. Describe the state the atom by the density operator.
b. Now the experimenter returns to the device. Calculate with which probability he
reads the state |1⟩.

14.2.4.4 Ex: Thermal mixture

We consider a thermal non-interacting atomic gas in one dimension. Instead of de-
scribing the state of the atomic ensemble, we can consider a single atom with a
distributed probability of having a given velocity v. The density operator of the
continuous degree of freedom can be written,

ρ̂ =

∫
dv

√
m

2πkBT
e−mv

2/2kBT |v⟩⟨v| ,

and the trace of an arbitrary observable Â,

⟨Â⟩ = Tr ρ̂A =

∫
du⟨u|ρ̂Â|u⟩ .

Now imagine a device capable of measuring the speed of a single atom randomly
chosen within the cloud.
a. Express the probability of measuring a specific velocity v′ for this atom using the
density operator.
b. Express the expectation value of the average velocity by the density operator.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_DensitOperator01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_DensitOperator02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_DensitOperator03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_DensitOperator04.pdf
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14.2.4.5 Ex: Thermal population of a harmonic oscillator

In thermal equilibrium the energy states of a system are populated following Boltz-
mann’s law,

Pn =
e−nβℏω∑
m e

−mβℏω with β ≡ 1

kBT
.

a. Consider a one-dimensional harmonic oscillator characterized by the secular fre-
quency ω and, using the density operator, calculate the mean quantum number of the
population and the mean energy.
b. For an energy spacing of ω/2π = 10MHz, how many levels of the harmonic oscil-
lator are necessary at room temperature to accumulate a population of at least 50%.
How many for an energy spacing of ω/2π = 10GHz. Repeat the calculation for a
1µK cold atomic cloud.

14.2.4.6 Ex: Density operator of a Glauber state

a. Write down the density operator of a Glauber state and calculate its purity.
b. How does the density operator look after a measurement of its vibrational level
before acknowledging the result? Is it pure?
c. How does it look having acknowledged the result? Is it pure?

14.2.4.7 Ex: Reduced density operator of a Glauber state

Project the density operator of a Glauber state onto its two lowest Fock states using
the formula (14.34). Show that the resulting density operator is pure.

14.2.4.8 Ex: Partial measurements

Consider the density operator describing the quantum state of two spins, |Ψ⟩ = |ψa⟩⊗
|ψb⟩, with |ψa⟩ = a1| ↑⟩+ a2| ↓⟩ and |ψb⟩ = b1| →⟩+ b2| ←⟩.
a. Write down the density operator for the complete system in terms of the expansion
coefficients cij = aibj .
b. Assume that the spin |ψb⟩ is measured and verify whether the new density operator
describing our knowledge of the system is pure.
c. Now consider the entangled state |Ψe⟩ = c11| ↑⟩| →⟩ + c22| ↓⟩| ←⟩. Write down
again the density operator for the complete system, measure the spin |ψb⟩, and verify
whether the new density operator describing our knowledge of the system is pure.

14.3 (Quasi-)probability distribution functions of the
coherent state basis

In the previous section we have seen that a light mode can be identified with a
harmonic oscillator, which enabled us to harness the whole powerful formalism devel-
oped in Secs. 2.5 and 2.6 for the characterization of the quantum states of light. As we
have seen in those sections, quantum observables are intrinsically affected by quantum
noise, which leads to a spreading of their representation in phase space. For the case
of Glauber states of a harmonic oscillator we illustrated in Fig. 2.14 the uncertainty of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_DensitOperator05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_DensitOperator06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_DensitOperator07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_DensitOperator08.pdf
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conjugate variables by circles around their expectation values whose areas are deter-
mined by the Heisenberg uncertainty relation. These circular areas represent phase
space probability distribution functions. These are distribution functions measuring
the probability to encounter the observables at specific points in phase space.

States other than Glauber states are possible, for instance Fock or cat states. Some
of these states may exhibit quantum correlations, which we would like to identify in
probability distributions. Quantum correlations in systems with small Hilbert spaces,
such as the two-level atom, are conveniently represented by a density operator or by
the Bloch vector introduced in Eq. (1.154). Large or infinite Hilbert spaces require
different approaches. We have seen in Sec. 2.6.1 how to expand the state of a harmonic
oscillator on a Fock state basis. On the other hand, we have seen that Glauber states
are more ’natural’ states for a harmonic oscillator, so that we would like to visualize
expansions of arbitrary states into a coherent state basis.

The following sections are devoted to introducing various such distribution func-
tions [749, 737] and to calculating them for a selection of particular states, such as
the Fock and the Glauber state, the thermal state, and the Schrödinger cat state.
We will mostly restrict the discussion to pure states, postponing a discussion of the
representation of statistical mixtures to Sec. 17.2, where we will also extend the dis-
cussion to quantum correlations in light fields resulting from a Jaynes-Cummings type
interaction of an atom with a light mode.

14.3.1 The density operator and distribution functions

14.3.1.1 The density operator

We define the density operator for a pure state as,

ρ̂ ≡ |ψ⟩⟨ψ| . (14.41)

A detailed discussion of the density operator for non pure states, that is, statistical
mixtures has been given in Sec. 14.2. The definition (14.41) is independent from
a chosen basis, but a proper representation can be found by simply expanding the
state |ψ⟩ on a proper basis. The expansion we had in mind in Sec. 14.2.2 was on
eigenstates of atomic excitations, which are typically discrete and limited in number.
The expansion of the density operator in the infinite but discrete spectrum of Fock
states is essentially the same as for atomic excitations and thus straightforward,

ρ̂ =
∑

n

ρ̂|n⟩⟨n| ≡
∑

n

pn|n⟩⟨n| (14.42)

=⇒ pm = ⟨m|ρ̂|m⟩ =
∑

n

pn|⟨m|n⟩|2

=
∑

n

pnδmn = pm ,

where the first line can be read as a definition of the photon number distribution
function pn. An analogous expansion in the continuous Glauber basis is, however,
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more complicated, because the coherent states are not orthogonal,

ρ̂ = 1
π

∫
ρ̂|α⟩⟨α|d2α ≡

∫
P (α, α∗)|α⟩⟨α|d2α (14.43)

=⇒ πQ(β, β∗) ≡ ⟨β|ρ̂|β⟩ =
∫
P (α, α∗)|⟨β|α⟩|2d2α

=

∫
P (α, α∗)e−|α−β|2d2α ̸= P (β, β∗) .

That is, we end up with two distribution functions, the so-called P -function P (α, α∗)
(or Glauber-Sudarshan representation) and the Q-function Q(α, α∗) (or Husimi rep-
resentation) which, according to (14.43) they are not equal. Before we deepen the
discussion in the upcoming sections let us already state here, that the reason for the
complication is rooted in the non-commutativity of the field operators [â, â†] = 1.
Indeed, expressing the density operator of a system as a function of field operators
we have (at least) two choices called the normal-ordered arrangement (label N) and
the antinormal-ordered arrangement (label A) 9,

ρ̂N(â, â
†) =

∑

m,n

cm,nâ
†mân and ρ̂A(â, â

†) =
∑

m,n

c′m,nâ
mâ†n . (14.44)

Although both expressions can be converted into each other, the functional form of
the density operator depends on the arrangement. We will show in Exc. 14.3.5.1
that the P (α, α∗)-function defined by the first line of (14.43) is more natural for the
antinormal-ordered density operator ρ̂A, while the Q(α, α∗)-function defined by the
second line of (14.43) is more natural for the normal-ordered density operator ρ̂N:

ρN(α, α
∗) = 1

πQ(α, α∗) and ρA(α, α
∗) = πP (α, α∗) . (14.45)

We will discuss the distribution functions more deeply in the upcoming sections.
To prepare the subsequent derivations, let us define the two-dimensional complex

Fourier transform by,

(Fχ)(β, β∗) = 1
π

∫
χ(α, α∗)eβα

∗−β∗αd2α , (14.46)

with d2λ = dReλ dImλ = drλdpλ. Twofold application of the Fourier transform
reproduces the original function,

(FFχ)(γ, γ∗) = 1
π

∫
(Fχ)(β, β∗)eγβ

∗−γ∗βd2β (14.47)

= 1
π2

∫
χ(α, α∗)

∫
eβ

∗(γ−α)−β(γ∗−α∗)d2βd2α

= 1
π2

∫
χ(α, α∗)π2δ(2)(γ − α)d2α = χ(γ, γ∗) ,

9Normal ordering is often denoted by double colons : ... :. For example, : ââ† : = â†â = ââ† −
1, and for an arbitrary density operator ρ̂(â, â†) the normal-ordered counterpart is, ρ̂N(â, â†) =
: ρ̂(â, â†) : .
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where we used,

δ(2)(α) = 1
π2

∫
eλ

∗α−λα∗
d2λ . (14.48)

The formula (14.48) can be extended to include field operators [749],

δ(α∗ − â†)δ(α− â) = 1
π2

∫
e−λ(α

∗−â†)eλ
∗(α−â)d2λ (14.49)

δ(α− â)δ(α∗ − â†) = 1
π2

∫
eλ

∗(α−â)e−λ(α
∗−â†)d2λ ,

which will be useful in the following.

14.3.1.2 The Glauber-Sudarshan P -distribution

The Glauber-Sudarshan P -function can be formally defined by [749],

P (α, α∗) ≡ Tr ρ̂δ(α∗ − â†)δ(α− â) . (14.50)

The definition (14.43) of the P -function, that is,

ρ̂ ≡
∫
P (α, α∗)|α⟩⟨α|d2α , (14.51)

is equivalent to the definition (14.50), as will be verified in Exc. 14.3.5.2. From (14.51)
we see, that the Glauber-Sudarshan P -function is just the distribution that leaves the
density matrix diagonal in the coherent state basis. Since ρ̂ is Hermitian, P (α, α∗)
is real, and since Tr ρ̂ = 1, it is normalized,

∫
P (α, α∗)d2α = 1. Hence, the P -

distribution functions can be interpreted as the probability of finding the coherent
state |α⟩ within the statistical mixture given by (14.51).

In order to unravel its properties let us consider an arbitrary operator Ô being a
function of the field operators â and â†. Using the commutation rule [â, â†] = 1 the
operator can always be brought in normal-ordered form,

ÔN(â, â
†) =

∑

m,n

om,nâ
†mân . (14.52)

The expectation value of this operator is,

⟨ÔN(â, â
†)⟩ = Tr ρ̂ÔN(â, â

†) =
∫
P (α, α∗)ON(α, α

∗)d2α , (14.53)

as we will show in Exc. 14.3.5.3.

14.3.1.3 The Husimi Q-distribution

The Husimi Q-function is formally defined by [749],

Q(α, α∗) ≡ Tr ρ̂δ(α− â)δ(α∗ − â†) . (14.54)
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The definition (14.43) of the Q-function, that is,

⟨α|ρ̂|α⟩ = πQ(α, α∗) , (14.55)

is equivalent to the definition (14.50), as will be verified in Exc. 14.3.5.2. From (14.55)
we see, that the Q-distribution function can be interpreted as the expectation value
of the density operator (14.41).

The expression resembles Eq. (14.50) except for the order of the δ-functions. We
now consider the same arbitrary operator Ô as in (14.52), but now expressed in
antinormal ordered form of the field operators â and â†,

ÔA(â, â
†) =

∑

m,n

om,nâ
mâ†n . (14.56)

As we will show in Exc. 14.3.5.3, the expectation value of this operator is,

⟨ÔA(â, â
†)⟩ = Tr ρ̂ÔA(â, â

†) =
∫
Q(α, α∗)OA(α, α

∗)d2α . (14.57)

14.3.1.4 The Wigner-Weyl distribution

The Wigner function represents something like the spectrum of two-dimensional
phase-space correlation function. For a pure state and a one-dimensional system
it is defined by,

W (x, p) ≡ 1
π

∫ ∞

−∞
⟨ψ|x+ y⟩⟨x− y|ψ⟩e2ıpy/ℏdy . (14.58)

Example 78 (Wigner function of a free particle in 3D): For example, for
a free particle described by the wavefunction in three-dimensional space,

⟨r|ψ⟩ = 1√
V
eık·r ,

the Wigner function is,

W (r,p) =
1

π3

∫ ∞

−∞

1√
V
e−ık·(r+x) 1√

V
eık·(r−x)e(2ı/ℏ)p·xd3x

=
1

π3V

∫ ∞

−∞
e−2ı(k−p/ℏ)·xd3x = 1

V
δ3(p− ℏk) .

For a harmonic oscillator, we would like to embed the Wigner function into the
formalism of the coherent states distribution functions, such that it can be used to
evaluate expectation values,

⟨ÔS(â, â
†)⟩ = Tr ρ̂ÔS(â, â

†) =
∫
W (α, α∗)OS(α, α

∗)d2α , (14.59)

where the index S denotes symmetric order. How this can be done will be detailed
in the next section and in Exc. 14.3.5.3.
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Example 79 (Symmetric order): Simple examples for Wigner-Weyl ordering
are,

ââ† = 1
2
(ââ† + â†â)− 1

2

â†â = 1
2
(ââ† + â†â) + 1

2

â2â† = 1
2
(â2â† + â†â2) + â

ââ†â = 1
2
(â2â† + â†â2)

â†â2 = 1
2
(â2â† + â†â2)− â .

14.3.2 Relation between the P , Q, and Wigner distributions

All three distribution function studied here, the P , the Q, and the Wigner distribu-
tions can be brought into a common generic shape writing the density operator as
[749],

ρ̂ = π

∫
FX(α, α∗)∆X(α− â, α∗ − â†)d2α

with ∆N(α− â, α∗ − â†) = 1
π2

∫
e−λ(α

∗−â†)+λ∗(α−â)e−|λ|2/2d2λ

∆S(α− â, α∗ − â†) = 1
π2

∫
e−λ(α

∗−â†)+λ∗(α−â)d2λ

∆A(α− â, α∗ − â†) = 1
π2

∫
e−λ(α

∗−â†)+λ∗(α−â)e|λ|
2/2d2λ

, (14.60)

with the indices X = N,S,A and the respective distribution functions FN = P ,
FS = W , and FA = Q. A useful formula helping us to break down the exponential
functions is obtained from Glauber’s formula (1.313) applied to the displacement

operator D(α) = eλâ
†−λ∗â defined in (2.130),

eλâ
†−λ∗â = e−λ

∗âeλâ
†
e|λ|

2/2 = eλâ
†
e−λ

∗âe−|λ|2/2 . (14.61)

as it allows us to rewrite the formulas (14.60) as,

∆N(α− â, α∗ − â†) = F [e−λ∗âeλâ
†
] (14.62)

∆S(α− â, α∗ − â†) = F [eλâ†−λ∗â]

∆A(α− â, α∗ − â†) = F [eλâ†e−λ∗â] .

Inserting the density operator (14.60) into definition (14.50) of the Glauber-
Sudarshan P -function we calculate,

P (α, α∗) = Tr ρ̂δ(α∗ − â†)(α− â) (14.63)

= 1
π2

∫
eλ

∗α−λα∗
Tr ρ̂eλâ

†
e−λ

∗âd2λ = F [χN(λ, λ
∗)] ,
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where we defined the so-called normal-ordered characteristic function χN ≡ Tr ρ̂eλâ
†
e−λ

∗â.
Similarly, inserting the density operator (14.60) into definition (14.54) of the Husimi
Q-function we calculate,

Q(α, α∗) = Tr ρ̂δ(α− â)(α∗ − â†) (14.64)

= 1
π2

∫
eλ

∗α−λα∗
Tr ρ̂e−λ

∗âeλâ
†
d2λ = F [χA(λ, λ

∗)] ,

where we defined the antinormal-ordered characteristic function χA ≡ Tr ρ̂e−λ
∗âeλâ

†
.

By analogy we find for the Wigner distribution,

W (α, α∗) = F [χA(λ, λ
∗)] = 1

π2

∫
eλ

∗α−λα∗
Tr ρ̂eλâ

†−λ∗âd2λ . (14.65)

In summary, the three coherent distribution functions are expressed by inverse
Fourier transforms of the following characteristic functions 10,

χN(λ, λ
∗) = Tr ρ̂eλâ

†
e−λ

∗â , P = FχN

χS(λ, λ
∗) = Tr ρ̂eλâ

†−λ∗â , W = FχS

χA(λ, λ
∗) = Tr ρ̂e−λ

∗âeλâ
†

, Q = FχA

. (14.66)

We see that the distribution functions χN,S,A are related to each other via (14.61).
We derive in Exc. 14.3.5.4 the so-called disentangling theorem [316],

e−|λ|2/2χN(λ) = χS(λ) = e|λ|
2/2χA(λ) . (14.67)

Thus, Q-function corresponds to a smoothed Wigner function, which in turn cor-
responds to a smoothed P -function. The inverse complex Fourier transformation
converts the products in (14.67) into convolutions. Exploiting the useful integral
formula,

1
π

∫
e−a|λ|

2+bλ+cλ∗
d2λ = 1

ae
bc/a , (14.68)

we find,

W = P ⋆
2

π
e−2|λ|2 and Q =W ⋆

2

π
e−2|λ|2 = P ⋆

1

π
e−|λ|2 . (14.69)

What still needs to be proven is, that the generic definition of the distribution function
(14.63), (14.64), and (14.65) coincides with the earlier definitions (14.50), (14.54), and
(14.58). This will be done in Exc. 14.3.5.5. Also solve the Excs. 14.3.5.6 to 14.3.5.7.

Example 80 (Generalized phase space representations): The fact that
the probability distributions Q, W , and P are intrinsically connected sug-
gests setting up a generalized formalism based on the displacement operator

10For pure states, the definition of the characteristic functions is simplified to,

χX(λ, λ∗) = ⟨ψ|...|ψ⟩ .
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D(α)|0⟩ = eλâ
†−λ∗â|0⟩ = |α⟩ introduced in (2.130) and the parity operator Πs

[472]. Defining the s-parametrized probability distribution,

Xρ(α, s) = Tr ρ̂D(α)ΠsD†(α) −→ ⟨ψ|D(α)ΠsD†(α)|ψ⟩ , (14.70)

where the second expression holds for pure states, we recover the probability
distributions Q, W , and P from,

Qρ(α) ≡ Xρ(α,−1) with Π−1 =
∑
m,n

δn0δmn|m⟩⟨n| (14.71)

Wρ(α) ≡ Xρ(α, 0) with Π0 =
∑
m,n

2eıπnδmn|m⟩⟨n|

so that Π0|α⟩ =
∑
n

2eıπn|n⟩⟨n|α⟩ =
∑
n

2e−|α|2/2 (−α)n√
n!
|n⟩ = 2| − α⟩

Pρ(α) ≡ Xρ(α, 1) with Π1 =
∑
m,n

∞δmn|m⟩⟨n| .

In particular, for the vacuum state we calculate,

Q|0⟩(α) =
∑
n

⟨0|D(α)δn0|n⟩⟨n|D†(α)|0⟩ = |⟨0| − α⟩|2 = e−|α|2 (14.72)

W|0⟩(α) =
∑
n

⟨0|D(α)2eıπn|n⟩⟨n|D†(α)|0⟩ = 2
∑
n

eıπn|⟨n| − α⟩|2 = 2e−2|α|2

P|0⟩(α) = ... = δ(2)(α) .

The convolution of distribution functions yields,

[Y ⋆ X](α) =

∫
[D−1(α)Y (α′)]X(α′)dα′ =

∫
Y (α′ − α)X(α′)dα′

X|0⟩(α, s
′) ⋆ Xρ(α, s) = Xρ(α, s+ s′ − 1) . (14.73)

For example,

P|0⟩(α) ⋆ Xρ(α, s) = X|0⟩(α, 1) ⋆ Xρ(α, s) = Xρ(α, s) . (14.74)

identifying the Glauber-Sudarshan distribution as the identity operator, and

W|0⟩(α) ⋆ Wρ(α) = X|0⟩(α, 0) ⋆ Xρ(α, 0) = Xρ(α,−1) = Qρ(α) . (14.75)

14.3.3 Characteristic functions for arbitrary HO states in the
Fock basis

The various states that a light field can adopt can now be expressed either by photon
number distribution in a Fock state basis, or by two-dimensional weighting functions
P,Q,W in a coherent state basis. Here, are some examples for these representations.

If a state of a harmonic oscillator can be expanded into Fock states,

|ψ⟩ =
∑

n

cn|n⟩ , (14.76)
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the normal-ordered characteristic function (14.66) will be composed of terms like

⟨m|eλâ†e−λ∗â|n⟩. To evaluate these terms, we begin calculating 11,

âk|n⟩ =
√

n!

(n− k)! |n− k⟩ for k ≤ n and âk|n⟩ = 0 for k ≥ n , (14.77)

and,

e−λ
∗â|n⟩ =

∞∑

k=0

(−λ∗â)k
k!

|n⟩ =
n∑

k=0

(−λ∗)k√
k!

√(
n

k

)
|n− k⟩ . (14.78)

Hence, assuming m ≥ n,

⟨m|eλâ†e−λ∗â|n⟩ =
n∑

k=0

(−λ∗)kλm−n+k
√
k!(m− n+ k)!

√(
n

k

)(
m

m− n+ k

)
(14.79)

=

√
n!

m!
λm−n

n∑

k=0

(
m

k +m− n

)
(−|λ|2)k

k!
=

√
n!

m!
λm−nLm−n

n (|λ|2) ,

where Lm−n
n are Laguerre polynomials. Now, exploiting the fact that

⟨m|eλâ†e−λ∗â|n⟩ = (⟨n|e−λâ†eλ∗â|m⟩)† = ⟨n|e−λâ†eλ∗â|m⟩ (14.80)

=

√
m!

n!
(−λ∗)n−mLn−mn (|λ|2) ,

and with the expansion (14.76) we obtain for the normally-ordered characteristic
function,

χN(λ) =
∑

m,n

c∗mcn⟨m|eλâ
†
e−λ

∗â|n⟩ (14.81)

=
∑

m≥n
(1− 1

2δm,n)
(
c∗mcn⟨m|eλâ

†
e−λ

∗â|n⟩+ c∗mcn⟨m|e−λâ†eλ∗â|n⟩
)
.

finally yielding,

χN(λ) =
∑

m≥n
(1− 1

2δm,n)
[
c∗mcnλ

m−n + cmc
∗
n(−λ∗)m−n]

√
n!
m!L

m−n
n (|λ|2) . (14.82)

Remembering that the symmetrically ordered function is given by χS(λ) = e−|λ|2χN(λ)
we may obtain the Wigner function by a numerical two-dimensional FFT,

W (α) = 1
π2

∫
e−|λ|2χN(λ)e

λ∗α−λα∗
d2λ . (14.83)

We will use this result in Sec. 17.2.3 to characterize correlations in an optical mode
emanating from a Jaynes-Cummings type coupling to an atom. In Exc. 14.3.5.8 we
will try to find an analytic solution for this integral.

11See also 2.6.6.7.



530 CHAPTER 14. QUANTIZED RADIATION FIELDS

Figure 14.1: (code) Starting from a cat-state photon distribution, as shown in (a), we

calculate the symmetrically ordered characteristic function (b) from the expression (14.81),

and the Wigner function (c) by an FFT.

14.3.4 Representation of particular states in the Fock and
Glauber basis

14.3.4.1 Representations of Glauber states

We have seen earlier that coherent states |β⟩ can be expanded on a Fock state basis
|n⟩. For the state function, the density operator, and the photon number distribution
we have,

Glauber states in the Fock basis

|β⟩ = e−|β|/2∑

n

βn√
n!
|n⟩

ρ̂ = |β⟩⟨β| = e−|β|2 ∑

m,n

βnβ∗m
√
m!n!

|n⟩⟨m|

Pn = |⟨n|β⟩|2 = e−|β|2 |β|2n
n!

(14.84)

Expanding a coherent state on a basis of Glauber states, we will derive in Exc. 14.3.5.9
the P -function, the density matrix, the Q-function, and the Wigner function,

Glauber states in the Glauber basis

|β⟩ = D(β)|0⟩

ρ̂ = |β⟩⟨β| =
∫
δ(2)(α− β)|α⟩⟨α|d2α

P|β⟩(α) = δ(2)(α− β)

Q|β⟩(α) = 1
π e

−|α−β|2

W|β⟩(α) = 2
π e

−2|α−β|2

(14.85)

Example 81 (State of a laser): Following [873, 716], the correct state of a

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_ProbabilitiesCat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_ProbabilitiesCat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_ProbabilitiesCat.m
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laser beam is not simply a coherent state, but rather,

ρ̂ =

∫
|αeıφ⟩⟨αeıφ|dφ

2π
. (14.86)

After averaging, this state can be written as a superposition of Fock states [187],

ρ̂ =
∑
n

Pn|n⟩⟨n| with Pn =
e−|α|2 |α|2n

n!
, (14.87)

but without a specific phase,

ρ̂ ̸=
∑
m,n

c∗mcn|m⟩⟨n| . (14.88)

Figure 14.2: (code) (upper row) Photon number distributions P (n), (second row) density

matrices ρ, (third row) Q functions, and (lower row) Wigner functions of (first column) a

Glauber state, (second column) a Fock state, (third column) a thermal state, (forth column)

a Schrödinger cat state, and (last column) a squeezed state.

14.3.4.2 Representations of Schrödinger cat states

Schrödinger cat states are correlated states of many particles (or quasi-particles). The
expansion of the Schrödinger cat state |β0⟩ ± |β1⟩ on a Fock state basis yields, as we
have seen in Exc. 2.6.6.6,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_VariousWigners.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_VariousWigners.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_VariousWigners.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_VariousWigners.m
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Schrödinger cat states in the Fock basis

|ψ±⟩ =
∑

n

e−|β0|2/2βn0 ± e−|β1|2/2βn1√
2n!

|n⟩

ρ̂ = |ψ±⟩⟨ψ±|

Pn = |⟨n|ψ±⟩|2 −→ e−|β0|2 |β0|2n
n!

|1± (−1)n|2
2

for β0 = −β1

(14.89)

Expanding a Schrödinger cat state on a basis of Glauber states, we will derive
in Exc. 14.3.5.10 the P -function, the density matrix, the Q-function, and the Wigner
function,

Schrödinger cat states in the Glauber basis

|ψ±⟩ = 1
C (|β0⟩ ± |β1⟩) with C =

√
2± 2e−|β0−β1|2

ρ̂ = |ψ±⟩⟨ψ±|

P|β0⟩|β1⟩(α) = δ(2)(α− β0) + δ(2)(α− β1)

Q|β0⟩|β1⟩(α) = 1
π e

−|α−β0|2 + 1
π e

−|α−β1|2

W|β0⟩|β1⟩(α) = 2
C2π

(
e−2|α−β0|2 + e−2|α−β1|2

± 2e−|β0|2/2−|β1|2/2Re e−2(β1−α)(β∗
0−α∗)+β∗

0β1

)

(14.90)

We know from microscopic systems, for instance a two-level atom, that they can
live in superposition states |1⟩+ |2⟩. In contrast, the Schrödinger cat states discussed
above occur in continuous Schrödinger fields involving many particles. Macroscopic
quantum interferences (i.e. interferences that are detectable with macroscopic appa-
ratuses, for example in heterodyne schemes) are named fuzzy Schrödinger cats, if the
interfering states are conspicuously separated in phase space.

At this point, we have to emphasize the fundamental difference between Schrödinger
cats and superpositions of modes,

|ψ⟩ = |α⟩+ |β⟩ ≠ |α⟩|β⟩

ρ̂ = |α⟩⟨α|+ |β⟩⟨β|+ |α⟩⟨β|+ |β⟩⟨α| ≠ |αβ⟩⟨αβ|
. (14.91)

Schrödinger cats exhibit interferences in phase space, whereas for mode superposi-
tions, interferences only appear when a parameter is varied (e.g., the length of an
interferometer arm).

Schrödinger cat states are very sensitive to dissipation and easily converted into
statistical mixtures. For example, |α⟩ ± | −α⟩ contains only odd (even) photon num-
bers in the distribution function Pn. After some time ∼ τcav/N , the distribution is
converted into a Poisson distribution. The higher the particle number N , the faster
the decoherence will be. Consequently, truely macroscopic cat states have never been
observed.
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14.3.4.3 Representations of Fock states

On the Fock state basis |n⟩, a number state is characterized by,

Fock states in the Fock basis

|n⟩ = (â†)n√
n!
|0⟩

ρ̂ = |n⟩⟨n| = 1
n! (â

†)n|0⟩⟨0|ân

Pk = δnk

(14.92)

This state can be expanded into Glauber states |α⟩ by following procedure. For
large n we first calculate the P -distribution function,

P|n⟩(α) = δ(1)(|α| − √n) , (14.93)

because it allows us to derive the density matrix via the formula (14.51),

ρ̂|n⟩ =
∫
δ(1)(|α| − √n)|α⟩⟨α|d2α (14.94)

=

∫ ∞

0

∫ 2π

0

δ(1)(|α| − √n)|α⟩⟨α| |α|d|α|dφα =
√
n

∫ 2π

0

|α⟩⟨α|dφα .

The Q-distribution function becomes, inserting the density operator obtained in
(14.94),

Q|n⟩(α) =
1
π ⟨α|ρ̂|n⟩|α⟩ (14.95)

= 1
πn

∫ 2π

0

|⟨α|β⟩|2dφβ =
1

π
n

∫ 2π

0

e−|α−|β|eıφβ |2dφβ ≜
|α|2n
πn!

e−|α|2 ,

and finally the Wigner function is,

W|n⟩(α) =
2

π
e−2|α|2(−1)n

n∑

m=0

(
n

m

)
(−4|α|2)m

m!
=

2

π
e−2|α|2(−1)nLn(4|α|2) , (14.96)

where Lm(4|α|2) are Laguerre polynomials. In Excs. 14.3.5.11 and 14.3.5.12 we will
learn how to derive the above distribution functions directly from the characteristic
functions. In summary, we have [429],
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Fock states in the Glauber basis

|n⟩ =

√
n!

2πrn
er

2/2

∫ 2π

0

e−ınφα |α⟩dφα

ρ̂ =
√
n

∫ 2π

0

|α⟩⟨α|dφα

P|n⟩(α) = δ(1)(|α| − √n)

Q|n⟩(α) =
|α|2n
πn!

e−|α|2

W|n⟩(α) = 2
π e

−2|α|2(−1)nLn(4|α|2)

(14.97)

14.3.4.4 Representations of thermal states

A light mode in a thermal mixture can not be represented by a pure state, but requires
a density matrix description beyond (14.41). The concept of statistical mixtures has
been introduced in Sec. 14.2. The following formulas will be derived in Exc. 14.3.5.13
[749],

thermal states in the Fock basis

ρ̂ =
∑

n

n̄n

(1 + n̄)1+n
|n⟩⟨n|

Pn = n̄n

(1+n̄)1+n

(14.98)

The density matrix does not show coherences, only populations following the
Boltzmann distribution [see Eq. (1.59)].

The coherent distribution P -function is,

thermal states in the Glauber basis

ρ̂ =
1

πn̄

∫
e−|α|2/n̄|α⟩⟨α|d2α

Ptherm(α) = 1
πn̄e

−|α|2/n̄

Qtherm(α) = 1
π(n̄+1)e

−|α|2/(n̄+1)

Wtherm(α) = 1
π(n̄+1/2)e

−|α|2/(n̄+1/2)

(14.99)

Resolve the Excs. 14.3.5.14 and 14.3.5.15.
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14.3.5 Exercises

14.3.5.1 Ex: Glauber-Sudarshan and Husimi distribution

a. Show that ρA(α, α
∗) = πP (α, α∗) for an anti-normally ordered density operator

ρ̂A(â, â
†).

b. Show that ρN(α, α
∗) = 1

πQ(α, α∗) for a normally ordered density operator ρ̂N(â, â
†).

14.3.5.2 Ex: Glauber-Sudarshan and Husimi distribution

a. Show that the definitions of the Glauber-Sudarshan distribution given by (14.60)
and (14.51) are equivalent.
b. Show that the definitions of the Husimi distribution given by (14.60) and (14.55)
are equivalent.

14.3.5.3 Ex: Moments of Glauber states

a. Prove Eq. (14.53).
b. Prove Eq. (14.57).
c. Prove 1

2 ⟨ââ† + â†â⟩ =
∫
W (α, α∗)αα∗d2α.

d. Prove ⟨{â†mj ânk}S⟩ =
∫
W (α)αmj α

∗n
k dα, where the index S denotes symmetric

ordering. Symmetric or Weyl ordering means that all products r̂p̂ must be replaced
by the symmetric expressions, such as (r̂p̂+ p̂r̂)/2.
e. Then prove Eq. (14.59).

14.3.5.4 Ex: Relationship between the characteristic functions

Derive the disentangling theorem (14.67) between the characteristic functions of the
Glauber state basis.

14.3.5.5 Ex: General form of the distribution functions

Show that from the definition (14.60) the common definition of the distribution func-
tions (14.51) and (14.55) are recovered.

14.3.5.6 Ex: Characteristic functions

a. Evaluate the expression ∂m+nχX(λ)
∂λ∗m∂(−λ)n

∣∣∣
λ=0

for X = N,S,A.

b. Consider the particular case of a coherent state.

14.3.5.7 Ex: Calculating with Wirtinger derivatives

Prove the following identities called Wirtinger derivatives [316],

â† − α∗ =
∂

∂ α−→
and â† − α =

∂

∂ α←−
∗ .

Note, that with the bosonic operators we can construct the observables,

x̂+ ıp̂ =
√
2â , ∂x − ı∂p = 2∂α−→ , ∂x + ı∂p = 2∂α∗←− .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_QuasipropFunctions01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_QuasipropFunctions02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_QuasipropFunctions03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_QuasipropFunctions04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_QuasipropFunctions05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_QuasipropFunctions07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_QuasipropFunctions08.pdf
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In two dimensions [280], d2α = d(Reα)d(Imα) = dxdp.

14.3.5.8 Ex: Wigner function for arbitrary HO states in the Fock basis

Search an analytic solution for the integral (14.82).

14.3.5.9 Ex: P -, Q-, and Wigner distribution functions for Glauber states

Starting from the characteristic functions χA,S,N (λ) derive for a coherent state |β⟩
(a) the Husimi representation, (b) the Glauber-Sudarshan representation, and (c) the
Wigner representation.

14.3.5.10 Ex: P -, Q-, and Wigner distribution functions for cat states

Starting from the characteristic functions χA,S,N (λ) derive for a normalized cat state
C−1(|β0⟩+ |β1⟩) (a) the Husimi representation, (b) the Glauber-Sudarshan represen-
tation, and (c) the Wigner representation.

14.3.5.11 Ex: P -, Q-, and Wigner distribution functions for Fock states

Starting from the characteristic functions χA,S,N (λ) derive for a number state |n⟩
(a) the Husimi representation, (b) the Glauber-Sudarshan representation, and (c) the
Wigner representation.

14.3.5.12 Ex: Wigner distribution function of a Fock state

Calculate the Wigner function for a harmonic oscillator in a Fock state from its
wavefunction ⟨x|n⟩.

14.3.5.13 Ex: Thermal state

a. Show that ⟨−β|ρ̂|β⟩e|β|2 and P (α, α∗)e−|α|2 are related by Fourier transform.
b. Using the relationship of (a), derive the density operator and the distribution
function of the Fock and the Glauber basis for a thermal state.

14.3.5.14 Ex: Phase space distributions

1. Compute the three characteristic functions for the coherent state α⟩.
2. Show that Q[ρ](α) =

1
π ⟨0|D(−α)ρD(α)|0⟩ = 1

πTr[|0⟩⟨0|D(−α)ρD(α)|0⟩]. Hint: use
linearity of the trace, the closure relations of coherent states.
3. Compute the Q function of a coherent state and of a Fock state.
4.Difficult: Show thatW (x, p) = 1

π

∫
du⟨u2 |D(−α)ρD(α)P|u2 ⟩ = 2

πTr [D(−α)ρD(α)P].

14.3.5.15 Ex: Kerr states

Here, we study the so called optical Kerr state generated by the unitary operator

UKerr(τ) = eı(τ/2)â
†2â2 . (14.100)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_QuasipropFunctions09.pdf
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a. Show that the Fock states are eigenstates of this operator and determine the eigen-
values.
b. How does the operator act on Glauber states?
c. Verify the transformation rule,

U†
KerrâUKerr = eıτn̂â . (14.101)

14.4 Squeezed states of the harmonic oscillator

14.4.1 The squeezing operator

Let us consider a Hamiltonian of the following form,

Ĥsqz = ℏωâ†â+ ı
2ℏξâ

†2 − ı
2ℏξ

∗â2 . (14.102)

leading to the equation of motion,

˙̂a = −ıωâ+ 2gâ† . (14.103)

The non-linear, i.e. quadratic, appearance of the field operators suggests that the
interaction should include correlated pair production, as is the case for parametric
processes or four-wave mixing. We will see later that cavities are good for generating
squeezing. However, the unused ports of a cavity let uncorrelated vacuum fluctuations
enter, which partially overrule squeezing.

For now, we study, in analogy with the displacement operator (2.130), the propa-

gator e−ıĤsqzt/ℏ, i.e the operator given by,

S(ξ) ≡ eξ∗â2/2−ξâ†2/2 , (14.104)

which we will call the squeezing operator because, applied to the vacuum state, |ξ⟩ =
S(ξ)|0⟩, this operator will compress the uncertainty of one quadrature component, as
we will see shortly. It is easy to see that [316],

S†(ξ) = S(−ξ) = S−1(ξ) . (14.105)

In analogy with the calculation (2.131), using the commutation rules, it is possible
to verify the unitarity of this operator [531] (see Exc. 14.4.4.1). In particular, using

the relationship (1.280) and the abbreviation Â ≡ − ξ∗2 â2 +
ξ
2 â

†2, we can show [795]
(see Exc. 14.4.4.2),

S†(ξ)âS(ξ) = eÂâe−Â = â+ [Â, â] + 1
2! [Â, [Â, â]] +

1
3!

[
Â, [Â, [Â, â]]

]
+ ... (14.106)

= â− ξâ† + 1
2!ξξ

∗â− 1
3!ξξ

∗ξâ† + ... = â cosh |ξ| − |ξ|
ξ∗ â

† sinh |ξ| ,

and similarly for â†, such that with ξ ≡ reıφ,
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S†(ξ)âS(ξ) = â cosh r − â†eıφ sinh r . (14.107)

The formulas (14.107) describe a Bogolubov transform, as they can be cast into the
form,

b̂ ≡ uâ+ vâ† , b̂† ≡ u∗â† + v∗â , (14.108)

for complex numbers u and v. By postulating the same commutation relation for new
operators, [b̂, b̂†] = 1, we immediately get the condition,

|u|2 − |v|2 = 1 . (14.109)

Comparing with the hyperbolic identity cosh2 r− sinh2 r = 1, we can parametrize the
constants as,

u = cosh r and v = eıφ sinh r . (14.110)

This is interpreted as a linear simplectic transformation in phase space between
pairs of annihilation and creation operators satisfying the same commutation rela-
tion [â, â†] = 1.

14.4.1.1 Relation between squeezing and displacement operator

The squeezing operator does not commute with the displacement operator. However,
in Exc. 14.4.4.3 we derive the following simple relation,

S(ξ)D(α) ̸= D(α)S(ξ) = S(ξ)D(α cosh r + α∗eıφ sinh r) . (14.111)

Squeezed coherent states are generated by coherent displacement of a squeezed
vacuum,

|α, ξ⟩ = D(α)|0, ξ⟩ = D(α)S(ξ)|0⟩ . (14.112)

On the other hand, from (14.111),

D(α)S(ξ)|0⟩ = S(ξ)D(α cosh r + α∗eıφ sinh r)|0⟩ (14.113)

= S(ξ)|α cosh r + α∗eıφ sinh r⟩ .

In Exc. 14.4.4.4 we show that the coherent squeezed state |α, ξ⟩ is an eigenstate of
the operator â cosh r + â†eıφ sinh r. That is,

S(ξ)âS†(ξ)|α, ξ⟩ = (â cosh r + â†eıφ sinh r)|α, ξ⟩ (14.114)

= (α cosh r + α∗eıφ sinh r)|α, ξ⟩ .

The squeezed states form a complete basis with the closure relation,

1
π

∫
|α, ξ⟩⟨α, ξ|d2α = I . (14.115)
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14.4.1.2 Squeezing of the uncertainty relation

Let us consider a squeezed mode b̂ generated by application of the transformation
(14.107). The real and imaginary parts defined by b̂ = x̂b + ıp̂b, are Hermitian and
satisfy the Heisenberg uncertainty relation (1.201),

[x̂b, p̂b] =
ı
2 and ∆x̂b∆p̂b ≥ 1

2ı ⟨[x̂b, p̂b]⟩ = 1
4 . (14.116)

However, let us take a look at the uncertainties separately. They relate to the
Glauber mode via,

x̂b =
1
2 (b̂+ b̂†) = 1

2 (â cosh r − â†eıφ sinh r) + 1
2 (â

† cosh r − âe−ıφ sinh r) (14.117)

= x̂a cosh r − 1
2 sinh r(â

†eıφ + âe−ıφ)
φ=0−→ x̂ae

r

p̂b =
1
2ı (b̂− b̂†) = 1

2ı (â cosh r − â†eıφ sinh r)− 1
2ı (â

† cosh r − âe−ıφ sinh r)
= p̂a cosh r − 1

2ı sinh r(â
†eıφ − âe−ıφ) φ=0−→ p̂ae

−r .

-2 0 2

θ/π

(a)

-2 0 2

θ/π

(b)

Figure 14.3: (code) Illustration of (a) amplitude squeezing and (b) phase squeezing.

The individual fluctuations are (assuming φ = 0),

∆x̂2b = ⟨x̂2b⟩ − ⟨x̂b⟩2 = e2r
(
⟨x̂2a⟩ − ⟨x̂a⟩2

)
(14.118)

= 1
4e

2r
(
1 + ⟨â2⟩+ ⟨â†⟩2 + 2⟨â†â⟩ − ⟨â⟩2 − ⟨â†⟩2 − 2⟨â†⟩⟨â⟩

)
.

Considering coherent vacuum, |α⟩ = |0⟩ so that â|α⟩ = 0,

∆x̂2b = e2r
(
1
2Re ⟨â2⟩+ 1

4 + 1
2 ⟨â†â⟩

)
(14.119)

∆p̂2b = e−2r
(
− 1

2Re ⟨â2⟩+ 1
4 + 1

2 ⟨â†â⟩
)
.

hence,
∆x̂b =

1
2e
r and ∆p̂b =

1
2e

−r , (14.120)

and the squeezed state is at the uncertainty minimum.

Example 82 (Detection of squeezing): One method of detecting squeezing

in a light mode is via balanced homodyne detection (see Sec. 32.4.2). The idea

consists in mixing the squeezed light mode with a strong local oscillator at a

50% beam splitter, as will be discussed in Sec. 14.5.3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_SqueezingPictures.m
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14.4.2 Squeezed state in the Fock basis

The number of photons in the squeezed state is [531],

⟨n|α, ξ⟩ = (ζ/2)n/2√
n! cosh r

e−
1
2 (|α|

2+α∗ζ)Hn

(
α+ α∗ζ√

2ζ

)
, (14.121)

with the abbreviation ζ ≡ eıθ tanh r. For squeezed vacuum α = 0, noting that
Hn(0) = (−2)n/2(n− 1)!! for even n and Hn(0) = 0 for odd n, we find,

⟨n|0, ξ⟩ = (−ζ)n/2(n− 1)!!√
n! cosh r

(14.122)

for even photon number. Odd photon numbers are excluded. Hence,

squeezed states in the Fock basis

|α, ξ⟩ =
∑

n

|n⟩⟨n|α, ξ⟩

ρ̂ = |α, ξ⟩⟨α, ξ|

Pn = |⟨n|α, ξ⟩|2

. (14.123)

Figure 14.4: (code) Starting from a squeezed state photon distribution with r = 0.5, as

shown in (a), we calculate the symmetrically ordered characteristic function (b) from the

expression (14.82), and the Wigner function (c) by an FFT.

In the photon representation, as shown in Exc. 14.4.4.2, the squeezed vacuum is
(unlike the coherent and the Fock vacuum) not empty,

⟨α, ξ|n̂|α, ξ⟩ = |α|2 + sinh2 |ξ| α→0−→ sinh2 |ξ|

∆α,ξn̂ = |α|+ 2 cosh2 |ξ| sinh2 |ξ| α→0−→ 2 cosh2 |ξ| sinh2 |ξ|
. (14.124)

Squeezed vacuum contains contributions from many |n⟩.
For the squeezed vacuum state the photon number distribution displays odd-even-

oscillations. This can be explained by the mathematical form of the squeezing opera-
tor, that resembles the operator for two-photon generation and annihilation processes.
Photons in a squeezed vacuum state are more likely to appear in pairs.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_ProbabilitiesSqueezed.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_ProbabilitiesSqueezed.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_ProbabilitiesSqueezed.m
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14.4.3 Squeezed state in the Glauber basis

The squeezed state contains non-classical quantum correlations, as we will show in
Exc. 14.4.4.5 by calculating g(2) for squeezed states,

g(2)(τ) =
⟨b̂†b̂†(τ)b̂(τ)b̂⟩
⟨b̂†⟩2⟨b̂⟩2

τ→0−→ 3 +
1

sinh2 r
. (14.125)
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Figure 14.5: (code) (a) Photon number and (b) correlation function g(2) as a function of

amplitude and squeezing parameter.

The distribution functions in the coherent representation are,

squeezed states in the Glauber basis

|ψ⟩ = |β, ξ⟩

ρ̂ = |β, ξ⟩⟨β, ξ|

P|β⟩(α) =

Q|β⟩(α) = sech r
π e−(|α|2+|β|2)+2Re (α∗β) sech r− 1

2 [e
ıθ(α∗2−β∗2)+e−ıθ(α2−β2)] tanh r

W|β⟩(α) = 1
2π exp(− (α+α∗)2

2e−2r + (α−α∗)2

2e2r )

(14.126)

14.4.4 Exercises

14.4.4.1 Ex: Unitarity of the squeezing operator

Verify the unitarity of the squeezing operator.

14.4.4.2 Ex: Transformation by the squeezing operator

a. Demonstrate the relationships (14.106).
b. Using them, calculate ⟨α, ξ|n̂|α, ξ⟩ and show with α→ 0, that the squeezed vacuum
is not empty.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_SqueezingCorrelations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_SqueezingCorrelations.m
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14.4.4.3 Ex: Studying the squeezing operator

Using the Baker-Campbell-Hausdorff braiding identity,

ex̂eŷe−x̂ = eŷ+[x̂,ŷ]+ 1
2! [x̂,[x̂,ŷ]]+...

a. demonstrate the relationship (14.111) and

b. evaluate the expression eâ
†2/2eâ

2/2e−â
†2/2.

14.4.4.4 Ex: Squeezed states

a. Verify that the squeezed coherent states |α, ξ⟩ are eigenstates of the operator
â cosh r + eıφâ† sinh r.
b. Show that the squeezed vacuum state

|0, ξ⟩ = |0, reıφ⟩ = 1√
cosh r

∞∑

n=0

(−1)n
√
(2n)!

2nn!
eınφ tanhn r|2n⟩

is an eigenstate of the operator

â cosh r + â†eıφ sinh r

with eigenvalue 0.

14.4.4.5 Ex: Correlation function of squeezed states

a. Calculate the photon number ⟨n̂⟩, its variance δn̂, and the correlation function
g(2)(0) of coherent states |β⟩.
b. Calculate the same quantities for of squeezed vacuum states |0, ξ⟩.
c. Generalize the calculation for squeezed coherent states |α, ξ⟩.

14.5 Beam splitting, quantum amplification, and non-
linear mode coupling

The beam splitter is one of the most important devices not only in practical optical
setups, but also for its conceptual role in quantum mechanics. It thus deserves a
dedicated section.

A classical beam splitter divides a beam of light into two branches, which are
distinct by their orientation in space or by other degrees of freedom. On the other
hand, a photonic picture obviously requires a quantum description. For one reason,
the photon numbers scattered into the two branches are quantum mechanically en-
tangled. Furthermore, the very concept of the beam splitter necessitates a second
entrance port which, even if empty, unavoidably introduces quantum noise. Finally,
in quantum mechanics, as we already learned for the case of measurement devices, the
beam splitting device needs to be included in a full description of the beam splitting
dynamics, which has important concequences. In fact, quantum mechanically the
beam splitting resembles more a scattering problem, where the light beam represents
one entrance and output channel and the physical beam splitter the other one (see
Fig. 14.6).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_EstadoComprimido03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_EstadoComprimido04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_EstadoComprimido05.pdf
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Figure 14.6: (a) Classical beam splitting. (b) Scattering of two modes.

This section is organized as follows. In Secs. 14.5.1 and 14.5.2 we discuss beam
splitting at a macroscopic splitting device, i.e. we neglect backaction of the beam
splitting event on the splitting device (e.g. recoil or transitions between electronic
levels). Backaction on the splitting device is then treated in 14.5.6.

14.5.1 The beam splitter in various representations

We have learned in Sec. 17.2 how a two-level quantum systems couples to a harmonic
oscillator via terms in the Hamiltonian containing expressions such as σ̂+â. We will
now see how two quantum harmonic oscillators couple together via terms such as â†b̂,
where â and b̂ are the field operators of two oscillator modes. A device providing such
a coupling is called beam splitter. It mixes two modes according to the Hamiltonian,

Ĥ = ℏ
2Ω(âb̂

† + â†b̂) . (14.127)

The beam splitter can be described in the Schrödinger or the Heisenberg picture
exploiting the formalism introduced in Sec. 2.5.

14.5.1.1 Schrödinger picture

In the Schrödinger picture, if |ψ0⟩ = |α0⟩|β0⟩ is the state of the modes before the
beam splitter, the Schrödinger equation, ıℏ∂t|ψ(t)⟩ = Ĥ|ψ(t)⟩, gives us the state after
the splitter via its solution,

|ψ(t)⟩ = eıΩt/2(âb̂
†+â†b̂)|ψ0⟩ . (14.128)

A 50% beam splitter corresponds to a Ωt = π/2 pulse.

14.5.1.2 Heisenberg picture

We can also describe the beam splitter in the Heisenberg picture. With the commu-
tation rules,

[â, â†] = 1 = [b̂, b̂†] , [â, b̂] = 0 = [â, b̂†] , (14.129)

and the Heisenberg equations,

˙̂a = ı
ℏ [Ĥ, â] =

ı
2Ω[(âb̂

† + â†b̂), â] = − ı
2Ωb̂ (14.130)

˙̂
b = ı

ℏ [Ĥ, b̂] =
ı
2Ω[(âb̂

† + â†b̂), b̂] = − ı
2Ωâ ,
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Figure 14.7: (a) Coupling of two cavity modes by insertion of a beam splitter. (b) Beam
splitter mixing two propagating modes.

we calculate,
¨̂a = − 1

4Ω
2â and

¨̂
b = − 1

4Ω
2b̂ , (14.131)

the solution of which is,
(
â(t)

b̂(t)

)
=

(
cos 1

2Ωt −ı sin 1
2Ωt

−ı sin 1
2Ωt cos 1

2Ωt

)(
â0
b̂0

)
. (14.132)

The matrix in (14.132) represents a unitary transformation, and it is easy to verify

[â(t), b̂(t)] = [â0, b̂0].
Introducing the abbreviation η ≡ cos2(Ωt/2), we can describe the evolution as,

(
â(t)

b̂(t)

)
=

( √
η −ı√1− η

−ı√1− η √
η

)(
â0
b̂0

)
. (14.133)

For a Ωt = π/2 pulse, we get,
(
â(t)

b̂(t)

)
=
√

1
2

(
1 −ı
−ı 1

)(
â0
b̂0

)
. (14.134)

that each the reflected beam suffers a phase shift of π/2 12. Resolve the Excs. 14.5.8.1
to 14.5.8.3.

14.5.1.3 Glauber representation

In the Heisenberg picture, the wavefunctions of the quantum states (and hence the
density operator and the Wigner function) remain unchanged during the evolution,
i.e.,

|ψ⟩ ≡ |α⟩|β⟩ = |α0⟩|β0⟩ ≡ |ψ0⟩ , (14.135)

ρ|ψ⟩ = ρ|ψ0⟩ ,

W|ψ⟩(γ) =W|ψ0⟩(γ) ,

P|ψ⟩(γ) = P|ψ0⟩(γ) ,

Q|ψ⟩(γ) = Q|ψ0⟩(γ) ,

12This fact is a consequence of time-reversal invariance at the beam splitter. We will see later that,
in fact, only the beam reflected at the surface of an optically denser medium suffers a phase-shift of
π, while the beam reflected at an optically thinner medium does not suffer any phase shift.
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where the |ψ⟩ are arbitrary quantum states and the |γ⟩ are Glauber’s states. This
means that two field modes mixed at a beam splitter do not interfere with phase
space, i.e. do not develop quantum correlations. Of course, that would be too easy,
indeed; we will soon see in Sec. 14.4, that we need to work a little harder to produce
quantum correlations.

Setting θ ≡ Ωt/2 and b̂↷ −ıb̂ in the propagator of Eq. (14.128), we may define a
beam splitting operator in analogy to the displacement operator (2.130),

B(θ) ≡ eθ(â†b̂−âb̂†) , (14.136)

which is an equivalent beam splitter description. We find,

B(θ)†âB(θ) = â cos θ + b̂ sin θ

B(θ)†b̂B(θ) = −â sin θ + b̂ cos θ
, (14.137)

as will be shown in Exc. 14.5.8.4 13.

14.5.1.4 Fock representation

Alternatively, we can describe the beam splitter in the Fock representation 14. The
Hamiltonian of the beam splitter couples two modes of harmonic oscillators. Expand-
ing on a two-dimensional Fock basis via |ψ⟩ ≡ (...|0⟩|na⟩....|nb⟩|0⟩...) we can gain more
insight:

Ĥ = ℏ
2Ω(âb̂

† + â†b̂) (14.138)

= ℏ
2Ω

∑

na,nb

√
na(nb + 1)|na − 1, nb + 1⟩⟨na, nb|+

√
(na + 1)nb|na + 1, nb − 1⟩⟨na, nb|

=
∑

na+nb

Ĥa+b ,

where,

Ĥa+b =
ℏ
2Ω




0
√
1nb√

1nb 0
√
2(nb − 1)

√
2(nb − 1)

. . .

. . .
√
na1√

na1 0




. (14.139)

The sub-spaces with na+nb+1 photons are completely degenerate, since det(λIa+b−
Ĥa+b) = λna+nb+1 = 0. The degeneracy is removed, when we introduce loss mecha-
nisms into one of the modes. Thus, the Hamiltonian can be understood as a Dicke

system with the multiplicity ̂1
2 (na + nb) = na + nb + 1. See also Exc. 14.5.8.2.

13Compare to the formulas (2.128), (2.133), and (14.107).
14A more in-depth discussion is found in Ref. [510].
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Example 83 (Beam splitter with 0 or 1 photons): As an example, we con-

sider na, nb = 0, 1. Then, in the basis
(
|0, 0⟩ |0, 1⟩ |1, 0⟩ |0, 2⟩ |1, 1⟩ |2, 0⟩ · · ·

)t
the matrix of the Hamiltonian becomes,

Ĥ = 1
2
Ω



0

0 1

1 0

0
√
2 0√

2 0
√
2

0
√
2 0


.

It is easily verified that the matrix of eigenvectors and the matrix of eigenvalues,

U =



1 0 0 0 0 0

0 −1 1 0 0 0

0 1 1 0 0 0

0 0 0 − 1
2

√
2 −1 1

2

√
2

0 0 0 1 0 1

0 0 0 − 1
2

√
2 1 1

2

√
2


respectively E = ℏ

2
Ω



0 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −2 0 0

0 0 0 0 0 0

0 0 0 0 0 2


satisfy U−1HU = E. Hence,

|ψ⟩ = U−1eıEtU |ψ0⟩ ,

and we find, that the state |1, 1⟩ =
(
0 0 0 0 1 0

)T
is transformed into

a superposition,(
0 0 0 1√

2
ı sinΩt cosΩt 1√

2
ı sinΩt

)T Ωt=π/2−→ ı√
2
(|0, 2⟩+ |2, 0⟩) .

Similarly, we find that the superposition state 1√
2
(|1, 0⟩+|0, 1⟩) =

(
0 1 −1 0 0 0

)T
is transformed into,

e−
1
2
ıΩt
(
0 1 −1 0 0 0

)T Ωt=π/2−→ e−ıπ/4
1√
2
(|1, 0⟩+ |0, 1⟩) .

14.5.2 Fock and Glauber states at a beam splitter

A beam splitter divides a Fock state containing N photons into two Glauber states,

|ψ⟩ = 1

2N/2
√
N !

(â†1 + â†2)
N |0, 0⟩ = 1

2N/2
√
N !

N∑

n=0

(
N

n

)
(â†1)

n(â†2)
N−n|0, 0⟩ (14.140)

=
1

2N/2

N∑

n=0

√(
N

n

)
|n,N − n⟩ =

N∑

n=0

√(
N

n

)
0.5n0.5N−n|n,N − n⟩

≃
N∑

n=0

√
(N/2)n

n!
e−N/2|n,N − n⟩ = e−|α|/2

N∑

n=0

αn√
n!
|n,N − n⟩ ,
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approximating the binomial distribution by the Poisson distribution,

(
N

n

)
pn(1− p)N−n N→∞−→ (pN)n

n!
e−pN . (14.141)

and defining α ≡ N/2. The normalization is ⟨ψ|ψ⟩ = 1. The population in an
individual mode is,

⟨n̂1⟩ = ⟨ψ|â†1â1|ψ⟩ =
1

2N
⟨m,N −m|

N∑

n,m=0

√(
N

m

)
â†1â1

√(
N

n

)
|n,N − n⟩ (14.142)

=
1

2N

N∑

n=0

(
N

n

)
n =

N

2
.

The result (14.140) shows that, ignoring (tracing over) one of the modes, the other
mode automatically becomes a Glauber state 15.

Besides that,

⟨n̂21⟩ =
1

2n

n∑

n=0

(
N

n

)
n2 =

N

2n

N−1∑

n=0

(
N

n

)
(n+ 1) =

N(N + 1)

4
(14.143)

⟨n̂1n̂2⟩ =
1

2n

n∑

n=0

√(
N

n

)
n(N − n) = N⟨n̂1⟩ − ⟨n̂21⟩ =

N(N − 1)

4

The squeezing parameter is,

ξ12 =
σ2(n̂1 − n̂2)
⟨n̂1⟩+ ⟨n̂2⟩

=
⟨n̂21 − 2n̂1n̂2 + n̂22⟩

N
=

2⟨n̂21⟩ − 2⟨n̂1n̂2⟩
N

= 1 . (14.144)

The correlation functions at equal times are,

g11 =

〈
â†1â

†
1â1â1

〉

⟨n̂1⟩2
=

1

⟨n̂1⟩2
1

2n

n∑

n=2

(
N

n

)
n(n− 1) =

⟨n̂21⟩ − ⟨n̂1⟩
⟨n̂1⟩2

= 1 (14.145)

g12 =

〈
â†1â

†
2â2â1

〉

⟨n̂1⟩⟨n̂2⟩
=

1

⟨n̂1⟩2
1

2n

N∑

n=0

(
N

n

)
n(N − n) = N⟨n̂1⟩ − ⟨n̂21⟩

⟨n̂1⟩2
=
N − 1

N

The Cauchy-Schwarz inequality and the quantum inequality are both met,

g12 ≤
√
g11g22 (14.146)

g12 ≤
√(

g11 +
1

⟨n̂1⟩

)(
g22 +

1

⟨n̂2⟩

)

15This does not mean that the output modes are uncorrelated. For instance, if we measure n
photons in one mode, we know that the other must contain exactly N − n photons. However, the
correlations are so dense in phase space that they are not resolvable or decohere rapidly. In fact, it
can be shown that coherent states are the only pure states that produce uncorrelated outputs when
mixed by a passive linear-optics device [10, 9].
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In comparison, a Glauber state is normally divided,

|ψ⟩ = |α1⟩|α2⟩ = e−|α1|2/2
∑

n

αn1√
n!
|n⟩e−|α2|2/2

∑

m

αm2√
m!
|m⟩ (14.147)

= e−|α1|2/2−|α2|2/2
∑

n,m

αn1α
m
2√

n!
√
m!
|n⟩|m⟩ .

14.5.2.1 Density matrix representation

The density matrix for a pure state is,

ρ̂ = |ψ⟩⟨ψ| =
( |⟨ψ|1⟩|2 ⟨1|ψ⟩⟨ψ|2⟩
⟨2|ψ⟩⟨ψ|1⟩ |⟨ψ|2⟩|2

)
. (14.148)

The evolution of such a state is described by the von Neumann equation:

ıℏ∂tρ̂(t) = [Ĥ, ρ̂(t)] . (14.149)

For the beam splitter we obtain,

ρ̂ = |ψ⟩⟨ψ| =




|⟨ψ|0, 0⟩|2 ⟨0, 0|ψ⟩⟨ψ|0, 1⟩ ⟨0, 0|ψ⟩⟨ψ|1, 0⟩
⟨0, 1|ψ⟩⟨ψ|0, 0⟩ |⟨ψ|0, 1⟩|2 ⟨0, 1|ψ⟩⟨ψ|1, 0⟩
⟨1, 0|ψ⟩⟨ψ|0, 0⟩ ⟨1, 0|ψ⟩⟨ψ|0, 1⟩ |⟨ψ|1, 0⟩|2

. . .


 . (14.150)

Example 84 (Density matrix for the beam splitter with 0 or 1 pho-
tons): For the case of the superposition states, |ψ⟩ = 1√

2
(|0, 1⟩ ± |1, 0⟩),

ρ̂ =


0 0 0

0 1
2
± 1

2

0 ± 1
2

1
2

. . .

 .

Obviously, ρ̂ = ρ̂2. For the above superposition state, ∂tρ̂(t) = 0.

14.5.3 Ordinary and balanced homodyne detection

In Secs. 2.5.1 and 2.6.1 we have calculated the quantum noise of a harmonic oscillator
in the Fock and the Glauber basis. We will now discuss a method to measure this
noise called homodyne detection or phase-sensitive detection. The signal is obtained
by superposing the field mode of interest with a local oscillator with a relative phase
θ at a 50% beam splitter and a subtraction of the photo currents in the two ports of
the interferometer.

To begin with, let us describe both the field mode â and the local oscillator b̂ on
equal footings as quantized modes [see Fig. 14.8(a)]. The ordinary homodyne signal
is obtained by superposing the field mode of interest with a local oscillator with a
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Figure 14.8: (a) Homodyne detection scheme. Output nα delivers the ordinary homodyne
signal, and output I− the balanced homodyne signal. (b) Homodyne detection of squeezing
in a Mach-Zehnder interferometer.

relative phase θ at a beam splitter and measuring the photo currents in the two ports
ĉ and d̂ of the interferometer. From Eq. (14.134) we obtain for a 50% beam splitter,

ĉ = 1√
2
(â− ıb̂) , d̂ = 1√

2
(−ıâ+ b̂) (14.151)

and

Îc = ĉ†ĉ = 1
2 (â

†â+ b̂†b̂− ıâ†b̂+ ıb̂†â) (14.152)

Îd = d̂†d̂ = 1
2 (â

†â+ b̂†b̂+ ıâ†b̂− ıb̂†â) .
To obtain the balanced homodyne signal we add or subtract both photo currents,

Î+ = Îc + Îd = â†â+ b̂†b̂ (14.153)

Î− = Îc − Îd = ı(b̂†â− â†b̂) .
In order to quantify the intensity noise, we also need to calculate the square values
[284],

Î2+ = (â†â+ b̂†b̂)2 = (n̂a + n̂b)
2 (14.154)

Î2− = −(b̂†â− â†b̂)2 = −â2b̂†2 − â†2b̂2 + ââ†b̂†b̂+ â†âb̂b̂† ,

yielding,

∆I2+ = ⟨Î2+⟩ − ⟨Î+⟩2 = ∆n̂2a +∆n̂2b (14.155)

∆I2− = ⟨Î2−⟩ − ⟨Î−⟩2

= −∆â2⟨b̂†2⟩ −∆â†2⟨b̂⟩2 + ⟨ââ†⟩⟨b̂†b̂⟩+ ⟨â†â⟩⟨b̂b̂†⟩ − 2⟨â†⟩⟨â⟩⟨b̂†⟩⟨b̂⟩ .

Assuming the local oscillator in a coherent state, |β⟩ = ||β|eı(π/2−θ)⟩, we obtain,

∆I2+
|β⟩−→ ∆n̂2a + |β|2

∆I2−
|β⟩−→ |β|2eı2θ∆â2 + |β|2e−ı2θ∆â†2 + 2|β|2(⟨n̂a⟩ − ⟨â†⟩⟨â⟩) + ⟨n̂a⟩+ |β|2

.

(14.156)
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To determine the shot noise, we simply block the local oscillator b̂ and obtain,

∆I2+
β=0−→ ∆n2a and ∆I2−

β=0−→ ⟨n̂a⟩ . (14.157)

Hence, ∆n2a is the intensity noise of mode â, and ⟨n̂a⟩ is the shot noise, which is
present even though the intensities Ic and Id are perfectly balanced and should cancel
out in subtraction (see the Exc. 14.5.8.5).

14.5.3.1 Phase-dependent noise for specific probe light fields

Now, let us consider specific light fields. For a coherent probe, |ψ⟩ ≡ |α⟩,

∆Î2+
|ψ⟩≡|α⟩−→ |α|2 + |β|2 |ψ⟩≡|α⟩←− ∆Î2− . (14.158)

That is, as illustrated in Fig. 14.9, the noise of neither the sum nor difference intensities
vary with the phase of the local oscillator. Note that here, the coherent light modes of
neither the probe nor the local oscillator are treated as classical; otherwise the noise
should disappear.

0
0

1

2

Δ
I
2 −
/|β

|2

3

r

-1

θ/π

0
0.5 1

Figure 14.9: (code) Noise in the subtracted intensities ∆I2− as a function of squeezing pa-

rameter r and homodyning phase θ. The plane at ∆I2−/|β|2 = 1 corresponds to coherent

vacuum, the modulated curve to squeezed vacuum.

Now, for squeezed vacuum, |ψ⟩ ≡ |0, ξ⟩ = S(ξ)|0⟩, using the results of Exc. 14.4.4.5,
namely,

⟨â⟩ = 0 = ⟨â†⟩ (14.159)

⟨n̂a⟩ = sinh2 r

⟨0, ξ|â2|0, ξ⟩ = ⟨0|S†(ξ)âS(ξ)S†(ξ)âS(ξ)|0⟩
= ⟨0|(â cosh r − â†eıφ sinh r)2|0⟩ = −eıφ sinh r cosh r

⟨0, ξ|â†2|0, ξ⟩ = −e−ıφ sinh r cosh r , (14.160)

we get,

∆Î2+
|ψ⟩≡|0,ξ⟩−→ 2 sinh2 r cosh2 r (14.161)

∆Î2−
|ψ⟩≡|0,ξ⟩−→ −2|β|2 cos(2θ + φ) sinh r cosh r + 2|β|2 sinh2 r + sinh2 r + |β|2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_SqueezingHomodyning.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_SqueezingHomodyning.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Modes_SqueezingHomodyning.m
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We see that ∆Î2− depends on the phase of the local oscillator and, as illustrated in
Fig. 14.9 can have values below that expected for coherent vacuum.

The generalization to squeezed coherent light, |ψ⟩ ≡ |α, ξ⟩ = D(α)|0, ξ⟩ = D(α)S(ξ)|0⟩
is simple. We just need to separate the probe mode into a classical and a quantum
part, â = α + δâ. Obviously, ⟨δâ⟩ = 0 and ∆â2 = ∆(δâ)2, so that the only modifi-
cation expected for ∆Î2− is an additional term |α|2, which however is negligible if the
local oscillator |β|2 is much stronger.

14.5.3.2 Shot noise

Like any quantized degree of freedom, a light mode is subject to intrinsic quantum
noise imposed by the Heisenberg uncertainty relation, as we have seen for the harmonic
oscillator (2.138). In the case of a light mode the quantum noise originates in the
fact, that any power measurement based on photon counting involves projection onto
a discrete number of photons. Often the light mode will be in a ’classical’ coherent
state, which is not an eigenstate of the photon number measurement operator. The
projection onto Fock states introduces unavoidable quantum projection noise in this
case is called shot noise and introduces the Heisenberg limit in the quadrature phases
of the light intensity.

14.5.3.3 Inverse Radon transform

The expectation value of ∆Î− is afflicted with the Heisenberg uncertainty and can be
expressed as the first moment of the Wigner function W (α):

⟨ψ|Î−|ψ⟩ =
∫
W|ψ⟩(α)Î−d

2α (14.162)

=
√
2|βLO|

∫
W|ψ⟩(xθ, pθ)xθdxθdpθ =

√
2|βLO|

∫ ∞

−∞
wθ(xθ)xθdxθ .

Here, the distribution function integrated over a rotated quadrature component pθ
is given by,

wθ(xθ) ≡
∫ ∞

−∞
Wθ(xθ, pθ)dpθ . (14.163)

This is called the radon transform. The distribution function wθ(pθ) as well as the
Wigner function are normalized to 1. Multiple measurements of the expectation value
xθ = ⟨ψ|x̂θ|ψ⟩ now yields a histogram H|ψ⟩(xθ) reflecting, if normalized, w|ψ⟩(xθ) =
H|ψ⟩(xθ)/

∫
H|ψ⟩(xθ) exactly the distribution function.

Considering the finite detector efficiency [510] wθ(xθ) must be generalized to a
convolution with an apparatus function ζ(x):

wreal
θ (
√
ηxθ) = (wideal

θ ⋆ ζ) where ζ(x) =
1√

π(1− η)
e−ηα

2/(1−η) . (14.164)

A finite detector efficiency degrades the contrast of the quantum interference struc-
tures.

With the procedure of optical homodyne tomography or quantum state endoscopy
the Wigner function for e.g. a Schrödinger cat state can be reconstructed from a set
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of distribution functions wθ(xθ) =
∫
W (αeıθ)dpθ measured for various phases θ [510].

To do this the data set is exposed to an inverse radon transform:

W (α) =
1

4π2

∫ ∞

−∞

∫ π

0

∫ ∞

−∞
wθ(xθ)|ζ|eıζ[Re (2−1/2αe−ıθ)−xθ]dxdθdζ . (14.165)

In contrast to the conventional homodyne detection, where the phase dependency of
amplitude noise is recorded, the homodyne tomography allows the complete recon-
struction of a quantum state through measurement of the distribution of the amplitude
noise power,

Ps =
ωs
2π

∫ ωs/2π

0

dt|⟨I(t)⟩|2 (14.166)

for various phases.

Alternatively, to the homodyne method, one may reconstruct the photon distri-
bution in field modes from their temporal evolution [847]. Another method could be
to use atoms as sensors for the quantum state of a light field in a Jaynes-Cummings
type dynamics.

14.5.4 Quantum amplifier

We will call in the following as quantum signals degrees of freedom subject to quantum
noise. Typically a quantum signal will be a mode of an electric field, represented by an
annihilation operator â. Such a mode can be enhanced by quantum amplifier, which
is a device amplifying quantum signals according to the rules of quantum mechanics.
Examples include the active elements of lasers and optical parametric amplifiers. A
quantum amplifier is characterized by its gain and its own intrinsic quantum noise,
which are interdependent parameters; the higher the gain, the larger the uncertainty
noise. In the case of lasers, the uncertainty corresponds to the amplified spontaneous
emission of the active medium.

Quantum amplification is a unitary transformation Û , acting in an initial state
|in⟩ and producing (in the Schrödinger figure) the amplified state,

|out⟩ = Û |in⟩ . (14.167)

The amplification depends on the mean value ⟨â⟩ of the annihilation operator and
its dispersion ⟨â†â⟩ − ⟨â†⟩⟨â⟩. A coherent state is a state with minimal uncertainty;
when the state is transformed, the uncertainty may increase. This increase can be
interpreted as noise in the amplifier. The gain G can be defined as follows:

G =
⟨â⟩out
⟨â⟩in

. (14.168)

The quantum amplifier can also be described in the Heisenberg picture; the
changes are attributed to the amplification of the field operator. Thus, the evolu-
tion of the operator âout is given by

âout = Û†âÛ , (14.169)
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while the state vector remains unchanged. The gain is then given by,

G =
⟨âout⟩in
⟨â⟩in

. (14.170)

In general, the gain G may be complex, and it may depend on the initial state. For
laser applications, the amplification of coherent states is important. Therefore, it is
usually assumed that the initial state is a coherent state characterized by a complex-
valued initial parameter α, such that |in⟩ = |α⟩. Even with such a restriction, the
gain may depend on the amplitude or phase of the initial field.

In the following, the Heisenberg representation is used; all brackets are assumed
to be evaluated with respect to the initial coherent state,

noise = ⟨â†outâout⟩ − ⟨â†out⟩⟨âout⟩ − (⟨â†â⟩ − ⟨â†⟩⟨â⟩) . (14.171)

The expectation values are assumed to be evaluated with respect to the initial coherent
state. This quantity characterizes the increase of the uncertainty of the field due
to amplification. As the uncertainty of the field operator does not depend on its
parameter, the quantity above shows how much output field differs from a coherent
state.

14.5.4.1 Linear phase-invariant amplifier

Linear phase-invariant amplifiers may be described as follows. Assume that the uni-
tary operator U amplifies in such a way that the input â and the output âout = Û†âÛ ,
are related by a linear equation,

âout = câ+ sb̂† , (14.172)

where c and s are c-numbers and b̂† is a creation operator characterizing the amplifier.
Without loss of generality, it may be assumed that c and s are real. The commutator
of the field operators is invariant under unitary transformation U :

[âout, â
†
out] = 1 = [â, â†] , [âin, â

†
out] = 0 = [âout, â

†
in] . (14.173)

From the unitarity of U , it follows that b̂ satisfies the same commutation relations.
The c-numbers are then c2 − s2 = 1. Hence, the phase-invariant amplifier acts by
introducing an additional mode to the field, with a large amount of stored energy,
behaving as a boson. Calculating the gain and the noise of this amplifier, one finds
G = c, and

noise = c2 − 1 . (14.174)

The coefficient g = |G|2 is sometimes called the intensity amplification coefficient.
The noise of the linear phase-invariant amplifier is given by g − 1. The gain can be
dropped by splitting the beam; the estimate above gives the minimal possible noise of
the linear phase-invariant amplifier. The linear amplifier has an advantage over the
multi-mode amplifier: if several modes of a linear amplifier are amplified by the same
factor, the noise in each mode is determined independently; that is, modes in a linear
quantum amplifier are independent.
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To obtain a large amplification coefficient with minimal noise, one may use ho-
modyne detection, constructing a field state with known amplitude and phase, corre-
sponding to the linear phase-invariant amplifier. The uncertainty principle sets the
lower bound of quantum noise in an amplifier. In particular, the output of a laser
system and the output of an optical generator are not coherent states.

The multiplicative amplifier D also adds additive noise F . We have DD† = 1,
(
â†out
âout

)
= D

(
â†in
âin

)
+

(
F1

F2

)
. (14.175)

14.5.5 Coupled quantum oscillators with/out counter-rotating
terms

The Hamiltonian of a beam splitter resembles the one of a system of two coupled
oscillators with identical eigenfrequencies. Here, we are interested in calculating the
time evolution of such a system. We rewrite the Hamiltonian in terms of the normal
modes. We start from the Hamiltonian with counter-rotating terms [273],

Ĥ = ℏω(â†â+ 1
2 ) + ℏω(b̂†b̂+ 1

2 ) +
ℏΩ
2 (â+ â†)(b̂+ b̂†) , (14.176)

which we rewrite in terms of the quadrature components given by,
x̂a
p̂a
x̂b
p̂b

 = Tab


â

â†

b̂

b̂†

 with Tab ≡
√

ℏω
2


ω−1 ω−1 0 0

ı −ı 0 0

0 0 ω−1 ω−1

0 0 ı −ı

 , (14.177)

as
Ĥ = 1

2 (p̂
2
a + ω2x̂2a) +

1
2 (p̂

2
b + ω2x̂2b) + Ωωx̂ax̂b . (14.178)

Setting ω± =
√
ω2 ± Ωω allows us to rewrite the Hamiltonian as,

Ĥ = 1
4 (p̂a + p̂b)

2 + 1
4ω

2
+(x̂a + x̂b)

2 + 1
4 (p̂a − p̂b)2 + 1

4ω
2
−(x̂a − x̂b)2 . (14.179)

Now, we apply the transform,
x̂A
p̂A
x̂B
p̂B

 =M


x̂a
p̂a
x̂b
p̂b

 with M≡
√

1

2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 =M−1 , (14.180)

and rewrite the Hamiltonian again as,

Ĥ = 1
2 (p̂

2
A + ω2

+x̂
2
A) +

1
2 (p̂

2
B + ω2

−x̂
2
B) . (14.181)

We go back from the quadrature components to the field mode operators via,
x̂A
p̂A
x̂B
p̂B

 = TAB


Â

Â†

B̂

B̂†

 with TAB ≡
√

ℏ
2


1/
√
ω+ 1/

√
ω+ 0 0

ı
√
ω+ −ı√ω+ 0 0

0 0 1/
√
ω− 1/

√
ω+

0 0 ı
√
ω− −ı√ω+

 ,

(14.182)
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and finally obtain,

Ĥ = ℏω+(Â
†Â+ 1

2 ) + ℏω−(B̂
†B̂ + 1

2 ) . (14.183)

The Heisenberg equations of motion for the oscillator modes,

d

dt


â

â†

b̂

b̂†

 = − ı
ℏ



â

â†

b̂

b̂†

 , Ĥ

 = X


â

â†

b̂

b̂†

 with X ≡


−ıω 0 − ıΩ

2
− ıΩ

2

0 ıω ıΩ
2

ıΩ
2

− ıΩ
2
− ıΩ

2
−ıω 0

ıΩ
2

ıΩ
2

0 ıω

 ,

(14.184)
are difficult to integrate. In contrast, the Heisenberg equations for the normal modes,

d

dt


Â

Â†

B̂

B̂†

 = − ı
ℏ



Â

Â†

B̂

B̂†

 , Ĥ

 = EX


Â

Â†

B̂

B̂†

 (14.185)

with EX = U−1
X XUX =


−ıω+ 0 0 0

0 ıω+ 0 0

0 0 −ıω− 0

0 0 0 ıω−



and UX =


−1− 2

Ω
(ω + ω+) −1− 2

Ω
(ω − ω+) 1− 2

Ω
(ω + ω−) 1− 2

Ω
(ω − ω−)

1 1 −1 −1
−1− 2

Ω
(ω + ω+) −1− 2

Ω
(ω − ω+) −1 + 2

Ω
(ω + ω−) −1 + 2

Ω
(ω − ω−)

1 1 1 1

 ,

are easily solved by,
Â(t)

Â†(t)

B̂(t)

B̂†(t)

 = eEX t


Â(0)

Â†(0)

B̂(0)

B̂†(0)

 with eEX t ≡


e−ıω+t 0 0 0

0 eıω+t 0 0

0 0 e−ıω−t 0

0 0 0 eıω−t

 .

(14.186)
Hence, the oscillator modes evolve as,
â(t)

â†(t)

b̂(t)

b̂†(t)

 = eX t


â(0)

â†(0)

b̂(0)

b̂†(0)

 with eX t = T −1
ab M−1TABeEX tT −1

ABMTab = UX e
EX tU−1

X .

(14.187)

14.5.5.1 Rotating-wave approximation

The rotating-wave approximation is performed via ω± ≃ ω ± 1
2Ω. It leads to the

Hamiltonian,

Ĥ = ℏω(â†â+ 1
2 ) + ℏω(b̂†b̂+ 1

2 ) +
ℏΩ
2 (âb̂† + â†b̂) . (14.188)
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In this approximation, we find T −1
ABMTab ≃ M and the transformation defined in

(14.180), 
Â

Â†

B̂

B̂†

 =M


â

â†

b̂

b̂†

 , (14.189)

takes us directly from the Hamiltonian (14.188) to 16,

Ĥ = (ℏω + ℏΩ
2 )(Â†Â+ 1

2 ) + (ℏω − ℏΩ
2 )(B̂†B̂ + 1

2 ) . (14.190)

Do the Excs. 14.5.8.6 and 14.5.8.7.

Note, that two coupled oscillator model becomes criticality, when the atom-field
coupling strength exceeds the frequencies of the mode and the atomic two-level system.

14.5.6 Backaction on the splitting device

In all above considerations we treated the beam splitter as a classical device splitting
or combining modes, which can be quantized. This is, of course, an idealization, be-
cause the action of splitting and combination requires interaction between the modes
and the beam splitter. That is, the beam splitter itself must be considered as a (po-
tentially quantized) degree of freedom and included into a global description. In a
complete quantum picture beam splitting invloves at least an interaction between two
degrees of freedom: the mode suffering the splitting (which we already treated quan-
tum mechanically in the preceding sections), and the splitting device (which we will
treat as an ancilla in the following, similarly as we did for a quantum measurement).
In classical beam splitters, the dynamics of the ancilla is neglected, but in quantum
beam splitters the ancilla serves as a witness of a splitting event. In practice, it can
be a recoiling atom, a phase shift of an internal atomic state, or something else.

A complete generic model should allow to describe quantummechanically (i) strong
measurement directly on the system or (ii) weak measurements via an ancilla. For
simplicity, we will assume the beam splitting device to be a two-level atom including
its internal and external degrees of freedom. The light mode may then interact with
the atom (or not) and be scattered into different directions of space. In order to
emulate a beam splitter we need to ensure the existence of only two scattered exit
modes. This can be done by putting the atom in a ring cavity, where the only modes
available are the forward and the backward scattered mode. It is fair to say that this
model represents the simplest possible beam splitter description including backaction.
In the same time, the system exhibits a dynamics known as collective atomic recoil
lasing (CARL), which is extensively discussed in Chp. 25.

16Note the different behavior of a beam splitter under this transformation,

Ĥ = ℏω(â†â+ 1
2
) + ℏω(b̂†b̂+ 1

2
) + ℏΩ

2

(
âb̂† − â†b̂

)
= ℏω(Â†Â+ 1

2
) + ℏω(B̂†B̂ + 1

2
) + ℏΩ

2
(−ÂB̂† + Â†B̂) .
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14.5.6.1 Interaction-free measurement

Beam splitters and coupled cavities have been proposed for the realization of interaction-
free measurements 14.5.8.8 and 14.5.8.9 [262, 834, 495, 479]. Resolve also the Excs. 14.5.8.11
to 14.5.8.12.

14.5.7 Multimode squeezing

We have seen earlier that a beam splitting operator (14.136) can be defined, which
mixes two modes in a linear fashion. By analogy we may define a squeezing operator
mixing two modes in a non-linear way.

We define,

b̂ = µâ+ νĉ† . (14.191)

Again using µ2 − ν2 = 1, the standard commutation rules for â and ĉ give,

[b̂, b̂†] = 1 (14.192)

[b̂r, b̂p] =
ı
2 .

The individual variances read,

∆b̂2r = ⟨b̂2r⟩ − ⟨b̂r⟩2 (14.193)

= 1
4 ⟨(b̂+ b̂†)2⟩ − 1

4 ⟨b̂+ b̂†⟩2

= 1
4 ⟨(µâ+ µâ† + νĉ+ νĉ†)2⟩

= 1
4µ

2 + 1
4ν

2 + 1
2µ

2⟨â†â⟩+ 1
2ν

2⟨ĉ†ĉ⟩+ 1
2µν

(
⟨âĉ⟩+ ⟨â†ĉ†

)
⟩ .

using ⟨â⟩ = ⟨ĉ⟩ = ⟨â†ĉ⟩ = 0.

Two-mode squeezing can exist even if the individual modes are not squeezed,

|r, ϕ⟩ = cosh−1 r
∑

n
tanhn reınϕ|r, ϕ⟩a|r, ϕ⟩b . (14.194)

A two-mode squeezed vacuum state can be generated by the squeezing operator,

S(ξ) ≡ eξ∗âb̂/2−ξâ†b†/2 . (14.195)

Remember that the single-mode squeezing is obtained if â = b̂. In a number state
base,

|r, ϕ⟩ = 1

cosh r

∑
n
(tanh r)neınϕ|n⟩a|n⟩b . (14.196)

Two-mode relative number squeezing parameter

ξi,j =
σ2(ni − ⟨nj⟩)
⟨ni⟩+ ⟨nj⟩

. (14.197)
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14.5.8 Exercises

14.5.8.1 Ex: Conservation law at a beam splitter 1

Show that the beam-splitting transformation

(
ĉ

d̂

)
=

(
t −r
r t

)(
â

b̂

)

preserves the commutations relations and the photon number. More generally,

(
ĉ

d̂

)
= U

(
â

b̂

)
=⇒ [ĉ, d̂] = [â, b̂] detU .

14.5.8.2 Ex: Conservation law at a beam splitter 2

Derive from the Hamiltonian (14.127) that â†â+ b̂†b̂ = const.

14.5.8.3 Ex: Beam splitter

Show that B̂|1, 0⟩ = cos θ|1, 0⟩−sin θ|0, 1⟩ and B̂|0, n⟩ =∑∞
k=0

√(
n
k

)
cosk θ sinn−k θ|n−

k, k⟩.

14.5.8.4 Ex: Beam splitter

Show that for B̂ ≡ eθ(âb̂†−â†b̂) holds,

B̂âB̂† = â cos θ + b̂ sin θ and B̂b̂B̂† = −â sin θ + b̂ cos θ .

14.5.8.5 Ex: Homodyne detection of squeezing

Consider the beam bath shown in Fig. 14.8(b), where the Kerr medium is assumed to

generate squeezing in the mode â1. Calculate the balanced homodyne signal â†3â3 −
b̂†3b̂3.

14.5.8.6 Ex: Coupled harmonic oscillators with different eigenfrequen-
cies and damping

Here, we generalize the calculation of Sec. 14.5.5 for coupling of oscillators with dif-
ferent eigenfrequencies.
a. From,

Ĥ = ℏωa(â†â+ 1
2 ) + ℏωb(b̂†b̂+ 1

2 ) +
ℏΩ
2 (âb̂† + â†b̂) + ℏΩ′

2 (âb̂+ â†b̂†)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter045.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter05.pdf
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derive the Hamiltonian in terms of the quadrature components x̂a,b and p̂a,b.

b. Set up the Heisenberg equations for the field operators â, â†, b̂, and b̂† and determine
the eigenvalues of the matrix X defined by,

d

dt




â

â†

b̂

b̂†


 = X




â

â†

b̂

b̂†


 .

c. Extend the Heisenberg equations by including loss terms for the cavity modes κa
and κb and determine the corresponding matrix Xκ, as well as its eigenvalues for the
simplifying case Ω′ ≡ Ω.

14.5.8.7 Ex: Equivalence of beam splitter and coupled oscillator models

Show that the beam splitter and the coupled oscillators model for degenerate frequen-
cies are equivalent.

14.5.8.8 Ex: Elitzur and Vaidman bomb tester

a. Write down the beam splitter Hamiltonian in the Fock representation for a the case

of a single photon, diagonalize it, and determine the propagator eıĤt/ℏ for a 50/50
beam splitter.
b. Based on the propagator derived in (a) draw an analogy between a Mach-Zehnder
interferometer and a resonantly driven two-level system. Interpreting the interferom-
eter as a qubit explain the Elitzur and Vaidman bomb testing problem. What is the
probability?
c. Reformulate the interaction-free bomb tester in a quantum computing language.

14.5.8.9 Ex: Multiple beam splitters for improved bomb testing

In the original Elitzur and Vaidman bomb tester photons are sent through a sin-
gle interferometer. Now, let the photons be sent repeatedly through the same beam
splitter. Assume the photon wavepacket to be shorter than the length of the inter-
ferometer arms so that it does not interfere with itself. How many times must the
photons be sent to the beam splitter to be totally transferred?

14.5.8.10 Ex: Hamiltonian approach to coupled cavities for improved
bomb testing

a. Consider two identical weakly coupled cavities. Solving the Heisenberg equations
with the Hamiltonian for two coupled oscillators calculate how the photon numbers
evolve in each cavity (see Exc. 14.5.8.6). How do the field amplitudes change after
one cavity round trip?
b. How does the photon number in cavity ’b’ evolve if an absorber is inserted into the
cavity ’a’ [495]? How does the field amplitudes change in this case after one cavity
round trip?
c. Now, we model the absorber by a two-level atom being in resonance with the light

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Modes_Beamsplitter09.pdf
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field and subject to spontaneous emission. Set up the Hamiltonian, derive the equa-
tions of motion, and solve them numerically. Interpret the results.
Comments: The multiple path model leading to the Airy formulas describes a phys-
ical process involving beam propagation and reflection and transmission at a real
object like an atom or a beam splitter. The complete dynamics is only partially
grasped by a Hamiltonian and a master equation treating the cavity as a closed sys-
tem and being restricted to describing energy fluxes into and out of the system.
One manifestation of it is the necessity of approximating the Airy function close to
resonance by a Lorentzian in order to link the cavity transmission to a decay rate.
Another manifestation is the discrepancy in the coupled cavity description via mul-
tiple paths and via Hamiltonian for coupled oscillators: The models only coincide of

r =
√
R

!
= 1.

Figure 14.10: (a) Illustration of the multiple paths model and (b) the coupled cavities model
for improved bomb testing.

14.5.8.11 Ex: Simulation of the quantum Zeno effect with qubit gates

Design a quantum circuit simulating the quantum Zeno effect ruling the bomb tester
and its extension to multiple paths.

14.5.8.12 Ex: Link between entanglement and squeezing

Prove that, if â1 and â2 are EPR-entangled beams with respect to quadrature com-
ponents, then beams b̂1,2 = 1√

2
(â1 ± â2) are squeezed with respect to two orthogonal

quadrature components and vice versa [687, 688, 533].
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Chapter 15

Optical cavities

So far we have considered the coherent dynamics between atoms and radiation fields
in free space, and we extended the theory to take into account the dissipative coupling
to the electromagnetic vacuum by spontaneous emission and atomic motion. The vac-
uum represents a homogeneous and isotropic reservoir characterized by a continuous
white energy spectrum. The situation changes completely when we place the atom
inside an optical cavity which breaks the translational and rotational symmetries and
imprints a resonance structure into the density of photonic states. Obviously, the
cavity will profoundly change the atomic coupling to the electromagnetic vacuum,
and hence the way in which the atom reacts to incident light, as much with respect
to light scattering as with respect to optical forces.

Figure 15.1: Illustration of the mode structure of empty space.

In this chapter we analyze the coupled dynamics of atoms interacting with the
optical field modes of a cavity pumped by incident laser beams. We first concentrate
in Sec. 15.2 on empty cavities. Later, in Chp. 22 we turn our attention to the impact of
atoms on the cavity dynamics, in particular its transmission spectrum. Cooperative
and collective effects that may be induced by cavities will be discussed in Chps. 24
and 25.
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15.1 Open systems and the master equation

Let us now derive the master equation for an open quantum system. We assume that
the environment (also called bath or reservoir) and the system under consideration are
quantum systems in the sense that (1) the relevant degrees of freedom are completely
characterized by state vectors (or density matrices), and (2) the temporal evolution

of the total system is unitary U(t) = e−ıĤt. The total Hamiltonian, Ĥ = Ĥsys +

Ĥres+V is assumed to be independent of time and consists of three parts, namely the
Hamiltonian of the system Ĥsys, the Hamiltonian of the bath Ĥres, and the interaction
V between the system and the bath. The purpose of the master equation is to find
the dynamics of the system by tracing over all degrees of freedom of the bath. This
is not always possible, and we will assume that the interaction V is sufficiently weak,
so that perturbation theory is applicable [500].

15.1.1 Temporal evolution of the density operator

As shown in Secs. 1.6.2 to 1.6.4, the equations governing the temporal evolution of
a quantum system depend on the choice of the picture, i.e. Schrödinger’s (1.242),
Heisenberg’s (1.248), or the interaction picture (1.255). This, of course, also applies
to a system represented by a density matrix.

Returning to the density operator definition (14.11), we can express its temporal
dependence in terms of time-dependent quantum states and of the time evolution
operator (1.245),

ρ̂(t) =
∑

k

pk|ψk(t)⟩⟨ψk(t)| =
∑

k

pkU(t, t0)|ψk(t0)⟩⟨ψk(t0)|U†(t, t0) . (15.1)

Writing,

ρ̂(t0) =
∑

k

pk|ψk(t0)⟩⟨ψk(t0)| , (15.2)

we see immediately,

ρ̂(t) = U(t, t0)ρ̂(t0)U†(t, t0) , (15.3)

where, for the common case of a time-independent Hamiltonian,

U(t, t0) = e−ıĤ(t−t0)/ℏ . (15.4)

Now we find the time derivative of the density operator differentiating the two sides
of (15.3) and substituting the Eqs.

dU
dt

=
1

ıℏ
ĤU and

dU†

dt
= − 1

ıℏ
U†Ĥ (15.5)

for the time derivatives U and U†. The result is

dρ̂(t)

dt
=
ı

ℏ
[ρ̂(t), Ĥ] . (15.6)
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The commutator itself can be considered as a superoperator acting, not any more on
states but on operators, that is, we can write,

Lρ̂(t) ≡ ı

ℏ
[ρ̂(t), Ĥ] , (15.7)

where L is called Liouville operator. The equation (15.6) is called Liouville equation
or von Neumann equation. The Liouville equation describes the time evolution of the
density operator which, in turn, describes the distribution of an ensemble of quan-
tum states. Even though the form of the Liouville equation resembles a Heisenberg
equation, Eq. (15.1) shows that ρ̂(t) is in the Schrödinger picture 1.

In the interaction representation the evolution of the total density matrix ρ̂tot
becomes,

ıℏ
dρ̃tot
dt

= [Ṽ (t), ρ̃tot] . (15.8)

where ρ̃tot(t) ≡ U†
0ρtotU0 and Ṽ (t) ≡ U†

0V U0 and U0 = e−ı(Ĥsys+Ĥres)t/ℏ. This
evolution is, for the time being, very general, and the solution can be formally written,

ρ̃tot(t) = ρ̃tot(0) +
1

ıℏ

∫ t

0

dt1[Ṽ (t1), ρ̃tot(t1)] . (15.9)

Iterating once again:

ρ̃tot(t) = ρ̃tot(0)+
1

ıℏ

∫ t

0

dt1[Ṽ (t1), ρ̃tot(0)]+
1

(ıℏ)2

∫ t

0

dt1

∫ t1

0

dt2

[
Ṽ (t1), [Ṽ (t2), ρ̃tot(t2]

]
.

(15.10)
In the following, we will call several approximations to simplify the calculations, in
particular, the Born approximation, the assumption that the initial state is a product
state and, later-on, the Markov approximation.

15.1.2 Born approximation for weak coupling

We will now assume the interaction Ṽ to be weak. We can then expect that, repeating
the iterative process, the series will converge and write the general solution as,

ρ̃tot(t) = ρ̃tot(0) +
∑

n≥1

1

(ıℏ)n

∫ t

0

dt1...

∫ tn−1

0

dtn

[
Ṽ (t1), ..., [Ṽ (tn), ρ̃tot(0)]

]
. (15.11)

This way of terminating an iterative equation by ρtot(0) is generally known as the
Born approximation. Here, we will just go to second order in Ṽ . Tracing over the
bath,

ρ̃sys(t) = Trres ρ̃tot(t) , (15.12)

we extract the density matrix for only the system,

ρ̃sys(t) = ρ̃sys(0) +
1

ıℏ

∫ t

0

dt1Trres[Ṽ (t1), ρ̃tot(0)] (15.13)

+
1

(ıℏ)2

∫ t

0

dt1

∫ t1

0

dt2Trres

[
Ṽ (t1), [Ṽ (t2), ρ̃tot(0)]

]
.

1The Heisenberg equation for the density operator in the Schrödinger picture or the master
equation in the Heisenberg picture are dρ̂H/dt = 0.
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15.1.3 Assumption of an initial product state

Next, we need to make the quite important assumption, that the initial state between
the system and the environment are not correlated, or mathematically speaking, they
can be written as product states,

ρ̃tot(0) = ρ̃sys(0)⊗ ρres(0) . (15.14)

Another assumption, which is not essential but often valid, is that Trres[Ṽ (t1), ρ̃tot(0)] =
0. If this is the case, then the first-order term will vanish. In second order, we can
write,

ρ̃sys(t) = eM(t)ρ̃sys(0) (15.15)

where M(t)χ ≡ 1

(iℏ)2

∫ t

0

dt1

∫ t1

0

dt2Trres

[
Ṽ (t1), [Ṽ (t2), χ⊗ ρres]

]
,

is a superoperator acting on the operator density of the system. Taking the temporal
derivative, we have the explicit master equation,

dρ̃sys(t)
dt = Lρsys(t) = d

dt (M(t)ρ̃sys(t))

= 1
(ıℏ)2

∫ t
0
dτ Trres

[
Ṽ (t), [Ṽ (τ), ρ̃sys(t)⊗ ρres]

] . (15.16)

The superoperator L is called Lindblad operator.

15.1.4 Markov approximation for short memory

Here, we have to evaluate the terms involving the average with respect to the thermal
bath, which is assumed to have a short memory, in the sense that the correlation time
is very short. Mathematically,

∫ t

0

dτ Trres

(
Ṽ (t)Ṽ (τ)ρres

)
=

∫ t

0

dτ Trres

(
Ṽ (t− τ)Ṽ (0)ρres

)
(15.17)

≃
∫ ∞

0

dτ Trres

(
Ṽ (t− τ)Ṽ (0)ρres

)
.

In other words, the two-point correlation function is significant only, when t ≃ τ , and
it is valid to extend the upper bound to infinity. This is the Markov approximation.

15.1.5 Example: Damped harmonic quantum oscillator

As an example, we let us consider the master equation for the Brownian motion of a
quantum harmonic oscillator. It can be written,

dρ̃sys
dt

=
1

(ıℏ)2

∫ t

0

dτ Trres

{
Ṽ (t)Ṽ (τ)ρ̃(t)⊗ ρres − Ṽ (t)ρ̃sys(t)⊗ ρresṼ (τ)

−Ṽ (τ)ρ̃sys(t)⊗ ρresṼ (t) + ρ̃sys(t)⊗ ρresṼ (τ)Ṽ (t)

}
.

(15.18)
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The coupling of the system to the bath is assumed to be of the form,

Ṽ = ℏ
(
â†Γ̂(t)eıΩt + âΓ̂†(t)e−ıΩt

)
, (15.19)

where Γ̂(t) =
∑
k gk b̂ke

−ıωkt, the bosonic operators â and b̂k act, respectively, on
the system (with the frequency Ω) and the bath (with the frequency ωk). Here, gk
characterizes the coupling force between the oscillators of the system and the bath.
Hence,

dρ̃sys
dt

= −
∫ t

0

dτ Trres



(
â†Γ̂(t)eıΩt + âΓ̂†(t)e−ıΩt

)(
â†Γ̂(τ)eıΩτ + âΓ̂†(τ)e−ıΩτ

)
ρ̃(t)⊗ ρres

−
(
â†Γ̂(t)eıΩt + âΓ̂†(t)e−ıΩt

)
ρ̃(t)⊗ ρres

(
â†Γ̂(τ)eıΩτ + âΓ̂†(τ)e−ıΩτ

)
−
(
â†Γ̂(τ)eıΩτ + aΓ̂†(τ)e−ıΩτ

)
ρ̃(t)⊗ ρres

(
â†Γ̂(t)eıΩt + aΓ̂†(t)e−ıΩt

)
+ρ̃(t)⊗ ρres

(
â†Γ̂(τ)eıΩτ + âΓ̂†(τ)e−ıΩτ

)(
â†Γ̂(t)eıΩt + âΓ̂†(t)e−ıΩt

)


.

(15.20)

Let’s take a closer look at one of the terms,

T̂ ≡ −
∫ t

0

dτTrres

{
â†Γ̂(t)eıΩtâΓ̂†(τ)e−ıΩτ ρ̃(t)⊗ ρres

}
(15.21)

= −â†âρ̃(t)
∫ t

0

dτ⟨Γ̂(t)Γ̂†(τ)⟩reseıΩte−ıΩτ .

We will have to evaluate quantities such as

Trres (V (t)V (s)ρres) = ℏ2â†â⟨Γ̂(t)Γ̂†(t)⟩reseıΩ(t−s) + ℏ2ââ†⟨Γ̂†(t)Γ̂(t)⟩rese−ıΩ(t−s) ,
(15.22)

where ⟨Γ̂(t)Γ̂†(t)⟩res ≡ Trres[Γ̂(t)Γ̂
†(t)ρres], and for the thermal bath, ⟨b̂†j b̂k⟩ = δjknk

and ⟨b̂j b̂†k⟩ = δjk(1 + nk) and nk = (eβℏωk − 1)−1. Hence,

T̂ = −â†âρ̃(t)
∑

j,k

gjgk⟨bjb†k⟩res
∫ t

0

dτeı(ωjt−ωkτ)eıΩ(t−τ) (15.23)

≃ −â†âρ̃(t)
∑

k

g2knk

∫ ∞

0

dτeı(ωk−Ω)(t−τ) .

Then we will have to use the relationship,
∫ ∞

0

dτe±ıετ = πδ(ε)± ıPV , (15.24)

where PV denotes Cauchy part of the principal value. These correspond to a ’Lamb
shift’ and a ’Stark shift’ of the frequency, which are considered to be small in com-
parison to Ω and should be neglected here,

T̂ = −â†âρ̃(t)
∑

k

g2k
(
eβℏωk − 1

)−1
∫ ∞

0

dτeı(ωk−Ω)(t−τ) (15.25)

= −â†âρ̃(t)
∑

k

g2k
(
eβℏωk − 1

)−1
πδ(ωk − Ω)

= −â†âρ̃(t)
∑

k

g2k
(
eβℏΩ − 1

)−1
π = −πn̄â†âρ̃(t)

∑

k

g2kδ(ωk − Ω) = n̄ââ†ρ̃(t)π
γ

2
.
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where n̄ ≡
(
eβℏΩ − 1

)−1
. We define γ

2 ≡
∑
k g

2
kδ(ωk − Ω). The procedure can be

repeated for all terms in the master equation. We then obtain the master equation
for a damped harmonic oscillator,

dρ̃

dt
= γ

2 (n̄+ 1)
(
2âρ̃â† − â†âρ̃− ρ̃â†â

)
− γ

2 n̄
(
2â†ρ̃â− ââ†ρ̃− ρ̃ââ†

)
. (15.26)

See Excs. 15.1.7.1 and 15.1.7.2.

15.1.6 Deriving the Heisenberg-Langevin from the master equa-
tion

The Heisenberg-Langevin equation for the operators Â of a system subject to dissi-
pation with rates γk via the degrees of freedom L̂k and the master equation for the
density operator ρ̂ are equivalent descriptions for the time-evolution of a system [500],

dρ̂
dt = Lρ̂ = − ı

ℏ [Ĥ, ρ̂] +
∑
k γk

(
L̂kρ̂L̂

†
k − 1

2 L̂
†
kL̂kρ̂− 1

2 ρ̂L̂
†
kL̂k

)

dÂ
dt = L†Â = ı

ℏ [Ĥ, Â] +
∑
k γk

(
L̂†
kÂL̂k − 1

2 L̂
†
kL̂kÂ− 1

2 ÂL̂
†
kL̂k

) , (15.27)

as we will show in Exc. 15.1.7.3. The former stresses the Schrödinger picture and the
latter the Heisenberg picture. In particular, the dissipative Lindblad terms are equiv-
alent. That is, open systems are sufficiently characterized by the system Hamiltonian
Ĥ and a set of the so-called jump operators L̂k with their corresponding rates γk.
Note that, while the master equation preserves the trace, the Heisenberg equation is
unital, i.e. it preserves the identity operator I.

15.1.7 Exercises

15.1.7.1 Ex: Master equation for cavities

Consider a cavity laser-pumped at a rate η, subject to losses by transmission through
the mirrors at a rate κ, and incoherently pumped by thermal photons at a rate κn̄,
where n̄ is the number of thermal photons.
a. Write down the Hamiltonian and the Heisenberg-Liouville equation for an arbitrary
operator â of the system.
b. Derive the equation of motion for the field annihilation operator â and for the
photon number operator n̂.
c. Solve the equation of motion for the photon number operator for the case of no
coherent pumping, η = 0.
d. Write down the master equation of the system.
e. Derive the equation of motion for the components of the density operator ρm,n.
f. Calculate the photon number evolution from (e).

15.1.7.2 Ex: Photon number distribution in a driven cavity

Simulate the evolution of a light field in a cavity pumped at a rate η and subject
to decay κ being initially in a Fock state toward steady-state. Illustrate via repre-
sentations of the density matrix, the photon number distribution, and the Husimi
distribution for the light field

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_MasterCavity01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_MasterCavity02.pdf
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15.1.7.3 Ex: Deriving the Heisenberg-Langevin from the master equa-
tion

Derive the Heisenberg-Langevin from the master equation including the dissipative
Lindblad terms.

15.2 Dynamics of light fields in empty cavities

The quantization of the electromagnetic field has been introduced in Chp. 17. Nev-
ertheless, we will consider the degree of freedom to be studied in this chapter, that
is, the electric field amplitude of a light field developing in a mode of an optical cav-
ity, as a classical entity. Therefore, there is no need to stress quantum mechanics
to derive the fundamental equations of motion, and a classical derivation is shown
in Sec. 22.1.5. Nevertheless, for reasons of consistency with later discussions, where
quantization is required, we will reproduce here the standard procedure, which con-
sists in constructing the Hamiltonian for the relevant degrees of freedom. The degree
of freedom under study being a mode of a cavity, we will label it by the field operator
â normalized to the electric field strength E⃗1 generated by a single photon, such that
|⟨â⟩|2 = n represents the number of photons in the cavity.

In this first section of this chapter we will only consider a bare cavity not containing
any matter which could interact with light. The mode of a linear cavity or the two
counterpropagating modes of a ring cavity are pumped by incident laser light. We
will first set up the equations of motion for the cavity fields and then discuss the main
quantities characterizing a cavity, such as free spectral range, mode volume, decay
rate, and single-photon field strength. Finally, we will calculate the density of states
of cavities.

15.2.1 Master equation

The Hamiltonian of a laser-pumped linear cavity mode â coupled to the continuum of
a heat bath represented by operators âω is (ℏ = 1) (see Sec. 15.1.5 and Exc. 15.1.7.1),

Ĥ = Ĥcavity + Ĥbath + Ĥcavity:bath + Ĥlaser:cavity

Ĥcavity = ω0â
†â

Ĥbath =
∑

ω

ωâ†ωâω

Ĥcavity:bath =
∑

ω

gcavity:bathâ
†
ωâ+ h.c.

Ĥlaser:cavity = ıηâ† + h.c.

, (15.28)

with [âω, â
†
ω′ ] = δω,ω′ . The part of the Hamiltonian Ĥlaser:cavity describes pumping

of the cavity with an external light field matched to the cavity mode. The standard
procedure consists in setting up the quantum Liouville equation for the total density
operator ρ̂total = ρ̂cavity ⊗ ρ̂bath and tracing the over the bath’s degrees of freedom
[304, 169]. From this procedure, as shown in Sec. 15.1.5, we derive a master equation
for the reduced density operator ρ̂cavity.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_Lindblad01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_Lindblad01.pdf
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Figure 15.2: Scheme of (a) a linear cavity and (b) a ring cavity with optical modes α±
pumped by incident light fields η± and decaying into the void with rate κ.

The inevitable coupling of the cavity to the environment, described by Ĥcavity:bath,
leads to irreversible losses. These losses can be described as spontaneous decay to the
continuous vacuum heat bath. The irreversibility of the process is readily understood
in terms of the phase space offered by the vacuum being much larger. In fact, whenever
discrete states are coupled to a continuum, the equilibrium is very much on the side of
the continuum, that is, discrete states decay. Since an optical cavity can be considered
a temperature reservoir T , where,

n̄ =
1

1− e−ℏω/kBT )
, (15.29)

is the mean thermal photon number, the Lindblad operator is,

Lbathρ̂ = κ
2 (n̄+ 1)(2âρ̂â† − â†âρ̂− ρ̂â†â) + κ

2 n̄(2â
†ρ̂â− ââ†ρ̂− ρ̂ââ†) (15.30)

+ β(2n̄+ 1)(2â†âρ̂â†â− (â†â)2ρ̂− ρ̂(â†â)2) .

We have shown this in Exc. 15.1.7.1. The constants are the cavity decay rate κ and
the phase decay β. Note that at room temperature in the microwave regime, n̄ may
be as large as a few hundred photons, whereas in the optical regime we may neglect
the thermal excitation,

˙̂ρ = − ı
ℏ [Ĥ, ρ̂] + Lbathρ̂

Lbathρ̂(t) = κ[2âρ̂(t)â† − â†âρ̂(t)− ρ̂(t)â†â]
. (15.31)

15.2.1.1 Expectation values via master equation

The master equation (15.31) permits to calculate the time evolution of pure or mixed
quantum states in the Schrödinger picture, where the operators are assumed as time
independent [see Eq. (1.275) versus (1.276)]. The general procedure consists in using
a master equation (see Exc. 15.1.7.3),

dρ̂

dt
= −ı[Ĥ, ρ̂] + Lκ,L̂ρ̂ = −ı⟨[Ĥ, ρ̂]⟩+ κ(2L̂ρ̂L̂† − L̂L̂†ρ̂− ρ̂L̂L̂†) (15.32)
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to calculate the expectation values,

d⟨Â⟩
dt

= Tr Â
dρ̂

dt
= −Tr Âı[Ĥ, ρ̂] + κTr Â(2L̂ρ̂L̂† − L̂L̂†ρ̂− ρ̂L̂L̂†) (15.33)

= −Tr ıρ̂(ÂĤ − ĤÂ) + κTr ρ̂(2L̂†ÂL̂− ÂL̂L̂† − L̂L̂†Â)

= ı⟨[Ĥ, Â]⟩+ ⟨L†
κ,L̂

Â⟩ .

Coming back to our cavity Hamiltonian

Ĥ = Ĥcavity + Ĥlaser:cavity = −∆câ
†â+ η(â+ â†) , (15.34)

we get,

d⟨Â⟩
dt

= ı⟨[Ĥ, Â]⟩+κ⟨2â†Ââ− Ââ†â− â†âÂ⟩ where ⟨Â⟩(t) = Tr Âρ̂(t) . (15.35)

Since â = â(0) is stationary, we may choose â ≡ â and, using the pump Hamiltonian
Ĥ = η(â+ â†), evaluate the terms, yielding for example,

d⟨â⟩
dt

= Tr â
dρ̂

dt
= −ıη − κ⟨â⟩ (15.36)

d⟨â†â⟩
dt

= Tr â†â
dρ̂

dt
= ıη(⟨â⟩ − ⟨â†⟩)− 2κ⟨â†â⟩ .

These equations are also termed quantum Langevin equations.

15.2.2 Mean field dynamics of laser-pumped cavities

The expectation values are given by a quantum Langevin equation [169], which in the
mean field approximation (neglecting quantum noise) reduces to,

α̇ = ⟨ ˙̂a⟩ = ı

ℏ
⟨[Ĥ, â]⟩ − κ⟨â⟩ = (−κ− ı∆c)α+ η , (15.37)

whose solution is easy to derive,

α(t) =

(
α(0)− η

κ+ ı∆c

)
e(−κ−ı∆c)t +

η

κ+ ı∆c
, (15.38)

or, using the electric field normalized to the amplitude of the field generated by a
single photon, E⃗+cav = E⃗1α,

E⃗cav(z, t) = Re
[
E⃗1eı(kz−ωt)α(t) + E⃗1eı(−kz−ωt)α(t)

]
(15.39)

= 2E⃗1 cos kzRe [e−ıωtα(t)]

= 2E⃗1 cos kzRe

[(
α(0)− η

κ+ ı∆c

)
e(−κ−ıωc)t +

η

κ+ ı∆c
e−ıωt

]
.
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Figure 15.3: (code) Transmission spectrum of a cavity via numerical solution of the master

equation (15.38) (solid line) and via the stationary solution (15.40) (crosses).

The stationary solution is simply a Lorentzian,

|α(∞)|2 =
|η|2

κ2 +∆2
c

, (15.40)

which represents an approximation of the Airy function.
The result (15.39) shows that, letting η = 0, we see that the cavity field decays

with the time constant κ from the stationary situation. κ also corresponds to the
HWHM of the field intensity, |α(|∆c| = κ)|2 = 1

2 |α(0)|2. Note, that the intensity

decays as 2κ, and the HWHM of the field amplitude is
∣∣α(|∆c| =

√
3κ)
∣∣ = 1

2 |α(0)|.

Example 85 (Evolution of the modes of a linear cavity): (15.39) also shows

that a cavity initially filled with a strong resonant light field |α(0)| ≫ η/κ begins

to oscillate at its own frequency ωc, before the pump dominates and imposes its

own frequency ω. This is illustrated in Fig. 15.4. .

0 1 2 3 4 5

κt

-2

-1

0

1

2

R
e
α

Figure 15.4: (code) Transient oscillations in a cavity pumped out of resonance.

Frequently, we are interested in the light reflected from a cavity. The reflective
response of the cavity to an incident pump beam E⃗in is,

E⃗+refl = rinE⃗+in + tinE⃗+cav . (15.41)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_CavityTransmissionSpectrum.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_CavityTransmissionSpectrum.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_CavityTransients.m
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Also we may want to consider a temporal variation of the input field, for example of
its detuning, ∆c(t). In such cases, the equation (15.37) can not be integrated easily,
and we need to resort to numerical methods. The simplest (and least convergent)
method in a Newtonian iteration like,

E⃗+refl(t+ dt) = E⃗+refl(t) + dt tin

[
(−κ− ı∆c(t))E⃗+cav(t) + ηE⃗+in(t)

]
. (15.42)

We will study in Exc. 15.2.5.1 how a sudden change of the pump laser detuning may
lead to ringing with a fixed frequency ∆c. In Excs. 15.2.5.2 and 15.2.5.3 we will show,
how it is possible to empty an optical cavity in times shorter than 1/κ.

15.2.2.1 Mean field dynamics of laser-pumped ring cavities

Linear cavities are characterized by the fact that they sustain standing light waves.
That is, at every point of the mode volume, there are field components pointing into
two counterpropagating orientations. In case of a ring cavity, we have two counter-
propagating modes α±, which may be independently pumped by laser beams η±.
Hence, the quantum Langevin equation (15.37) must be generalized to,

α̇±(t) = (−κ− ı∆c)α± + η± , (15.43)

and the general solution (15.38) to,

α±(t) =

(
α±(0)−

η±
κ+ ı∆c

)
e(−κ−ı∆c)t +

η±
κ+ ı∆c

. (15.44)

The two counterpropagating field modes will, provided they have the same polar-
ization, interfere and form a standing light wave. In contrast to linear cavities, the
phase of this standing wave is represents a degree of freedom, as it depends on the
phases of the two field modes α±, which in turn can be controlled by the incident
laser fields η±. To better understand the behavior of the phase as a function of the
pump beams, we analyze the interference of the two modes, which is described by,

α+α
∗
− =

(
α+(0)α

∗
−(0)−

η∗−α+(0)

κ− ı∆c
− η+α

∗
−(0)

κ+ ı∆c
+

η+η
∗
−

κ2 +∆2
c

)
e−2κt +

η+η
∗
−

κ2 +∆2
c

+ (15.45)

+

(
α+(0)

η∗−
κ− ı∆c

− η+η
∗
−

κ2 +∆2
c

)
e(−κ−ı∆c)t +

(
α∗
−(0)

η+
κ+ ı∆c

− η+η
∗
−

κ2 +∆2
c

)
e(−κ+ı∆c)t .

To simplify this expression, we assume a symmetric pump, η± = ηe±ıϕ. We are
interested in the reaction of the field’s phase to a sudden change of ϕ. Now, we define
the initial stationary conditions for ϕ = 0 to be α±(0) =

η
κ+ı∆c

and obtain,

α+α
∗
− =

η2

κ2 +∆2
c

[
(1− eıϕ)2e−2κt + e2ıϕ + 2eıϕ(1− eıϕ)e−κt cos∆ct

]
. (15.46)

In resonance, ∆c = 0, the expression (15.46) simplifies to,

α+α
∗
− =

η2

κ2
[
(1− e−κt)eıϕ + e−κt

]2
. (15.47)



574 CHAPTER 15. OPTICAL CAVITIES

This results shows that the cavity phase adjusts itself to the pump field in exponential
time κ−1:

tan θ =
Imα+α

∗
−

Reα+α∗
−

=
(1− e−κt)2 sin 2ϕ+ 2(1− e−κt)e−κt sinϕ

(1− e−κt)2 cos 2ϕ+ 2(1− e−κt)e−κt cosϕ+ e−2κt
. (15.48)

For small phase slips ϕ≪ π, this reduces to,

θ = 2ϕ(1− e−κt) , θ̇ ≃ κ(2ϕ− θ) , θ̈ ≃ −κθ̇ . (15.49)

Hence, the pump represents a friction force for the phase.
Out of resonance but with negligible decay, κ ≃ 0, the expression (15.46) simplifies

to,

α+α
∗
− =

η2

∆2
c

[
1 + 2(e2ıϕ − eıϕ)(1− cos∆ct)

]
+ , (15.50)

such that,

tan θ =
2(sin 2ϕ− sinϕ)(1− cos∆ct)

1 + 2(cos 2ϕ− cosϕ)(1− cos∆ct)
, (15.51)

which, for very small angles ϕ, reduces to,

θ ≃ 4ϕ sin2
1

2
∆ct . (15.52)

15.2.2.2 Transfer function of a ring cavity

Cavities have a finite response time to frequency or amplitude fluctuations of the
pump light. To study this, we assume the light pumping a ring cavity to be subject
to a phase modulation with frequency Ω and amplitude ϕ0, that is, the quantum
Langevin equation (15.37) is,

(∂t + κ+ ı∆c)α± = ηe±ıϕ0 sinΩt , (15.53)

and has the solution,

α±(t) = e(−κ−ı∆c)t

(
α±(0) + η

∫ T

0

e(κ+ı∆c)τ±ıϕ0 sinΩτdτ

)
. (15.54)

For small amplitude oscillations, we can expand the pump term into a Fourier series
of Bessel functions,

α±(t) = e(−κ−ı∆c)t

(
α±(0) + η

∫ T

0

(
e(κ+ı∆c)τ ± ϕ0

2
e(κ+ı∆c)τ+ıΩτ ∓ ϕ0

2
e(κ+ı∆c)τ−ıΩτ

)
dτ

)
= e(−κ−ı∆c)tα±(0) + η

1− e(−κ−ı∆c)t

κ+ ı∆c
± ϕ0

2

eıΩt − e(−κ−ı∆c)t

κ+ ı∆c + ıΩ
∓ ϕ0

2

e−ıΩt − e(−κ−ı∆c)t

κ+ ı∆c − ıΩ

=
η

κ+ ı∆c
± ϕ0η

2

eıΩt − e(−κ−ı∆c)t

κ+ ı∆c + ıΩ
∓ ϕ0η

2

e−ıΩt − e(−κ−ı∆c)t

κ+ ı∆c − ıΩ

=
η

κ
± ıϕ0η

κ sinΩt− ΩcosΩt+Ωe−κt

κ2 +Ω2
. (15.55)
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In the last two steps, we defined for simplicity, α±(0) =
η

κ+ı∆c
and set ∆c = 0. After

some initial transients, when t≫ κ−1, we can write,

α±α
∗
± =

η2

κ2
+ ϕ20η

2

(
κ sinΩt− ΩcosΩt

κ2 +Ω2

)2

(15.56)

α±α
∗
∓ =

(
η

κ
± ıϕ0η

κ sinΩt− ΩcosΩt

κ2 +Ω2

)2

,

giving in analogy to (15.48),

θ = arctan
2ϕ0(κ

2 +Ω2)
(
κ2 sinΩt− κΩcosΩt

)

(κ2 +Ω2)
2 − ϕ20 (κ2 sinΩt− κΩcosΩt)

2 ≃ 2ϕ0
κ2 sinΩt− κΩcosΩt

κ2 +Ω2
.

At low frequencies, Ω ≪ κ, the phase of the cavity field goes as, θ(ϕ0) ≃ 2ϕ0 sinΩt,
and for high frequencies, Ω ≫ κ, as, θ(ϕ0) ≃ −2ϕ0 κΩ cosΩt. Thus, we observe a
low-pass behavior of the phase excursions of the cavity field with a cut-off frequency,
κ−1:

θm ≃
2ϕ0

1 + Ω/κ
. (15.57)

15.2.3 Beyond mean field dynamics via master equation

Up to this point we concentrated on the dynamics of expectation values of the field
operators, which is obtained in the mean field approximation via the substitution
â → ⟨â⟩. This approximation disregards possible correlations, ⟨â†â⟩ ≃ ⟨â†⟩⟨â⟩ found
in the Hamiltonian (15.28) and in the Lindbladian (15.31). As long as the light field
can be assumed as classical, the mean field approximation is very good. However,
when non-classical light fields (such as Fock states or squeezed states of light) are
investigated, the approximation fails. In this section we will seek general solutions of
the master equation for a bosonic channel.

15.2.3.1 Time dependent formal solution for decaying cavities

The master equation for a non-driven cavity (15.31),

dρ̂

dt
= Lκ,âρ̂ = κ(2âρ̂â† − â†âρ̂− ρ̂â†â) , (15.58)

can be solved formally.
In order to derive the time-dependent solution, we apply the substitution tan2 ϕ =

eκt − 1, with ϕ ∈ [0, π2 ]. This transforms the master equation into,

dρ̂

dϕ
=

tanϕ

κ
Lκ,âρ̂ , (15.59)

which is easy to check. The general solution of this equation [5],

ρ̂(ϕ) =

∞∑

n=0

sin2n ϕ

n!
cosâ

†â ϕ ânρ̂0â
†n cosâ

†â ϕ , (15.60)
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as will be shown in Exc. 15.2.5.4.
The solution (15.60) permits to calculate time evolutions of classical or non-

classical states of light. For example, we check in Exc. 15.2.5.4 that for Glauber
states,

Tr ρ̂|α⟩(t) = 1 = Tr ρ̂2|α⟩(t) and ⟨n̂(t)⟩ = Tr n̂ρ̂|α⟩(t) = |α|2e−κt . (15.61)

That is, Glauber states remain pure during cavity decay. In contrast, for Fock states,

Tr ρ̂|n0⟩(t) = 1 > Tr ρ̂2|n0⟩(t) and ⟨n̂(t)⟩ = Tr n̂ρ̂|n0⟩(t) = n0e
−κt . (15.62)

That is, Fock states evolve into mixtures.
The solution (15.60) can easily be numerically simulated in the Fock basis using,

â =

∞∑

n=0

√
nn|n⟩⟨n+ 1| , (15.63)

and

cosâ
†â ϕ = en̂ ln cosϕ =

∞∑

n=0

cosn ϕ|n⟩⟨n| . (15.64)

Fig. 15.5(a) shows the density matrix after some evolution time. It is interesting to
note, that cavity decay does not transform an initial Fock state into a Glauber state
as, differently from Glauber states, the density matrix in the Fock basis only contains
diagonal elements (similarly to thermal states, except for the fact that the population
of thermal states follow a Boltzmann distribution). Rather, the decay transforms
an initial Fock state into an incoherent mixture of Fock states. Panel (b) shows the
time evolution of the normalization, the purity, and the photon number in the cavity.
Similar results are obtained for squeezed states.

(a)

0

ρ
(φ
)
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n

0

n′
20 1020 10−3 10−2 10−1 100 101

κt

0

0.5

1

n̄

(b)

Tr ρ
Tr ρ2

Tr n̂ρ/n0

Figure 15.5: (code) (a) Density matrix of an evolved Fock state in a decaying cavity with

no pumping. (b) Time evolution of the normalization, the purity, and the photon number

in the cavity.

15.2.3.2 Steady state solution for resonantly driven cavities

The master equation can also be formally solved for the case that the cavity is reso-
nantly driven, ∆c = 0. Describing the drive by the Hamiltonian,

Ĥ = η(â+ â†) , (15.65)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolution.m
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the master equation can be transformed by the substitution,

ã ≡ â+ ıη
κ I and ã† ≡ â† − ıη

κ I , (15.66)

into,

dρ̂

dt
= ı[ρ̂, Ĥ] + Lκ,âρ̂ (15.67)

= ıη
(
ρ̂â+ ρ̂â† − âρ̂− â†ρ̂

)
+ κ(2âρ̂â† − â†âρ̂− ρ̂â†â)

= κ
(
2ãρ̂ã† − ã†ãρ̂− ρ̂ã†ã

)
.

The steady state solution is,

ρ̂(∞) = C−1ã−1ã†−1 = C−1(â+ ıη
κ I)

−1(â† − ıη
κ I)

−1 , (15.68)

where C is a normalization constant obtained from the condition Tr ρ(∞) = 1, (see
Exc. 15.2.5.5).

Fig. 15.6(a) shows the steady state photon number calculated from,

⟨n̂⟩ = Tr n̂ρ̂(∞) = C−1Tr n̂ã−1ã†−1 =
Tr â†â ã−1ã†−1

Tr ã−1ã†−1
. (15.69)

We see that, for large enough cut-off photon numbers used in the simulation, the
intracavity photon number tends toward ⟨n̂⟩ → (η/κ)2, as expected. Fig. 15.6(b)
shows the photon number uncertainty calculated from,

⟨∆n̂2⟩ = Tr n̂2ρ̂(∞)− [Tr n̂ρ̂(∞)]2 . (15.70)

We see that it tends toward ⟨∆n̂2⟩ → ⟨n̂⟩, as expected for a Glauber state, but not for
a Fock state, for which we know ⟨∆n̂2⟩ → 0 or for a squeezed state (see Exc. 14.4.4.5).
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Figure 15.6: (code) Steady state photon number in a driven cavity for various cut-off photon

numbers.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolutionSteady.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolutionSteady.m
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15.2.3.3 Time dependent solution for driven cavities

Since [ã, ã†] = 1 and ã†ã is diagonal, the result (15.60) obtained for the purely dis-
sipative cavity hold as well for the driven-dissipative cavity with the substitutions
(15.66). That is, the time dependent solution is,

ρ̂(ϕ) =

∞∑

n=0

sin2n ϕ

n!
cosã

†ã ϕ ãnρ̂0ã
†n cosã

†ã ϕ , (15.71)

or with cosâ
†â ϕ = (e−κt/2)â

†â and sin2 ϕ = 1− e−κt,

ρ̂(t) =

∞∑

n=0

(1− e−κt)n
n!

e−κtã
†ã/2 ãnρ̂0ã

†ne−κtã
†ã/2 . (15.72)

The simulation shown in Fig. 15.7 reveals that the driving transforms any initial
state, be it a Glauber, Fock, or squeezed state, into a pure Glauber state after some
time. The mean photon number evolves toward η̃2, where η̃ ≡ η/κ. The photon
number uncertainty evolves toward η̃.
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Tr ρ2

Tr n̂ρ/η̃2

Tr Δn̂2ρ/η̃2

Figure 15.7: (code) (a) Density matrix calculated from Eq. (15.72) for an evolved Fock state

in a driven cavity with η2/κ2 = 3. (b) Time evolution of the normalization, the purity,

the photon number and its variance in the cavity starting from an initial photon number of

⟨n̂0⟩ = 2 ≈ 0.22η̃2.

Note that the master equation can also be propagated numerically via,

ρ̂(t+ dt) = ρ̂(t) + dt ı[ρ̂(t), Ĥ] + dt κ
[
2â†ρ̂(t)â− â†âρ̂(t)− ρ̂(t)â†â

]
. (15.73)

15.2.4 Beyond mean field dynamics via Heisenberg equation

Instead of the master equation (15.31), we solve the driven-dissipative cavity system
by a set of Heisenberg equations of all degrees of freedom (here only the field op-
erator â). Then, with the Hamiltonian (15.65) and the Hermitian conjugate of the
Lindbladian (15.58), we write,

Ĥ = η(â+ â†) , L†
κ,âÂ = κ

(
2â†Ââ− â†âÂ− Ââ†â

)
. (15.74)

Applying the same substitution (15.66) as for the master equation,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolutionDrive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolutionDrive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolutionDrive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalSolutionDrive.m
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dÂ

dt
= ı[Ĥ, Â] + L†

κ,âÂ (15.75)

= ıη(âÂ+ â†Â− Ââ− Ââ†) + κ(2â†Ââ− â†âÂ− Ââ†â)
= κ(2ã†Âã− ã†ãÂ− Âã†ã) .

In Exc. 15.2.5.6 we show that the operator

Â(∞) = â−1â†−1 = ρ̂(∞) (15.76)

is also the steady state solution of the Heisenberg equation.
Numerical comparison between expectation values obtained from the master and

the Heisenberg equation yields,

Tr Â(0)ρ̂(t) = ⟨Â(t)⟩ = Tr Â(t)ρ̂(0) . (15.77)

This is shown for Â(t) ≡ n̂(t) in Fig. 15.8, which also shows the mean field solution
(15.38). We notice that the master and the Heisenberg approach yield identical re-
sults. To calculate the photon number evolution in the mean field approximation, we
plug the solution of the first equation (15.36),

⟨â(t)⟩ = [⟨â(0)⟩+ ıη
κ ]e

−κt − ıη
κ (15.78)

into the second, yielding,

⟨ṅ(t)⟩ = ıη[⟨â(0)⟩ − ⟨â†(0)⟩]e−κt + 2η2

κ (1− e−κt)− 2κ⟨â†â⟩ , (15.79)

which is then solved numerically. For comparison, Fig. 15.8 also shows the evolution
⟨â†(t)⟩⟨â(t)⟩.
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Figure 15.8: (code) (a) Density matrix simulated from Eq. (15.73) for an evolved Fock state

in a driven cavity with η2/κ2 = 3. (b) Time evolution of the normalization, the purity, and

the photon number in the cavity starting from an initial photon number of ⟨n̂0⟩ = 2 ≈ 0.22η̃2.

The dashed lines are analytical solutions according to Eqs. (15.78) and (15.79).

It is tempting to use commutation relations between the evolution operator Â(t),
which is time dependent in the Heisenberg picture, and the jump operator â = â(0),
which is stationary. However, even for the choice Â(t) ≡ â(t) we must accept,
[â(0), â†(t)] ̸= 1 and [â(0), â(t)] ̸= 0. Otherwise, we draw false conclusions, as shown
in Exc. 15.2.5.7.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalHeisenDrive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalHeisenDrive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalHeisenDrive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/QO_Resonators_FormalHeisenDrive.m
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15.2.5 Exercises

15.2.5.1 Ex: Ringing of an optical cavity

Consider a linear cavity with resonant frequency ωc and the decay rate κ pumped by
a laser beam whose frequency is swept linearly over a range ω ∈ [−10κ, 10κ]. Prepare
a numerical simulation varying the time ∆t of the sweep.

15.2.5.2 Ex: Quick ullage of an optical cavity

Consider a linear cavity resonantly pumped by a laser beam until a stationary state
is reached. Suddenly, the phase of the incident light is changed by 180◦. Based on
equation (15.38), analyze the evolution of the light field inside the cavity [703].

15.2.5.3 Ex: Photon number distribution in a driven cavity

In Exc. 16.4.4.15 we have seen that atoms can be deexcited faster than Γ using an
adequate driving laser switch-off time and in Exc. 15.2.5.1 that optical cavities can be
emptied faster than κ by injecting light having an inverted phase. Study and discuss
the possibility of reducing the ullage rate by just adapting the driving laser switch-off
time.

15.2.5.4 Ex: Formal solution of the master equation

a. Check that the expression (15.60) solved the master equation (15.59).
b. Evaluate the expression (15.60) for an initial Fock state, ρ̂0 ≡ |n0⟩⟨n0|.
c. Evaluate the expression (15.60) for an initial Glauber state, ρ̂ = |α⟩⟨α|. For (b)
and (c) check normalization and purity during evolution.

15.2.5.5 Ex: Steady state photon number in a driven cavity

a. Expand the steady state solution (15.68) in power series of â respectively â†−1, and
determine the normalization constant when the Fock basis is truncated at a photon
number of N .
b. Calculate the steady state photon number and its variance.

15.2.5.6 Ex: Steady state of the Heisenberg equation

Verify whether Â(∞) = â−1â†−1 = ρ̂(∞) is also the steady state solution of the
Heisenberg equation for the dissipative cavity.

15.2.5.7 Ex: Wrong use of Heisenberg equations

Solve the Heisenberg equation for the photon annihilation operator â(t) in a driven-
dissipative cavity under the (false) assumption that it satisfies with the jump operator
â(0) the commutation rule [â(t), â†(0)] = 1. Show that the result cannot be correct.

15.2.5.8 Ex: Emission spectrum of a decaying cavity

Calculate the emission spectrum of a decaying cavity initially filled with a field â(0).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_PhotonMode01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_PhotonMode02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_PhotonMode03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_PhotonMode05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_PhotonMode06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_PhotonMode04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_PhotonMode07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_PhotonMode08.pdf
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15.3 Mode structure and density-of-states of cavi-
ties

15.3.1 Characterization of the bare cavity

We first consider a linear cavity of length L pumped by a laser without any scatterer
located inside the cavity. The cavity spectrum is an equidistant comb of eigenfre-
quencies separated by,

δfsr ≡ τ−1
rt =

c

2L
. (15.80)

The free spectral range δfsr is given in units of a real frequency. τ−1
rt is the time for a

photon to make a round trip in the cavity. The amplitude decay rate of the cavity,

κ = τ−1
κ =

πδfsr
F

. (15.81)

The intensity decay rate of the cavity, measured by ’cavity ring-down’ is κint = 2κ.
Note, that κint is also the FWHM width of the intensity transmission spectrum 2,
such that the finesse

F =
δfsr

κint/2π
(15.82)

is simply the ratio between the free spectral range and the FWHM of the cavity
intensity transmission curve, both measured in Hertz.

Example 86 (Finesse of a cavity): For example, for a cavity of length L =

10 cm an intensity decay time of τint = 20µs is measured, and we want to

evaluate the finesse. We begin calculating the free spectral range δfsr = c/2L ≈
1.5GHz. Since the cavity field decays like E(t) = E0e−κt and the intensity like

I(t) = E20 e−2κt, we get κ = 1/τκ = 1/2τint ≈ (2π) 4 kHz. Finally, the finesse is

F = πδfsr/κ ≈ 189000.

For a cavity with a given geometry filled with a Gaussian mode of light with power
P , the intensity is determined by Gaussian optics (see ) 3,

I(r) =
2P

πw2(z)
e−2ρ2/w2(z) and w(z) = w0

√
1 +

(
λz

πw2
0

)2

. (15.83)

Defining the mode volume via I(0)Vm ≡
∫
I(r)dV and evaluating the spatial integral

over the Gaussian mode along the cavity, we obtain,

Vm =
1

I(0)

∫ L

0

∫ ∞

0

∫ 2π

0

2P

πw2(z)
e−2ρ2/w2(z)dϕρdρdz = π

2Lw
2
0 . (15.84)

2See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 7.3.5 and
Exc. 7.3.6.17.

3See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 7.4.1 and
Exc. 7.3.7.18.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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Defining the amplitude of the electric field generated by a single photon via,

I(r) = nε0cE21 (r) , (15.85)

where n is the number of photons in the cavity, we calculate for the energy stored in
the cavity,

ℏω
2

=

∫
u1(r)dV =

1

c

∫
I1(r)dV =

1

c
I1(0)Vm . (15.86)

Hence,

|E⃗1(0)| =
√
I1(0)

ε0c
=

√
ℏω

2ε0Vm
. (15.87)

The light power in the linear cavity can now be expressed using its free spectral
range (15.80),

P =
πw2

0

2
I(0) =

2Vm
L

nε0c|E⃗21 (0)| = 2Vmδfsrnε0
ℏω

2ε0Vm
= δfsrnℏω . (15.88)

We assume that the cavity is pumped by a laser beam. To estimate the pump
rate, we assume that the power Pinput be measured in transmission. The coefficient
η for resonant pumping is related to the number n of photons inside the cavity,

n = |α|2 =
η2

κ2
. (15.89)

The intracavity field is resonantly amplified by the finesse,

α =

√
F

π
αinput =

√
δfsr
κ
αinput . (15.90)

This gives,

η = κα = κ

√
I

cℏω
Vm =

√
κδfsrαinput =

√
κδfsr

√
Iinput
cℏω

Vm . (15.91)

In practice, the pump rate will depend on the quality of the phase matching of the
Gaussian beams and the impedance matching (in case of partially absorbing mirrors).

We will pursue the characterization of ring cavities including their interaction with
scattering atoms in Sec. 22.1.2.

15.3.1.1 The Schawlow-Townes limit

The Schawlow-Townes limit results from phase fluctuation of the standing light wave
in the cavity demand ∆ϕ = 1

n . Using the relationships (15.88) and (15.90), we find
[873],

∆ωlaser =
κ

|α|2 = κ
δfsrℏωlaser

Pcav
= κ

δfsrℏωlaser

δfsr
κ Pout

= κ2
ℏωlaser

Pout
. (15.92)

Example 87 (Schawlow-Townes limit of a HeNe laser): For a typical
HeNe laser, F = 100, Pout = 1mW, L = 20 cm, we estimate,

∆ωlaser =

(
πδfsr
F

)2
hνlaser
Pout

=
( πc

2LF

)2 hνlaser
Pout

≈ (2π)30mHz .
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15.3.2 Calculation of the density of states

The density of states ρ(ω,k) of an optical cavity is defined by,
∫

R
ρ(ω,k)dωdΩ =

1

(2π)3

∫
d3xd3k , (15.93)

where R denotes the boundary imposed by the cavity. For free space photons we
calculate (see Eq. (16.22)),

4π

∫
ρfree(ω,k)dω =

V

(2π)3

∫
k2 sin θdθdϕdk =

V k3

6π2
=

V ω3

6π2c3
, (15.94)

such that,

ρfree(ω,k) = ρfree(ω) =
V ω2

(2πc)3
, (15.95)

is isotropic.
For light in a cavity, the density of states is modified with respect to free space,

because it becomes frequency-dependent and anisotropic. The frequency dependence
is expressed by the Airy formula,

L(ω) ≡ Icav
Iin

=

√
1 + (2F/π)2

1 + (2F/π)2 sin2 kL
, (15.96)

which will be derived in Excs. 15.3.4.1, 15.3.4.2, and 15.3.4.3, and the anisotropy by,

R(êk) = 1 ∀ êk ∈ Ωcav , (15.97)

where Ωcav is the solid angle covered by the cavity mode. The formula,

ρcav(ω,k) = ρfree(ω)[1−R(êk)] + ρfree(ω)L(ω)R(êk) (15.98)

expresses that the density of states is nothing more than the structure factor of the
cavity.

15.3.2.1 Confocal cavities

For a confocal cavity the solid angle is easy to calculate [376, 377]. Denoting by b is
the clear aperture of the cavity mirrors, we get,

Ωcav,con = 2

∫ 2π

0

∫ arcsin(2b/L)

0

sin θdθdϕ = 4π

(
1−

√
1− 4

b2

L2

)
. (15.99)

Expanding the root for small b≪ L, we get,

Ωcav,con ≃
8πb2

L2
. (15.100)

For non-degenerate geometries the functions L and R depend on the order mn of
the transverse Gaussian modes:

Lmn(ω) =

√
1 + (2F/π)2

1 + (2F/π)2 sin2(kL+ φmn)
and Rmn(êk) = 1 ∀ êk ∈ Ωmn ,

where φmn is the frequency shift of the transverse modes.



584 CHAPTER 15. OPTICAL CAVITIES

15.3.2.2 Expansion into Hermite-Gaussian modes

More correctly, êk ∈ Ωmn means that we must weigh the density of states by the
structure factor of the mode volume, which is nothing more than the Fourier transform
of the cavity mode function,

Rmn(êk) =
∫

êk∈Ωmn

d2k =

∫

R2

F
[
umn(r)

ℏω

]
d2k . (15.101)

For a Hermite-Gaussian mode with waist w(z) ,

umn(r) = ℏω
w0

w
e−2(x2+y2)/w2

Hm(
√
2x/w)2Hn(

√
2y/w)2 . (15.102)

The Hermite polynomials are the eigenfunctions of the Fourier transform,

F [e−x2/2Hn(x)] = (−ı)ne−k2/2Hn(k) . (15.103)

Hence,

F
[

1
ℏωumn(r)

]
=

1

ℏω
w0

w
F
[
e−2(x2+y2)/w2

Hm(
√
2x/w)2Hn(

√
2y/w)2

]
(15.104)

=
1

ℏω
w0

w
F
[
e−2x2/w2

Hm(
√
2x/w)2

]
F
[
e−2y2/w2

Hn(
√
2y/w)2

]

=
1

ℏω
w0

w
e−2k2xw

2

Hm(
√
2kxw)

2e−2k2yw
2

Hn(
√
2kyw)

2 m,n=0−→ 1

ℏω
w0

w
e−2(k2x+k

2
y)w

2

.

Finally,

Rmn(êk) =
∫
F
[
umn(r)

ℏω

]
d
(
kx
k

)
d
(
ky
k

)
(15.105)

=
1

ℏω
w0

w

∫
e−2k2xw

2

Hm(
√
2kxw)

2d
(
kx
k

) ∫
e−2k2yw

2

Hn(
√
2kyw)

2d
(
ky
k

)
.

For the TEM00 mode, we get,

R00(êk) =
π

2k2w2
, (15.106)

using P =
∫
Imn(r)dxdy = 1

2πw
2I0. This coincides with the intuition, that for the

TEM00, the aperture is simply the divergence angle of the Gaussian mode.
The solid angle of a Gaussian mode in a non-degenerate cavity is calculated via,

Ωcav = 2 · πw(z)
2

z2
= 2 · πw

2
0

z2

(
1 +

(
λz

πw2
0

)2
)
. (15.107)

In the far field, we get,

Ωcav
z→∞−→ 8π

k2w2
0

. (15.108)
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Example 88 (Solid angle for Hermite-Gaussian modes in a confocal
cavity): For confocal cavities, we must add

∑
mn F

[
1
ℏωumn(r)

]
up to a limit,

where the maximum Hm(
√
2kw) is cut by the finite aperture of the mirrors of

the cavity. Empirically, we find that Hn(ξ)
2e−ξ

2

has its maximum at ξmax =
13.7 · n1/2. From the condition umn(x, y, L) = 0 for xy > a2, we obtain,

xmaxymax < a2(
13.7 · n1/2

)2
=

√
2xmax

w(L)

√
2ymax

w(L)
<

2a2

w(L)2
→ a2k2w2

0

2L2
,

using w(L) = w0

√
1 +

(
λL
πw2

0

)2
→ λL

πw0
. Finally,

∑
mn

F
[

1

ℏω
umn(r)

]
=

π

2k2w2

∑
13.72m,n<a2k2w2

0/2L
2

=
π

2k2w2

1

13.72
a2k2w2

0

2L2
=

1

13.72
πa2

4L2
.

15.3.3 Cumulant expansion of correlation functions and power
spectra

15.3.3.1 Correlation functions

The evolution of the two-time correlation function of two operators Â and B̂ given
by,

R(t, τ) ≡ ⟨Â(t+ τ)B̂(t)⟩ , R(τ) = lim
t→∞
⟨Â(t+ τ)B̂(t)⟩ , (15.109)

with respect to the time delay τ is determined by,

d

dτ
R(t, τ) = ⟨[∂τ Â(t+ τ)]B̂(t)⟩ . (15.110)

Hence, the set of equations required to compute the correlation function can be derived
from the equation of motion for the operator Â. The cumulant expansion of the
correlation function then follows the same procedure as for a standard time evolution:
the set of equations is expanded to a certain order and completed. Solve Exc. 15.3.4.4.

15.3.3.2 Steady state

If the original system is evolved up to a time t such that it is in steady state, i.e.
expectation values no longer change after that time, the set of equations determining
the correlation function has a special property. specifically, after the cumulant ex-
pansion has been performed, there can only be a single term in each product on the
right-hand-side of the set of equations that depends on τ . All other terms depend on
t alone, meaning that they are constant since they no longer change after the time t.
Therefore, the system of equations from which the correlation function is computed
is linear, in the sense that it can be written as,

d

dτ
y(τ) = My(τ) + d , (15.111)

where y(τ) is the vector of τ -dependent variables. The elements of the matrix M as
well as the vector d are given by steady-state expectation values and parameters, i.e.
they are independent of τ .
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15.3.3.3 Power spectra

According to the Wiener-Khinchin theorem. the spectral density associated with a
correlation function is given by its Fourier transform,

S(t, ω) = 2Re

∫
e−ıωτR(t, τ)dτ . (15.112)

In order to compute this, we can solve the system of equations determining R(t, τ),
subsequently taking the Fourier transform. However, if we are not interested in the
temporal behavior of the correlation function, and if the system of which we want to
compute the spectrum is in steady state, we can directly compute the spectrum from
Eq. (15.111). To this end, we define

x(s) = L[y(τ)] , (15.113)

where L denotes the Laplace transform with respect to τ . Taking the Laplace trans-
form of Eq. (15.111), we have,

(sI−M)x(s) = y(0) +
d

s
. (15.114)

Note that the Laplace transform is equivalent to the Fourier transform at the point
where s = ıω, i.e. S(ω) = 2Rex1(ıω)}. Hence, instead of computing the time evolu-
tion of the correlation function we can directly compute the spectrum by solving the
linear equation,

x = (ıωI−M)−1[y(0) + 1
ıωd] . (15.115)

For larger systems, the method using a Laplace transform is usually faster than in-
tegrating a system of equations of the same size. Additionally, it avoids numerical
errors of the integration and the subsequent discrete Fourier transform.

15.3.4 Exercises

15.3.4.1 Ex: Derivation of the Airy formula

Derive the Airy formula (15.96).

15.3.4.2 Ex: Airy formula for ring cavities

Derive the Airy formulas for a ring cavity laser-pumped through an incoupling mirror
with reflectivity ric and comprising two more high-reflecting mirrors with reflectivity
rhr. Calculate (a) the intracavity intensity, (b) the intensity of the light reflected
from the incoupler, and (c) the intensity of the light transmitted through the first
encountered high reflector. For each for intensity study the cases that (i) the ring
cavity is resonant and (ii) off-resonance. Also study the limit rhr → 1. Disregard
absorption losses.

15.3.4.3 Ex: Filling rate for long cavities

Using the solution (15.38) try to calculate the transmission of a 15 km long cavity of
finesse F = 1000 as a function of time, when it is pumped by a suddenly switched on
laser. Analyze the results in the light of local causality.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_DynamMode05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_DynamMode07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_DynamMode08.pdf
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15.3.4.4 Ex: Fluorescence spectrum of an empty cavity

a. Calculate the fluorescence spectrum of an empty cavity pumped at a rate η classi-
cally via the autocorrelation function ⟨α∗(t+ τ)α(t)⟩.
b. Calculate the time evolution of the cumulants ⟨â⟩, ⟨â†â⟩, ⟨â†â†â⟩, ⟨ââ†â⟩, and
⟨â†ââ†â⟩ expanding up to forth order.
c. Based on the results obtained in (b) and applying the quantum regression theorem
derive a set of linear differential equations for the autocorrelation functions ⟨â(τ)⟩,
⟨â†(t+τ)â(t)⟩, ⟨â†(t+τ)â†(t)â(t)⟩, ⟨â(t+τ)â†(t)â(t)⟩, and ⟨â†(t+τ)â(t+τ)â†(t)â(t)⟩.
Express them in matrix notation.
d. Calculate g(1)(τ), the fluorescence spectrum, and g(2)(τ) for the case η = 0.
e. Repeat the calculations in (c) to the case η ̸= 0.

15.4 Further reading

A.N. Poddubny et al., Microscopic model of Purcell enhancement in hyperbolic meta-
materials [DOI]

Wenlong Gao et al., Topological Photonic Phase in Chiral Hyperbolic Metamaterials
[DOI]

HaibinWu et al., Observation of Intracavity Electromagnetically InducedTransparency
and Polariton Resonances in a Doppler-Broadened Medium [DOI]

Xiaodong Zeng et al., Spontaneous emission interference enhancement with a µ-
negative metamaterial slab [DOI]

Xiaodong Zeng et al., Enhancement of the vacuum Rabi oscillation via surface plasma
modes in single-negative metamaterials [DOI]

F. Dubin et al., Photon Correlation versus Interference of Single-Atom Fluorescence
in a Half-Cavity [DOI]

U. Dorner et al., Laser-driven atoms in half-cavities [DOI]

P. Lambropoulos et al., Fundamental quantum optics in structured reservoirs [DOI]

15.4.1 on cavities

B. Yurke et al., Quantum network theory [DOI]

C.W. Gardiner et al., A multimode quantum theory of a degenerate parametric am-
plifier in a cavity [DOI]

D.J. Heinzen et al., Enhanced and Inhibited Visible Spontaneous Emission by Atoms
in a Confocal Resonator [DOI]

D.J. Heinzen et al., Vacuum Radiative Level Shift and Spontaneous-Emission Linewidth
of an Atom in an Optical Resonator [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumOptics/Sol_QO_Resonators_DynamMode09.pdf
http://doi.org/10.1103/PhysRevB.86.035148
http://doi.org/10.1103/PhysRevLett.114.037402
http://doi.org/10.1103/PhysRevLett.100.173602
http://doi.org/10.1103/PhysRevA.84.033834
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http://doi.org/10.1103/PhysRevLett.98.183003
http://doi.org/10.1103/PhysRevA.66.023816
http://doi.org/10.1088/0034-4885/63/4/201
http://doi.org/10.1103/PhysRevB.29.1419
http://doi.org/10.1016/0030-4018(84)90342-0
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Light-Matter Interaction

589





591

Preface to the part Light-Matter Interaction

We have seen in previous lectures, how to describe light in quantum mechanics
and how to unravel the atomic structure. The topic of this part of the lecture is the
description of how both interact with special emphasis on non-classical features.
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Chapter 16

Semiclassical theory of
light-atom interaction

In Part III of this script we solved the problem of a stationary atom using the formal-
ism of quantum mechanics developed in Part I. We now come back to Bohr’s original
idea that transitions between atomic states be induced by absorption and emission
of electromagnetic radiation and develop a semi-classical theory of light-atom inter-
action. That is, the atom will be treated as a quantum object, while the radiation
is assumed to obey the rules of classical electrodynamics. The main objective of
this chapter will be to derive an equation describing the temporal evolution of atoms
interacting with a radiation field.

We begin with a perturbative approach to the excitation of atomic transitions in
Sec. 16.1. In quantum mechanics we learned (see in Sec. 5.4) how time-dependent per-
turbations, such as suddenly applied force fields or periodic oscillations, can induce
transitions between eigenstates. We will not repeat the concepts here. Rather we will
focus on the calculation of transitions rates employing Fermi’s Golden rule derived in
Eq. (5.111). In Secs. 1.2 we introduced the Einstein coefficients A and B, which we
associated with Planck’s spectral distribution of black-body radiation. This proce-
dure allowed us to connect the coefficients for spontaneous and stimulated transitions,
but did not provide any method to calculate them from the intrinsic properties of the
atoms. The purpose of Sec. 16.2 is to find expressions for the matrix elements coupling
different atomic states using quantum mechanics and relate them to the Einstein coef-
ficients in order to calculate the rates of absorption and emission of atomic radiation.
In particular, we will dedicate some space to the dipolar approximation and to the
derivation of selection rules allowing to quantify transition probabilities as a function
of the quantum numbers characterizing the atomic states coupled by radiation.

Perturbation theory can describe the light-atom dynamics only at interaction times
short enough, that the initially occupied atomic states is not noticeably depleted. An
exception is the two-level atom, for which perturbation theory reproduces the exact
results obtained by solving the time-dependent Schrödinger equation. This, however,
only holds as long as spontaneous processes can be neglected. To portray systems
that contain excitation and relaxation processes occurring simultaneously, a theory
based on Schrödinger’s equation is no longer sufficient, because it is only capable of
explaining stimulated processes, such as the absorption of a monochromatic wave.
Dissipative processes, such as spontaneous emission, require a more general approach
to describe the evolution of a system. A single wavefunction is, in general, not enough
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to represent such a system nor to quantify the probabilities associated with each
of its states, but we rather need an ensemble of wavefunctions, which requires the
description of the atom in terms of a density operator. This has been done in Sec. 14.2.

The equations of motion ruling the time evolution of the density operator are
the so-called Bloch equations. They will be derived and studied in Sec. 16.3, and in
Sec. 16.4 we will phenomenologically include spontaneous emission. In Sec. 16.5 we
will discuss line broadening mechanisms and in Sec. 16.6 generalize the Bloch equation
formalism to multilevel systems.

16.1 Perturbative approach to atomic excitation

In a model of an isolated atom, the atomic energy levels are eigenstates of the Hamil-
tonian and describe the system completely, i.e. they do not undergo any evolution.
Transitions between atomic energy levels may, however, be induced by oscillatory
perturbations, such as electromagnetic radiation accelerating bound electrons.

16.1.1 Time-dependent perturbation by a plane wave

Looking at the Hamiltonian (10.11) describing the interaction of a charged particle
with an electromagnetic field, we find that the term A · ∇ ∝ eıωt oscillates with
frequency ω, while the term A2 ∝ e2ıωt oscillates with twice that frequency. We will
only consider the interaction term (10.12), which is linear in A, and we will treat this
term as first-order perturbation by time-dependent perturbation theory (TPDT).

With this scope we separate the Hamiltonian in a stationary part and a time-
dependent part 1,

Ĥ(t) = Ĥ(0) + Ĥint(t) with Ĥint =
e
mA(r, t) · p̂ , (16.1)

where Ĥ(0) contains the kinetic energy and the Colombian potential of Eq. (10.11).
In Sec. 5.4.4, inserting the expansion,

|ψ⟩ =
∑

k

ak(t)|k⟩e−ıEkt/ℏ , (16.2)

along with the Hamiltonian (16.1) in the Schrödinger equation, we obtained the first
order perturbative approximation (5.72). Setting the initial condition to ck(t ≤ 0) =
δki and supposing that the probability of finding the atom initially in the ground state
|i⟩ for short times is 1, we got,

a
(1)
f (t) ≃ 1

ıℏ

∫ t

0

⟨f |Ĥint|i⟩eıωfit
′
dt′ . (16.3)

We now consider a perturbation by an electromagnetic plane wave within the
Coulomb gauge,

Φ = 0 and ∇ ·A = 0 . (16.4)

1The energy of the light field is not considered in the Hamiltonian, because it is treated as classical,
that is, its energy commutes with the other observables of the system.
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The solution of the wave equation can be written,

A(r, t) = A∗
0(r)e

ıωt +A0(r)e
−ıωt . (16.5)

For plane waves,

A0(r) = A0e
ık·r (16.6)

and k = ω/c and k ·A0 = 0. With this, it is possible to show (see Exc. 16.1.4.1), that
the energy density is,

u(ω) = ε0
2 E⃗2 + 1

2µ0
B⃗2 = 2ε0ω

2A2
0 . (16.7)

On the other hand, the energy density is proportional to the number of photons N(ω)
inside the volume V ,

u(ω) =
N(ω)ℏω

V
. (16.8)

The intensity corresponds to a flow of energy,

I(ω) = u(ω)c . (16.9)

Separating the polarization ϵ̂ from the amplitude A0,

A = ϵ̂A0e
ık·re−ıωt + c.c. , (16.10)

and inserting the perturbation (16.1) into the approximation (16.3),

a
(1)
f (t) = − e

m

∫ t

0

dt′⟨f |A · ∇|i⟩eıωfit
′
dt′ (16.11)

= − eA0

m ⟨f |eık·rϵ̂ · ∇|i⟩
∫ t

0

dt′eı(ωfi−ω)t′dt′ − eA0

m ⟨f |e−ık·rϵ̂ · ∇|i⟩
∫ t

0

dt′eı(ωfi+ω)t
′
dt′ .

Which one of the two processes described by Eq. (16.11) takes place, depends on the
initial and final energies. For Ef = Ei + ℏω the first term describing the process
of absorption will dominate, for Ef = Ei − ℏω the second term describing emission
prevails.

16.1.2 Absorption and stimulated emission

16.1.2.1 Absorption

We define the matrix element,

Mfi ≡ ⟨f |eık·rϵ̂ · ∇|i⟩ , (16.12)

and concentrate on the absorption process. Defining the detuning by ∆ ≡ ω − ωfi
and evaluating the integral,

∣∣∣∣
∫ t

0

e−ı∆t
′
dt′
∣∣∣∣
2

=

∣∣∣∣
e−ı∆t − 1

−ı∆

∣∣∣∣
2

= 4
sin2 ∆t

2

∆2
≃ 2πtδ(∆) , (16.13)
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at short times (see the formula (5.76)), the absorption probability becomes,

|a(1)f (t)|2 = e2

m2A0(ω)
2|Mfi|2

∣∣∣∣
∫ t

0

dt′eı(ωfi−ω)t′dt′
∣∣∣∣
2

= e2

m2A0(ω)
2|Mfi|22πtδ(∆) .

(16.14)
The δ(∆ = 0) function simply represents conservation of energy. Of course this is
only an approximation not taking into account the finite width of the transition line.

Expressing the field by the intensity (16.10), we obtain the transition rate for
absorption,

W
(ab)
fi =

d

dt
|a(1)f (t)|2 = 2π

(
eA0

m

)2

|Mfi|2δ(ω − ωfi) =
πe2

ε0m2c

I(ω)

ω2
|Mfi|2δ(ω − ωfi) .

(16.15)
We note that the absorption rate is proportional to the intensity of the radiation,
which characterizes a typically linear effect.

If we want to express the rate of absorption by atoms in terms of energy, we simply
multiply Wfi by ℏω and, hence, we can define the cross section for the absorption of
radiative energy as,

σi→f ≡
absorption rate

incident intensity
=

ℏωWfi

I(ω)
=

πe2

ε0m2c

ℏ
ω
|Mfi(ωfi)|2δ(ω − ωfi) . (16.16)

16.1.2.2 Stimulated emission

For Ef = Ei − ℏω the equation describes the process of stimulated emission. Analo-
gously to the calculation of the absorption, we obtain,

W
(st)
if =

πe2

ε0m2c

I(ω)

ω2
|M∗

if |2δ(ω + ωfi) , (16.17)

with M∗
fi = ⟨f |e−ık·rϵ̂ · ∇|i⟩. Of course,

W
(st)
if =W

(ab)
fi . (16.18)

The fact that, in a coupled atom-radiation system in equilibrium, the radiation field
excites the same number of transitions in absorption i→ f as in stimulated emission
f → i is called the principle of detailed balance.

Obviously, the situation is different, if instead of two states we have several states
that can be excited by radiation or decay.

16.1.3 Spontaneous emission

Absorption and stimulated emission are due to the interaction of an atom with a
radiation field. However, even in the absence of radiation the atom couples to the
field of the electromagnetic vacuum, and an accurate description of the atom must
account for this fact. The total system has different eigenstates and their projection
on the unperturbed eigenstates changes over time, as any excited atomic state has a
constant probability, depending on the coupling to the electromagnetic field, to decay
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to another state. The probability of measuring a specific lifetime thus follows a Poisson
distribution. The decay process caused by atomic interaction with fluctuations of
the electromagnetic vacuum is called spontaneous emission. It is understood in the
framework of quantum electrodynamics, and a thorough discussion is postponed to
Sec. 17.4. Here, we will adopt a preliminary heuristic treatment.

Replacing in Eq. (16.17) the intensity by the number of photons (16.8), we obtain,

W
(st)
if =

πℏe2N(ω)

ε0m2ωV
|Mfi|2δ(ω − ωfi) . (16.19)

In fact, the introduction of the concept of photons already implies the quantization
of the electromagnetic field. Adding to the number of photons a photon representing
the vacuum fluctuations, N(ω) −→ N(ω) + 1, we are able to include spontaneous
emission,

W
(st)
if +W

(sp)
if =

πℏe2[N(ω) + 1]

ε0m2ωV
|Mfi|2δ(ω + ωfi) . (16.20)

This means that even in the absence of a classical radiation field, N(ω) = 0, there

is an emission probability. We note that W
(sp)
if depends on the volume confining the

atom, that is, the cavity, since it describes the transfer of energy to this volume. Here,
it is clear that an argument is still missing, because the transfer rate must depend
in some way on the number of states available to accommodate the emitted photon,
that is, on the density of states within the cavity. The calculation of this density of
states should allow us to evaluate the quantization volume V .

16.1.3.1 Density of states

In Sec. 1.2.2 we calculated the isotropic spectral density of modes per volume (1.53),

ϱ(ω) =
ω2

π2c3
. (16.21)

The density of modes in a specific direction of free space (i.e. no boundary conditions
imposed e.g. by dielectric surfaces) regardless of the mode volume is then given by 2,

∫

4π

ρfree(ω)dΩ = V ϱ(ω) , (16.22)

that is,

ρfree(ω) =
V

(2π)3
ω2

c3
. (16.23)

Thus, the spontaneous emission rate of photons into the solid angle dΩ is,

W(sp)
if dΩ =

(∫

ω

W
(sp)
if ρfree(ω)dω

)
dΩ (16.24)

=

∫

ω

πℏe2

ε0m2ωV
|Mfi|2δ(ω + ωfi)

V

(2π)3
ω2

c3
dω dΩ =

ℏe2

8π2ε0m2c3
|Mfi|2ωfi dΩ ,

2See also (15.94) and (22.10) in Sec. 22.1.1.
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This simplified treatment with only two atomic states considers light as a scalar
field. In fact, light is a vector field and can have two independent orthogonal polar-
izations. The transition matrix may depend on polarization, such that,

W(sp)
if =

ℏe2

8π2ε0m2c3

∫ ∑

λ=1,2

|Mλ
fi|2ωfi dΩ . (16.25)

Example 89 (Natural linewidth of a transition): Be Γ ≡ ∑f W
(sp)
if the

spontaneous decay rate of a state |i⟩. This means that its population is decreas-
ing,

Ṅi = −ΓNi . (16.26)

Since Ni = ⟨ψi|ψi⟩, we have |ψi(t)⟩ = |ψi(0)⟩eıωif t−Γt/2. The Fourier transform
is,

|ξ(ω)⟩ = 1√
2π

∫ ∞

0

|ψi(t)⟩e−ıωtdt = 1√
2π

∫ ∞

0

eıωif t−ıωt−Γt/2dt|ψi(0)⟩ (16.27)

=
1√
2π

lim
t→∞

eı(ωif−ω)t−Γt/2 − 1

ı(ωif − ω)− Γ/2
|ψi(0)⟩ = 1√

2π

1

ı(ω − ωif ) + Γ/2
|ψi(0)⟩ .

The spectrum,

|ξ(ω)|2 =
1

2π

1

(ω − ωif )2 + Γ2/4
, (16.28)

is a Lorentz distribution. Note, that the natural linewidth can be blurred by line

broadening effects, such as the Doppler broadening or collisions between atoms.

These effects will be discussed in the Sec. 16.5.

Excited states can sometimes decay into various states of lower energy. In this

case the linewidth is simply given by the sum of the partial decay rates, since the

convolution of Lorentz distributions LΓk with widths Γk is again a Lorentzian

with the total width Γ =
∑
k Γk.

16.1.4 Exercises

16.1.4.1 Ex: Energy density of plane waves

Derive the result (16.7) for the temporal averages of the squares of the fields E⃗(r, t)2 =

[−∂tA(r, t)]2 and B⃗(r, t)2 = [∇×A(r, t)]2.

16.2 The dipolar approximation and beyond

16.2.1 Dipolar transitions

So far, we have used the matrix element Mλ
fi(ωfi) without saying how it can be

calculated, nor when it is significant. In many cases of interest the calculation of this
matrix element is considerably simplified by an expansion of the term e−ık·r, which
is part of the matrix element (16.12) 3,

e−ık·r = 1− ık · r− 1
2! (k · r)2 + ... . (16.29)

3Note however, that doing the dipole approximation via eık·r̂ ≃ 1 also deactivates the operator
function of the recoil operator dipole, eık·r̂ = |p + ℏk⟩⟨k|. For discussions of photonic recoil the
operator character must be maintained even in the dipole approximation, which can be done by
reinserting the recoil operator in the Hamiltonian after the dipole approximation has been applied.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EnergiaOndasplanas.pdf
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This expansion is justified by the fact that the wavelength (∼ 600 nm in the visible
spectrum) is much larger than the size of the scattering atom, kaB ≪ 1. The dipolar
approximation supposes,

e−ık·r ≃ 1 , (16.30)

such that we can remove the spatial dependence. In this approximation there is only
an interaction of the electric field of the radiation with the atom via an electric dipole
term d · E⃗ . Thus,

Mλ
fi(ωfi) = ⟨f |e−ık·rϵ̂ · ∇|i⟩ ≃ ϵ̂ ıℏ ⟨f |p̂|i⟩ = ϵ̂ ımℏ ⟨f | ˙̂r|i⟩ . (16.31)

We can calculate the expectation value of the velocity of the moving charge by the
Heisenberg equation using the unperturbed Hamiltonian,

Mλ
fi(ωfi) ≃ ϵ̂ ımℏ ⟨f | 1ıℏ [̂r, Ĥ0|i⟩ = ϵ̂mℏ2 ⟨f |̂rĤ0 − Ĥ0r̂|i⟩ = ϵ̂mℏ2 (Ei −Ef )⟨f |̂r|i⟩ . (16.32)

The interpretation of the last equation is, that the states |i⟩ and |f⟩ are connected
through a displacement of the electronic cloud which, therefore, represents the induc-
tion of an electric dipole during the electronic transition. It is convenient to introduce
the electric dipole moment 4.

dfi ≡ −e⟨f |̂r|i⟩ . (16.33)

As a result, the matrix element becomes,

Mλ
fi(ωfi) ≃ mωfi

eℏ ϵ̂ · dfi (16.34)

and the absorption rate (16.15) is then, in the dipolar approximation,

W
(dp)
fi =

πe2

ε0m2c

I(ωfi)

ω2
fi

|Mfi|2δ(ω − ωfi) (16.35)

=
π

ε0ℏ2c
I(ωfi)|ϵ̂ · dfi|2δ(ω − ωfi) =

4π2α

ℏ
I(ωfi)|ϵ̂ · rfi|2δ(ω − ωfi) .

using the definition of the fine structure constant α = e2/4πε0ℏc.

16.2.1.1 Polarization dependence

Following Eq. (16.34) the absorption rate depends on the orientation of the dipole
moment with respect to the polarization of light, which therefore plays an important
role in this transition. When dfi between two states is zero, the transition via electric
dipole radiation is prohibited. This is not to say that there is no transition, since other
terms of the expansion (16.29) are not necessarily zero, and there may be transitions of
higher multipolar orders. Even the matrix elementMλ

fi(ωfi) being zero for transitions
involving one photon, there is still the possibility of two-photon transitions.

Setting θ as the angle between ϵ̂ and dfi we obtain,

W
(dp)
fi =

π

ε0ℏ2c
I(ωfi)|dfi|2 cos2 θ δ(ω − ωfi) . (16.36)

4In the presence of several atoms d = −e∑j rj , where the rj are the radii of the orbits of the
various electrons of the atom.
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In case of unpolarized (or randomly polarized) radiation we can replace the angular
distribution cos2 θ by its average value,

cos2 θ =
1

4π

∫ 2π

0

∫ π

0

cos2 θ sin θdθdϕ = 1
3 , (16.37)

such that,

W
(dp,no-pol)
fi =

π

3ε0ℏ2c
I(ωfi)|dfi|2δ(ω − ωfi) . (16.38)

This expression also represents the stimulated emission rate in the electric dipole
approximation.

The total spontaneous emission rate can be obtained from Eq. (16.25) integrating
over all possible orientations,

W(sp)
fi =

ℏe2

8π2ε0m2c3

∫ ∑

λ=1,2

|Mλ
fi|2ωfidΩ (16.39)

= 2
ℏe2

8π2ε0m2c3

∫ 2π

0

∫ π

0

∣∣∣mωfi
eℏ

ϵ̂ · dfi
∣∣∣
2

ωfi sin θdθdϕ

=
e2

4π2ε0ℏc3
ω3
fi|rfi|2

∫ 2π

0

∫ π

0

cos2 θ sin θdθdϕ =
e2

3πε0ℏc3
ω3
fi|rfi|2 ,

such that, for non-polarized light,

W(sp)
fi =

4α

3c2
ω3
fi|rfi|2 =

4α

3c2
ω3
fi|rfi|2 = Γ . (16.40)

This is the rate of spontaneous decay of an excited atomic state. It can be measured
experimentally which, in turn, allows the calculation of the induced dipole moment,

dfi =

√
3πε0ℏΓ
k3

. (16.41)

In Exc. 16.2.6.1 we calculate the Rabi frequency from the dipole moment of an
atomic transition and the electric field of a radiation field.

16.2.2 Einstein transition rates

Considering the problem of the transfer of energy between the electromagnetic field
and a sample of atoms in thermal equilibrium, Einstein realized that the processes
of absorption and stimulated emission are not sufficient to understand the radiative
coupling between two energy levels, that is, the coupling is not correctly described
by Fermi’s Golden rule, and we need to introduce the notion of spontaneous emis-
sion. Differently from the derivation of the preceding section, Einstein considered
atoms whose populations of energy states are in thermal equilibrium with the elec-
tromagnetic field of a black-body. With this picture he came to the same result for
the spontaneous emission rate (16.38), as we will show in the following.
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The famous Einstein coefficients Afi and Bfi are given by (1.70),

AfiNf =W
(sp)
fi and

Afi
Bfi

=
ℏω3

fi

π2c3
, (16.42)

where Nf is the population of the excited state. This shows that, in fact, spontaneous
emission is a necessary consequence of the interaction of an atom with a thermal bath
(also called reservoir).

We now consider the problem of energy transfer between an electromagnetic field
and a sample of atoms. The rate of absorption of a light field is,

Ri→f ≡ 1
3 Ṗi→f =

π

6ℏ2
E20 |dfi|2ϱ(ωfi) , (16.43)

with W0 = E0dfi and dfi being the transition matrix element between atomic states.

The factor 1
3 comes from the fact that the vector E⃗ of the electric field can have any

polarization, but only polarizations along the direction of the oscillation of the dipole
moment contribute.

For a single atom, the result (16.43) is symmetric with respect to an exchange of
the initial and final states, that is, the rates for absorption and induced emission of
light are the same. For a sample of atoms being in thermal equilibrium, the popu-
lations Ni of the ground state and Nf of the excited state are unequal according to
Boltzmann’s law. Therefore, as we have shown in Sec. 1.2.5,

NfRf→i ̸= NiRi→f . (16.44)

Thus, Einstein came to the conclusion that Fermi’s golden rule correctly describes
absorption, but does not contain all contributions of emission. The rates being related
to the Einstein coefficients by the equation (1.65), we find,

Rf→i = BfiNfu(ωfi) (16.45)

and

Sf→i = AfiNf =
ℏω3

fi

π2c3
BifNf =

ℏω3
fi

π2c3
Ri→f

u(ωfi)
=

ω3
fi

3πϵ0ℏc3
|dfi|2 , (16.46)

exploiting the relation (1.70).

Example 90 (Line and oscillator strength): Several disciplines such as spec-
trometry, spectroscopy and astrophysics have developed their own terminologies
to describe absorption and emission of light by matter. We will explain how the
most frequently used parameters are interrelated by placing particular emphasis
on the simplest system, which is the two-level atom with no degeneracy and no
spin.
In addition to the Einstein coefficients A21, B21, and B12, the amplitude of the
transition dipole moments d12 and the absorption cross-section σ0a(ω), three
other quantities are sometimes used to characterize atomic transitions: the os-
cillator strength f , the line strength S, and the spectral absorption cross section
σω. In the following sections, we will connect these different concepts.
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The line strength S is defined as the square of the transition dipole moment
summed over all degeneracies of the ground and excited states,

S12 = S21 =
∑

m1,m2

|⟨ψ1,m1 |d|ψ2,m2⟩|2 . (16.47)

The notion of the line strength becomes significant when working with real
atoms characterized by degenerate ground and excited states. In such cases we
need to extend the meaning of d12 and consider transitions between each of the
degenerate sublevels. For a non-degenerate two-level atom, the quantities d12
and A21 are simply related by,

A21 =
ω3
0

3πϵ0ℏc3
d212 . (16.48)

If the lower level would be degenerate, the spontaneous emission rate coefficient
would be given by the sum of all possible deexcitation rates. In this case, d212 is
defined as the sum of the elements of the transition matrix coupling the excited
and the lower states,

d212 =
∑
m1

|⟨ψ1,m1 |d|ψ2⟩|2 . (16.49)

Now, it can be shown that the spontaneous emission rate from any sublevel
of a degenerate excited state toward a lower level (that is, the sum over all
lower sublevels) is the same for all excited sublevels 5 This statement reflects
the intuitively plausible idea that spontaneous emission must be isotropic and
unpolarized, if the sublevels of an excited state are uniformly populated. There-
fore, the insertion of Eq. (16.49) into (16.48) should produce correct results, even
when the excited state is degenerate. Comparing the sum over all upper and
lower degeneracies with the line strength S,

S12 =
∑

m1,m2

|⟨ψ1,m1 |d|ψ2,m2⟩|2 = g2d
2
12 . (16.50)

Therefore, the insertion of Eq. (16.50) into (16.48) must be accompanied by a
factor of 1/g2 to correct for the fact that all excited sub-levels radiate at the
same rate. Therefore, using the S12 of Eq. (16.50) the correct expression relating
the transition dipole between degenerate levels to the spontaneous emission rate
is,

S12 = g2
3πϵ0ℏc3

ω3
0

A21 , (16.51)

meaning that the line strength is proportional to the sum of the spontaneous
emission rates A21 from each one of the g2 excited levels toward all fundamental
levels.

For an atom with two levels separated by an energy ℏω0 the oscillator strength
for emission is defined as a measure for the radiative decay rate A21 as compared
to the radiative decay rate γe of a classical electronic oscillator with frequency
ω0:

f21 = −1

3

A21

γe
. (16.52)

5This applies to Zeeman sublevels (summing up (3j)-coefficients). Check for other degeneracy
(also summing up {6j}-coefficients)!
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In case of degeneracy the oscillator strength for absorption is consequently de-
fined by,

f12 = −g2
g1
f21 =

g2
3g1

A21

γe
. (16.53)

The transitions S ↔ P in real atoms behave roughly as classical oscillators,
that is, A21 ≃ γe. The factor 1

3
in the definition compensates for the triple

degeneracy of the P levels. So, a transition S ↔ P which behaves exactly as a
classical oscillator would be characterized by an oscillator strength for emission
of f21 = − 1

3
and an oscillator strength for absorption of f12 = 1. The classical

expression for γe derived from the Lorentz model is [345],

γe =
e2ω2

0

6πϵ0mec3
. (16.54)

Therefore, in terms of the A21 coefficient and of fundamental constants, the
oscillator strength for absorption is given by,

f12 = A21
2πϵ0mec

3

e2ω2
0

. (16.55)

Oscillator strengths obey certain sum rules that are useful for analyzing the
relative intensities of atomic spectral lines. For example, atoms with single
valence electrons (which are closer to the classical situation) obey the following
sum rule, ∑

k

fik = 1 , (16.56)

where the sum goes over all the excited states reached from the ground state. Al-
kaline atoms are approximately one-electron systems, and the oscillator strength
of the first transition S −→ P is typically of the order of f12 = 0.7− 0.95. The
sum rule tells us that most of the total transition probability for the excitation
of the valence electron is concentrated in the first transition S → P , and that
transitions to higher states will be comparatively weaker. Another sum rule
exists for the excitation and spontaneous emission from excited intermediate
states j: ∑

i<j

fji +
∑
k>j

fjk = Z , (16.57)

which is called the Thomas-Reiche-Kuhn sum rule. In the form of many elec-
trons [Eq. (16.57)] this rule is very useful, when Z is the number of equivalent
electrons, that is, electrons with the same quantum numbers n, l. Note also,
that the numbers are intrinsically negative. Oscillator strengths are often used
in astrophysics and plasma spectroscopy 6. They are sometimes tabulated as
log gf , where,

g1f12 = −g2f21 ≡ gf . (16.58)

16.2.3 Selection rules and electronic transitions

The selection rules that determine which transitions between two sets of quantum
numbers i → f are allowed, reflect the symmetry properties of the system, e.g. the

6To find information about the atomic transition lines see
’http://www.nist.gov/pml/data/asd.cfm’.
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conservation of angular momentum (including the spin of the photon) or the change
of parity, which can be understood by the fact that the emission of a photon in a
particular direction must in some way alter the spatial isotropy of the atom. Note
that radially symmetric oscillations of the shape of the charge distribution do not
radiate.

Since the electronic transitions via electric dipole radiation are described by |ϵ̂ ·
rfi|, we expect a strong dependence of the transition rate on the orientation of the
polarization state of the light with respect to the electronic displacement rfi. Let us
express ϵ̂ and rfi in spherical coordinates, which are more adapted to the problem 7.
For an arbitrary vector r we have,

x = r · êx = r sinϑ cosφ , y = r · êy = r sinϑ sinφ , z = r · êz = r cosϑ . (16.59)

Defining,

ê±1 ≡ 1√
2
(∓êx − ıêy) , ê0 ≡ êz . (16.60)

we obtain

r±1 ≡ r · ê± = r · 1√
2
(∓êx − ıêy) = 1√

2
(∓x− ıy) = ∓ 1√

2
r sinϑe±ıφ = r

√
4π
3 Y1,±1(ϑ, φ)

r0 ≡ r · ê0 = r · êz = z = r cosϑ = r
√

4π
3 Y1,0(ϑ, φ) . (16.61)

Now, applying the expansion into spherical coordinates to the polarization, we
get,

ϵ±1 ≡ ϵ̂ · ê± , ϵ0 ≡ ϵ̂ · ê0 . (16.62)

and applying the expansion to the matrix element rfi = ⟨f |r|i⟩ with êq · êq′ = δqq′ , it
is easy to check,

ϵ̂·rfi =
∑

q=0,±1

(ϵ̂·êq)êq·
∑

q=0,±1

(rfi·êq)êq =
∑

q=0,±1

ϵq⟨f |rq|i⟩ =
√

4π
3

∑

q=0,±1

ϵq⟨f |rY1,q|i⟩ .

(16.63)
The matrix elements are evaluated inserting the ansatz (3.18) separating the radial
from the angular part of the wavefunction, where the angular part is solved by (3.32),

⟨f |rq|i⟩ =
√

4π
3 ⟨nf ℓfmf |rY1,q|niℓimi⟩ (16.64)

=

∫ ∞

0

r3Rnf ,ℓfRni,ℓidr
√

4π
3

∫
Y ∗
ℓf ,mf

Y1,qYℓi,mi
dΩ .

The angular integral,

∫
Y ∗
ℓf ,mf

Yκ,qYℓi,mi
dΩ =

√
(2ℓi+1)(2ℓf+1)

4π(2κ+1)

(
ℓi κ

0 0

∣∣∣∣
ℓf
0

)(
ℓi κ

mi q

∣∣∣∣
ℓf
mf

)
, (16.65)

7In the presence of a magnetic field it is often useful to choose the quantization axis along the
field direction, because this simplifies the interpretation of π and σ± transitions in terms of light
polarizations (see also Secs. 16.6.4 and 16.7.2).
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here with κ = 1, is only non-zero, if the values of ℓi,mi, ℓf ,mf and q satisfy certain
conditions called selection rules 8.

The radial integral, together with the coefficients of (16.65) which do not depend
on the magnetic quantum numbers, is called reduced matrix element or irreducible
matrix element with the notation,

⟨nf ℓf ||r||niℓi⟩ ≡
∫ ∞

0

r3Rnf ,ℓfRni,ℓidr
√

(2ℓi+1)(2ℓf+1)
3(2κ+1)

(
ℓi κ

0 0

∣∣∣∣
ℓf
0

)
. (16.66)

Defining the electric dipole tensor operator,

Qq1(r) = erq(r) =
√

4π
3 Y1,q(ϑ, φ)er , (16.67)

we can finally write,

⟨nf ℓfmf |Qq1(r)|niℓimi⟩ = ⟨nf ℓf ||er||niℓi⟩
(
ℓi 1

mi q

∣∣∣∣
ℓf
mf

)
. (16.68)

This is the Wigner-Eckart theorem. The electric dipole operator is a simpler example
of a tensor operator Qqκ(r) characterizing the transition between atomic states. In
Excs. 16.2.6.2 and 16.2.6.3 we explicitly calculate, for a hydrogen atom subjected to
a magnetic field, components of the electric dipole operator. Resolve Exc. 16.2.6.4.

Selection rules may be violated in higher orders, e.g. by multipolar radiation, as
in the cases of magnetic dipole transitions or electric quadrupole transitions. This
also is the case of the phenomenon of phosphorescence, which is a type of fluorescence
emitted by metastable states.

16.2.3.1 Parity

The parity of a state has been defined as,

Pψnℓm(r) = ψnℓm(−r) = (−1)ℓψnℓm(r) , (16.69)

as shown above. That is, states with ℓ pair (impair) have even (odd) parity. Now
the integral (16.67) only does not vanish, when ℓi + ℓf + 1 = even. Therefore, dipole
transitions must change the parity of the states. F.ex. transitions S → P would be
possible, while S → S would be prohibited.

16.2.3.2 Angular momentum

The irreducible matrix element (16.66) with κ = 1 is only non-zero, when |ℓf − ℓi| ≤
1 ≤ ℓf + ℓi. That is, dipole transitions can not change the angular momentum by
more than one unit.

8Frequently used are the (3j)-symbols connected to the Clebsch-Gordan coefficients by,

⟨jimi, jfmf |J,M⟩ = (−1)ji−jf+M
√
2J + 1

(
ji jf J

mi mf −M

)
.
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16.2.3.3 Magnetic quantum number

In the decomposition (16.68) the Clebsch-Gordan coefficient is only non-zero, when
|q| ≤ 1. That is, dipole transitions can not change the magnetic quantum number by
more than one unit. This can also be seen from,

∫
Y ∗
ℓf ,mf

Yκ,qYℓi,mi
dΩ ∝

∫
eı(mi+q−mf )dΩ ∝ δmi+q,mf

. (16.70)

16.2.3.4 Selection rules for emission in certain directions

As shown in Eq. (16.63), the excitation rate induced by a light field depends on the
relative orientation of the laser polarization ϵ̂ and the atomic quantization axis (which

may be set by the orientation of an applied magnetic field B⃗). To take this dependence
into account, we decompose the polarization vector (which can be linear or elliptical)
on a coordinate basis, as shown in Eq. (16.62). Thus, the relative amplitude of the
transitions ∆mJ = 0 is proportional to the projection of the polarization vector
onto the quantization axis, ϵ0 ≡ ϵ̂ · ê0. To estimate the amplitude of the transitions
∆mJ = ±1, we must project onto the coordinates ϵ±1 ≡ ϵ̂·ê±. Note that the direction
of incidence of the beam, given by the wavevector k, does not influence the transition
probability directly (after all, the spatial dependence eık·r was removed by the dipolar
approximation (16.29)); only through the fact, that the polarization is perpendicular
to the propagation vector, ϵ̂ ⊥ k.

Figure 16.1: Selection rules due to polarization ϵ̂ of the incident light. The projection of this
vector onto the axes π = ϵ̂ · ê0 and σ± = ϵ̂ · ê± is proportional to the excitation probability
(and, obviously, also to the emission probability).

16.2.4 Reduction of the fine and hyperfine structure

In Sec. 16.2.3 we developed the Wigner-Eckart theorem for arbitrary angular momenta
ℓi and ℓf . We will now be more specific identifying them with orbital angular mo-
menta, (ℓi, ℓf ) = (L,L′), total angular momenta of the electron shell, (ℓi, ℓf ) = (J,J′),
or total angular momenta including hyperfine structure, (ℓi, ℓf ) = (F,F′).
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16.2.4.1 Summary of selection rules including fine structure

The fine structure is due to a coupling of the type L + S = J. The reduced matrix
element (16.66) can then be recoupled as follows,

⟨J ′,m′
J |d̂|J,mJ⟩ = ⟨J ′||d̂||J⟩

(
J κ

mJ q

∣∣∣∣∣ J ′

m′
J

)
with

⟨(L′, S′)J ′||d̂||(L, S)J⟩ = (−1)J+L′+1+S
√

(2J + 1)(2L′ + 1)

{
L′ L 1

J J ′ S

}
⟨L′||d̂||L⟩

,

(16.71)

where the matrix in the second line represents a so-called {6j}-symbol, and the first
line rewrites the Wigner-Eckart theorem (16.68) for total angular momenta. In this
case,

⟨(L, S)JmJ |er|(L′, S′)J ′m′
J⟩ = (−1)J+L′+1+S

√
2J + 1

√
2L′ + 1 × (16.72)

× δS′S

{
L L′ 1

J ′ J S

}(
J ′ 1 J

m′
J q −mJ

)
⟨n′L′||er||nL⟩

∝ δS′S

{
L L′ 1

J ′ J S

}(
J ′ 1 J

m′
J q −mJ

)(
L′ 1 L

0 0 0

)
,

Electric dipolar transitions are excited by Stark-like perturbations,

V̂Stark = −ed · E , (16.73)

where E = E0 cos(k · r−ωt) is the electric field of an electromagnetic oscillating wave
with polarization E0. With d = ezêz, in order to determine which dipole transitions
are possible, we must look at the matrix ⟨J ′m′

J |ẑ|JmJ⟩. Applying the Wigner-Eckart
theorem (10.72), it is already possible to determine, between which magnetic quantum
numbers mJ and m′

J transitions may occur.
We can compare the amplitudes of the various transitions between states |mJ⟩ and

|m′
J⟩ via the Clebsch-Gordan coefficients (see Exc. 10.3.2.1). Again, transitions are

only possible between states for which the corresponding Clebsch-Gordan coefficient
does not zero. Looking at the equations (10.74), we find for dipolar transitions the
following selection rules,

∆J = 0,±1 but (J = 0)→ (J ′ = 0) is prohibited (16.74)

∆mJ = 0,±1 but (mJ = 0)→ (m′
J = 0) is prohibited when ∆J = 0 .

In addition, we have for the L · S coupling,

∆S = 0,∆L = ±1 and for the electron undergoing the transition ∆ℓ = ±1 .
(16.75)

In the presence of a strong magnetic field (Paschen-Back regime) breaking up the
L · S-coupling the selection rules are,

∆mS = 0,∆mL = 0,±1 . (16.76)

For j · j-coupling,
∆j = 0,±1 for one electron and ∆j = 0 for all others . (16.77)

For all dipole transitions the parity must change between even and odd.
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Table 16.1: Allowed transitions: (1-3) rigorous rules, (4-5) LS-coupling, and (6) in-
termediate coupling (https://en.wikipedia.org/wiki/Selection rule).

(E1) (M1) (E2) (M2) (E3) (M3)

(1)
∆J = 0,±1

(∆J = 0 ↮ 0)

∆J = 0,±1,±2

(∆J = 0 ↮ 0, 1; 1
2

↮ 1
2
)

∆J = 0,±1,±2,±3

(0 ↮ 0, 1, 2; 1
2

↮ 1
2
, 3
2
; 1 ↮ 1)

(2) ∆MJ = 0,±1 ∆MJ = 0,±1,±2 ∆MJ = 0,±1,±2,±3

(3) Pf = −Pi Pf = Pi Pf = −Pi Pf = Pi

(4) one e− jump

∆L = ±1

no e− jump

∆L = 0;∆n = 0

none or one e− jump

∆L = 0,±2

one e− jump

∆L = ±1

one e− jump

∆L = ±1,±3

one e− jump

∆L = 0,±2

(5)
if ∆S = 0

∆L = 0,±1

(L = 0 ↮ 0)

if ∆S = 0

∆L = 0

if ∆S = 0

∆L = 0,±1,±2

(L = 0 ↮ 0, 1)

if ∆S = 0

∆L = 0,±1,±2,±3

(L = 0 ↮ 0, 1, 2; 1 ↮ 1)

(6)
if ∆S = ±1

∆L = 0,±1,±2

if ∆S = ±1

∆L = 0,±1,±2,±3

(L = 0 ↮ 0)

if ∆S = ±1

∆L = 0,±1

(L = 0 ↮ 0)

if ∆S = ±1

∆L = 0,±1,±2,±3,±4

(L = 0 ↮ 0, 1)

if ∆S = ±1

∆L = 0,±1,±2

(L = 0 ↮ 0)

Example 91 (Transitions allowed and prohibited in the dipolar approx-

imation): Examples of allowed transitions are 2S1/2 ↔ 2P1/2,
1S0 ↔ 1P0.

Prohibited transitions are 1S0 ↮ 3P1,
2S1/2 ↮ 2D3/2, (5s)

2 3P0 ↮ (5s6s) 3P0.

16.2.4.2 Summary of selection rules including hyperfine structure

The fine structure is due to a coupling of the type J + I = F. The reduced matrix
element (16.66) can then be recoupled in a similar way as for the fine structure.
Applying the Wigner-Eckart theorem (3.107) to the hyperfine structure [862],

⟨F ′,m′
F |d̂|F,mF ⟩ = ⟨F ′||d̂||F ⟩

(
F κ

mF q

∣∣∣∣∣ F ′

m′
F

)
with

⟨(J ′, I ′)F ′||d̂||(J, I)F ⟩ = (−1)F+J′+1+I
√

(2F + 1)(2J ′ + 1)

{
J ′ J 1

F F ′ I

}
⟨J ′||d̂||J⟩

⟨(L′, S′)J ′||d̂||(L, S)J⟩ = (−1)J+L′+1+S
√

(2J + 1)(2L′ + 1)

{
L′ L 1

J J ′ S

}
⟨L′||d̂||L⟩

.

(16.78)

16.2.5 Irreducible tensor operators

Irreducible tensor operators are defined by their commutation relation with the an-
gular momentum J,

[J,T(k)
q ] =

∑

q′

⟨kq|J|kq′⟩T (k)
q′ . (16.79)

Using the spherical unit vectors ê±1 = 1√
2
(∓êx − ıêy) and ê0 = êz, we can reduce

Cartesian vector operators to first-order tensor operators:

T⃗ =
∑

q

T (1)
q êq resp. T (1)

q = T⃗ · êq . (16.80)
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Examples for tensor operators are I(0)0 , ê
(1)
q , J

(1)
q , and Y

(k)
q . The most general tensor

product is defined by:

(T(k) × U(k′))(j)m ≡
∑

q,q′

(
k k′ j

q q′ −m

)
T(k)
q U(k′)

q′ . (16.81)

With this product it is possible to represent scalar, vector or tensor products of higher
ranks,

(T(1) × U(1))
(0)
0 = 1√

3
T⃗ · U⃗ (16.82)

(T(1) × U(1))(1)m = 1√
2
(T⃗× U⃗) · êm

(T(1) × U(1))
(2)
0 = − 1√

6
(3TzUz − T⃗ · U⃗)

(T(1) × U(1))
(2)
±1 = ± 1

2 [(TxUz + TzUx)± ı(TyUz + TzUy)]

(T(1) × U(1))
(2)
±2 = − 1

2 [(TxUx − TyUy)± ı(TxUy + TyUx)] .

16.2.5.1 The Wigner-Eckart theorem

Be T(k)
q an irreducible tensor of rank k. Then, there exists then an irreducible matrix

element ⟨j||T(k)||j′⟩, which does not depend on the Zeeman sublevels:

⟨jm|T(k)
q |j′m′⟩ =

(
j′ k j

m′ q −m

)
1√

2j + 1
⟨j||T(k)||j′⟩ . (16.83)

From the possible values for the Clebsch-Gordan coefficients follow directly the selec-
tion rules for multipolar radiation:

⟨jm|T(k)
q |j′m′⟩ = 0 else E′ − E = ℏω (16.84)

|j′ − j| ≤ k ≤ j′ + j

m′ −m = q

τ ′τ = T .

For tensor products the reduced matrix element can be reduced:

⟨j||(T(k) × U(k′))(l)||j′⟩ = (−)j+ℓ+j′
√
2ℓ+ 1

∑

q

{
k k′ ℓ

j′ j q

}
⟨j||T(k)||q⟩⟨q||U(k′)||ȷ′⟩ .

(16.85)
In particular, it is possible to show,

⟨j||I(0)||j′⟩ =
√
2j + 1δjj′ (16.86)

⟨j||J(1)||j′⟩ =
√

2j + 1
√
j(j + 1)δjj′

⟨j||Y(k)||j′⟩ = ıj+k+j
′
√
2j + 1

√
2k + 1

√
2j′ + 1

4π

(
j k j′

0 0 0

)
.
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16.2.5.2 Matrix element for angular momentum coupling

We consider states |(l, s)j⟩. If the factors T and U of the tensor product act on
different angular momenta, it can be reduced as follows:

⟨(l, s)j||(T(k)×U(k′))(l)||(l′, s′)j′⟩ =
√
2l + 1

√
2j + 1

√
2j′ + 1


l′ s′ j′

k k′ l

l s j

 ⟨l||T(k)||l′⟩⟨s||U(k′)||s′⟩ .

(16.87)

Assuming, in particular, U(k′) ≡ I(0), we get, with T(k) =
(
T(k) × I(0)

)(k)
,

⟨(l, s)j||T(k)||(l′, s′)j′⟩ = (−)l+s+j′+kδss′
√

2j + 1
√

2j′ + 1

{
l l′ k

j′ j s

}
⟨l||T(k)||l′⟩ .

(16.88)
The last equation therefore applies when T(k) only acts on the angular momentum
component ℓ. If on the other hand, T(k) only acts on j, then we obviously have,

⟨(l, s)j||T(k)||(l′, s′)j′⟩ = ⟨j||T(k)||j′⟩ . (16.89)

16.2.6 Exercises

16.2.6.1 Ex: Rabi frequency

From the expression for the dipole moment d and the relationship between the inten-
sity I and the electric field derive the Rabi frequency Ω produced by a laser beam of
intensity I by exciting an atomic dipole transition with the wavelength λ and decay
width Γ.

16.2.6.2 Ex: Non-stationary state

Construct a non-stationary hydrogen wavefunction with equal contributions of (n =
1, ℓ = 0,m = 0) and (n = 2, ℓ = 1,m = 1). Calculate the expectation values ⟨|r|⟩ and
⟨r⟩ as a function of time.

16.2.6.3 Ex: Transitions between Zeeman substates

Consider a hydrogen atom immersed in a uniform magnetic field, described by the
Hamiltonian Ĥ = Ĥ(0)+ Ĥ(1), being Ĥ(0) = p̂2/2m+V (r) and H(1) = −(µB/ℏ)L̂ · B⃗
despising the spin 9.
a. Given the initial function, |ψm(0)⟩ = cosα|ϕ000⟩+sinα|ϕ21m⟩, determine its shape
at time t.
b. Calculate the mean value ⟨d⟩m(t) = ⟨ψm(t)|d|ψm(t)⟩ of the electric dipole operator
of the atom d = qR.
c. Analyze the frequencies and polarizations of the emitted radiation by the transition
of the excited states |ϕ21m⟩ to the ground state.

9See Cohen-Tannoudji, Complemento D VII

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_Frequenciarabi.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TransicaoHidrogenio01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TransicaoHidrogenio02.pdf
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16.2.6.4 Ex: Derivation of selection rules

a. Prove [Lk, rm] = ıℏrnϵkmn for an orbital angular momentum.
b. Using the commutator derived in (a) derive the selection rules for transitions
⟨α′L′m′|ε⃗ · r̂|αLm⟩, where ε⃗ is the polarization vector of the radiation field chosen to
be ê0 or ê±.
c. Prove [L̂2, [L̂2, r̂]] = 2ℏ2(r̂L̂2 + L̂2r̂) for an orbital angular momentum L̂.
d. Using the commutator derived in (b) derive the selection rule for L̂2.

16.3 Bloch equations for two-level atoms

In this section we will begin to apply the ideas and tools developed in the previous
sections. Let us first make use of the density matrix to describe a two-level atom
coupled to a single-mode light field without spontaneous emission. We will then
introduce the atomic Bloch vector as a convenient and suggestive method to describe
the time evolution of a coupled two-level atom.

The internal structure of atoms is analyzed in atomic physics, where we find that
the energy levels are discrete (Bohr’s axiom). The center of mass motion of the atoms
and collisions with other atoms are ignored, and concerning the interaction of the
atoms with light, we are only interested in the aspect, that the interaction can induce
transitions between internal states via absorption or emission of photons. It is the
duty of atomic physics to calculate the frequencies and strengths of transitions (by
Hartree-Fock or similar methods), as well as their behavior in external electric and
magnetic fields. The results of these calculations are visualized in energy level schemes
called Grotrian diagrams. In quantum optics we do not care, how the energies of the
levels were calculated, but accept them as given. That is, we assume the Hamiltonian
of the unperturbed atom to be diagonalized, so that its internal structure can be
written as,

Ĥatom =
∑

j

ℏωj |j⟩⟨j| . (16.90)

16.3.1 Liouville equation

As long as we are only interested in stimulated processes, such as the absorption of
a monochromatic wave, the Schrödinger equation suffices to describe the light-atom
interaction. A problem arises when we want to describe relaxation processes at the
same time as excitation processes. Spontaneous emission (and any other dissipa-
tive process) must therefore be included in the physical description of the temporal
evolution of our light-atom system. In this case, however, our system is no longer
restricted to a single mode of the light field and the two atomic states of excitation.
Spontaneous emission populates a statistical distribution of states of the light field
and leaves the atom in a superposition of many momentum states. This situation
can not be described by a single wavefunction, but only by a distribution of wave-
functions, and we can only expect to calculate the probability of finding the system
within this distribution. The Schrödinger equation, therefore, no longer applies, and
we need to trace the time evolution of a system characterized by a density operator
describing a statistical mixture of quantum states. The equations which describe the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SelectionRules01.pdf
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time evolution of the matrix elements of this density operator are the optical Bloch
equations, and we must use them instead of the Schrödinger equation. In order to
appreciate the origin and the physical content of the optical Bloch equations we begin
by reviewing the rudiments of the density matrix theory.

16.3.1.1 Transformation to the interaction picture

For a two-level system perturbatively interacting with a light field, the Hamiltonian
can be decomposed as in (1.252) into a stationary part and a time-dependent part,

Ĥ = Ĥatom + Ĥatom:field(t) , (16.91)

where Ĥatom is the part of the Hamiltonian describing the atomic structure and
Ĥatom:field(t) the interaction of the dipole transition with the classical oscillating elec-
tric field. The interaction picture is the natural choice for this type of problem. In
this case, we can transform the density operator into the interaction picture defined
by (1.253),

ρ̃(t) = eıĤatom(t−t0)/ℏρ̂(t0)e
−ıĤatom(t−t0)/ℏ , (16.92)

where the ’tilde’ decoration (replacing the ’hat’) emphasizes, that we are now in the
interaction picture. We look for the time evolution rate of ρ̃(t) analogously to the
Liouville equation. Calculating the time derivatives on both sides of (16.92) and
substituting Eq. (15.6) for dρ̂

dt results in,

dρ̃(t)

dt
=
ı

ℏ
[ρ̃(t), Ĥatom:field(t)] . (16.93)

This equation shows that the time evolution of the density operator in the interaction
picture depends only on the time-dependent part of the total Hamiltonian.

In the following we will derive a ready-to-use form of the Hamiltonian governing
the interaction of a weak single-mode light field with a two-level atom in the dipolar
approximation.

16.3.1.2 Semi-classical two-level atom in the dipolar approximation

According to (16.91) the semi-classical light-atom interaction Hamiltonian comprises
two terms which, in the dipolar approximation, can be written,

Ĥ =

(
0 0

0 ℏω0

)
− d̂ · E⃗(r, t) where d̂ = −er̂ =

(
0 ⟨1|d|2⟩

⟨2|d|1⟩ 0

)
(16.94)

is the dipole operator and

E⃗(r, t) = ϵ⃗

2

[
E0(r)eı(k·r−ωt) + E∗0 (r)e−ı(k·r−ωt)

]
(16.95)

the electric field. Note that via E0(r) → ı
√

ℏω
2ε0V

â, we can quantize the radiation

mode, as will be shown in Sec. 17.1.1. Introducing the Rabi frequencies

ℏΩ(r) ≡ −E0(r)⃗ϵ · ⟨2|d|1⟩ and ℏΘ(r) ≡ −E0(r)⃗ϵ · ⟨1|d|2⟩ (16.96)
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as an abbreviation, we can write the Hamiltonian,

Ĥ = ℏ

(
0 Θ(r)

2 eı(k·r−ωt) + Ω∗(r)
2 e−ı(k·r−ωt)

Ω(r)
2 eı(k·r−ωt) + Θ∗(r)

2 e−ı(k·r−ωt) ℏω0

)
.

(16.97)
As shown in Sec. 1.6.5 the transformation from the Schrödinger to Dirac’s interaction
picture, is done via,

Ĥatom:field ≡ U†ĤU + ℏU̇†U with U = e−ıĤatomt/ℏ . (16.98)

Introducing the abbreviation ∆ = ω − ω0 we obtain,

Ĥatom:field =

(
0 ℏ

2Ω
∗(r)e−ı(k·r−∆t)

ℏ
2Ω(r)e

ı(k·r−∆t) 0

)
(16.99)

+

(
0 ℏ

2Θ(r)eı(k·r−ωt−ω0t)

ℏ
2Θ

∗(r)e−ı(k·r−ωt−ω0t) 0

)
≡ Ĥ(slow)

atom:field + Ĥ
(fast)
atom:field .

16.3.1.3 The rotating wave approximation

The transition amplitude in first-order time-dependent perturbation theory is accord-
ing to (5.71),

ai→f (t) =
1

ıℏ

∫ t

0

⟨2|Ĥatom:field(τ)|1⟩dτ =
ℏ
2

1

ıℏ

∫ t

0

[
Ω(r)eı(k·r−∆t) +Θ∗(r)e−ı(k·r−ωt−ω0t)

]
dτ

=
Ω(r)eık·r

2∆
(e−ı∆t − 1) +

Θ∗(r)e−ık·r

2(ω + ω0)

(
e−ı(ω+ω0)∆t − 1

)
(16.100)

≃ Ω(r)eık·r

2∆
(e−ı∆t − 1) ,

where the last step corresponds to the rotating wave approximation. This allows us

to neglect Ĥ
(fast)
atom:field.

16.3.1.4 Transformation into the rotating frame

Now, we further transform into rotating frame using,

H̃atom:field = U†Ĥatom:fieldU + ıℏU̇†U with U =

(
1 0

0 e−ı∆t

)
. (16.101)

This yields,

H̃atom:field =

(
0 ℏ

2Ω
∗(r)e−ık·r

ℏ
2Ω(r)e

ık·r −ℏ∆

)
. (16.102)

We always can write the Rabi frequency as Ω = |Ω|eıϕ and attribute the phase to
the atomic position if necessary. Locating the atom in the center of the coordinate
system, we finally get,

H̃atom:field =

(
0 ℏ

2Ω
∗

ℏ
2Ω −ℏ∆

)
, (16.103)
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yielding the new Liouville equation,

dρ(t)

dt
=
ı

ℏ
[ρ(t), H̃atom:field] . (16.104)

The matrix representation of the Hamiltonian given in this section are given in
the basis of the unperturbed states, but we still need to derive the matrix form of the
Liouville equations (15.6), (16.93), and (16.93) in the various pictures. This will be
the topic of the next section.

16.3.2 The matrix elements of the density operator

Since the optical Bloch equations are coupled differential equations relating the ele-
ments of the density operator matrix, we must examine the temporal dependence of
these matrix elements, based on our knowledge of the operator’s properties. This can
be done in the Schrödinger picture using Eq. (15.6), in the interaction picture using
Eq. (16.93), or directly in the co-rotating frame using Eq. (16.102). For didactic rea-
son we will begin with the Schrödinger picture and then derive the interaction picture
once again.

So, let us begin with the Liouville equation (15.6) and evaluate the elements of
the matrix,

⟨m|dρ̂(t)
dt
|n⟩ = ı

ℏ ⟨m|[ρ̂(t), Ĥ]|n⟩ = ı
ℏ ⟨m|[ρ̂(t), Ĥatom + Ĥatom:field(t)]|n⟩ (16.105)

= ı
ℏ (En − Em)⟨m|ρ̂(t)|n⟩+ ı

ℏ ⟨m|[ρ̂(t), Ĥatom:field(t)]|n⟩ ,
where |m⟩ and |n⟩ are members of a complete set of vectors of a basis {|k⟩} which
are also eigen-kets of Ĥatom and span the space of Ĥ. Now, we insert the closing
expression

∑
k |k⟩⟨k| = I in the commutator on the right-hand side of Eq. (16.105):

⟨m|[ρ̂(t), Ĥatom:field(t)]|n⟩ (16.106)

=
∑

k

[⟨m|ρ̂(t)|k⟩⟨k|Ĥatom:field|n⟩ − ⟨m|Ĥatom:field|k⟩⟨k|ρ̂(t)|n⟩] .

For our two-level atom the complete set only includes two states: |1(t)⟩ = |1⟩ and
|2(t)⟩ = e−ıω0t|2⟩. In addition, the matrix elements of the dipole coupling operator
Ĥatom:field are only non-diagonal,

V ≡ ⟨1|Ĥatom:field|2⟩ = ⟨2|Ĥatom:field|1⟩ = V ∗ . (16.107)

Hence, Eq. (16.105) adopts the form,

dρ̂11
dt

= ı
ℏ [ρ̂12V

∗ − ρ̂21V ]

dρ̂22
dt

= ı
ℏ [ρ̂21V − ρ̂12V ∗] = −dρ̂11

dt

dρ̂12
dt

= ıω0ρ̂12 +
ı
ℏ [V (ρ̂11 − ρ̂22)]

dρ̂21
dt

= −ıω0ρ̂21 +
ı
ℏ [V

∗(ρ̂22 − ρ̂11)] =
dρ̂∗12
dt

, (16.108)
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remembering that the dash of the diagonal terms, called populations, must be unitary,
and that the non-diagonal terms, called coherences, must be complex,

ρ̂11 + ρ̂22 = 1 , ρ̂21 = ρ̂∗12 . (16.109)

The above set of equations constitutes the optical Bloch equations in the Schrödinger
picture. We transform the Bloch equations to the interaction picture by replacing the
Liouville equation (15.6) by (16.93), and calculating the matrix elements. We obtain,

dρ̃22
dt

=
ı

ℏ
(V ρ̃21 − V ∗ρ̃12) and

dρ̃12
dt

=
ı

ℏ
V (ρ̃11 − ρ̃22) . (16.110)

We would also have obtained this expression via the substitution ρ̂12 = ρ̃12e
ıω0t in

the equations (16.108). The interaction picture simplifies the expressions for the
temporal dependence of the coherences by eliminating the first term on the right-
hand side. Transforming to the interaction picture removes the temporal dependence
of the basis vectors spanning the Hilbert space of the two-level atom.

We have derived the optical Bloch equations from the Liouville equation, which is
the fundamental equation of motion of the density operator, and we have seen how a
unitary transformation can be used to represent these equations in the Schrödinger,
Heisenberg or interaction picture. So far, the Bloch equations do not include the pos-
sibility of spontaneous emission. We will learn later, how to include this phenomenon.

16.3.2.1 Rotating wave approximation

In the following, we will only consider exponentials rotating with the frequency ∆ ≡
ω−ω0, and we will neglect terms rotating like ∆ ≡ ω+ω0 in the time dependence of
the coupling operator,

V (t) = ℏΩcosωt→ ℏ
2Ωe

−ıωt , (16.111)

neglecting the part 1
2ℏΩe

ıωt. The amplitude Ω is called Rabi frequency. This approxi-
mation, called rotating wave approximation (RWA) is good, when the Rabi frequency
is sufficiently small, Ω≪ ω. Otherwise, we observe an energy correction of the levels
called Bloch-Siegert shift.

Once the RWA made, we can transform to the rotating system by the prescription,

ρ12 ≡ ρ̂12e−ıωt , ρ22 ≡ ρ̂22 , (16.112)

which, applied to the Bloch equations in the Schrödinger picture Eq. (16.108), yields,

dρ22
dt

=
ıΩ

2
ρ21 −

ıΩ∗

2
ρ12 ,

dρ12
dt

= −ı∆ρ12 +
ıΩ

2
(ρ11 − ρ22) . (16.113)

In Exc. 16.3.7.1 we derive the Bloch equations from the equations of motion for the
population amplitudes a1 and a2.
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16.3.3 Solution of the optical Bloch equations

For arbitrary starting conditions, the solution of these equations is not simple. To
solve the problem we write the equations in a matrix form,

ρ⃗ ≡




ρ11
ρ22
ρ12
ρ21


 , M≡




0 0 ı
2Ω

∗ − ı
2Ω

0 0 − ı
2Ω

∗ ı
2Ω

ı
2Ω − ı

2Ω −ı∆ 0

− ı
2Ω

∗ ı
2Ω

∗ 0 ı∆


 , ˙⃗ρ =Mρ⃗ .

(16.114)
To solve this system of differential equations, we calculate the eigenvalues of the
matrix,

det(M− λI4) = λ2(∆2 + |Ω|2) + λ4 = 0 (16.115)

λ = 0,±ıG ,

with the so-called generalized Rabi frequencyG ≡
√
∆2 + |Ω|2. Therefore, the general

solution is,

ρ22(t) = ρ
(1)
22 + ρ

(2)
22 e

ıGt + ρ
(3)
22 e

−ıGt (16.116)

ρ12(t) = ρ
(1)
12 + ρ

(2)
12 e

ıGt + ρ
(3)
12 e

−ıGt .

The coefficients follow from the Bloch equations with particular starting conditions.
With a little algebra we get

ρ
(1)
22 = ρ22(0) +

1
2G2

[
|Ω|2 (1− 2ρ22(0))−∆(Ωρ∗12(0) + Ω∗ρ12(0))

]
(16.117)

ρ
(2)
22 = 1

4G2

[
−|Ω|2(1− 2ρ22(0)) + (∆ +G)Ωρ∗12(0) + (∆−G)Ω∗ρ12(0)

]

ρ
(3)
22 = 1

4G2

[
−|Ω|2(1− 2ρ22(0)) + (∆−G)Ωρ∗12(0) + (∆ +G)Ω∗ρ12(0)

]

ρ
(1)
12 = 1

2G2 [∆Ω(1− 2ρ22(0)) + Ω (Ωρ∗12(0) + Ω∗ρ12(0))]

ρ
(2)
12 = ∆−G

4G2

[
−Ω(1− 2ρ22(0)) + (∆ +G) Ω

Ω∗ ρ
∗
12(0) + (∆−G)ρ12(0)

]

ρ
(3)
12 = ∆+G

4G2

[
−Ω(1− 2ρ22(0)) + (∆−G) Ω

Ω∗ ρ
∗
12(0) + (∆ +G)ρ12(0)

]
.

We derive this solution in Exc. 16.3.7.2.
To begin the discussion of this solution, let us consider a sample of atoms initially

in the ground state when the light field is switched on at time t = 0,

ρ11(0) = 1 = 1− ρ22(0) , ρ12(0) = 0 = ρ21(0) . (16.118)

In this case, the conditions (16.117) simplify to,

ρ
(1)
22 = |Ω|2

2G2 , ρ
(1)
12 = 1

2G2∆Ω

ρ
(2)
22 = −|Ω|2

4G2 , ρ
(2)
12 = G−∆

4G2 Ω

ρ
(3)
22 = −|Ω|2

4G2 , ρ
(3)
12 = −G−∆

4G2 Ω ,

(16.119)
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such that,

ρ22 = ρ
(1)
22 + ρ

(2)
22 e

ıGt + ρ
(3)
22 e

−ıGt =
|Ω|2
4G2

(2− eıGt − e−ıGt) (16.120)

ρ12 = ρ
(1)
12 + ρ

(2)
12 e

ıGt + ρ
(3)
12 e

−ıGt =
∆Ω

2G2
− ∆−G

4G2
ΩeıGt − ∆+G

4G2
Ωe−ıGt

=
2Ω

4G2
(∆−∆cosGt+ ıG sinGt) .

Using cosx = 1− 2 sin2 x2 and sinx = 2 sin x
2 cos x2 , we finally obtain,

ρ22 =
|Ω|2
G2

sin2
Gt

2
, ρ12 =

Ω

G2
sin

Gt

2

(
∆sin

Gt

2
+ ıG cos

Gt

2

)
. (16.121)

And comparing with the solutions of the Schrödinger equation for a coupled two-level
atom obtained in Exc. 1.6.7.1 and (5.93), we verify,

ρ22 =
∣∣∣ ıΩG e−ıt∆/2 sin Gt

2

∣∣∣
2

= |a2|2 (16.122)

ρ12 = −e−ıt∆/2
[
cos Gt2 − ı∆G sin Gt

2

] −ıΩ
G eıt∆/2 sin Gt

2 = a∗1a2 .

16.3.4 Pauli matrices and the atomic Bloch vector

Let us come back to the unperturbed atomic Hamiltonian (16.90). The electronic
states are orthonormal ⟨i|j⟩ = δij , and we define the transition operators by

σ̂ij |k⟩ = δjk|i⟩ , (16.123)

and σ̂†
ij = σ̂ji satisfying the commutation relation,

[σ̂ij , σ̂lk] = δjlσ̂ik − δikσ̂lj . (16.124)

Many times we will restrict ourselves to atoms of two or three levels. For a two-level
system we obtain the Pauli spin matrix defined in (1.152). Every 2× 2 matrix can be
expanded on a Pauli matrix basis (see Exc. 16.3.7.3),

(
ρ11 ρ12
ρ21 ρ22

)
= |1⟩ρ11⟨1|+ |1⟩ρ12⟨2|+ |2⟩ρ21⟨1|+ |2⟩ρ22⟨2| (16.125)

= ρ11(
1
2 + 1

2 σ̂z) + ρ12σ̂
− + ρ21σ̂

+ + ρ22(
1
2 − 1

2 σ̂z)

= ρ11σ̂
−σ̂+ + ρ12σ̂

− + ρ21σ̂
+ + ρ22σ̂

+σ̂− =

(⟨σ̂−σ̂+⟩ ⟨σ̂−⟩
⟨σ̂+⟩ ⟨σ̂+σ̂−⟩

)
.

For the two-level case it is useful to introduce an alternative notation based on
the Bloch vector defined in (1.159),

ϱ⃗ ≡ ⟨ˆ⃗σ⟩ ≡




2Re ρ12
2 Im ρ12
ρ22 − ρ11


 =




⟨σ̂+⟩+ ⟨σ̂−⟩
ı(⟨σ̂+⟩ − ⟨σ̂−⟩)
⟨σ̂+σ̂−⟩ − ⟨σ̂−σ̂+⟩


 =



⟨σ̂x⟩
⟨σ̂y⟩
⟨σ̂z⟩


 . (16.126)
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We also define the torque vector,

G ≡



ReΩ

ImΩ

−∆


 with ∥G∥ = G =

√
|Ω|2 +∆2 , (16.127)

the length of which is simply the generalized Rabi frequency. Note that here we allow
for the possibility of complex Rabi frequency.

Now, using σ̂z = [σ̂+, σ̂−], we may write the Hamiltonian of an unperturbed two-
level system,

Ĥ0 = −ℏ∆σ̂+σ̂− = −ℏ
2∆(σ̂z + I2) = −ℏ

2∆σ̂z + offset . (16.128)

For the perturbed system,

Ĥ = ŝ ·G = ℏ
2G · ˆ⃗σ = −ℏ

2 σ̂z∆+ ℏ
2 σ̂xReΩ+ ℏ

2 σ̂yImΩ =

(ℏ
2∆

ℏ
2Ω

∗
ℏ
2Ω −ℏ

2∆

)
. (16.129)

The Bloch equations (16.128) then follow as the Heisenberg equation with the Hamil-
tonian (16.130) using [σ̂k, σ̂m] = 2ıϵklmσ̂m,

dˆ⃗σ

dt
= ı

ℏ [Ĥ,
ˆ⃗σ] = ı

2 [G · ˆ⃗σ, ˆ⃗σ] (16.130)

= ıGx

2 [σ̂x, ˆ⃗σ] +
ıGy

2 [σ̂y, ˆ⃗σ] +
ıGz

2 [σ̂z, ˆ⃗σ] =



Gyσ̂z −Gzσ̂y
Gzσ̂x −Gxσ̂z
Gxσ̂y −Gyσ̂x


 = G× ˆ⃗σ .

The expectation values yield,

dϱ⃗

dt
= G× ϱ⃗ . (16.131)

As will be shown in Exc. 16.3.7.4, these equations are identical to the Liouville equa-
tions (16.114). ρ12 describes the polarization and ρ22 − ρ11 the population inversion
of the atom. The equation is analogous to the equation of motion for a rigid rotor or
spinning top (for example, a dipole in a homogeneous field). It displays phenomena
such as precession and nutation. The physical content and usefulness of the Bloch
vector will become clearer when we use the formalism to analyze electric and magnetic
couplings. In Exc. 16.3.7.5 we verify that the Bloch vector is normalized (as long as
spontaneous emission is not considered).

16.3.5 State manipulations by sequences of radiation pulses

The temporal dependence of the three components of the atomic Bloch vector provides
a useful illustration of the atom-field interaction. Resonant coupling, ∆ = 0 and
G = Ω, puts the solutions (16.121) into the form,

ρ22(t) =
1
2 (1− cosΩt) , ρ12(t) =

ı
2 sinΩt , (16.132)
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that is,

ϱ⃗(t) =




0

sinΩt

− cosΩt


 . (16.133)

That is, a resonant pulse rotates a Bloch vector initially pointing in the direction −z
within the plane z-y, until it arrives, at time t = π

2Ω , at the +y direction and at time
t = π

Ω at the +z direction. This means that the entire population has been transferred
to the excited state. The Bloch vector continues to rotate (the movement is called
nutation) around the torque vector G which, as can be seen from Eq. (16.128), points
at the +x direction when ∆ = 0. The nutation frequency is proportional to the force
Ω of the atom-field interaction. With the Eq. (16.121) we see that the population
oscillates between the ground and excited state with the frequency Ω. This means
that the energy ℏω is periodically exchanged between the atom and the field. A pulse
of resonant light of duration such that τ = π/2Ω is called a π/2-pulse. The nutation
is illustrated in Fig. 16.2(a).

Once the coherence has been excited by a detuned radiation, ∆ ̸= 0, the Bloch
vector does not stand still, even after the radiation has been switched off. To see
this, we consider again the general solution (16.117) now entering Ω = 0. If the
Bloch vector is initially at a point in the unitary circle of the plane z-y, it will rotate
according to the formula,

ρ22(t) = ρ22(0) , ρ12(t) = ρ12(0)e
−ı∆t , (16.134)

that is,

ϱ⃗(t) =



ρ12(0) sin∆t

ρ12(0) cos∆t

2ρ22(0)− 1


 . (16.135)

That is, the Bloch vector performs a motion of precession around the symmetry axis.
The precession is illustrated in Fig. 16.2(b).

Re ρ12

-1
1

0

2ρ
22
−
1

1

0

(a)

1

Im ρ12

0-1 -1 Re ρ12

-1
1

0

2ρ
22
−
1

1

0

(b)

1

Im ρ12

0-1 -1

Figure 16.2: (code) (a) Nutation of the Bloch vector. The red circles show the evolution of

the Bloch vector on the Bloch sphere for a resonant π-pulse. (b) Precession of the Bloch

vector.

The evolution of the Bloch vector on the surface of the Bloch sphere under the in-
fluence of radiation fields can be considered a coherent trajectory of the wavefunction

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_VectorRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_VectorRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_VectorRabi.m
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of the atomic state, which is therefore subject to interference phenomena [411]. Inter-
ferometers can be realized by sequences of consecutive pulses splitting populations,
exciting coherences, and remixing populations.

Sensors based on interferometry of atomic excitation are nowadays among the
most accurate and most sensitive. We will discuss the method of radiation pulse
sequences in several exercises: In the Excs. 16.3.7.6, 16.3.7.7, and 16.3.7.8 the Ramsey
method.

16.3.5.1 Atomic ensembles

While it is technically challenging to observe the dynamics of single atoms, it is
relatively easy monitor the dynamics of ensembles of atoms, provided that they react
synchronously to incident radiation. The concentration of a sufficient number of
atoms in a small volume can, however, introduce additional (desirable or undesirable)
effects. Collisions, for instance, induce (irreversible) decoherence. On the other hand,
if the ensemble is sufficiently dense that the mean distance between atoms is less than
a resonant wavelength, then the transition dipoles of the individual atoms will couple
to produce a collective dipole moment and generate effects known as superradiance.

Thermal motion of the atoms is another undesired effect, because every atom will
interact with the radiation on a different Doppler-shifted frequency. This leads to
diffusion of the individual atomic Bloch vectors in the x-y-plane, which in turn limits
the resolution of interferometric applications. We will discuss in Exc. 16.3.7.9 the
photon echo method, which allows to circumvent this problem.

16.3.6 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a
strong constant magnetic field (up to 20T) are perturbed by a weak oscillating mag-
netic field (in the near field) and respond by producing an electromagnetic signal with
a frequency characteristic of the magnetic field at the nucleus. This process occurs
near resonance, when the oscillation frequency (typically 60..1000MHz) matches the
intrinsic frequency of the nuclei, which depends on the strength of the static magnetic
field, the chemical environment, and the magnetic properties of the isotope involved.
NMR spectroscopy is widely used to determine the structure of organic molecules in
solution and in advanced medical imaging techniques, such as in magnetic resonance
imaging (MRI). The most commonly used nuclei are 1H and 13C.

NMR transitions can be excited, when the electron spins do not participate in the
interaction, e.g. because they are paired (see Eq. (10.41)), and when the nucleus has

an intrinsic nuclear magnetic moment ˆ⃗µI and hence an angular momentum Î. This is
the case for an odd number of protons and/or neutrons. Nuclides with even numbers
of both have a total spin of zero and are therefore NMR-inactive.

The principle of NMR usually involves three sequential steps: (i) The alignment

of the magnetic nuclear spins in an applied, constant magnetic field B⃗0. (ii) The
perturbation of this alignment of the nuclear spins by a weak oscillating magnetic
field B⃗1(t) called rf-pulse. (iii) The detection of the NMR signal during or after
the rf-pulse via the voltage induced in a detection coil due to the precession of the
nuclear spins around B⃗0. After an rf-pulse, the nuclear dipole moment precesses at
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the nuclei’s intrinsic Larmor frequency without involving transitions between spin
states. Choosing the two magnetic fields perpendicular to each other, one maximizes
the NMR signal strength,

B⃗(t) = Brf(t)êx + B0êz , (16.136)

where, because of |Brf(t)| ≪ B0, we choose the z-axis as the quantization axis and the
rf-field as a perturbation along the x-axis.

The energy of a nuclear magnetic dipole moment placed in a magnetic field is
[231],

Ĥ = − ˆ⃗µ · B⃗ = −γI Î · B⃗ , (16.137)

where γI is the gyromagnetic ratio of the specific nucleus and Î the nuclear spin
satisfying the usual commutation relation [Îm, În] = ıℏϵkmnÎk. Hence, as shown in
Exc. 16.3.7.10, we can derive from the Heisenberg equation,

ıℏ
d ˆ⃗µ

dt
= [ˆ⃗µ, Ĥ] , (16.138)

the Bloch equations,

d ˆ⃗µ

dt
= γI ˆ⃗µ× B⃗ . (16.139)

Now, let us restrict to a two-level system, I = 1
2 such that Îz = ℏ

2 σ̂z. In thermal
equilibrium, without time-dependent perturbation,

Ĥ0 = − ˆ⃗µ · B⃗0 = −µ̂zB0 = −γI ÎzB0 ≡ −ωLÎz . (16.140)

where we introduced the Larmor frequency ωL. We expect energy levels,

E = −ℏγImB0 , (16.141)

with m = ± 1
2 . The energy difference between the two states, ∆E = γIℏB0, results in

a small population bias favoring the lower energy state in thermal equilibrium and,
hence, in a net spin magnetization M⃗ = 1

V

∑
i⟨µ⃗i⟩ along the magnetic field B⃗0. For

a thermal statistical mixture, as shown in (14.39), we write the density operator 10,

ρ̂ =
e−Ĥ0/kBT

Z
=
e−

1
2βℏωLσ̂z

Z
=

∑

m=±1/2

|I,m⟩e
−βℏωLm

Z
⟨I,m| , (16.142)

with the partition function,

Z ≡ Tr e−Ĥ0/kBT =
∑

m=±1/2

e−βℏωLm . (16.143)

10Note that at high temperatures we get, Z ≃ 1 and may approximate,

ρ̂− 1 ≃ βℏωLÎz .
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Now, as shown in (16.92), we can express the time-evolution of the density operator
as,

ρ̂(t) = e−ıĤ0tρ̂(0)eıĤ0t = e−ıβℏωLÎztρ̂(0)eıβℏωLÎzt . (16.144)

Then, as shown in Exc. 16.3.7.11,

⟨̂I(t)⟩ =



cosωLt − sinωLt 0

sinωLt cosωLt 0

0 0 1


 ⟨̂I(0)⟩ , (16.145)

which corroborates the result (16.139). Apparently, the nuclear magnetic dipole
moment (and hence the spin magnetization) precesses around the magnetic field with
the Larmor frequency leaving the populations of the energy levels unaffected.

A perturbation of nuclear spin orientations from equilibrium will occur when an
oscillating magnetic field is applied whose frequency ωrf sufficiently closely matches
the Larmor precession frequency ωL. The populations of the spin-up and -down energy
levels then undergo Rabi oscillations. The stronger the oscillating field, the faster the
Rabi oscillations or the precession around the effective field in the rotating frame.
After a certain time (typically on the order of 2..1000µs), a resonant rf-π/2-pulse
flips the spin magnetization to the transverse plane, while after a twice longer time,
the initial magnetization is inverted (π-pulse). It is the transverse magnetization
generated by a resonant oscillating field which is usually detected in NMR.

The most important perturbation of the NMR frequency for applications of NMR
is the ’shielding’ effect of the surrounding shells of electrons. Electrons, similar to
the nucleus, are also charged and rotate with a spin to produce a magnetic field
opposite to the applied magnetic field. In general, this electronic shielding reduces
the magnetic field at the nucleus. The corresponding shift in the NMR frequency due
to the electronic molecular orbital coupling to the external magnetic field is called
chemical shift, and it explains why NMR is able to probe the chemical structure of
molecules, which depends on the electron density distribution in the corresponding
molecular orbitals.

After perturbation the nuclear spins return to thermodynamic equilibrium due to
relaxation processes. These are phenomenological included in the Bloch equations via
decay time constants Ti,

d ˆ⃗µ

dt
= γI ˆ⃗µ× B⃗ −

µ̂z
T1

êz −
µ̂x
T2

êx . (16.146)

T1 = Γ−1 is the time constant for ’longitudinal magnetic’ relaxation and refers to
the mean time for an individual nucleus to return to its thermal equilibrium state of
the spins. The precessing nuclei can also fall out of alignment with each other and
gradually stop producing a signal. This is called T2 or transverse relaxation, where
T2 = 2γ−1. Because of the difference in the actual relaxation mechanisms involved (for
example, intermolecular versus intramolecular magnetic dipole-dipole interactions),
T1 is usually longer than T2, which, in practice, also depends on significant static
magnetic field inhomogeneities.
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16.3.7 Exercises

16.3.7.1 Ex: Derivation of Bloch equations

Derive the Bloch equations explicitly based on the temporal evolutions of the coeffi-
cients a1,2 (5.63) knowing that ρij = a∗i aj .

16.3.7.2 Ex: General solution of Bloch equations

Derive the solution (16.117) of the Bloch equations (16.114).

16.3.7.3 Ex: Expansion in Pauli matrices

Show explicitly Tr ρ̂σ̂−σ̂+ = ρ11.

16.3.7.4 Ex: Bloch vector and Bloch equations

Show that Eq. (16.131) is equivalent to the Bloch equations (16.114).

16.3.7.5 Ex: Normalization of the Bloch vector

Verify ∥ρ⃗∥ = 1.

16.3.7.6 Ex: Sequence of Ramsey pulses

Many atomic clocks work according to the Ramsey spectroscopy method: The two-
level atom is resonantly excited by a microwave π/2-pulse. Then, the phase of atomic
coherence precesses freely over a period of time T accumulating an angle ϕ. Finally,
a second π/2-pulse is applied and the population of the upper-level is measured.
Calculate this population as a function of the angle ϕ. Neglect spontaneous emission.

16.3.7.7 Ex: Analytical treatment of the Ramsey experiment

Derive the analytic formula for the final population ρ22 for the Rabi and Ramsey
experiments. Derive and compare the line widths of the ’interference fringes’ in these
two experiments.

16.3.7.8 Ex: Atomic clocks by the Ramsey method with spontaneous
emission

In this exercise we study the Ramsey method used in atomic clocks. For this, we
will consider a two-level system |1⟩ and |2⟩ excited by a microwave radiation field
characterized by the Rabi frequency Ω12, and we will compare two cases: without
and with spontaneous emission:
a. Write down the Hamiltonian of the system, propose a sequence of pulses allowing
the observation of the Ramsey fringes, do a numerical simulation of the Schrödinger
equation (based on the prescription (16.246)), and prepare a graph of the type
Fig. 16.2 illustrating the temporal evolution of the Bloch vector during the sequence.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DerivacaoBloch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SolucaoBloch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_MatrizesPauli.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_VetorBloch1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NormalizacaoBloch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SequenciaRamsey1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SequenciaRamsey2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SequenciaRamsey3.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SequenciaRamsey3.pdf
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b. Calculate numerically from the Schrödinger equation the population ρ22 immedi-
ately after the pulse sequence as a function of the detuning ∆12 of the radiation field,
and prepare a graph of the spectrum. Also, assuming a decay rate of Γ12 = 0.1Ω12,
calculate the population ρ22 as a function of detuning ∆12 from the Bloch equations
(making sequences of type (16.246)), prepare a new graph, and compare it with the
previous graph obtained by the Schrödinger equation.
c. What happens to the width of the fringes, when the free precession time τ between
the Ramsey pulses is increased? Prepare a graph of the inversion 2ρ22−1 as a function
of ∆12 and τ and interprete the results.

16.3.7.9 Ex: Photon echo

’Photon echo’ is a powerful spectroscopic technique that allows circumvention of cer-
tain dephasing processes, for example, the Doppler shift due to the atomic motion in
a thermal sample of atoms. The technique resembles the Ramsey method with the
difference, that between the two Ramsey π/2-pulses, that is, during the free preces-
sion time, we apply an additional π-pulse, which inverts the imaginary part of the
coherence. We will study this method by numerical simulation of the Schrödinger
equation and the Bloch equations for a two-level system with and without sponta-
neous emission:
a. Write down the Hamiltonian of the system and do a numerical simulation of the
Schrödinger equation (concatenating the pulses as explained in Eq. (16.246)) for the
following temporal pulse sequence:
(i) resonant π/2-pulse (∆12 = 0) choosing Ω12 = 2,
(ii) evolution for a time T without radiation (Ω12 = 0),
(ii) resonant π-pulse using the same parameters as in (i),
(iv) evolution for a time T without radiation, and
(v) resonant π/2-pulse identical to the first pulse.
Prepare a graph of type Fig. 16.2 illustrating the temporal evolution of the Bloch
vector during the sequence. Now, repeat the sequence taking into account a possible
Doppler shift leading to ∆12 ̸= 0.
b. Repeat the calculation of (a), now numerically solving the Bloch equations, which
allow the occurrence of spontaneous emission (Γ12 = 0.03Ω12). Interpret the results.

16.3.7.10 Ex: Time-evolution of NMR spin components

Derive the coherent part of the Bloch equations (16.138) from the Heisenberg equation
(16.137).

16.3.7.11 Ex: Precession of the nuclear spin in a magnetic field

Show for Ĥ0 = −ℏωL

2 σ̂z that,

⟨ˆ⃗σ(t)⟩ =



cosωLt − sinωLt 0

sinωLt cosωLt 0

0 0 1


 ⟨ˆ⃗σ(0)⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EcoFotonico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EcoNMR01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EcoNMR02.pdf
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16.4 Bloch equations with spontaneous emission

In this section we will introduce spontaneous emission and the important concepts
of polarization and susceptibility emanating from an excited sample of oscillating
dipoles. Optical Bloch equations including spontaneous emission will be given and
their stationary solutions will be discussed. Dissipative processes always broaden
transition lines, and thus we will discuss various broadening mechanisms.

16.4.1 Phenomenological inclusion of spontaneous emission

To find the Bloch equations including spontaneous emission, we proceed similarly for
Eq. (16.26) and insert the phenomenological decay term −ıγa2 into the Eqs. (5.63),

Ω∗ cosωteıω0ta1 − ıγa2 = ı
da2
dt

, (16.147)

that is, the equations of motion can be corrected by simply replacing,

da2
dt

↷
(
d

dt
+ γ

)
a2 . (16.148)

Knowing ρmn = a∗man, it is easy to check,

dρ22
dt

↷
(
d

dt
+ Γ

)
ρ22 and

dρ12
dt

↷
(
d

dt
+ γ

)
ρ12 , (16.149)

with γ = Γ/2, such that the Bloch equations become,

d

dt




ρ11
ρ22
ρ12
ρ21


 =




0 Γ ı
2Ω − ı

2Ω

0 −Γ − ı
2Ω

ı
2Ω

ı
2Ω − ı

2Ω −ı∆− γ 0

− ı
2Ω

ı
2Ω 0 ı∆− γ







ρ11
ρ22
ρ12
ρ21


 . (16.150)

Example 92 (Langevin equation): The Heisenberg equation for the evolution
of the internal degrees of freedom, including the phenomenologically introduced
decay, is also called Langevin equation. It can be written as,

ı
dσ̂−

dt
= 1

ℏ [σ̂
−, Ĥ]− ı

2
Γσ̂− ,

and analogously for σ̂z. With the Hamiltonian Ĥ = ℏ∆σ̂+σ̂− + 1
2
ℏΩ(eıωtσ̂− +

h.c.) we obtain, using the Pauli spin matrices, exactly the Bloch equations,

ı ˙̂σ− = ∆[σ̂−, σ̂+σ̂−] + 1
2
Ωe−ıωt[σ̂−, σ̂+]− ı

2
Γσ̂− = ∆σ̂− − 1

2
Ωe−ıωtσ̂z − ı

2
Γσ̂−

ı ˙̂σz = ∆[σ̂z, σ̂
+σ̂−] + 1

2
Ωe−ıωt[σ̂z, σ̂

+] + 1
2
Ωeıωt[σ̂z, σ̂

−]− ı
2
Γσ̂z = Ω(σ̂− − σ̂+)− ı

2
Γσ̂z .
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16.4.1.1 Stationary solution of the Bloch equations

The dissipation introduced by the spontaneous emission allows the system to reach a
steady state. Letting the time derivatives be 0, we obtain the stationary solutions,

ρ22(∞) =
1
4 |Ω|2

∆2 + 1
2 |Ω|2 + 1

4Γ
2

and ρ12(∞) = eı∆t
1
2Ω(∆− ı

2Γ)

∆2 + 1
2 |Ω|2 + 1

4Γ
2
.

(16.151)
This will be shown in Exc. 16.4.4.1. We see that the populations and coherences both
have a Lorentzian frequency dependence, which is similar to the one of the absorption
cross section σ derived in (1.72). However, the denominators have an extra term 1

2Ω
2

contributing to an effective widths of ρ22 and ρ12,

Γeff =
√
2|Ω|2 + Γ2 . (16.152)

This effect, called power broadening or saturation broadening, has already been dis-
cussed in (1.102). The phase factor eı∆t describes the optical precession of the Bloch
vector.

By introducing the saturation parameter,

s ≡ 2|Ω|2
4∆2 + Γ2

, (16.153)

we can rewrite the stationary dipole moment and the excited state population (16.151)
as,

ρ22(∞) =
s/2

1 + s
, ρ12(∞) = eı∆t

∆− ıΓ/2
Ω

s

1 + s
. (16.154)

and

|ρ12(∞)|2 =
s/2

(1 + s)2
. (16.155)

Fig. 16.3(a) shows the Rabi oscillations damped by spontaneous emission. For long
times the population of the excited state ρ22 converges to the asymptote (16.154).
Fig. 16.3(b) shows the temporal evolution of the Bloch vector subject to spontaneous
emission. In Exc. 16.4.4.2 we the behavior of the phase of the dipole moment ρ12
with respect to the driving field. In Exc. 16.4.4.3 and 16.4.4.4 we calculate the impact
of the spontaneous emission on the determinant of the density operator. Solve the
Excs. 16.4.4.5, 16.4.4.6, 16.4.4.7, and 16.4.4.8.

Example 93 (Resonant excitation and weak excitation): A case where
the Bloch equations can be analytically treated is under resonant excitation,
∆ = 0. In this case, for the initial conditions, ρ12(0) = ρ22(0) = 0, the solution
including decay is,

ρ22(t) =
Ω2

2|Ω|2 + Γ2

[
1− e−3Γt/4

(
cosλt+

3Γ

4λ
sinλt

)]
and ρ12(t) = 0 ,

(16.156)
where λ ≡

√
Ω2 − Γ2. This solution (which will be derived in Exc. 16.4.4.9),

describes the optical nutation of the Bloch vector along the ρz axis. We note
here that, due to spontaneous emission, the norm of the Bloch vector is NOT
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Δ12/Γ12
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Figure 16.3: (code) (a) Rabi oscillations damped by spontaneous emission for Rabi frequen-

cies between Ω/Γ = 0.2, .., 5. (b) Evolution of the Bloch vector subject to spontaneous

emission (Γ12 = 0.05Ω12) after application of a resonant π-pulse (red) and after a π-pulse

with detuning ∆12 = Ω12/2 (green).

conserved, i.e. the Bloch vector evolves to the interior of the Bloch sphere.
Another case that can be solved analytically is the weakly excited atom, |Ω| ≪ Γ,

ρ22 ≃ Ω2

4G2

(
1 + e−2Γt − 2 cos∆t

)
(16.157)

and ρ12(t) ≃ −ıΩ
2ı∆+ 2Γ

(
e−(ı∆+Γ)t − 1

)
+ ρ12(0)e

−(ı∆+Γ)t .

16.4.1.2 Nonlinearity of the Bloch equations

Because the Bloch equation go beyond perturbation theory they contain nonlinear
optics. We can see this by the simple fact that strong radiation field can saturate
atomic transitions. For example, expanding the population and coherence (16.151)
by the incident electric field amplitude E ∝ Ω,

ρ22(∞) ≃ 1

4∆2 + Γ2
Ω2 − 2

(4∆2 + Γ2)2
Ω4 + ... (16.158)

ρ12(∞) ≃ eı∆t 2∆− ıΓ
4∆2 + Γ2

Ω− 2eı∆t
2∆− ıΓ

(4∆2 + Γ2)2
Ω3 + ... .

The theory of nonlinear optics will be developed in Sec. 17.5.2 and Chp. 19.

Example 94 (Complex susceptibility and absorption coefficient): The
objective of this section is to obtain an expression for the susceptibility in the
presence of spontaneous emission. For the present discussion we are only con-
cerned with the temporal dependence of the actual light wave, which we write
as,

E⃗(t) = E⃗0 cosωt = 1
2
[eıωt + e−ıωt] . (16.159)

Then we consider how to write the polarization in terms of a susceptibility
when the field contains two conjugate frequencies, ±ω. Substituting into the
polarization , we get,

P⃗(t) = ε0χeE⃗ = 1
2
ε0E⃗0[χe(ω)eıωt + χe(−ω)e−ıωt] . (16.160)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_TwoLevelDecay.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_TwoLevelDecay.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_TwoLevelDecay.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_TwoLevelDecay.m
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The polarization can also be expressed in terms of the density of the transition
dipoles in a gas of two-level atoms,

P⃗(t) = N

V
d12(t) −→ N

V
⟨d12(t)⟩ . (16.161)

where d is the transition dipole of only one atom, N/V is the atomic density,
and the quantum expectation value for the transition dipole moment is,

⟨d12⟩ = −e
∫

Ψ
∑
j

rjΨd
3r . (16.162)

Now, from Eq. (5.58),

⟨d12⟩ = −e
[
a∗1a2⟨ψ1|

∑
j

rj |ψ2⟩e−ıω0t + a1a
∗
2⟨ψ2|

∑
j

rj |ψ1⟩eıω0t

]
. (16.163)

To simplify the notation we define ⟨rmn⟩ ≡ ⟨ψm|
∑
j rj |ψn⟩ and obtain,

⟨d12⟩ = −e[a∗1a2⟨r12⟩e−ıω0t + a1a
∗
2⟨r21⟩eıω0t] . (16.164)

Now, we only need to replace the solutions of the coupled equations by relating
a1 and a2 of the Eqs. (5.63) in (16.164) which, in turn, can be inserted into the
equation (16.160). Thus we obtain an expression for the polarization in terms
of properties of the atoms and the incident field.
The crucial point now is, that the solution for a2, Eq. (5.79), does not consider
spontaneous emission. Therefore, as already done in Sec. 16.4.1, we will intro-
duce an ad hoc modification of Eq. (5.63) by including a radiative loss constant
γ,

Ω∗ cosωteıω0ta1 − ıγa2 = ı
da2
dt

. (16.165)

This term does NOT EXPLAIN spontaneous emission. It simply takes into
account the existence of the effect and characterizes its amplitude through γ: If
the incident field is turned off (Ω∗ = 0)

−ıγa2 = ı
da2
dt

(16.166)

and
a2(t) = a2(0)e

−γt . (16.167)

Then, the probability of finding an atom in the excited state (or the fraction of
excited atoms in an ensemble) is,

N2/N = |a2(t)|2 = |a2(0)|2e−2γt . (16.168)

Comparing this behavior with the result obtained from the Einstein rate equa-
tion, we see immediately,

A21 = 2γ ≡ Γ . (16.169)

Now, the solution for our improved a2(t) coefficient is,

a2(t) = − 1
2
Ω∗
[
eı(ω0+ω)t

ω0 + ω − ıγ +
eı(ω0−ω)t

ω0 − ω − ıγ

]
, (16.170)

which solves the differential equation (16.165) in the weak field limit, a1(t) ≃ 1,
as will be verified in Exc. 16.4.4.10.
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Making the weak field approach, replacing the values obtained for a1,2 in the
transition dipole (16.164) and replacing the average of the orientations, |⟨r12⟩|2 −→
1
3
|⟨r12⟩|2, in the polarization (16.161), we obtain,

⃗̃P(t) = ε0χ̃eE⃗ (16.171)

=
N

V

e2|⟨r12⟩2E⃗0
6ℏ

[
eıωt

ω0 + ω − ıγ +
eıωt

ω0 − ω + ıγ
+

e−ıωt

ω0 − ω − ıγ
+

e−ıωt

ω0 + ω + ıγ

]
.

Apparently, the presence of spontaneous emission turns the susceptibility into
a complex number .
Comparing this result with Eq. (16.160) and identifying the susceptibility χ̃e(ω)
in terms of the atomic properties and the frequency of the incident field, we find,

χ̃e(ω) =
Ne2|⟨r12⟩|2

3ϵ0ℏV

[
1

ω0 − ω − ıγ
+

1

ω0 + ω − ıγ

]
(16.172)

=
Ne2|⟨r12⟩2
3ϵ0ℏV

[
ω0 − ω

(ω0 − ω)2 + γ2
+

ω0 + ω

(ω0 + ω)2 + γ2

+ıγ

(
1

(ω0 − ω)2 + γ2
+

1

(ω0 + ω)2 + γ2

)]
.

In most practical situations in the laboratory ω will not be tuned more than
some 100GHz away from ω0, hence |ω0−ω| ≲ 1011 Hz. With optical frequencies
ω ≃ 1015 Hz, it is clear that the second term on the right hand side of Eq. (16.172)
will be negligible compared to the first one. Therefore, we can discard the second
term and write the susceptibility as,

χe(ω) ≃ Ne2|⟨r12⟩|2
3ϵ0ℏV

1

ω0 − ω − ıγ
(16.173)

=
Nd212
3ϵ0ℏV

−∆+ ıΓ/2

∆2 + (Γ/2)2
=

nℏΩ2

3ϵ0E2
0

−∆+ ıΓ/2

∆2 + (Γ/2)2
.

We identify the real and imaginary parts, χ̃e = χ′
e + ıχ′′

e , and express the
absorption coefficient as ,

K =
ω

cη
χ′′
e (ω) =

πNd212ω0

3ϵ0ℏcV
Γ/2π

∆2 + (Γ/2)2
=
πNd212ω0

3ϵ0ℏcV
L(ω − ω0) . (16.174)

The Lorentzian profile term governs the frequency dependence of the absorption
coefficient. We see that K exhibits a peak at the resonance frequency ω0 and a
width of Γ. The factor of π inserted in the numerator and denominator of the
right term of Eq. (16.174) allows to normalize the profile. We have also assumed
in Eq. (16.174) that the gas is sufficiently dilute for n ≃ 1 to hold, and that the
line is sufficiently narrow to be able to replace ω with ω0, such that,

ω

cη
−→ ω0

c
. (16.175)

The absorption cross section has the same lineshape, since from Eqs. (1.72) and
(16.174) we have,

σ0a =
πd212ω0

3ϵ0ℏcV
L(ω − ω0) , (16.176)
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consistent with our previous expression for the frequency dependence of the
absorption cross-section. We can also write the imaginary component of the
susceptibility in terms of the cross section using the Eqs. (1.72) and (16.174)

χ′′
e =

cN

ω0V
σ0a . (16.177)

The frequency-dependent linear susceptibility completely describes the linear
propagation of an electromagnetic wave within a medium. It is related to the
index of refraction and the absorption coefficient. Nonlinear processes should be
described by higher order susceptibilities. Electric fields E⃗ = E⃗0eıωt+c.c. induce
in media characterized by a given susceptibility χ̃e the polarization ⃗̃P = ε0χ̃eE⃗ .
The polarization is the sum of the dipole moments of the individual atoms, P⃗ =
n⟨d⟩, where n = N/V is the atomic density. The susceptibility can therefore be
expressed by the Hamiltonian interaction Ĥ = −d · E⃗ ,

χe = − n

|E⃗ |2
⟨Ĥ⟩ . (16.178)

Using the two-level Hamiltonian (16.172) we obtain,

χe = −n ℏΩ
2|E⃗ |2

ρ12e
ı∆t + c.c. (16.179)

for the polarization,

P⃗ = n dρ12 + c.c. (16.180)

and for the susceptibility,

χe(ω) =
2nd2

3ε0ℏ
∆+ ıΓ

4∆2 + 2|Ω|2 + Γ2
with d =

√
3πε0ℏΓ
k3

. (16.181)

We can insert the new expression (16.151) for ρ12 into our previous expression
for ⟨d12⟩ (16.164) and get new expressions for the polarization P⃗(t), (16.161)
and (16.171), and the susceptibility χ (16.173). The modified expression for the
susceptibility is,

χe =
Nd212
3ϵ0ℏV

−∆+ 1
2
Γ

∆2 + 1
2
|Ω|2 + 1

4
Γ2

. (16.182)

In the imaginary component we obtain the new absorption coefficient,

K =
ω

cn
χ′′
e (ω) =

πNe2|⟨r12⟩|2ω0

3ϵ0ℏcV
Γ/2π

∆2 + 1
2
Ω2 + 1

4
Γ2

, (16.183)

and the optical cross-section for absorption,

σ0a =
πe2|⟨r12⟩|2ω0

3ϵ0ℏc
Γ/2π

∆2 + 1
2
Ω2 + 1

4
Γ2

. (16.184)

The important new property is the effective width Γeff, which appears in χe, K,

and σ0a.
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16.4.2 Liouville equation for two levels

In the previous section we chose to include spontaneous emission in the Bloch equa-
tions by phenomenological arguments. However, as we will show more ahead, dissipa-
tion can be treated from general principles. This treatment, named after Weisskopf-
Wigner, derives from a Liouville type equation (15.6), but which holds for a total
density operator ρatom:field describing the atom and the electromagnetic modes, an
equation for the density operator of only the atom. The price to pay for this simpli-
fication is an additional term appearing in the equation now called master equation,

˙̂ρ(t) = (L0 + Lsp)ρ̂(t) with

L0ρ̂(t) ≡ ı

ℏ
[ρ̂(t), Ĥ] and Lsp = Γ

2 (2σ̂
−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−)

,

(16.185)
where σ̂± are the Pauli matrices. We show in Exc. 16.4.4.11, that the known Bloch
equations can be derived from the master equation.

16.4.3 The effective Hamiltonian approach

In Sec. 16.4.1 we have shown that spontaneous emission can be phenomenologically
be included by substituting d

dt ↷
d
dt +

Γ
2 in the Schrödinger equation,

ı
(
d
dt +

Γ
2 |2⟩⟨2|

)
|ψ⟩ = Ĥ|ψ⟩ . (16.186)

Rewriting the Schrödinger equation as,

ı ddt |ψ⟩ = (Ĥ − ıΓ2 |2⟩⟨2|)|ψ⟩ ≡ Ĥeff|ψ⟩ , (16.187)

it is tempting to study how far we can go [66, 67] with the emulation of dissipative
processes by the Schrödinger equation using a non-Hermitian effective Hamiltonian.

More generally let us define,

Ĥeff ≡ Ĥ − ıD̂ . (16.188)

Rederiving the master equation from Schrödinger equation with this Hamiltonian, we
get,

˙̂ρ = |ψ⟩d⟨ψ|
dt

+
d|ψ⟩
dt
⟨ψ| = ıρ̂Ĥ∗

eff − ıĤeffρ̂ (16.189)

= ı[ρ̂, Ĥ]− {ρ̂, D̂} .

And for the Heisenberg equation,

d
dt ⟨Â⟩ = ⟨ψ̇|Â|ψ⟩+ ⟨ψ|Â|ψ̇⟩ = ı⟨ψ|Ĥ∗

effÂ|ψ⟩ − ı⟨ψ|ÂĤeff|ψ⟩ (16.190)

= ı⟨ψ|[Ĥ, Â]|ψ⟩ − ⟨ψ|{D̂, Â}|ψ⟩ .

Apparently, the dissipation term adds an anti-commutator to the evolution equations.
It is now interesting to compare the dissipative terms of the expressions (16.185) and
(16.189).
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16.4.3.1 Saturation effects by the effective Hamiltonian

The eigenvalues of the effective Hamiltonian of a two-level system excited by radiation,

Ĥeff =

(
0 1

2Ω
1
2Ω ∆− ı

2Γ

)
, (16.191)

describe possible effects of line broadening and/or displacement due to coupling,

E± = 1
2

(
∆− ı

2Γ
)
± 1

2

√(
∆− ı

2Γ
)2

+Ω2 . (16.192)

The real parts of the eigenvaluesReE describe shifts and/or splittings of the transition
line. The imaginary parts ImE describe broadening effects of the lines.

In the simplest case, ∆ = 0 and Γ > 4Ω, we find the saturation broadening already
discussed in (16.152), and we will deepen it in Exc. 16.7.3.2. For the case Γ < 4Ω,
we observe a splitting of the line called Autler-Townes splitting, which will be studied
in Exc. 16.7.3.1. If Ω ̸= 0, the spectrum becomes asymmetrical. In the case of weak
excitation, Γ≫ 4Ω, we observe a shift of the transition line with dispersive dependence
(near the resonance) on the frequency of the incident radiation. This is the dynamic
Stark shift (or light shift). In the case of strong excitation, Γ ≪ 4Ω, we observe
again at the split spectrum, but now the two lines exhibit an avoided crossing-type
dependence on the radiation frequency. We study these effects in Excs. 16.4.4.12 and
Exc. 16.4.4.13.

Obviously, these effects can be studied by the Bloch equation formalism containing
the terms of spontaneous relaxation.

16.4.4 Exercises

16.4.4.1 Ex: Stationary solution of the Bloch equations

Derive the stationary solution of the Bloch equations including spontaneous emission.
How does the spectrum ρ22(∆) change in the presence of phase noise, γ = Γ

2 + β, in

particular if β ≫ Γ
2 ?

16.4.4.2 Ex: Detuning-dependent phase-shift of the dipole moment

Calculate the phase-shift of the dipole moment with respect to the driving field across
resonance.

16.4.4.3 Ex: Determinant of the Bloch matrix

In Sec. 14.2.1 we already saw that det ρ̂ = 0 for conservative systems. Now, show
explicitly for the Bloch matrix of a two-level system, that det ρ̂ = 0 only holds in the
absence of spontaneous emission.

16.4.4.4 Ex: Density operator with dissipation

Discuss the phenomenon of dissipation at the example of
a. a thermal sample of two-level systems |i⟩ = |1⟩, |2⟩ characterized by the density

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EstacionariaBloch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EstacionariaBloch1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DeterminanteBloch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DissipacaoDensidade.pdf
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operator ρ̂ = |i⟩⟨i| ⊗ |v⟩⟨v|, where |v⟩ is the velocity state of the atom and
b. a two-level atom coupled to a radiation field, ρ̂ = |i⟩⟨i| ⊗ |n⟩⟨n|, where |n⟩ is the
number of photons inside the mode.

16.4.4.5 Ex: Bloch vector

A two-level atom with decay rate Γ = 2π× 6MHz be excited by a light field detuned
by ∆ = 2Γ and whose intensity is a quarter of the saturation intensity. Write down
the Bloch vector for t→∞.

16.4.4.6 Ex: Purity of two-level atoms with spontaneous emission

Calculate for a driven two-level atom in the stationary limit Tr ρ̂ and Tr ρ̂2.

16.4.4.7 Ex: Bloch sphere

Check the temporal evolution of the norm of the Bloch vector defined by
ρ⃗ ≡ (2 Reσ+ , 2 Imσ− , σz), where the σk are the Pauli matrices, for a resonantly
excited two-level system with and without spontaneous emission.

16.4.4.8 Ex: Atomic beam

An atomic beam is illuminated perpendicular to its propagation direction by (quasi-
)monochromatic, collimated laser pulses having the intensity I = 1W/cm2, the wave-
length λ = 780 nm, and the duration 200 ns. The laser is tuned to the center of an
atomic resonance line (Γ/2π = 6MHz).
a. How does the population of the upper atomic state develop?
b. How does the dynamics change, when the light is detuned by 100MHz?

16.4.4.9 Ex: Solution of the Bloch equations for resonant excitation

Derive the solution (16.156) of the Bloch equations with spontaneous emission for
resonant excitation.

16.4.4.10 Ex: Solution for the susceptibility

Show that the solution of Eq. (16.165) is given by the result (16.170).

16.4.4.11 Ex: General form of the master equation

Show that the general form of the master equation: ˙̂ρ = − ı
ℏ [Ĥ, ρ̂]− Γ

2 (2σ̂ρ̂σ̂
+−σ̂+σ̂ρ̂−

ρ̂σ̂+σ̂), reproduces the Bloch equations including spontaneous emission.

16.4.4.12 Ex: Light-shift

Calculate the light-shift in a driven two-level system from the effective Hamiltonian,

Ĥeff =

(
0 1

2Ω
1
2Ω ∆− ı

2Γ

)
.

Prepare spectra of the eigenvalues for Γ/Ω = 0, 0.5, and 2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_VetorBloch2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_PurezaBloch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EquacaoBloch01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_FeixeAtomico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EstacionariaBloch2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_Transiclassica01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EquacaoMestre.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_LightShift1.pdf
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16.4.4.13 Ex: Light-shift

In this exercise we study the effect of the dynamic Stark shift (or light shift) of the
energy levels of a two-level system |1⟩ and |2⟩ excited by a laser with the Rabi fre-
quency Ω12 and the detuning ∆12:
a. From the eigenvalues E1,2 of the effective Hamiltonian (16.191) system, find approx-
imations for weak coupling (Ω12 ≪ Γ12) and strong coupling (Ω12 ≫ Γ12). Prepare a
graph showing the eigenvalue spectrum (separating the parts ReE1,2 and ImE1,2) as
a function of detuning ∆12 for various values of Ω12. Also search for approximations
valid for large detunings ∆12 ≫ Γ12,Ω12 and add them to the graph.
The light shift can be experimentally measured in a three-level system in Λ-configuration,
as illustrated in Fig. 16.7(a). To reproduce the experiment by numerical simulations
of the Bloch equations (16.238),
b. write the Liouville matrixMred reduced by the condition to the trace (16.243) and
calculate the stationary Bloch vector from equation (16.245) varying the detunings
of the two lasers ∆12 and ∆23. Choosing the parameters Γ23 = Γ12, Γ13 = 0.01Γ12,
Ω12 = 2Γ12, and Ω23 = 0.2Γ12, prepare a 3D curve [similar to Fig. 16.3(a)] of the
stationary population ρ22(∞). Interpret the results.

16.4.4.14 Ex: Line broadening by phase noise and optical repumping

a. For a two-level system calculate ρ22 as a function of detuning ∆ and a phase noise
rate β added to the coherence decay rate Γ/2, such that γ = Γ/2 + β.
b. Check that incoherent optical pumping from the ground into the excited state
introduces a transverse decay rate R leading to line broadening, and plot ρ22 as a
function of detuning ∆ and the pump rate R.

16.4.4.15 Ex: Superradiant decay upon fast switch-off

We consider a laser-driven two-level system having reached steady-state and want to
study the population decay as a function of the switch-off time of the driving laser
light. In certain parameter regimes (low saturation and large detuning) the population
decay is found to be faster than Γ, when the switch-off time is chosen on the order
of Γ−1 [34]. Simulate the evolution of the population as a function of switch-off time
and interpret the observations.

16.5 Line broadening mechanisms

The resolution of atomic spectroscopy is generally limited by several perturbative
effects, many of them originating in the atomic motion. They manifest themselves as
broadening and/or shifts of atomic resonances. Free atoms, as well as atoms confined
in potentials, have kinetic energy and evolve on extended phase space trajectories.
If the spatial localization is less than the effective cross section of the exciting laser
beam, then the interaction time is limited and the resonance lines are broadened by
the Fourier effect in a process called transit time broadening, and the efficiency of
fluorescence collection is reduced. The same happens with the Doppler effect: Only
those atoms that have a specific velocity along the optical axis defined by the laser

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_LightShift.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_Repumping.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SwitchOffDecay.pdf
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beam can interact. Free as well as confined atoms can only scatter when they are in
specific cells of the phase space.

There are two different fundamental types of broadening. The so-called homo-
geneous broadening affects all atoms in the same way regardless of their positions or
velocities. It usually gives rise to Lorentzian line profiles and can be incorporated into
the Bloch equations by a simple modification of relaxation rates. Examples are the
natural linewidth, saturation broadening, collision broadening, or phase noise induced
by laser fluctuations.

The so-called inhomogeneous broadening is due to a displacement of atomic levels,
which may be different for each atom. Averaging over a large sample of atoms, the
displacements generate an effective broadening usually with a Gaussian line profile. It
can not be included in the single-atom Bloch equations, but only as an average over all
trajectories of all atoms. It does not correspond to an accelerated relaxation. Inhomo-
geneous broadening is often due to external perturbations, e.g., Doppler broadening
and broadening due to temporal fluctuations or spatial inhomogeneities of external
electric or magnetic fields. In Exc. 16.5.6.1 we calculate the optical density of atomic
clouds. In Exc. 16.5.6.2 we present a spectroscopic technique bypassing the Doppler
broadening called Doppler-free spectroscopy and calculate the Lamb-dip profile. Fi-
nally, in Exc. 16.5.6.3, we discuss a cooling technique allowing for the reduction of
Doppler broadening, called Zeeman slower.

16.5.1 Saturation broadening

Eq. (16.152) shows that when the power of the incident light increases, the population
of the excited state saturates at a limit value of ρ22 = 1

2 . The saturation parameter
defined in (16.153) measures the degree of saturation. When the narrowband light
source is tuned to resonance, the saturation parameter is basically a measure for the
ratio between the stimulated population transfer rate Ω and the spontaneous decay
rate A21. We can rewrite the stationary population of the excited level as in (16.154).
In resonance and with the saturation parameter s = 1, we obtain

Ω = 1√
2
Γ . (16.193)

We can use equation (16.193) to define the saturation intensity Isat for an atom with
the transition dipole d12. From Eq. (1.41) we have,

E0 =

√
2Ī

ε0c
. (16.194)

Therefore, using the definition of the Rabi frequency, ℏΩ = d12E0, and the relationship
between d12 and Γ given by Eq. (16.41), we have 11,

Isat =
g1
g2

2π2cℏ
3λ30

Γ , (16.195)

taking into account the degeneracies gj of the levels. In Excs. 16.5.6.4 and 16.5.6.5
we calculate the saturation intensity of popular atomic transitions.

11Some authors define the saturation for s = 2, as happens when Ω = Γ.
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16.5.2 Collision broadening

The theory of atomic collisions covers a large area of research, including elastic and
inelastic, reactive and ionizing processes. In low-pressure gases at room temperature
or hotter we need only consider the simpler processes: long-range van der Waals
interactions that result in elastic collisions. The ’low pressure’ criterion requires that
the average free path between collisions be greater than any linear dimension of the gas
volume. Under these conditions, collisions can be modeled with straight trajectories,
along which the interaction time is short and the time between collisions is long in
comparison with the radiative lifetime of the excited atomic state. Then, the impact
of a collision on the emission of a radiating atom causes a loss of coherence due to a
phase interruption of the excited state atomic wavefunction. The term ’elastic’ means
that the collision does not disturb the populations of the internal states, so we only
need to consider the off-diagonal elements of the density matrix,

dρ12
dt

= ı
Ω0

2
eı(ω−ω0)t(ρ11 − ρ22)− γ′ρ12 , (16.196)

where γ′ is the sum of the spontaneous emission γ and the collision rate γcol,

γ′ = γ + γcol . (16.197)

The inverse of the collision rate is simply the time between phase interruptions or the
time between collisions. Now, for collisions between hard cores of atoms of mass m
(with reduced mass mred = m/2) and with radius ρ in a gas with density n consisting
of a single species, a standard analysis based on the kinetic theory of dilute gases
shows that the time between collisions is given by the collision rate,

γcol = τ−1
col = σnv̄ , (16.198)

where v̄ =
√

8kBT
πmred

is the average collision velocity in a homogeneous gas at the

temperature T and σ =
√
8πρ2 the collision cross section. Thereby,

γcol =
8ρ2n√

mred/πkBT
. (16.199)

We can now relate this simple result of gas kinetics to the phase interruption
rate by reinterpreting the meaning of the collision radius. When an excited atom
propagating through space suffers a collision, the long-range interaction will produce
a time-dependent perturbation of the energy levels of the radiating atom and a phase
shift in the radiation,

η =

∫ ∞

−∞
[ω(t)− ω0]dt =

∫ ∞

−∞
∆ω(t)dt . (16.200)

The long-range van der Waals interaction is expressed by,

∆E = ℏω =
Cn

[b2 + (vt)2]n/2
, (16.201)
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where b is the impact parameter of the collision trajectory and v the collision velocity.
The phase shift is then

η =
1

ℏ

∫ ∞

−∞

Cn
[b2 + (vt)2]n/2

dt . (16.202)

The integral is easily assessed for the two most frequent cases: non-resonant van der
Waals interactions n = 6 and resonant van der Waals interactions n = 3. The phase
shifts are,

η6(b) =
2π

3ℏ
C6

b56v
and η3(b) =

4π

3
√
3ℏ

C3

b23v
. (16.203)

Now, if instead of using the hard core approximation, we define a collision as an
encounter causing a phase shift of at least 1 radians, we have a new condition for the
collision radius,

b6 =

(
2π

3ℏ
C6

v

)1/5

and b3 =

(
4π

3
√
3ℏ
C3

v

)1/2

. (16.204)

Replacing these collision radiuses for the radius ρ in Eq. (16.199) and inserting the
average collision velocity, we find the collision rate,

γc6 = 4n

(√
2π2C6

3ℏ

)2/5(
4πkBT

µ

)
and γc3 = 4n

(
2

3

)3/2(
π2C3

ℏ

)3/10

.

(16.205)
Substituting the generalized γ′ of (16.197) for γ in the Bloch equations (16.151), we
find the stationary solutions,

ρ22 =

1
4
γ′

γ |Ω|2

∆2 + 1
2
γ′

γ |Ω|2 + γ′2
and ρ12 = eı(ω−ω0)t

1
2Ω(∆− ıγ′)

∆2 + 1
2
γ′

γ |Ω|2 + γ′2
. (16.206)

The effective linewidth (radiative and collisions) is,

Γ′
eff = 2

√
γ′2 + 1

2
γ′

γ |Ω|2 . (16.207)

When the excitation is sufficiently weak, so that power broadening can be neglected
in comparison to collision broadening, the second term can be discarded,

Γ′
eff = 2(γ + γcol) . (16.208)

The equations (16.152) and (16.208) express the linewidths in the limits of dominating
power and collision broadening, respectively. Note that the susceptibility, absorption
coefficient, and absorption cross-section retain their Lorentzian profile, but with a
larger width due to collisions. Since each atom is subject to the same broadening
mechanism, the broadening is homogeneous. Solve Excs. 16.5.6.6.

16.5.3 Doppler broadening

The Doppler broadening is simply the apparent frequency distribution of a sample of
radiating atoms at temperature T . The contribution of each atom to the radiation
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appears detuned by the Doppler shift because of its velocity. The frequency shift for
a non-relativistically moving particle is ω = ω0/(1− v

c ), such that,

∆ ≡ ω − ω0 ≃ ω0
v

c
= k · v = kvz , (16.209)

where k is the wavevector of the light and v is the velocity of the atom. This dis-
tribution of Doppler shifts of a gaseous sample in thermal equilibrium follows the
probability distribution of velocities,

P (vz)dvz ∝ e−mv
2
z/2kBT dvz = e−mc

2∆2/2ω2
0kBT c

ω0
dω . (16.210)

This frequency distribution is a Gaussian centered at ω = ω0 and with the width,

FWHM = 2ω0

(
2kBT ln 2

mc2

)2

. (16.211)

A measure of the width is also the standard deviation,

2σ =
2ω0

c

√
kBT

m
=

FWHM

1.177
. (16.212)

From Eq. (16.210) we can see that the line profile is,

D(ω − ω0) ≡
1√
2π

m

kBT
e−(ω−ω0)

2/2σ2

dω . (16.213)

The profile compares with the Lorentzian profile Eq. (1.73) associated with natural,
power, or collision broadening. Doppler broadening is a property of the atomic en-
semble, each atom suffering a unique but different displacement than the other atoms.
Hence, it is called inhomogeneous broadening.

The Liouville equation (16.104) used to derive the Bloch equations assumes im-
mobile atoms. However, we can easily apply the Galilei transformation to a system,
where the atoms move with the given velocity v,

(∂t + v · ∇)ρ̂(r, t) = − ı
ℏ [Ĥ, ρ̂(r, t)] . (16.214)

Since the light fields propagate as eı(ωt−k·r), the solution of the above equation simply
follows from the immobile solution with the substitution ∆→ ∆− k · v. For a cloud
obeying Maxwell’s velocity distribution, P (v) ∼ e−mv2/kBT ,

ρ̄(∆) =
1√
2πσ

∫

R
e−(k·v)2/2δ2 ρ̂(∆− k · v)d(k · v) . (16.215)

The average of the density operator over all velocities, ρ̄, therefore follows as the
convolution of the density operator ρ (obtained as the solution of the Bloch equation)

and the Gaussian function G(∆) = (2πσ2)−1/2e−∆2/2σ2

,

ρ̄(∆) = (G ⋆ ρ̂)(∆) . (16.216)
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16.5.4 Voigt profile

It is clear that in many practical circumstances homogeneous and inhomogeneous
processes simultaneously contribute to the broadening of lines. In these cases, we
can consider that the radiation of each atom, homogeneously broadened by phase-
interruption processes (such as spontaneous emission or collisions), is displaced by
the Doppler effect within the Maxwell-Boltzmann distribution corresponding to the
temperature T . The profile of the gaseous sample, therefore, is a convolution of
homogeneous and inhomogeneous profiles. The resulting profile is called Voigt profile:

V (ω − ω0) =

∫ ∞

−∞
L(ω − ω0 − ω′)D(ω − ω0)dω

′ (16.217)

=
γ

2σ
√
2π

∫ ∞

−∞

e−(ω−ω0)
2/2σ2

(ω − ω0 − ω′)2 + (γ/2)2
dω′ .

This integral has no analytical solution, but it is easy to solve numerically. Resolve
Excs. 16.5.6.7, 16.5.6.8, and 16.5.6.9.

16.5.5 Bloch equations with phase modulation

In some situations, the atom vibrates thus producing an oscillating Doppler shift.
Also, external magnetic fields or oscillating laser frequencies can produce this effect.
We incorporate this temporal modulation (frequency Ωa) of the light frequency shifts,
induced by the Doppler effect, into the optical Bloch equations via the substitution
[742],

∆ij → ∆ij + kij · v cosΩat . (16.218)

The Bloch equations can then be brought into the form,

˙̂ρ = (L+ 2X cosΩat)ρ̂+ b , (16.219)

where the matrix X contains the modulation index of the atomic motion kijv. The
stationary solution of the differential equation, averaged over the time of an oscillation
period, can be expressed as an infinite continuous fraction:

ρ̂(∞) = −(L+ S+ + S−)−1b (16.220)

where S± = −X 1

L± ıΩa1−X 1
L±ıΩa1−X 1

···X
X

.

This solution replicates the correct excitation spectra even for a multilevel system.
Let us be more specific for a two-level system. In this case the Hamiltonian is

given by Ĥint =
1
2ℏΩe

−ı[ωt−k·v/Ωa sinΩat], such that the Bloch equation is,ρ̇22ρ̇12
ρ̇21

 =


 −Γ − ı

2
Ω ı

2
Ω

− ı
2
Ω −Λ 0

ı
2
Ω 0 −Λ∗

+ 2 cosΩat

0 0 0

0 − ı
2
kv 0

0 0 ı
2
kv



ρ22ρ12
ρ21

+

 0
ı
2
Ω

− ı
2
Ω

 .

(16.221)

We look for the stationary solution by expanding ρ̂ =
∑∞
n=−∞ ρ̂ne

−ınΩat, letting
˙̂ρn = 0, and projecting on e−ınΩat via,

(L+ ınΩa1)ρ̂n +X(ρ̂n+1 + ρ̂n−1) + bδn0 = 0 . (16.222)
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Now we define ρ̂n±1 = S±ρ̂n for n ⋛ 0. Then, equation (16.222) becomes,

ρ̂0 = −[L+X(S+
0 + S−

0 )]
−1b for n = 0, (16.223)

S±
n∓1 = −[L+ ınΩa1+XS±

n ]
−1b for n ≷ 0 .

Substituting the equation below into the equation above,

ρ̂0 = −
[
L+

( −X|
|L+ ıΩa

+
−X|

|L+ 2ıΩa
+ . . .

)
+

( −X|
|L+ ıΩa

+
−X|

|L+ 2ıΩa
+ . . .

)]−1

b .

(16.224)
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Figure 16.4: (code) Spectral broadening due to the periodic movement of the atom.

16.5.6 Exercises

16.5.6.1 Ex: Optical density of a cold cloud

The cross section of an atom with the resonant frequency ω0 moving with velocity v
and irradiated by a laser beam of frequency ω is,

σ(v) =
6π

k2
Γ2

4(ω − ω0 − kv)2 + Γ2
.

The normalized one-dimensional Maxwell distribution,

ρ(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv .

a. Calculate the absorption profile of the resonance line at 461 nm (Γ461 = (2π) 30.5 MHz)
of a strontium gas cooled to the Doppler limit (kBTD = ℏΓ) of this transition.
b. Calculate the absorption profile of the resonance line at 689 nm (Γ689 = (2π) 7.6 kHz)
of a strontium gas cooled to the Doppler limit of the transition at 461 nm.
c. Compare the optical densities in case of resonance.
Help: To evaluate the convolution integral approximate the narrower distribution
by a δ-function maintaining the integral over the distribution normalized.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Micromotion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NuvemFria.pdf
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16.5.6.2 Ex: Saturated absorption spectroscopy

Saturated absorption spectroscopy is a technique to avoid Doppler broadening. The
setup, shown in Fig. 16.5, consists of a cell filled with a rubidium gas (resonance
frequency ω0 = ck = 2πc/780 nm, decay rate Γ = (2π) 6MHz) and two laser beams
with the same frequency ω but counterpropagating, one called saturation and another
called probe. The one-dimensional and normalized Maxwell velocity distribution is,

ρ(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv .

The gas is at T = 300K, where the partial pressure of rubidium is around P =
10−1 mbar. The length of the cell is L = 10 cm. The probe laser has an intensity
below the saturation limit, such that the cross section of an atom moving at velocity
v is,

σ(v) =
6π

k2
Γ2

4(ω − ω0 − kv)2 + Γ2
.

The saturation laser has high intensity. We suppose here, Ω ≡ 10Γ, where Ω is the
frequency of Rabi caused by the saturation beam. In this way it creates a population
Ne of atoms in the excited state. As this population lacks in the ground state,
Ng = N −Ne, the absorption of the probe beam is decreased by the factor,

Ne
N

=
Ω2

4(ω − ω0 + kv)2 + 2Ω2 + Γ2
.

To obtain the laser probe transmission spectrum, first calculate the optical density,
OD(ω) = Ln

∫∞
−∞

Ng−Ne

N σ(v)ρ(v)dv where n is the gas density, and then the intensity

of light transmitted through the cell using the Lambert-Beer law I
I0

= e−OD.

Figure 16.5: Scheme of saturation spectroscopy.

16.5.6.3 Ex: The Zeeman slower

Consider a tube through which passes a collimated beam of atoms, all having the
same initial velocity v = v0. In the opposite direction to the atomic motion travels
a collimated and monochromatic light beam with frequency ω = kc. The absorption
rate for photons by an atom has a Lorentzian profile, which can be written as:

W (v) =
W0

2π

Γ2

(ω − ω0 + kv)2 + (Γ/2)2
,

where Γ is the natural width of the spectral line at ω0, and W0 is a constant. The
frequency of the light is tuned in order to compensate for the Doppler effect at the
beginning of the tube, δ = ω − ω0 = −kv0 (the light is tuned to the red of the
resonance). As the atoms are decelerated, they cease to be resonant with the light

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_AbsorcaoSaturada.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DesaceleradorZeeman.pdf
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beam and fail to absorb photons. This can be avoided by employing the so-called
Zeeman-slowing technique, which compensates for the effect using the Zeeman-shift
induced by magnetic fields. In this exercise, we will study what happens if this
technique is not used.
a. For an atom with velocity v, write an expression for the mean travel distance

Figure 16.6: Zeeman slower scheme.

∆s(v) before it absorbs a photon as a function of the parameters Γ, v0, k, and W0.
(The mean time it takes to absorb a photon is W (v)−1).
b. The velocity of the atom as a function of the number of absorbed photons is
vn = v0 − nℏk

m , the second term being the recoil due to the absorption of a single
photon. The average total distance traveled by an atom after absorbing N photons
is estimated by:

S =

N∑

n=0

∆s(vn) ≃
∫ N

0

∆s(vn)dn .

Calculate the average distance required for the atoms to be slowed down to v = 0
(ignoring the Doppler limit). Write the expression as a function of Γ, v0, k, and W0.
Help: Do the following change of variables to simplify the evaluation of the integral:
n→ v.
c. Typically, the detuning of the light, |δ| = kv0, is much larger than the natural
width Γ of the transition. What happens to S in the limit when kv0 ≫ Γ? Interpret
this result, justifying the need for the Zeeman-slowing technique.

16.5.6.4 Ex: Saturation intensity

Calculate the saturation intensity for the sodium transition 3s 2S1/2, F = 2 ←→
3p 2P3/2, F

′ = 3. The natural width of the transition is Γ/2π = 9.89MHz and the
wavelength λ = 590 nm.

16.5.6.5 Ex: Saturation intensity of an octupole transition

Calculate the saturation intensity for the 2S1/2-
2F7/2 transition in Yb+-ions (neglect-

ing the Zeeman substructure) at λ = 467 nm (decay time τ = 8a) and the Rabi
frequency, when the transition is resonantly driven by a laser beam of P = 10mW
power focused into a w0 = 20µm waist.

16.5.6.6 Ex: Pressure broadening

At what pressure the collision broadening [given by the expression (16.199)] between
sodium atoms in the ground state dominates the width of the D2-transition at ambient
temperature. The natural width of the D2-line is Γ/2π = 6MHz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_IntensidadeSaturacao.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_IntensidadeSaturacao02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_AlargamentoColisoes1.pdf
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16.5.6.7 Ex: Optical density of a hot cloud

Calculate and draw the effective Lorentz profile, Gauss profile and Voigt profile for
the resonance line at 461 nm (Γ = (2π) 32MHz) of a strontium gas heated to the
temperature 400C and the pressure P = 10−4 mbar inside a 15 cm long cell.

16.5.6.8 Ex: Rate equations as a limiting case of Bloch equations

We show in this exercise that, in the limit Γ ≫ Ω, we can derive, from the Bloch
equations, the Einstein rate equations. Proceed as follows:
a. Apply the condition ρ̇12 = 0 to the Bloch equations for a two-level system (16.151),
determine ρ12(∞), and replace this stationary value in the equations for the popu-
lations ρkk(t) using, as an abbreviation, the transition rate R ≡ γs, where s is the
saturation parameter (16.153).
b. Integrate the rate equations over the entire spectrum, i.e. ∆ ∈ [−∞,∞], and derive
Einstein’s equations using the relations (16.7), (16.41), and (16.42).

16.5.6.9 Ex: Blackbody radiation-induced transitions

Blackbody radiation induces incoherent transitions (see Exc. 16.5.6.8). Show that the
Lindbladian of the master equation,

˙̂ρ = Lbbρ̂ = −R2
(
[ρ̂σ̂, σ̂†] + [σ̂, σ̂†ρ̂]

)
− R+Γ

2

(
[ρ̂σ̂†, σ̂] + [σ̂†, σ̂ρ̂]

)

reproduces the Einstein rate equation for Γ = 2A12 and R = B12u(ω).

16.5.6.10 Ex: Lorentzian versus Gaussian line profile

Beyond what detuning is a Doppler-broadened transition dominated by the Lorentzian
profile of the transition?

16.6 Bloch equations for multi-level systems

The two-level system represents an idealization of the real atom, since at least one of
the levels is usually degenerate. Many important phenomena in quantum optics are
not found in this system, but conditioned to the existence of a third level. Examples
are optical pumping (essential for laser operation), quantum jumps or dark resonances
[which are at the basis of the phenomenon of electromagnetically induced transparency
(EIT)].

To derive the Bloch equations for atoms with several levels excited by several
lasers and coupled to free space (i.e. without external cavity), we can use the same
master equation (16.185), but with a generalized Hamiltonian in the semiclassical

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NuvemQuente.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TaxasBloch.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TaxasBlackbody.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_LorentzGauss.pdf
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approximation 12 and a Lindblad operator,

Ĥatom =
∑
i ℏωiσ̂jiσ̂ij =

∑
i |i⟩ℏωi⟨i|

Ĥatom:field = ℏ
2Ωij (e

−ıωijtσ̂ij + eıωijtσ̂ji) =
∑
i<j |i⟩ℏ2Ωij⟨j|eıωijt + c.c.

Ldecayρ̂ = Lγ + LR + Lβ

Lγ =
∑
i,j γij

(
[σ̂ij , ρ̂σ̂

†
ij ] + [σ̂ij ρ̂, σ̂

†
ij ]
)

LR =
∑
i,j Rij

(
[σ̂†
ij , ρ̂σ̂ij ] + [σ̂†

ij ρ̂, σ̂ij ]
)

Lβ =
∑
i,j 2βij

(
[σ̂ij σ̂

†
ij , ρ̂σ̂ij σ̂

†
ij ] + [σ̂ij σ̂

†
ij ρ̂, σ̂ij σ̂

†
ij ]
)

.

(16.225)

Here, σ̂ij ≡ |i⟩⟨j| = σ̂†
ji. The constants Rij are eventual incoherent pump rates due

to optical pumping, βij take account of homogeneous broadening, e.g. due to finite
laser linewidths. The levels have the energy ℏωi above the ground level. The Rabi
frequency Ωij is a measure for the force at which the levels |i⟩ and |j⟩ are coupled
by the resonantly irradiated light field. The master equation can be simplified by
applying the rotating wave approximation and transforming to the coordinate system
which rotates with the light frequencies ωij :

ρij → ρ̂ije
ıωijt , Ĥatom:field → e−ıĤt/ℏĤatom:fielde

ıĤt/ℏ . (16.226)

16.6.1 Liouville equation for many levels

The indices for the atomic levels are joined to a single index, such that the master
equation takes a simpler form after having introduced a Liouville operator:

ρ̂ = (...ρk...) ≡
∑

i,j
|i⟩ρij⟨j| , (16.227)

˙̂ρ = Lρ̂,

ρ̂ = eLatomtρ̂0 .

The relation with the von Neumann equation with Ĥ =
∑
i,j |i⟩Hij⟨j| and ρ̂ =∑

k,l |k⟩ρkl⟨l| and σ̂ij = |i⟩⟨j| is:

Latomρ̂ = − ı
ℏ [Ĥ, ρ̂] = −ı

∑
k,l,j

Hklρlj |k⟩⟨j|+ ı
∑

k,l,j
Hljρkl|k⟩⟨j| . (16.228)

For example, for the two-level system with the definition of the external product
(1.226):

Latomρ̂ = −ıĤ ⊗ Iρ̂+ ıI⊗ Ĥρ̂ . (16.229)

The relaxation terms for spontaneous decay obtained from (16.225) are,

Ldecayρ̂ =
∑

i,j,k
(2γjiδkjρii − γijρkj − γikρkj) |k⟩⟨j| . (16.230)

12That is, the atom is quantized and consists of several levels |i⟩ with energies ℏωi, while the light
fields are described by factors eıωijt, with frequencies ωij tuned near the transitions |i⟩ − |j⟩.
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Example 95 (Liouville equation for two levels): For example, for the two-
level system,

Latom =


2γ11 0 0 2γ21
0 0 0 0

0 0 0 0

2γ12 0 0 2γ22

−

2(γ11 + γ12) 0 0 0

0
∑

(kj) γ(kj) 0 0

0 0
∑

(kj) γ(kj) 0

0 0 0 2(γ22 + γ21)

 .

Here, we consider (kj) = (11 12 21 22) as a single index.

16.6.1.1 Derivation of the multilevel Bloch equation

Now, inserting the Hamiltonian in the RWA,

Ĥ = Ĥatom + Ĥatom:field =
∑

i

ℏωi|i⟩⟨i|+ ℏ
2

∑

i<j

Ωij σ̂ij + h.c. , (16.231)

into the von Neumann equation together with the dissipative Lindbladian (16.230)
and ρjk ≡ ⟨j|ρ̂|k⟩, we derive the multilevel master equation,

ρ̇jk =
ı

ℏ
⟨j|[ρ̂, Ĥ]|k⟩+ ⟨j|Ldecayρ̂|k⟩ . (16.232)

First we calculate the unperturbed Hamiltonian part,

⟨k|[ρ̂, Ĥatom]|m⟩ = ℏ⟨k|ρ̂
∑

a

|a⟩⟨a|
∑

i

ωi|i⟩⟨i|m⟩ − ℏ⟨k|
∑

i

ωi|i⟩⟨i|
∑

a

|a⟩⟨a|ρ̂|m⟩

= ℏ(ωm − ωk)ρkm . (16.233)

For the interaction part we get,

⟨k|[ρ̂, Ĥatom:field]|m⟩ (16.234)

= ℏ
2

∑
a

∑
i<j

[
⟨k|ρ̂|a⟩⟨a|

(
Ωij |i⟩⟨j|+Ω∗

ij |j⟩⟨i|
)
|m⟩ − ⟨k|

(
Ωij |i⟩⟨j|+Ω∗

ij |j⟩⟨i|
)
|a⟩⟨a|ρ̂|m⟩

]
= ℏ

2

∑
i<j

(
Ωijρkiδjm +Ω∗

ijρkjδim − Ωijρjmδki − Ω∗
ijρimδkj

)
,

and for the dissipative part,

⟨k|Ldecayρ̂|m⟩ = ⟨k|
∑

i,j

γij(2|i⟩⟨j|ρ̂|j⟩⟨i| − |j⟩⟨i|i⟩⟨j|ρ̂− ρ̂|j⟩⟨i|i⟩⟨j|)|m⟩ (16.235)

=
∑

j

2γmjδkmρjj −
∑

i

(γik + γim)ρkm .

So all in all,

ρ̇km = 2
∑

j

γmjρjjδkm −
[∑

i

(γik + γim) + ı(ωk − ωm)

]
ρkm

+ ı
2

∑

i<j

(
Ωijρkiδjm +Ω∗

ijρkjδim − Ωijρjmδki − Ω∗
ijρimδkj

) , (16.236)
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where the index j runs over all levels |j⟩ into which a population ρkk can decay and
the index i runs over all levels |i⟩ into which the levels |k⟩ and |m⟩ of a dipole moment
ρkm can decay. In Exc. 16.6.5.1 we will apply this formula to three-level systems.

Finally, the master equation can be reformulated by introducing a generalized
Bloch vector ρ⃗, and the matrix representation of the Liouville superoperator L as a
linear system of n2 coupled differential equations,

d

dt
ρ⃗ =Mρ⃗ , ρ⃗ = (ρ11 ... ρnn ρ12 ρ21 ... ρn−1 n ρn n−1) , (16.237)

where the Bloch matrixM is obtained from the Liouvillean L simply by rearranging
the matrix elements.

Alternatively to the complex formulation, the differential equations can be written
for the real and imaginary part of the Bloch vector. The components ρii correspond
to the population probabilities of the levels |i⟩, the non-diagonal elements ρij describe
the coherences between |i⟩ and |j⟩. Now, we must insert the Hamiltonian (16.225)
and the density operator ρij into the Liouville equation (15.6) in order to derive the
generalized Bloch equations. In practice, these calculations are simple but heavy.
Therefore, we describe in Sec. 16.6.4 a simplified recipe for compiling Bloch equations
for arbitrary level systems for real atoms.

16.6.2 Bloch equations for three levels

In principle, three-level system can exist in there possible configurations, shown in
Fig. 16.7. Note that it is not possible to describe a three-level system with all levels
pairwise coupled by three lasers within the formalism of Bloch’s equations 13.

Figure 16.7: Three level system (a) in Λ-configuration, (b) in V -configuration, and (c) in
cascade configuration.

Defining the Bloch vector by ρ⃗, the Bloch equation matrix for three levels in
Raman configuration (that is, in Λ-configuration) using the labeling of Fig. 16.7(a),

13For the same reason that the three-body problem has no general analytic solution.
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is,

˙⃗ρ =Mρ⃗ = (16.238)


0 Γ12 Γ13
ı
2
Ω12 − ı

2
Ω12 0 0 0 0

0 −Γ12 − Γ23 0 − ı
2
Ω12

ı
2
Ω12 0 0 ı

2
Ω23 − ı

2
Ω23

0 Γ23 −Γ13 0 0 0 0 − ı
2
Ω23

ı
2
Ω23

ı
2
Ω12 − ı

2
Ω12 0 −Λ12 0 ı

2
Ω23 0 0 0

− ı
2
Ω12

ı
2
Ω12 0 0 −Λ∗

12 0 − ı
2
Ω23 0 0

0 0 0 ı
2
Ω23 0 −Λ13 0 − ı

2
Ω12 0

0 0 0 0 − ı
2
Ω23 0 −Λ∗

13 0 ı
2
Ω12

0 ı
2
Ω23 − ı

2
Ω23 0 0 − ı

2
Ω12 0 −Λ23 0

0 − ı
2
Ω23

ı
2
Ω23 0 0 0 ı

2
Ω12 0 −Λ∗

23







ρ11
ρ22
ρ33
ρ12
ρ21
ρ13
ρ31
ρ23
ρ32




with Λmn = ı∆mn + γmn and,

∆13 = ∆12 −∆23 (16.239)

γ12 = 1
2 (Γ12 + Γ23) , γ23 = 1

2 (Γ12 + Γ23 + Γ13) , γ13 = 1
2Γ13 .

In Exc. 16.6.5.2 we will derive the matrix (16.238).
The coherent terms of the same matrix can be used for the V - and the cascade

configurations shown in Figs. 16.7(b,c). Obviously, the incoherent terms, that is, the
submatrix 3 × 3 separated in the matrix (16.238) containing the population decay
rates must be adjusted, as well as the decay rates of the coherences on the diagonal.
Finally, the definition of the Raman detuning ∆13 must be adjusted. For the system
in V -configuration we have,

Mincoh =



−Γ12 − Γ13 0 0

Γ12 0 Γ23

Γ13 0 −Γ23


 , ∆13 = ∆12 −∆23 (16.240)

γ12 = 1
2 (Γ12 + Γ13) , γ23 = 1

2Γ23 , γ13 = 1
2 (Γ12 + Γ13 + Γ23) .

For the cascade system we have,

Mincoh =



0 Γ12 Γ13

0 −Γ12 Γ23

0 0 −Γ13 − Γ23


 , ∆13 = ∆12 −∆23 (16.241)

γ12 = 1
2Γ12 , γ23 = 1

2 (Γ12 + Γ23 + Γ13) , γ13 = 1
2 (Γ13 + Γ23) .

These matrices serve to describe quantitatively a wealth of phenomena, some of
them to be discussed in Sec. 16.7.

16.6.3 Numerical treatment of Bloch equations

Since the differential Bloch equations are linear, they can be easily solved. For exam-
ple, the prescription

ρ⃗(t) = eMtρ⃗(0) (16.242)

propagates the Bloch vector to later times.
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The matrix M is not invertible, but by applying the condition Tr ρ = 1, a com-
ponent of the density matrix can be eliminated, for example by letting,

ρ11 = 1−
∑

k

ρkk . (16.243)

The resulting state vector, ρ⃗red, has the length n2 − 1, and from M we obtain the
(trace-)reduced, now invertible matrix Mred and the inhomogeneity vector b. The
differential equation is now,

d

dt
ρ⃗red =Mredρ⃗red + b , (16.244)

with the stationary and time-dependent solutions,

ρ⃗red(∞) = −M−1
redb , ρ⃗red(t) = eMredtρ⃗red(0) + (1− eMredt)ρ⃗red(∞) .

(16.245)
Once the matrix M or the matrix Mred and the inhomogeneity vector b are deter-
mined for a system, the state of the atom can be calculated at any time, as well as the
populations and coherences. The system’s free parameters are the natural transition
linewidths and the detunings, as well as the intensities and emission bandwidths of
the incident light fields.

16.6.3.1 Simulation of the Schrödinger and Bloch equation

Once we have written the solution of the Schrödinger equation in the form (1.244) with
a time-independent Hamiltonian Ĥ, or of the Bloch equations in the form (16.242)
or (16.245) with a time-independent LiouvillianM, we can easily simulate temporal
evolutions of quantum systems. If the Hamiltonian or Liouvillian depend on time, for
example, when the Rabi frequencies are pulsed or the detunings are ramped, we must
solve the equations iteratively. That is, we chose time intervals ∆t sufficiently short,
so that the Hamiltonian (or the Liouvillian) can be considered constant during this
interval, and we propagate the wavefunction (or the Bloch vector) to later times via:

|ψ(t+∆t)⟩ = eıĤ(t)∆t|ψ(t)⟩ or ρ⃗(t+∆t) = eM(t)∆tρ⃗(t) , (16.246)

and insert the solution obtained again into equations (16.246) with the Hamiltonian
Ĥ(t+∆t) (or the LiouvillianM(t+∆t)) adjusted to the new time.

16.6.4 General rules for setting up multilevel Bloch equations

The canonical way of deriving multi-level Bloch equations starts from a von Neumann
equation for the total density operator for the atom embedded in the electromagnetic
mode structure of the environment including incident laser beams. After tracing
over the degrees of freedom of the electromagnetic vacuum and using the Markov
and the Born approximations [303], one arrives at a master equation of the form
(16.225). Simple but tedious algebraic transformations of the master equation lead,
in the rotating wave approximation, to a set of linear first-order differential equations
in the populations of the atomic excitation levels and the coherences between them.
The equations are called the optical Bloch equations.
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Alternatively, the Bloch equations may be found by breaking down the multi-level
scheme into a set of three-level systems. Respecting a few symmetry considerations,
the multi-level Bloch equations can then be reassembled from the three-level Bloch
equations corresponding to every possible combination of three levels. Based on such
considerations, we provide in the following a simple recipe for setting up Bloch ma-
trices for arbitrary level schemes. A movie showing a simulation of multi-level Bloch
equations for Li atoms can be watched under the following link: (watch movie).

Let us regard a N -level atom. Its internal state is fully described by the popu-
lations ρkk and the (complex) coherences ρkl, with k, l = 1, .., N . In this work we
describe the coherences by their real and imaginary parts. The labeling is such that
the levels are sorted according to their excitation energy, Ek < El for k < l. We
define the Bloch vector,

ϱ⃗ ≡ (ρ11...ρNN ρ12 ρ21 ρ13 ρ31...ρ1N ρN1 ρ23 ρ32...ρN−1,N ρN,N−1) . (16.247)

The Bloch equations then formally read,

˙⃗ϱ =Mϱ⃗ , (16.248)

where in the given Bloch vector basis the matrixM has the following structure,

M =




(A) (B)

(−B†)

(
(C) (D)

(D) (C)

)

 . (16.249)

The different blocks of the matrix have the following significations. Block A han-
dles the transfer of populations by spontaneous decay. Its rank corresponds to the
number of levels N . The diagonal elements of this block are the decay rates Γ of the
excited states. The off-diagonal elements Γkl denote the gain of level k from a decay-
ing level l. Conservation of energy thus requires that the sum of the transition rates
cancels for every column of matrix A, Γ =

∑
k Γkl, as it is the case for the two-level

Bloch matrix. If the levels are sublevels of a Zeeman and/or hyperfine split multiplet,
the rates have to be weighted with Wigner’s (3j) and {6j} symbols, Γkl = ΓSkl. The
relative oscillator strengths Skl are given in Sec. 16.6.4.2.

The blocks B treat the interdependence of the populations and the coherences.
B describes how the coherence between any pair of states driven by a light field
generating a Rabi frequency Ωkl influences the populations. The block consists of
convoluted 2× 2 matrices of the form,

(
ρ̇kk
ρ̇ll

)
∼
(

ı
2Ωkl − ı

2Ωkl
− ı

2Ωkl
ı
2Ωkl

)(
ρkl
ρlk

)
. (16.250)

B2 describes how the populations in turn influence the coherences,

(
ρ̇kl
ρ̇lk

)
∼
(

ı
2Ωkl − ı

2Ωkl
− ı

2Ωkl
ı
2Ωkl

)(
ρkk
ρll

)
. (16.251)

The Rabi frequencies have to be weighted not only with the relative oscillator strength
Skl, but also with the projection Hkl of the laser polarization onto the orientation

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/LM_Bloch_Li_MultiLevelBloch_Movie.mp4
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of the magnetic field and the laser polarization, Ωkl = ΩxSklHkl. Here Ωx is the
Rabi frequency generated by a laser on a transition, whose oscillator strength is 1.
The projection is calculated in Sec. 16.6.4.3 for the three possible laser polarizations,
i.e. for σ± and for π light.

The matrix C rules the influence of the decays of the coherences, of the detunings
∆kl = ωx − ωatom, and the laser linewidths βkl. Note that the detuning of the laser
frequency ωx is negative for red-detuned light. In the chosen basis it breaks down
into an array 2× 2 matrices aligned along the diagonal ofM. Their shape is,

(
ρ̇kl
ρ̇lk

)
∼
(−γkl

2 − ı∆kl 0

0 −γkl

2 + ı∆kl

)(
ρkl
ρlk

)
. (16.252)

where γkl =
∑
m,Em<Ek,El

(Γkm + Γlm) + 2βkl. Often the levels are sublevels of a
Zeeman and/or hyperfine split multiplets. In this case the frequency shift Zkl of the
level is added to the detuning ∆kl. The shift is calculated in Sec. 16.6.4.4 for the
example of the 6Li D2 line.

The block D governs the interdependences of all laser-driven coherences of the
atom. The block contains 2 × 2 submatrices at any place of the matrix M, where
the row index pair (mn) and the column index pair (kl) have one index in common
provided the two different indices correspond to the Rabi frequency of an incident
laser, (

ρ̇mn
ρ̇mn

)
∼
(± ı

2Ωkl
0 ± ı

2Ωkl

)(
ρpq
ρpq

)
. (16.253)

The submatrix elements indexed by column (pq) and row (mn) are non-zero if one
of the indices p or q is equal to one of the indices m or n and the unequal indices
correspond to a laser-driven transition. In order to find the correct signs of the
submatrix elements, we distinguish four cases:

1. For m = p, n = k, and q = l the signs are: (− +);

2. for n = q, m = k, and p = l the signs are: (+ −);

3. for m = q, n = k, and p = l the signs are: (+ +); and

4. for n = p, m = k, and q = l the signs are: (− −).

A proper parametrization is proposed in the next section.

16.6.4.1 Recipe for D transitions in alkalines

In order to give a simple algorithm we parametrize the particular choice of sorting the
components of the vector, we define a new index µ running from 1 to N2 by setting
(ϱµ) ≡ (ρkl), where,

µ(k, l) = kδkl+(2Nk−N−k2−k+2l−1)δk<l+(2Nk−N−k2−k+2l)δk>l , (16.254)

so that,

ϱµ(k,k) = ρkk , ϱµ(k,l) = ρkl , ϱµ(k,l)+1 = ρlk . (16.255)
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The Bloch equations then formally read,

ϱ̇µ =Mµνϱν . (16.256)

Let us now study the case of a multiplet G of ground states coupled by various light
fields to a multiplet E of excited states.

Example 96 (Lithium D2 line): To illustrate the procedure we may have in

mind the case of the 6LiD2 line with 6 ground states k ∈ G ≡ {1, ..., 6} belonging
to the 2S1/2 hyperfine levels F = 1

2
, 3
2
and 12 excited states k ∈ E ≡ {7, ..., 18}

belonging to the 2P3/2 hyperfine levels F = 1
2
, 3
2
, 5
2
.

According to the parametrization (16.248) block A of the matrixM is filled with
the following components,

Mµ(k,k),µ(k,k) = ΓSklδk∈Gδl∈E − Γδklδk∈E , (16.257)

where the relative oscillator strengths Skl will be given by Eq. (16.262).

Block B of the matrixM is filled with the components,

Mµ(k,k),ν(k,l) = −Mµ(l,l),ν(k,l) (16.258)

= −2Mµ(k,l),ν(k,k) = 2Mµ(k,l),ν(l,l)

= −ΩklSklHkl ,

for k ∈ G and l ∈ E. The projection onto the quantization axisHkl = Hkl

(
ϵ̂kl

|ϵ̂kl| , B⃗,ml −mk

)

is given by Eq. (16.265).

Block C contains the components,

Mµ(k,l)µ(k,l) =M∗
µ(l,k)µ(l,k) (16.259)

= −
∑

m∈G

ΓSml

2 δk∈Gδl∈E

−βpbδ2<k<7 − βrpδk≤2

−ı∆pbδk>2 − ı∆rpδk<3 + ıZkl(B)

for k ∈ G ∪ E and l ∈ E. βpb and βrp are the laser linewidths of probe and pump
lasers. ∆pb and ∆rp are the detunings of the probe and pump lasers from their
respective transitions in the absence of Zeeman splitting. The Zeeman shift Zkl is
given by Eq. (16.266).

Finally, the block D is filled with the components,

Mµ(k,f),µ(f,l)+1 = (δf<k − 1
2 )ΩklSklHkl (16.260)

Mµ(k,f)+1,µ(f,l) = (δl<f − 1
2 )ΩklSklHkl

Mµ(l,f),µ(f,k)+1 = (δl<f − 1
2 )ΩklSklHkl

Mµ(l,f)+1,µ(f,k) = (δf<k − 1
2 )ΩklSklHkl ,
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where,

Ωkl ≡ (Ωrpδk≤2 +Ωpbδk≥3)δl≥7 (16.261)

ϵ̂kl ≡ (ϵ̂rpδk≤2 + ϵ̂pbδk≥3)δl≥7 .

for k ∈ G ∪ E and l ∈ E and f ∈ G ∪ E but f ̸= k, l. The projection onto the

quantization axis Hkl = Hkl

(
ϵ̂kl

|ϵ̂kl| , B⃗,ml −mk

)
is given by Eq. (16.265).

The Eqs. (16.257)-(16.260) form together an algorithm to generate the matrix
allowing one to numerically solve the Bloch equations (16.256), as has been done in
the main text.

16.6.4.2 Relative forces of oscillators

Spontaneous transitions between hyperfine- and Zeeman split levels have to be weighted
according to the Wigner-Eckardt theorem using Clebsch-Gordan (3j) and Wigner
{6j} symbols. Consider the transition |(Jk, I)Fk,mk⟩ ↔ |(Jl, I)Fl,ml⟩. The relative
oscillator strength is,

Skl =

(
Fk κ Fl
mk sign (ml −mk) −ml

)2{
Jl Jk κ

Fk Fl I

}2
(2Fk + 1)(2Jl + 1)(2κ+ 1)

2I + 1
.

(16.262)

16.6.4.3 Elliptical laser polarization

The transition rates additionally depend on the relative orientation of the laser po-
larizations and the magnetic field direction. This dependence is accounted for by
decomposing the polarization vector into the,

ê3 =
B⃗
B

, ê2 =
ê3 × ĝ

|ê3 × ĝ| , ê1 =
ê2 × ê3
|ê2 × ê3|

, (16.263)

where ĝ is an arbitrarily chosen direction, e.g. gravity. The relative amplitude of the
transitions ∆mJ = 0 is proportional to the projection of the polarization vector on
the magnetic field axis ζ0 = (ε̂ · ê3)2 for π-polarized light. To estimate the amplitude
of the transitions ∆mJ = ±1, we must project onto the coordinates,

ê± = 1√
2
(∓ê1 − ıê2) , (16.264)

and we obtain ζ±1 = (ε̂ · ê±)2 for σ±-polarized light. Hence,

Hkl = ζ∆mJ
= ζml−mk

. (16.265)

With this generalization the Bloch equations can e.g. be employed to calculate
Hanle resonances quantum mechanically. The Hanle effect occurs when a magnetic
and an optical field compete for the quantization axis.
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16.6.4.4 Hyperfine and Zeeman splitting

The nuclear spin of the 6Li atom is I = 1, its electron spin is S = 1
2 . The excitation

states are characterized by quantum numbers Jk, Fk,mk. The electron angular orbital
momentum is Lk = δk≥7, and the electron angular orbital momentum is Jk = 1

2δk≤6+
3
2δk≥7. The hyperfine structure of the excited state 2P3/2 can be written as νhf1 =
−2.8MHz, νhf2 = 0MHz, and νhf3 = 1.7MHz. Hence, the hyperfine splitting is
inferior to the natural decay rate Γ = (2π) 6MHz,

Zkl =
µB|B⃗|
2πℏ (gFk

mk − gFl
ml) + νhf1δ7≤l≤8 + νhf2δ8≤l≤13 + νhf3δ13≤l≤16 , (16.266)

where gFk
is the Landé factor of hyperfine level Fk.

16.6.5 Exercises

16.6.5.1 Ex: Derivation of three-level Bloch equations

Derive from the general formula (16.236) the three-level Bloch equations for the sys-

tem |1⟩ Ω12←→ |2⟩ Ω23←→ |3⟩.

16.6.5.2 Ex: Bloch equations for three levels

An excited Λ-shaped atom consists of two ground states |1⟩ and |3⟩, which are coupled
by two lasers with Rabi frequencies and detunings Ω12 and ∆12 respectively Ω23 and
∆23 through an excited level |2⟩. Derive the Bloch equations from this system from
the general master equation.

16.6.5.3 Ex: Adiabatic elimination

Derive the effective two-level Bloch equations for a Λ-type three-level system adia-
batically eliminating the excited state under the Raman condition. Help: Start from
the Liouvillean (16.238), set ρ22 = 0, assume Γ13 ≪ Γ12,Γ23 ≪ |∆12|, |∆23|, and
∆12 = −∆23.

16.7 Multi-level phenomena

The multi-level Bloch equations, and in particular the three-level Bloch equations
(16.238), allow for the theoretical description of many phenomena beyond the two-
level approximation. Among them are the phenomena of light shift treated in Excs. 16.4.4.12
and 16.4.4.13, the Autler-Townes splitting treated in Exc. 16.7.3.1, the dark resonances
treated in Excs. 16.7.3.3 to 16.7.3.6, the STIRAP method treated in Exc. 16.7.3.7, adi-
abatic sweeps treated in Exc. 16.7.3.8, the dispersive interaction between atoms and
light treated in Exc. 16.7.3.9, Fano resonance-type line profiles of dark resonances
treated in Exc. 16.7.3.10, and the quantum jumps, which will be studied in later chap-
ters. In Excs. 16.7.3.11 and 16.7.3.12 we will show, that an atomic gas may have
negative permittivity and negative permeability and, consequently, properties usually
only found in artificial metamaterials, as for example, a negative refractive index.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_MultiBloch00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_MultiBloch01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_MultiBloch02.pdf
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16.7.1 Electromagnetically induced transparency

In some special cases, the three-level Bloch equations can be solved analytically. The
system in Λ-configuration schematized in Fig. 16.7(a), where the two lasers satisfy
the condition ∆12 = ∆23 can exhibit a dark resonance leading to the phenomena of
electromagnetically induced transparency (EIT) and electromagnetically induced ab-
sorption. In these resonances a dramatic change of the refractive index is observed
despite the fact that the atom becomes transparent, Reχ≫ 0 and |Imχ| ≪ Reχ:

Ren =
√

1 +Reχ≫ 1 , (16.267)

resulting in a high group velocity,

vg =
c

n+ ω dndω
. (16.268)

EIT is usually studied in Λ-type systems, but similar phenomena can be found in
cascade-type systems [898, 883], which will be studied here. Disregarding the decay
rate Γ13, the Bloch equations (16.238) and (16.241) give the coherences,

ρ̇12 = −Λ12ρ12 +
ıΩ12

2 (ρ11 − ρ22)− ıΩ23

2 ρ13 (16.269)

ρ̇13 = −Λ∗
13ρ13 − ıΩ12

2 ρ23 − ıΩ23

2 ρ12

ρ̇23 = −Λ23ρ23 +
ıΩ23

2 (ρ22 − ρ33)− ıΩ12

2 ρ13 .

Assuming stationarity and negligible depletion of the ground state, ρ11 = 1,

0 = −Λ12ρ12 +
ıΩ12

2 − ıΩ23

2 ρ13 (16.270)

0 = −Λ∗
13ρ13 − ıΩ12

2 ρ23 − iΩ23

2 ρ12

0 = −Λ23ρ23 − ıΩ12

2 ρ13 .

Substituting the third into the first equation,

0 = −Λ12ρ12 +
ıΩ12

2 − ıΩ23

2 ρ13 (16.271)

0 = −Λ∗
13ρ13 − Ω2

12

4Λ23
ρ13 − ıΩ23

2 ρ12 .

and finally,

ρ12 =
ıΩ12

2

4Λ∗
13Λ23 +Ω2

12

Λ12 (4Λ∗
13Λ23 +Ω2

12) + Ω2
23Λ23

. (16.272)

The macroscopic polarization is now P = N
V d12ρ21, with the number of atoms N .

In the limit of weak probes, the dressed susceptibility follows from P = ε0χE12 =
N
V d12ρ21,

χ =
Nd12
V ε0E12

ρ21 =
N |d12|2
V ε0ℏΩ12

ρ21 . (16.273)

For a resonant probe laser, ∆23 = 0 and with Γ13 ≃ 0, we have Λ13 = 1
2Γ23 + ı∆12

and Λ23 = 1
2 (Γ23 + Γ12). The susceptibility in the probe transition is now, using
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Θ ≡ Γ23 +
Ω2

12

2Λ23
,

χ =
N |d12|2
V ε0ℏΩ12

ıΩ12
Γ23+

Ω2
12

2Λ23
−2ı∆12(

Γ23+
Ω2
12

2Λ23
−2ı∆12

)
(Γ12+2ı∆12)+Ω2

23

(16.274)

=
N |d12|2
V ε0ℏΩ12

ıΩ12
Θ− 2ı∆12

(Θ− 2ı∆12)(Γ12 + 2ı∆12) + Ω2
23

= χ′ + ıχ′′ .

Example 97 (EIT in a cascade system): We consider, for example, the
intercombination line of atomic strontium 1S0-

3P1 (λ12 = 689 nm and Γ12 =
(2π) 7.6 kHz) be the ’dressing’ transition 3P1-(5s4d)

3D1 (λ23 = 2700 nm and
Γ23 = (2π) 90.3 kHz), be the ’dressing’ transition 3P1-(5s5d)

3D1 (λ23 = 497 nm
and Γ23 = (2π) 2.3MHz), both characterized by Γ23 ≫ Ω12,Γ12, |∆12|, such
that Θ ≃ Γ23. Hence,

χ′ + ıχ′′ =
N |d12|2
V ε0ℏ

2∆12 + ıΓ23

Ω23
.

The refraction index follows with,

n =
√

1 + χ ≃ 1 + 1
2
χ .

Its imaginary part originates from the decay term of the atom: it is here respon-

sible for the absorbing nature of the cloud. EIT is characterized by a pronounced

dispersion and a small concomitant absorption.
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Figure 16.8: (code) EIT signal for the cascade system of strontium with the transitions at

689 nm and 497 nm with Ω12 = Γ12, Ω23 = Γ23 and ∆23 = 0. The red lines are calculated by

numerical integration of the Bloch equations. The dotted lines are obtained from analytical

formulas based on the assumptions of weak ground state depletion (which is not really correct

in the chosen parameter regime).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
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16.7.2 Polarization, alignment, and orientation

16.7.2.1 Polarization and helicity

Photons may have the angular momenta L̂, Ŝ, and Ĵ, but due to the fact that photons
have zero mass, only Ĵ is of importance. The helicity is defined as,

Ĵ · k = (L̂+ Ŝ) · k = Ŝ · k = ms = ±1 , (16.275)

in beam direction and the polarization is,

Ĵ · êz = mj = −j, ...j . (16.276)

Polarizers prepare the photon in its eigenstate. The angular momentum with respect
to Ĵ in a basis êz orthogonal to k is,

Ĵ · k|m⟩y = am|1⟩z + bm| − 1⟩z . (16.277)

The state |0⟩z does not exist. For example,

Ĵ · k|1⟩y = Ĵz
(
1
2 |1⟩z + ı|0⟩z − 1

2 | − 1⟩z
)
= 1

2 (|1⟩z + | − 1⟩z) . (16.278)

16.7.2.2 Orientation and alignment

A level |j⟩ with Zeeman degeneracy |jm⟩ can be irreducibly described by Cartesian
polarization tensors. Those are the orientation and the alignment [463, 810],

Oi ≡ ⟨Ĵi⟩

Aij ≡ 3
2 ⟨[Ĵi, Ĵj ]+⟩ − ⟨Ĵ2⟩δij

, (16.279)

with i, j = x, y, z. The expectation value is calculated as usual, ⟨...⟩ = Tr ρ̂... =∑
m⟨jm|ρ̂...|jm⟩. If Oi ̸= 0 then the system is said oriented, if Aij ̸= 0 the system is

said aligned and if either Oi ̸= 0 or Aij ̸= 0 then the system is said polarized.
The orientation and the alignment depend on the choice of the quantization axis

and on the Zeeman splitting of level |j⟩. Choosing z as quantization axis and disre-
garding Zeeman coherences ⟨m|ρ̂|m′⟩ ∼ δmm′ , we get the orientation,

O = ℏêz
∑

m

mρmm (16.280)

and the alignment,

(Aij) = −ℏ2j(j + 1)−



− 3

2 0 0

0 − 3
2 0

0 0 3


∑

m

ℏ2m2ρmm , (16.281)

if the atom is with certainty in level |j⟩ so that Tr ρ̂ = 1. These results will be derived
in Exc. 16.7.3.14.
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16.7.2.3 Hanle effect

The Hanle effect occurs when a magnetic and an optical field compete for the quan-
tization axis. Imagine an atom irradiated by a laser from direction k = kêx, linearly
polarized ε = êy and subject to a magnetic field B⃗ = Bêz. The fluorescence is detected
in direction êy through a linear polarizer [218]. If B = 0, no light is emitted into the
detector since the dipole radiation pattern is a torus with symmetry axis êy. If B is
now increased, the quantization axis is tilted and the torus slowly precesses about the
êx axis. Plotting the time-averaged fluorescence as a function of the magnetic field
B, we observe a dark resonance. These arguments are rather classical.

Quantum mechanically, Hanle resonances are easily calculated. The transition
rates additionally depend on the relative orientation of the laser polarization and
the magnetic field direction. This dependence is accounted for by decomposing the
polarization vector into the coordinates defined by,

ê3 =
B⃗
B , ê2 =

ê3 × ĝ

|ê3 × ĝ| , ê1 =
ê2 × ê3
|ê2 × ê3|

, (16.282)

where ĝ is an arbitrarily chosen direction, e.g. gravity. The relative amplitude of the
transitions ∆mJ = 0 is proportional to the projection of the polarization vector on
the magnetic field axis ζπ = (ε̂ · ê3)2. To estimate the amplitude of the transitions
∆m = ±1, we must project onto the coordinates,

ê± = 1√
2
(∓ê1 − ıê2) , (16.283)

and we obtain ζσ± = (ε̂ · ê±)2.

Example 98 (Hanle effect with rate equations): As long as the Zeeman
splitting is inferior to the atomic decay width, the Hanle effect can be de-
scribed without coherences, i.e. using only rate equations. Fig. 16.9 shows such
a simulation for the case of three ground Zeeman states |1⟩ = |g,m = +1⟩,
|2⟩ = |g,m = 0⟩, and |3⟩ = |g,m = −1⟩, and one excited state |4⟩ = |e,m = 0⟩.
The rate equations are,

ρ̇kk =Mρkk (16.284)

with M =


−Ω14 0 0 Ω14 +

1
3
Γ

0 −Ω24 0 Ω24 +
1
3
Γ

0 0 −Ω34 Ω34 +
1
3
Γ

Ω14 Ω24 Ω34 −Ω14 − Ω24 − Ω34 − Γ


and Ω14 = Ω34 = ζσ±Ω and Ω24 = ζπΩ .

In Exc. 16.7.3.15 we study the Hanle effect at the Ca+ Zeeman degenerate level

system.

16.7.3 Exercises

16.7.3.1 Ex: Autler-Townes splitting

In this exercise we study the Autler-Townes effect in a two-level system |1⟩ and |2⟩
resonantly excited (∆12 = 0) by a laser with the Rabi frequency Ω12:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_AutlerTownes.pdf
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Figure 16.9: (code) Hanle effect in a four-level system with three ground and one excited

state with ε̂ = êy and (a) Ω = 0.5Γ and (b) Ω = 5Γ.

a. From the eigenvalues E1,2 of the effective Hamiltonian (16.191) of the system,
describe the behavior of the real part (energy shift) and the imaginary part (linewidth)
as a function of the Rabi frequency. Prepare diagrams Ω12 versus ReE1,2 and versus
ImE1,2 and discuss the limits Ω12 >

1
2Γ12 and Ω12 <

1
2Γ12.

The Autler-Townes effect can be measured experimentally by probing the population
of level |2⟩ via excitation of a third (higher) level by a second laser with the Rabi
frequency Ω23. Thus, we obtain a three-level system in cascade configuration, as
shown in Fig. 16.7(c). In order to reproduce the experiment by numerical simulations
of the Bloch equations (16.238),
b. write down the Liouville matrixMred reduced by the trace condition (16.243) and
c. compute the stationary Bloch vector from equation (16.245) varying the detuning
of the probe laser ∆23 and the Rabi frequency Ω12 of the system under study (|1⟩ and
|2⟩). Choosing the parameters Γ23 = 0.5Γ12, Γ13 = 0.01Γ12, Ω23 = 0.1Γ12, prepare a
3D curve [similar to Fig. 16.3(a)] of the stationary population ρ22(∞). Interpret the
results.

16.7.3.2 Ex: Quantum Zeno effect and saturation broadening

In this exercise we study saturation broadening effect in a three-level system |1⟩, |2⟩,
and |3⟩ in V -configuration, as shown in Fig. 16.7(b), excited by two resonant lasers
with the Rabi frequencies Ω12 and Ω23.
a. From the eigenvalues E1,2 of the effective Hamiltonian (16.191) of the system,
describe the behavior of the real part (energy shift) and the imaginary part (linewidth)
as a function of the Rabi frequency. Prepare diagrams Ω12 versus ReE1,2 and versus
ImE1,2 and discuss the limits Ω12 >

1
2Γ12 and Ω12 <

1
2Γ12.

Saturation broadening can be measured experimentally in a three-level system in V -
configuration. To reproduce the experiment by numerical simulations of the Bloch
equations (16.238),
b. write down the Liouville matrix L of the system and calculate the time evolution
of the Bloch vector via equation (16.242) varying the Rabi frequency Ω12. Choosing
the parameters Γ23 = 0.01Γ12, Γ13 = 0.0001Γ12, Ω23 = 400Γ23, and ∆12 = 0 = ∆23,
prepare a 3D curve [similar to Fig. 16.3(a)] of the population ρ33(t) as a function of
time and the Rabi frequency Ω12.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Hanle4Level.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Hanle4Level.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EfeitoZeno.pdf
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c. Interpret the results in terms of broadening by saturation. The broadening can
also be understood in terms of the quantum Zeno effect, where the transition |1⟩-
|2⟩ plays the role of the ’observed system’ and the transition |2⟩-|3⟩ the role of the
measuring device or ’meter’ (for example, we can observe the light scattered on the
’meter transition’ to infer the evolution of the ’system transition’).

16.7.3.3 Ex: EIT and dark resonances

In this exercise we study so-called dark resonances, which are responsible for the
phenomenon of electromagnetically induced transparency (EIT). Such resonances are
observed in three-level systems |1⟩-|2⟩-|3⟩ in Λ-configuration, as shown in Fig. 16.7(a),
when the laser detunings are chosen so as to satisfy ∆12 = ∆23.
a. From the Bloch equations (16.238) show analytically that, in a stationary situation,
the population of the excited state is ρ22(∞) = 0 in the center of the dark resonance.
Dark resonances can be observed experimentally. To reproduce the experiment by
numerical simulations of the Bloch equations (16.238), write down the Liouville matrix
Mred reduced by the trace condition (16.242) and calculate the stationary Bloch
vector from equation (16.243) varying the detunings of the two lasers ∆12 and ∆23.
Choosing the parameters such that Γ23 = Γ12, Γ13 = 0.01Γ12, Ω12 = 2Γ12, and
Ω23 = 0.2Γ12, prepare a 3D curve [similar to Fig. 16.3(a)] of the population ρ22(∞).
Interpret the results.

16.7.3.4 Ex: Coherent trapping and dark states

Consider a three-level system |1⟩, |2⟩, and |3⟩ in Λ-configuration interacting with
two electromagnetic fields with frequencies ωa and ωb. The two states |1⟩ and |3⟩
of lower energies ℏω1 and ℏω3 are coupled to a state |2⟩ of higher energy ℏω2, as
illustrated in Fig. 16.7(a). Assume that the transition |1⟩ ↔ |3⟩ is forbidden and that
the Hamiltonian of the system has the form Ĥ = Ĥ0 + Ĥint where,

Ĥ0 = E1|1⟩⟨1|+ E2|2⟩⟨2|+ E3|3⟩⟨3|
Ĥint = −ℏ

2 (Ω12e
−ıωat|2⟩⟨1|+Ω∗

12e
ıωat|1⟩⟨2|)− ℏ

2 (Ω23e
−ıωbt|2⟩⟨3|+Ω∗

23e
ıωbt|3⟩⟨2|) .

a. Assuming that the system’s state is described by |ψ⟩ = c1|1⟩ + c2|2⟩ + c3|3⟩ find
the system of equations that describe the dynamics of probability amplitudes ci with
(i = 1, 2, 3).
b. Rewrite the equations for the case where the frequencies of the applied fields are
resonant (that is, ωa = ω2−ω1 and ωb = ω2−ω3). Simplify the system by writing in
terms of the variables ui = cie

ıωit.
c. Assuming the initial condition |ψ(0)⟩ = (|1⟩+|3⟩)/

√
2, solve the system of equations

for the resonant case and interpret the result.

16.7.3.5 Ex: Cascade EIT scheme in strontium

Consider the Bloch equations for the 88Sr 7-level system consisting of the following
levels: |1⟩ ≡ (5s2) 1S0, |2 − 4⟩ ≡ (5s5p) 3P1, and |5 − 7⟩ ≡ (5s5d) 3D1, and check
under which circumstances it is possible to observed dark resonances. The Sr level
scheme can be consulted under (Sr level scheme). The Liouvillean can be consulted
at (Sr Liouvillean).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_ResonanciasObscuras01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_ResonanciasObscuras02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_ResonanciasObscuras03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Sr_7BlochTransitions.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Sr_7BlochMatrix.pdf
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16.7.3.6 Ex: Dark resonances with Zeeman splitting

Calculate the dark resonance spectrum for the Ca+ three-level system with Zeeman
sub-structure consisting of the levels |1⟩ ≡ 2S1/2, |2⟩ ≡ 2P1/2, and |3⟩ ≡ 2D3/2 us-
ing optical Bloch equations. Help: The decay rates are Γ12/2π = 23MHz, Γ23/2π =
1.6MHz, and Γ13/2π = 1Hz. Assume that both incident lasers saturate the transi-
tions, Ω12 = Γ12 and Ω23 = Γ23.

16.7.3.7 Ex: STIRAP

In experiments with cold atoms it is often necessary to transfer populations between
ground states, for example, between specific levels of a hyperfine structure. One
possible procedure is the method of optical pumping, from the initial ground state
to an excited state, which subsequently decays to the final state by spontaneous
emission. The problem with this incoherent procedure is, that one can control into
which ground state level the atom will decay, and that it heats atoms due to the
photonic recoil associated with the scattering of light. In this exercise we studied an
alternative method, called Stimulated Raman Adiabatic Passage (STIRAP), which
allows the coherent transfer of population between two states by counter-intuitive
pulse sequences:
a. Consider a three-level system in Λ-configuration, as shown in Fig. 16.7(a), initially
being in the state |1⟩. Write the system’s Hamiltonian in the interaction picture.
Now, choose ∆12 = 0 = ∆23, and a temporal variation of the Rabi frequencies
described by Ω12(t) = Γ12(

1
2 + 1

π arctanΓ12t) and Ω23(t) = Γ12(
1
2 − 1

π arctanΓ12t).
With this, solve the Schrödinger equation (16.246) iteratively within the time interval
t ∈ [−40/Γ12, 40/Γ12], while continuously adjusting the Rabi frequencies.
b. The dynamics can also be calculated via a numerical simulations of the Bloch
equations (16.238). Write down the Liouville matrix and prepare a simulation using
the same parameters as in (b) and additionally Γ23 = Γ12/2, Γ13 = Γ12/500.
c. Interpret the results.

16.7.3.8 Ex: Adiabatic sweeps

In experiments with cold atoms it is often necessary to transfer populations between
ground states, for example, between specific levels of a Zeeman structure. One possible
procedure is the method of optical pumping, from the initial ground state to an excited
state, which subsequently decays to the final state by spontaneous emission. The
problem with this incoherent procedure is, that one can control into which ground
state level the atom will decay, and that it heats atoms due to the photonic recoil
associated with the scattering of light. In this exercise we study an alternative method,
called adiabatic sweep, which allows the coherent transfer of population between the
two outer states of a degenerate multiplet, as shown in Fig. 16.10, via an adiabatic
ramp of the frequency of the incident radiation:
a. Write down the Hamiltonian of the system in the interaction picture. Now, choose
Ω/2π = 8kHz and apply a linear ramp of the radiation detuning between −50 kHz <
∆(t)/2π < 50 kHz during a time interval of 2ms. With this, solve the Schrödinger
equation (16.238) iteratively varying the detuning.
b. Write down the Liouville matrix of the system and do a numerical simulation

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_ResonanciasObscuras04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TransicaoStirap.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_AdiabaticSweep.pdf
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of the Bloch equations (16.238) using the same parameters as in (a). Interpret the
results. What you observe when you introduce a decay rate between adjacent levels
of Γ/2π = 200Hz?

Figure 16.10: Energy levels of an atom in the ground state with Zeeman structure (for
example, |J = 1,mJ = −1, 0,+1⟩) as a function of the applied magnetic field.

16.7.3.9 Ex: Dispersive interaction between an atom and light

Radiation which is tuned far from a resonance can change the phase of an atomic
dipole moment without changing the populations 14. We study this effect in a three-
level system in cascade configuration excited by two radiation fields, as illustrated in
Fig. 16.7(c), simulating the Schrödinger equation and the Bloch equations.
a. Write down the Hamiltonian Ĥ for this system letting ∆12 = 0.
b. Now, consider the subsystem |2⟩-|3⟩, write down its Hamiltonian Ĥ23, determine
the eigenvalues, and assume that this transition be excited very far-off resonance.
That is, for ∆23 ≫ Ω23,Γ23 expand the eigenvalues of Ĥ23 up to second order in Ω23.
Finally, replace the submatrix Ĥ23 in the complete Hamiltonian Ĥ by the matrix
of the expanded eigenvalues. This procedure corresponds to treating the transition
|2⟩-|3⟩ as a perturbation of the transition |1⟩-|2⟩ until second order.
c. Assume that the atom is initially in the ground state and compute the time evo-
lution of the state via the Schrödinger equation (16.246) using (a) the perturbed
Hamiltonian and (b) the exact Hamiltonian for the following sequence of pulses:
(i) a π/2-pulse on the transition |1⟩-|2⟩,
(ii) a pulse with a variable duration between 0 and ∆t = Ω2

23/4π∆23 applied to the
transition |2⟩-|3⟩,
(iii) a π/2-pulse on the transition |1⟩-|2⟩. What you observe?
d. Establish the Liouville matrix L for the same system and calculate the time evolu-
tion of the Bloch vector during the sequence by the Bloch equations (16.246) choosing
the same parameters as in (c) and additionally Γ23 = 1, Γ13 = Γ23, Γ12 = 0.01Γ23,
and Ω12 ≫ ∆23,Γ23. Prepare a 3D curve [similar to Fig. 16.3(b)] of the population
ρ22(t). Interpret the results.

16.7.3.10 Ex: Fano profile of a dark resonance

The dark resonance studied in Exc. 16.7.3.3 may in some circumstances adopt an
asymmetric profile. Calculate, for a three-level system in Λ-configuration, as shown

14This type of interaction is used in the implementation of quantum gates in quantum computing.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_InteracaoDispersiva.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_FanoResonance.pdf
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in Fig. 16.7(a), starting from the Bloch equations (16.238) with the Liouville matrix
Mred reduced by the trace condition (16.242), the spectrum ρ22(∆23) for the following
set of parameters: Γ12 = 2, Γ23 = Γ12/2, Γ23 = 0.1Γ12, Ω12 = 10Γ12, Ω23 = 5Γ23,
∆12 = −5Γ12 and ∆23 = [−1 : .01 : 1]Γ23. Interpret the spectrum in terms of a Fano
resonance.

16.7.3.11 Ex: Gas with negative permittivity

Study EIT on the strontium cascade system consisting of the transitions 689 nm and
497 nm and draw a spectrum of the permittivity. Compare with the permittivity of the
689 nm two-level system. What densities are necessary to get a negative permittivity?

16.7.3.12 Ex: Gas with negative permeability

Theoretically, under certain conditions, gases may exhibit negative permittivity and
permeability, and therefore refraction [753, 751, 752, 630, 496]. To study this phe-
nomenon we consider a three-level system in Λ-configuration with an electric dipole
transition and another magnetic dipole transition. The objective is to balance the
electrical dipole moment excited by a probe laser and the magnetic dipole moment
excited via a Raman transition by both, the probe laser and a control laser. The
Raman transition simulates an effective magnetic field. Since the magnetic moment
is smaller by a factor of α2, the electric moment must be reduced by detuning the
probe laser, as shown in Fig. 16.11.

Figure 16.11:

a. Consider a three-level system in Λ-configuration. The transitions |1⟩-|2⟩ and
|2⟩-|3⟩ are assumed to be electric dipoles and |1⟩-|3⟩ a magnetic dipole, such that,
Γ12,Γ23 ≫ Γ13. Extract from the Bloch equation (16.238) the equations for the co-
herences ρ12, ρ13, and ρ23.
b. Suppose, that the excitation on the probe transition be so weak, Ω12 ≪ Γ12, that
it does not succeed to empty the ground state. In this approximation eliminate the
dynamics of ρ23 and deduce the stationary solution for ρ12 and ρ13.
c. Calculate the magnetic susceptibility χm [752] with the following parameters Γ12 =
7 · 107 s-1, Γ23 = 3 · 107 s-1, Γ13 = 2 · 107 s-1, Ω12 = 0.1Γ12, Ω23 = 2 · 108 s-1, ∆23 = 0
in the regime ∆12 = [−15Γ23, 15Γ23].
d. Simulate the Bloch equations (16.238) and compare with the numerical solution.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NegativeRefraction01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NegativeRefraction02.pdf
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16.7.3.13 Ex: Magnetic dipole transitions in strontium

Magnetic dipole transitions are characterized by the selection rules ∆J = 0,±1,
∆S = 0, ∆L = 0, and ∆n = 0. There are several transitions starting from the
5s5p 3PJ metastable states going to the 5p2 3PJ states with strong linewidths:

• 5s5p 3P o1 ↔ 5p2 3P2 at 472.2278 nm with Γ = (2π) 5.7MHz

• 5s5p 3P o1 ↔ 5p2 3P1 at 478.4320 nm with Γ = (2π) 4.8MHz

Check whether it is possible to reach negative permeability in a cold strontium gas.

16.7.3.14 Ex: Orientation and alignment

Derive the formulas (16.280) and (16.281).

16.7.3.15 Ex: Hanle effect in Ca

Simulate the Hanle effect for the Ca+ three-level system of Exc. 16.7.3.6 using optical
Bloch equations.

16.7.3.16 Ex: Control of saturation via quenching

In this exercise we study the possibility of ’quenching’ a narrow transition, i.e. homo-
geneously broadening its transversal decay width without affecting the longitudinal
one, with the goal of obtaining control over the saturation parameter on the narrow
transition by coupling it via a strong transition to a third level.
a. Set up the Bloch equations for the three-level cascade system sketched in Fig. 16.12.

Figure 16.12: Strontium level scheme with |1⟩ ≡ (5s2)1S0, |2⟩ ≡ (5s5p)3P1, and |3⟩ ≡
(5s6s)3S1.

b. Based on the assumptions Γ23 ≫ Γ12 ≫ Γ13 = 0 and tuning the control laser to
resonance, ∆23 = 0, calculate the diagonal elements Λij of the LiouvilleanM of the
Bloch equations.
c. Now, assume that the control laser be sufficiently weak not to deplete the state |2⟩.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NegativeRefraction03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_OrientAlign01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_Hanle01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_QuenchingControl01.pdf
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Neglecting ρ33 = 0 = ρ23 derive the reduced Bloch equations for the system ρ22, ρ12,
and ρ13 and solve it by ρ22.
d. Calculate the ’generalized saturation parameter’.
e. Recover the two-level saturation parameter in the limit Ω2

23 ≪ Γ12Γ13. Plot the
population ρ22 as a function of the saturation parameters s12 and s23.
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M.Ö. Oktel et al., Electromagnetically induced left-handedness in a dense gas of
three-level atoms [DOI]

P.P. Orth et al., Negative refraction with tunable absorption in an active dense gas
of atoms [DOI]

D.E. Sikes et al., Negative refraction using Raman transitions and chirality [DOI]

P. Shekhar et al., Strong Coupling in Hyperbolic Metamaterials [DOI]

http://doi.org/10.1103/PhysRevB.84.045107
http://doi.org/10.1109/TAP.2003.817553
http://doi.org/10.1103/PhysRevA.70.053806
http://doi.org/10.1088/1367-2630/15/1/013027
http://doi.org/10.1103/PhysRevA.84.053836
http://doi.org/10.1103/PhysRevB.90.045313


666 CHAPTER 16. SEMICLASSICAL THEORYOF LIGHT-ATOM INTERACTION



Chapter 17

Atoms in quantized radiation
fields

So far we have treated the light-atom interaction always assuming the light field as a
stationary or propagating classical wave, while our two-level atom has been regarded
as an entity obedient to the laws of quantum mechanics and subject to an induced
perturbation by an oscillatory electromagnetic field. This procedure naturally leads
to oscillations of the atomic states’ populations and the coherences between them.
However, in strong fields, when atomic energy spectrum is significantly modified, a
non-perturbative, time-independent approach can be fruitful. Time-independent solu-
tions for the Schrödinger equation for atoms coupled to fields is called dressed states.
They were used for the first time to interpret the splitting of rotational molecular
spectra in the presence of intense classical radiofrequency fields. While the semi-
classical treatment is suitable for a wide variety of phenomena and has the virtue of
mathematical simplicity and familiarity, it is sometimes worth considering the field
as a quantum entity as well. In the dressed states picture, the atom-field interaction
corresponds to an exchange of energy quanta between the field (photons) and the
atom. This approach allows us to express photonic number states, also called Fock
states, on equal footings with the discrete states of atom excitation and to write the
state functions of the coupled atom-field system in a basis of photonic and atomic
product states. Diagonalization of the dipole coupling terms in the system’s Hamilto-
nian generates time-independent solutions of dressed states in a completely quantum
Schrödinger equation.

We begin this chapter expressing the atom-field interaction in a fully quantized
form. We will examine some examples illustrating how the dressed states picture can
provide useful information on the light-matter interactions.

17.1 Interaction of quantized fields with atoms

17.1.1 Hamiltonian for interaction of quantized fields with atoms

With the results of the previous section the complete field Hamiltonian reads,

Ĥfield =
∑

k

ℏωk(â
†
kâk + 1

2 ) . (17.1)
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Now, that we have a clear picture of the quantized field with the energies in the
modes given by Eq. (14.9) and the photon number states given by the eigenstates |n⟩
of the quantized harmonic oscillator, we are in a position to consider our two-level
atom interacting with this quantized radiation field. If for the moment, we exclude
spontaneous emission and stimulated processes, the Hamiltonian of the combined
atom-field system is,

Ĥ = Ĥatom + Ĥfield + Ĥatom:field . (17.2)

We describe the atom by a two-level system,

Ĥatom = ℏωg|g⟩⟨g|+ ℏωe|e⟩⟨e| = ℏωg|g⟩⟨g|+ ℏ(ωg + ω0)|e⟩⟨e| , (17.3)

where Ĥfield is the Hamiltonian of the quantized field, expressed by Eq. (14.6), and
Ĥatom:field the atom-field interaction. For the Hamiltonian without interaction, Ĥ =
Ĥatom + Ĥfield, the eigenstates are simply product states of the atomic states and the
photon number states,

|g, n⟩ = |g⟩|n⟩ and |e, n⟩ = |e⟩|n⟩ . (17.4)

The left side of Fig. 17.1 shows, how the eigenenergies of the product states consist of
two ladders, being displaced by the energy difference ℏ∆, which corresponds to the
detuning. We write the Hamiltonian of the atom Eq. (17.3) as the sum of projectors
on unperturbed eigenstates using the completeness relation and the orthogonality
of eigenstates. With the same idea we can rewrite the dipole operator defined in
Eq. (16.33),

d̂ =
∑

i

|ψi⟩⟨ψi|d̂|
∑

j

|ψj⟩⟨ψj | =
∑

i,j

|i⟩⟨i|eı(ωi−ωj)td̂|j⟩⟨j| (17.5)

=
∑

i,j

eı(ωi−ωj)tdij |i⟩⟨j| =
∑

i<j

eı(ωi−ωj)tdij |i⟩⟨j|+ e−ı(ωi−ωj)tdij |j⟩⟨i| ≡ d̂(+) + d̂(−) .

using |ψn(t)⟩ = e−ıωnt|n⟩. Note that d̂ only has non-diagonal elements.
Now, let us use the electric field of Eqs. (14.8) to describe the atom-field interaction

through the Hamiltonian Ĥatom:field = −d̂ · ˆ⃗E ,

Ĥatom:field = ı
∑

k

∑

i,j

√
ℏωk

2ε0V
dije

ı(ωj−ωi)t|i⟩⟨j| · ϵ⃗k
[
âke

−ı(k·r−ωkt) − â†keı(k·r−ωkt)
]
.

(17.6)
For our two-level atom interacting with a single mode radiation field, we only have,

Ĥatom:field = ı
√

ℏωk

2ε0V
dge

[
eı(ωe−ωg)t|g⟩⟨e|+ eı(ωg−ωe)t|e⟩⟨g|

]
· (17.7)

·⃗ϵk
[
âke

−ı(k·r−ωkt) − â†keı(k·r−ωkt)
]
.

17.1.1.1 Rotating wave approximation for dressed states

We can simplify the notation by identifying σ̂+ = |e⟩⟨g| and σ̂− = |g⟩⟨e| of the
Eqs. (16.124) and introducing as an abbreviation the Rabi frequency,

1
2ℏΩ1(r) ≡

√
ℏωk

2ε0V
dge · ϵ⃗keık·r . (17.8)
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Figure 17.1: (Left) Photons number states and the two stationary states of the two-levels
atom. (Center) Double ladder showing the basis of products states of photon number and
atomic states. (Right) Dressed states constructed by diagonalization of the full Hamiltonian
in the basis of the product states.

The interaction Hamiltonian then becomes,

Ĥatom:field = ı
2ℏΩ1(r)e

ı(ωk−ω0)tσ̂+âk + ı
2ℏΩ1(r)e

ı(ωk+ω0)tσ̂−âk (17.9)

− ı
2ℏΩ

∗
1(r)e

−ı(ωk+ω0)tσ̂+â†k − ı
2ℏΩ

∗
1(r)e

−ı(ωk−ω0)tσ̂−â†k .

This Hamiltonian contains four terms describing the following processes 1,

|g, n⟩ −→ |e, n− 1⟩ the atom is excited by the absorption of a photon;

|e, n⟩ −→ |g, n− 1⟩ the atom is deexcited by the absorption of a photon;

|g, n⟩ −→ |e, n+ 1⟩ the atom is excited by the emission of a photon;

|e, n⟩ −→ |g, n+ 1⟩ the atom is deexcited by the emission of a photon.

Obviously, only the first and forth terms respect energy conservation (in first-order
processes) and can serve as initial and final states in real physical processes. Fig. 17.3
shows schemes of these four terms. We see, that neglecting the second and third
process (i.e., terms ∝ σ̂±â± of the Hamiltonian) is equivalent to making the rotating
wave approximation (RWA), where we despise the terms rotating with the frequency
±(ωk + ω0), and that we really only need to consider the coupling between the two
dressed states |g, n⟩ and |e, n− 1⟩.

Finally, within the RWA the Hamiltonian reads,

Ĥatom:field = ı
2ℏΩ1(r)e

−ı∆ktσ̂+âk − ı
2ℏΩ

∗
1(r)e

ı∆ktσ̂−â†k , (17.10)

where we introduced the detuning ∆k ≡ ωk − ω0 as short hand notation.

1Remember that the four processes contained in the Hamiltonian are all coherent (absorption and
stimulated emission), and that spontaneous emission must be treated separately see next Sec. 17.4.
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Figure 17.2: Two-level atom interacting with a cavity mode.

It is important to note that the first and fourth term can be important in higher
order processes, such as multiphotonic absorption or Raman scattering processes,
where the excited state would be a virtual level. In fact, when the Rabi frequency
is very large, Ω1 ≃ ω, the excitation and deexcitation processes follow each other so
rapidly, that energy conservation can be violated for short times. The energy shift
caused by terms neglected in the RWA are called Bloch-Siegert shift 2.

17.1.2 Dressed states

Within the new dressed states basis, the atom-light coupling problem is reduced to
diagonalizing the Hamiltonian of a quasi-degenerate two-level atom (|∆| ≪ ω0), in
which the non-diagonal elements are given by 1

2ℏΩ1. The eigenenergies of the complete

Hamiltonian Ĥ are,
E± = ℏ

2 (ωg,n + ωe,n−1)± ℏ
2Gn . (17.11)

where ℏωg,n and ℏωe,n−1 are the energies of the product states ℏωg + nℏωk and
ℏωe + (n − 1)ℏωk. The separation between constituents of the same dressed state is
Gn =

√
nΩ2

1 +∆2. Fig. 17.4 illustrates how the coupling between a field mode and a
two-level atom leads to an avoided crossing.

Figure 17.3: Illustration of the four processes in the atom-field interaction. Terms (b) and
(c) conserve energy in first-order processes, while (a) and (d) do not conserve.

The atom-field product states offer a natural basis for the Hamiltonian of Eq. (17.2).

2The shift is not observed, when the non-rotating terms σ±a± are forbidden by other conservation
or selection rules. For example, when a resonance is excited by σ± light, the RWA is accurate.
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The states resulting from the diagonalization of the Hamiltonian on this basis are
called dressed states. As indicated in Fig. 17.1, the neighboring doublets the double
ladder ’repel’ each other under the influence of the interaction Ĥatom:field in Eq. (17.2).
The mixed coefficients form the familiar problem of two levels, now called |a⟩ and |b⟩.
Note that the semiclassical product state picture and the dressed states picture follow
from each other via unitary transformation,

(|a,N⟩
|b,N⟩

)
= U

( |g, n⟩
|e, n− 1⟩

)
, (17.12)

and, hence, are equivalent descriptions of the same reality. But while in the product
state picture the system Hamiltonian is diagonal in the absence of atom-light inter-
action, in the dressed states picture the Hamiltonian is diagonal in the presence of
interaction. The numbers n denote the amount of photons in the laser beam, the num-
bers N denote the amount of energy packets within the system, that is, the photons
plus the possible excitation of the atom. The expression of the unitary transformation
matrix will be derived in Sec. 17.2.1.

Figure 17.4: (a) Rabi splitting of the lowest dressed states. (b) Avoided crossing of dressed
states.

17.1.3 Dipole moments for vector transitions

Until now, we restricted to transitions between two levels without accounting for
their possible substructure, which interacts with the vectorial nature of the driving
light fields. Resuming the discussion of Sec. 16.2.3, we generalize the treatment of
the preceding section considering a two-level atom with an arbitrary hyperfine level
substructure |g, (I, J)F,m⟩ ↔ |e, (I, J ′)F ′,m′⟩. The Hamiltonian is,

Ĥ =
∑

α,β

ℏωgα|gα⟩⟨gα|+ ℏωeβ |gβ⟩⟨gβ | . (17.13)
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Generalizing the expression (17.5) to vectorial transitions, the electric dipole operator
reads,

d̂ =
∑

i,j

|i⟩⟨i|eı(ωi−ωj)td̂|j⟩⟨j| (17.14)

=
∑

α,β

|gα⟩⟨gα|eı(ωgα−ωeβ)td̂|eβ⟩⟨eβ |+ |eβ⟩⟨eβ |e−ı(ωgα−ωeβ
)td̂|gα⟩⟨gα| .

Example 99 (Vector transition in strontium): The simplest possible vec-
torial level scheme consists of one ground and three excited Zeeman states, such
as realized, for instance, in the strontium 1S0-

1P1 transition,

Ĥstrontium =
∑
β

ℏωeβ |gβ⟩⟨gβ | , (17.15)

setting ωga ≡ 0. For strontium, we may introduce the vectorial lowering operator
[228],

ˆ⃗σ = σ̂xêx+ σ̂yêy+ σ̂z êz with σ̂β = |g⟩⟨eβ | with β = x, y, z . (17.16)

In this case, the electric dipole operator reads,

d̂strontium =
∑
β

|g⟩⟨g|e−ıωeβtd̂|eβ⟩⟨eβ |+ |eβ⟩⟨eβ |eıωeβtd̂|g⟩⟨g| (17.17)

= d
∑
β

e−ıωeβt|g⟩⟨eβ |êβ + c.c. = de−ıωet ˆ⃗σ + c.c. ,

with ⟨g|d̂|eβ⟩ = dêβ and ωeβ = ωe.

17.1.4 Exercises

17.1.4.1 Ex: Converting a pure state into a mixture by incomplete
measurement

Consider a dressed two-level atom with the atomic states |1⟩ and |2⟩ and the photon
number state |n⟩.
a. Write down the general normalized dressed state and the density operator.
b. Now, perform a measurement of the atomic state tracing over the atomic degree of
freedom and verify whether the resulting density operator represents a pure state.
c. Now, perform a measurement of the photon number and verify whether the resulting
density operator represents a pure state.

17.2 The Jaynes-Cummings model

The Jaynes-Cummings model describes the dynamics of a single dressed two-level
atom in a single monochromatic laser mode in the absence of spontaneous emission
processes. The model, illustrated in Fig. 17.2 has become a paradigm of quantum me-
chanics with applications in quantum information, where it applies to the formulation
of entanglement protocols of atomic states and the implementation of quantum gates.
In the following, we will first study the interaction of an atom with an optical mode

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_DressedStatistics02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_DressedStatistics02.pdf


17.2. THE JAYNES-CUMMINGS MODEL 673

neglecting dissipation effects and leave the discussion on the impact of dissipation
processes to later sections.

The dynamic evolution of pure states is then obtained from the Schrödinger equa-
tion. The Hamiltonian of this system is given by (17.10). Letting ℏ = 1 and assuming
that the atom is located at the origin [such that Ω1(r)e

ık·r = Ω1(0)], we can write
the time-dependent Hamiltonian in the interaction picture as,

Ĥatom:field = ı
2Ω1e

−ı∆tσ̂+â− ı
2Ω1e

ı∆tσ̂−â†

=

(
0 ı

2Ω1e
−ı∆tâ

− ı
2Ω1e

ı∆tâ† 0

) . (17.18)

where ω is the frequency of the radiation, ω0 the frequency of the atomic transition,
∆ ≡ ω − ω0 the detuning, and Ω1 the Rabi frequency generated by a single photon.
The atomic operators σ± are related to the Pauli spin matrices (1.154), and we use
the conventions σ̂z = [σ̂+, σ̂−] = |2⟩⟨2| − |1⟩⟨1| = 2σ̂+σ̂− − I and ω0 ≡ ω2 − ω1 > 0.

Starting from this Hamiltonian the Jaynes-Cummings model is translated into the
Schrödinger picture via the unitary transform,

U = e−ı(n̂+1/2)ωteıσ̂
zω0t/2 , (17.19)

for which we find the relationships,

−ıUU̇† = ω(n̂+ 1
2 )− 1

2ω0σ̂
z (17.20)

U âU† = Σn′ |n′⟩e−ın′ωt⟨n′|âΣn|n⟩eınωt⟨n| = eıωtâ

U σ̂−U† = eıω0tσ̂− .

Obviously, the dynamics of the states is now given by |ψ(t)⟩ = U|ψI(t)⟩, and the new
Hamiltonian in the Schrödinger picture reads,

H̃atom:field = UĤatom:fieldU† − ıUU̇†

= ω(n̂+ 1
2 )− 1

2ω0σ̂
z + 1

2Ω1(âσ̂
+ + â†σ̂−)

=

(
(n̂+ 1

2 )ω − 1
2ω0

1
2Ω1â

†
1
2Ω1â (n̂+ 1

2 )ω + 1
2ω0

)
. (17.21)

We choose the Fock representation (2.90) for the radiation mode, we represent the
atomic transitions by the Pauli matrices (1.152), and we span the product space
ρ̂field⊗ ρ̂atom generalizing the operators â± ↷ â±⊗ I and σ̂± ↷ I⊗ σ̂±. Explicitly we
get,

â† =
∑

n

√
n+ 1|n+ 1⟩

(
1 0

0 1

)
⟨n| and σ̂+ =

∑

n

|n⟩
(
0 0

1 0

)
⟨n|

â =
∑

n

√
n|n− 1⟩

(
1 0

0 1

)
⟨n| and σ̂− =

∑

n

|n⟩
(
0 1

0 0

)
⟨n| .

(17.22)
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17.2.1 Dressed states representation

The basis

|1, n⟩ =
(
1

0

)
|n⟩ , |2, n− 1⟩ =

(
0

1

)
|n− 1⟩ (17.23)

spans a sub-space of two energetically nearly degenerate states with n photons in the
system one out of which can have been absorbed by the atom. The density operator
for the subspace is,

ρ̂n =

( |n⟩|1⟩⟨1|⟨n| |n⟩|1⟩⟨2|⟨n− 1|
|n− 1⟩|2⟩⟨1|⟨n| |n− 1⟩|2⟩⟨2|⟨n− 1|

)
. (17.24)

We project the Hamiltonian onto that basis via the projectors P̂ = |1, n⟩⟨1, n|+|2, n−
1⟩⟨2, n− 1|,

Ĥn = P̂ H̃atom:fieldP̂ =

(
nω + ∆

2
1
2Ω1
√
n

1
2Ω1
√
n nω − ∆

2

)
. (17.25)

That is, the Hamiltonian can be decomposed into sub-hyperspaces which are all or-
thogonal, because the Hamiltonian H̃atom:field only contains terms conserving the total
number of photons + excitations.

Example 100 (Orthogonality of submatrices with same numbers of ex-
citations): This can be seen by expanding the Hamiltonian matrix:

H̃atom:field =
⊕
n

Ĥn (17.26)

=
∑
n

[
|n⟩
(
nω + ∆

2
0

0 nω − ∆
2

)
+ |n− 1⟩

(
0 0

Ω1
2

√
n 0

)
+ |n+ 1⟩

(
0 Ω1

2

√
n+ 1

0 0

)]
⟨n|

=



∆
2

ω + ∆
2

Ω1
2

Ω1
2

ω − ∆
2

2ω + ∆
2

Ω1
2

√
2

Ω1
2

√
2 2ω − ∆

2

3ω + ∆
2
· · ·

...
. . .


.

The eigenvalues can be easily calculated by 3,

det
∑

n

Ĥn =
∑

n

det Ĥn , (17.27)

3The following rules apply to determinants,

det(AB) = detAdetB and (detA)−1 = detA−1 .
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defining the generalized n-photon Rabi frequency, ϖn ≡
√

∆2 + nΩ2
1 = |ϖn|eık·R,

which contains the spatial mode function of the radiation field. Using the standard
procedure outlined in Sec. 1.5.4 we find the diagonal matrix of eigenvalues,

Ên =

(
nω + ϖn

2 0

0 nω − ϖn

2

)
. (17.28)

From the transformation ĤnUn = UnÊn, under the condition that Un is unitary and
Hermitian, U†

nUn, and using the abbreviation tan 2ϕn ≡
√
nΩ1/∆, we obtain:

Un =

(
cosϕn sinϕn
− sinϕn cosϕn

)
. (17.29)

The unitary matrix Un describes the transform from the product state basis (17.23)
to the dressed state basis (17.12), as illustrated in Fig. 17.4.

The temporal evolution of the Jaynes-Cummings state, |ψ(t)⟩ = e−ıH̃atom:fieldt|ψ(0)⟩,
is described by the transformation,

e−ıĤnt = Une−ıÊntU†
n = e−ınωt×

×
(
cos2 ϕne

−ıϖnt/2 + sin2 ϕne
ıϖnt/2 cosϕn sinϕn(e

ıϖnt/2 − e−ıϖnt/2)

cosϕn sinϕn(e
ıϖnt/2 − e−ıϖnt/2) sin2 ϕne

−ıϖnt/2 + cos2 ϕne
ıϖnt/2

) ,

(17.30)
which is essentially the same formula as for the time evolution of a two-level atom
driven by a classical light field derived in Exc. 1.6.7.1. The transition probability
between dressed states is,

|⟨2, n− 1|e−ıĤnt|1, n⟩|2 =
nΩ2

1

ϖ2
n

sin2
ϖnt

2
. (17.31)

The temporal evolution follows with [436],

ρ̂(t) = e−ıĤntρ̂(0)eıĤnt ≡ L(t)ρ̂(0) . (17.32)

Alternatively to the master equation (17.32) we could describe the time evolution of
the system by Heisenberg equations, as done in Exc. 17.2.5.1.

17.2.2 Classical and quantum limits

17.2.2.1 The limit of high laser intensities and resonant interaction

The classical limit is recovered for n→∞, where a single photon makes no difference,
that is, we can treat the states |n⟩ and |n+1⟩ as equivalent. Then, we can approximate
the Hamiltonian of the system (17.21) by the trace of this same Hamiltonian taken
over the number of photons,

Ĥatom:field ≃ Ĥsemi = lim
n→∞

Trfieldρ̂H̃atom:field =
∑

m

⟨m|ρ̂H̃atom:field|m⟩ . (17.33)
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This situation, as illustrated in Fig. 17.5, describes well the state of a laser as a
coherent state, |α⟩ =∑n

αn
√
n!
|n⟩e−|α|2/2. For n→∞, the uncertainty of the Poisson

distribution is small, ∆n/n̄ = 1/
√
n → 0, such that the light mode is characterized

by the average number of photons, and fluctuations are negligible. This allows us to
replace the Poisson distribution, Pn = |⟨n|α⟩|2 = δnn̄. The Hamiltonian (17.25) then
becomes,

Ĥsemi = Ĥfield + Ĥatom + Ĥatom:field =
∑

m

⟨m|α⟩⟨α|Ĥ|m⟩ = ⟨α|Ĥ|α⟩ ≃ ⟨n̄|Ĥ|n̄⟩

= Ĥn̄ =

(
n̄ω 0

0 (n̄− 1)ω

)
+

(−ω0

2 0

0 ω0

2

)
+

(
0 ϖn̄

2
ϖ∗

n̄

2 0

)
. (17.34)

Now, in the case of a resonant interaction, ∆ = 0, the Jaynes-Cummings evolution
is,

e−ıĤn̄t = 1√
2
e−ı(n̄−1/2)ωt

(
cos 1

2ϖn̄t ı sin 1
2ϖn̄t

ı sin 1
2ϖn̄t cos 1

2ϖn̄t

)
, (17.35)

which is a result already obtained in Exc. 1.6.7.1.

Example 101 (Resonant π/2-pulse): In this example, we consider resonant
π/2-pulses, that is,

√
n̄Ω1t =

1
2
π. The Jaynes-Cummings evolution now simpli-

fies to,

e−ıĤn̄t = 1
2
e−ı(n̄−1/2)ωt

(
1 ı

ı 1

)
. (17.36)

For large n̄, a resonant π/2-pulse does (ignoring irrelevant dynamical phases),(
|1⟩|n̄⟩
|2⟩|n̄− 1⟩

)
π/2
↷

(
(ı|2⟩|n̄− 1⟩+ |1⟩|n̄⟩)
(|2⟩|n̄− 1⟩+ ı|1⟩|n̄⟩)

)
, (17.37)

that is, for a coherent field,(
|1⟩|α⟩
|2⟩|α⟩

)
π/2
↷

(
(ı|2⟩+ |1⟩)|α⟩
(|2⟩+ ı|1⟩)|α⟩

)
. (17.38)

Obviously, the structure of the field |α⟩ is not affected, and we recover the dy-

namics of a two-level atom excited by a resonant classical radiation as described

by the Bloch equations (16.114). In the language of quantum computation the

operation (17.36) corresponds to a Hadamard gate.

17.2.2.2 Dispersive interaction, the limit of large detunings

The dispersive Jaynes-Cummings dynamics can be implemented by irradiating a light
field, which is sufficiently detuned to avoid Rayleigh scattering processes, as shown
in Fig. 17.5. This interaction results in a phase shift of the atomic levels. For |∆| ≫√
nΩ1 we consider the radiative coupling as a small perturbation,

Ĥn = Ĥ(0)
n + Ĥ(1)

n =

(
nω − ∆

2 0

0 nω + ∆
2

)
+

(
0 Ω1

2

√
n

Ω1

2

√
n 0

)
. (17.39)
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Figure 17.5: Atomic level scheme for the implementation of resonant interactions with clas-
sical radiation fields (on the lower transition) and dispersive interactions with quantum fields
(on the upper transition).

In the unperturbed case we have, Ĥ
(0)
n |ψj,n⟩ = Ej,n|ψj,n⟩, where the n-photon sub-

space is spanned by the basis |j⟩ = (1 0) and (0 1). In second perturbation order,

⟨ψj,n|Ĥ(1)
n |ψj,n⟩ ≃ ⟨j|Ĥ(1)

n + Ĥ
(2)
n |j⟩

0

+
∑

j ̸=i

⟨j|Ĥ(1)
n |i⟩⟨i|Ĥ(1)

n |j⟩
E

(0)
j,n − E

(0)
i,n

= ∓nΩ
2
1

4∆
, (17.40)

where the upper sign holds for |j⟩ = (1 0). This result was already obtained in the
Excs. 5.1.3.4 and 16.4.4.13. In matrix notation 4,

Ĥ(1)
n ≃

(
nΩ2

1/4∆ 0

0 −nΩ2
1/4∆

)
. (17.41)

The temporal propagation operator (17.30) then simplifies to,

e−ıĤ
(1)
n t =

(
eınΩ

2
1t/4∆ 0

0 e−ınΩ
2
1t/4∆

)
. (17.42)

The fact that the ground and excited atomic states evolve with different phase factors
is important, as we will show in the following example.

Example 102 (Dispersive π-pulse): As in the previous case, we consider
a two-level atom subject to a coherent field, but now tuned out of resonance.
Introducing the abbreviation φ ≡ Ω2

1t/4∆, the Jaynes-Cummings evolution is,

e−ıĤ
(1)
n t =

(
eınφ 0

0 e−ınφ

)
. (17.43)

The fact that the phase shift nφ depends on the number of photons, and that
it goes in opposite directions for the ground and excited states, is crucial. We

4Note, that the same perturbation expansion applied to the complete Hamiltonian in the inter-
action picture yields,

H̃
(1)
I =

(
0 1

2
Ω1â†

1
2
Ω1â 0

)
= 1

2
Ω1âσ̂

+ + 1
2
Ω1â

†σ̂−

≃ H̃
(1)
I |2⟩⟨2|H̃(1)

I

ω2 − ω1
+
H̃

(1)
I |1⟩⟨1|H̃(1)

I

ω1 − ω2
=

Ω2
1

4∆
(σ̂−σ̂+â†â− σ̂+σ̂−ââ†) =

Ω2
1

4∆

(−â†â 0

0 ââ†

)
.
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have already studied in Exc. 16.7.3.9, that the dispersive interaction of the atom
with a radiation field can phase-shift the Bloch vector. Now, we observe that in
addition, it causes a phase shift of the probability amplitude of having n pho-
tons in the radiation field by a value proportional to n, i.e. (ignoring irrelevant
dynamical phases), (

|1⟩|n⟩
|2⟩|n− 1⟩

)
nφ
↷

(
e−ınφ|1⟩|n⟩
eınφ|2⟩|n− 1⟩

)
. (17.44)

Applying this result to Glauber states,(
|1⟩|α⟩
|2⟩|α⟩

)
nφ
↷

(
|1⟩∑n

αn
√
n!
e−ınφ|n⟩

|2⟩∑n
αn
√
n!
eınφ|n⟩

)
=

(
|1⟩|αe−ıφ⟩
|2⟩|αeıφ⟩

)
. (17.45)

Apparently, the phase of the radiation field is shifted by a value φ, which depends

on the state of the atom.

We note here, that the dynamics studied in the last example provides a method
of transferring coherence from an atomic superposition to a quantum correlation of
a radiation field. All we have to do, is to bring the atom into a superposition of
states |1⟩+ |2⟩, and the field will automatically evolve toward a Schrödinger cat state
|αeıφ⟩ + |αe−ıφ⟩. The transfer of quantum correlations between coupled degrees of
freedom can induce a temporal complete disappearance of any signatures of quantum
coherence in the light field. This phenomenon termed quantum collapse and revival
is genuine of the Jaynes-Cummings model and will be studied in Excs. 17.2.5.2 and
17.2.5.3. Another phenomenon is vacuum Rabi splitting, which will be studied in
17.2.5.4.

17.2.3 Observables and correlations of the Jaynes-Cummings
dynamics

In the limit of low laser intensities we must consider photonic distributions that are
not necessarily coherent. The stationary solution of the Schrödinger equation consists
of the dressed states |1, n⟩ and |2, n−1⟩. If we now expand a general Jaynes-Cummings
state in amplitudes cjn(t),

|ψ⟩ =
∑

n

(c1,n|1, n⟩+ c2,n−1|2, n− 1⟩) , (17.46)

they will follow the Schrödinger equation,

ıℏ
d

dt

(
c1,n
c2,n−1

)
= Ĥn

(
c1,n
c2,n−1

)
. (17.47)

The evolution of the coefficients cjn completely describes the Jaynes-Cummings dy-
namics of the system through the formula (17.30). Obviously, the Jaynes-Cummings
state is normalized because,

⟨ψ|ψ⟩ = Trfield |ψ⟩⟨ψ| =
∞∑

n=0

(|c1,n|2 + |c2,n|2) = 1 . (17.48)
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As dissipation processes are neglected, we get a pure state described by,

ρ̂ = |ψ⟩⟨ψ| . (17.49)

The Jaynes-Cummings dynamics involves two coupled degrees of freedom charac-
terized by with their respective observables. If we are interested in them, we can do
two things: (a) We ignore the degrees of freedom NOT under study by NOT DOING
a measurement of the other degrees. That is, we simply remove the non-interesting
degrees of freedom from the state. For example, if our focus is on the optical mode,
we ignore the atomic state,

|γ⟩ ≡
∑

j=1,2

⟨j|ψ⟩ =
∑

n

c1,n|n⟩+ c2,n−1|n− 1⟩ . (17.50)

Our new density operator remains pure, that is,

ρ̂
(pure)
field =

∑

i,j=1,2

⟨j|ρ̂|i⟩ =
∑

i,j=1,2

⟨j|ψ⟩⟨ψ|i⟩ = |γ⟩⟨γ| . (17.51)

On the other hand, ignoring the optical mode via,

|γ⟩ ≡
∑

n

⟨n|ψ⟩ =
∑

n

c1,n|1⟩+ c2,n−1|2⟩ . (17.52)

Again, our new density operator remains pure, that is,

ρ̂
(pure)
atom =

∑

m,n

⟨m|ρ̂|n⟩ =
∑

m,n

⟨m|ψ⟩⟨ψ|n⟩ = |γ⟩⟨γ| . (17.53)

(b) We trace over the degrees of freedom NOT under study by DOING a measurement.
For example, if again our focus is on the optical mode, we trace over the atomic states,

ρ̂
(mix)
field = Tratom ρ̂ =

∑

j=1,2

⟨j|ρ̂|j⟩ =
∑

j=1,2

⟨j|ψ⟩⟨ψ|j⟩ (17.54)

=
∑

n,m

c∗1,mc1,n|n⟩⟨m|+ c∗2,m−1c2,n−1|n− 1⟩⟨m− 1| ≠ ρ̂
(pure)
field .

It is clear, that this incomplete measurement converts the reduced density operator
into a statistical mixture, which is free of inneratomic correlations of the type c∗2,mc1,n,
but this means that we also loose possible field correlations. On the other hand,
tracing over the field mode,

ρ̂
(mix)
atom = Trfield ρ̂ =

∞∑

n=0

⟨n|ρ̂|n⟩ =
∞∑

n=0

⟨n|ψ⟩⟨ψ|n⟩ (17.55)

=
∑

n

(c1,n|1⟩+ c2,n|2⟩)
(
c∗1,n⟨1|+ c∗2,n⟨2|

)
̸= ρ̂

(pure)
atom .

After these preliminary remarks let us have a look a some interesting observables.



680 CHAPTER 17. ATOMS IN QUANTIZED RADIATION FIELDS

17.2.3.1 Temporal evolution of the Bloch vector

The expectation value for field observables Â|n⟩ = An|n⟩ is,

⟨ψ|Â|ψ⟩ = Tr ρ̂Â
∑

i,n

⟨i|⟨n|ψ⟩⟨ψ|Â|n⟩|i⟩ =
∑

n

An(|c1,n|2 + |c2,n|2) . (17.56)

An example for a field observable is the photon number operator n̂. And for the
annihilation operator â|n⟩ = √n|n⟩ we have,

⟨ψ|â|ψ⟩ =
∑

n

√
n(c∗1,n−1c1,n + c∗2,n−1c2,n) . (17.57)

To determine the internal state of the atom, we must trace over the light field.
The populations and coherences are, therefore,

ρij = ⟨i|Trfield ρ̂|j⟩ = ⟨i|
∑

n

⟨n|ψ⟩⟨ψ|n⟩|j⟩ =
∑

n

ci,nc
∗
j,n . (17.58)

The projection onto the atomic state is done by,

|j⟩⟨j|ψ⟩
⟨ψ|j⟩⟨j|ψ⟩ =

∑
m cj,n|j, n⟩∑
m |cj,m|2

. (17.59)

With (17.58), we can calculate the atomic Bloch vector (16.126), whose norm is
interestingly NOT preserved, since,

|ρ⃗| =

∥∥∥∥∥∥




2 Re ρ12
2 Im ρ12
ρ22 − ρ11



∥∥∥∥∥∥
= 2|ρ12|2 − 2ρ11ρ22 = −2 det ρ̂ (17.60)

= 2
∑

n

c1,nc
∗
2,n

∑

n

c∗1,nc2,n − 2
∑

n

|c2,n|2
∑

n

|c1,n|2 ̸= 1 .

17.2.3.2 The photon number distribution

To determine the state of the light field, we must trace over the atomic state. For
example, the probability amplitude of encountering the state |ψ⟩ in |n⟩ is,

⟨n|ψ⟩ = c1,n|1⟩+ c2,n|2⟩ , (17.61)

such that,

pn = ⟨n|Tratom ρ̂|n⟩ = ⟨n|
∑

i=1,2

⟨i|ψ⟩⟨ψ|i⟩|n⟩ = |⟨n|ψ⟩|2 = |c1,n|2 + |c2,n|2 . (17.62)

17.2.3.3 The Glauber-Sudarshan Q-function

To characterize the optical field separately from the atomic state, we can try, by a
calculation similar to (17.56), to project the Jaynes-Cummings state onto a basis of
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coherent states. Thus, the probability amplitude of encountering the state |ψ⟩ in |α⟩
is,

⟨α|ψ⟩ = e−|α|2/2∑

n

α∗n
√
n!
(c1,n|1⟩+ c2,n|2⟩) (17.63)

|⟨α|ψ⟩|2 = e−|α|2 ∑

n

α∗nαm√
n!
√
m!

(c∗1,mc1,n + c∗2,mc2,n) ,

such that,

πQ(α) ≡ ⟨α|Tratom ρ̂|α⟩ = e−|α|2


∣∣∣∣∣
∑

n

c1,n
αn√
n!

∣∣∣∣∣

2

+

∣∣∣∣∣
∑

n

c2,n
αn√
n!

∣∣∣∣∣

2

 . (17.64)

We will derive this result in Exc. 17.2.5.5. This quantity, called Q-function, allows
the illustration of the state in a coordinate system spanned by Reα and Imα [93].
It is generally easy to calculate, but does not exhibit much information, e.g., on
interference phenomena caused by quantum correlations. In the following section,
we will calculate the Wigner function, which can also be evaluated from the Jaynes-
Cummings coefficients [261].

Figure 17.6: (code) Evolution of the state during a Jaynes-Cummings type interaction:

(a) Bloch vector, (b,c) photon distribution after projection on the ground and excited atomic

state, (d) time evolution of the coherence ρ12 showing the phenomenon of collapse and revival,

and (e) W (α) function.

The Jaynes-Cummings dynamics illustrated in Fig. 17.6 demonstrates the transfer
of coherence between an atom and a light field. In Exc. 17.2.5.6 we study how to
create, via a sequence of Ramsey pulses, a Schrödinger cat state in a light field.

17.2.3.4 The Wigner function in the Glauber picture

We found in (17.42) that a dispersive phase shift of the atomic state |2⟩ leads to a
time-dependent phase shift of the Glauber field,

|ψ⟩ =
∑

N

(c1,n|1, n⟩+c2,n−1|2, n−1⟩) = |1, β⟩+eıφ(t)|2, β⟩ or ρ̂ = |ψ⟩⟨ψ| , (17.65)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
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with

c1,n = e−|β|2/2 β
n

√
n!

and c2,n = e−|β|2/2 (e
ıφ(t)β)n√
n!

. (17.66)

We will now concentrate on the field state by explicitly IGNORING the atomic states
|j⟩,

|γ⟩ =
∑

j=1,2

⟨j|ψ⟩ = |β⟩+ |eıφβ⟩ or ρ̂
(pure)
field =

∑

i,j=1,2

⟨j|ψ⟩⟨ψ|i⟩ = |γ⟩⟨γ| . (17.67)

From the optical cat pure state wavefunction (17.67), we can easily calculate the
Wigner function in the Glauber picture, as done in (14.90) and Exc. 14.3.5.10,

W (α) =
2

C2π

(
e−2|α−β|2 + e−2|α−βeıφ|2 ± 2e−|β|2Re e−2(βeıφ−α)(β∗−α∗)+|β|2eıφ

)
.

(17.68)

Now, what happens if we MEASURE the atomic state before we analyze the field
state? The incomplete measurement corresponds to tracing over the atomic degrees
of freedom, which transforms our initially pure state (17.65) into a statistical mixture.
With |ψ⟩ given by (17.65),

ρ̂
(mix)
field = Tratomρ̂ =

∑

j=1,2

⟨j|ψ⟩⟨ψ|j⟩ = |β⟩⟨β|+ |eıφβ⟩⟨eıφβ| ≠ |γ⟩⟨γ| . (17.69)

Calculating the Wigner function from this density operator consequently must yield
a different result, because any correlations are lost. A movie of the dynamics can be
watched here (watch movie) [136, 206, 10, 833].

17.2.3.5 The Wigner function in the Fock picture

Let us now calculate the Wigner function in the Fock state picture. This will allow
us to consider more general states later on. We start from the expansion,

|ψ⟩ =
∑

n

c1,n|1, n⟩+ c2,n−1|2, n− 1⟩ . (17.70)

As before, we can now choose to DO or NOT DO a measurement of the atomic state.
If we do a measurement tracing over the atomic states, we calculate the normally
ordered characteristic function using the density operator (17.54),

χN(λ) = Tr ρ̂
(mix)
field eλâ

†
e−λ

∗â =
∑

n′

⟨n′|ρ̂(mix)
field eλâ

†
e−λ

∗â|n′⟩ (17.71)

=
∑

n,m

c∗1,mc1,n⟨m|eλâ
†
e−λ

∗â|n⟩+ c∗2,m−1c2,n−1⟨m− 1|eλâ†e−λ∗â|n− 1⟩ .

Obviously, this formula does not contain inneratomic correlations and, since non-
classical field correlation would be entangled with atomic superposition states, we
expect no interesting field correlations, neither.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/LM_Quantumfields_Opticats_Movie.mp4
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If on the other hand we decide to ignore the atomic state, we calculate the normally
ordered characteristic function using the density operator (17.51),

χN(λ) = Tr ρ̂
(pure)
field eλâ

†
e−λ

∗â = ⟨γ|eλâ†e−λ∗â|γ⟩ (17.72)

=
∑

n,m

(
c∗1,mc1,n⟨m|eλâ

†
e−λ

∗â|n⟩+ c∗2,m−1c2,n−1⟨m− 1|eλâ†e−λ∗â|n− 1⟩

+c∗1,mc2,n−1⟨m|e−λâ
†
eλ

∗â|n− 1⟩+ c∗2,m−1c1,n⟨m− 1|eλâ†e−λ∗â|n⟩
)
,

which now contains field correlations. Inserting the results derived in (14.81) we can
express the characteristic functions by Laguerre polynomials and obtain the Wigner
function as the two-dimensional FFT according to Eq. (17.68). This will be done in
Exc. 17.2.5.8.

17.2.4 Jaynes-Cummings model with dissipation

Applying the numerical method of quantum Monte Carlo wavefunction simulation to
the Jaynes-Cummings model, we write the effective Hamiltonian of the light field as
[307],

Ĥeff = ωâ†â+ ω0

(
σ̂+σ̂ − 1

2

)
+ Ω1

2

(
âσ̂+ + â†σ̂−)+ ıΓ

2 σ̂
+σ̂− . (17.73)

Or in matrix notation,

Heff =



− 1
2
ω0 0

0 ω − 1
2
ω0

1
2
Ω1

1
2
Ω1

1
2
ω0 − ı

2
Γ 0

0 2ω − 1
2
ω0

√
2 1
2
Ω1√

2 1
2
Ω1 ω + 1

2
ω0 − ı

2
Γ 0

0 3ω − 1
2
ω0

. . .


.

(17.74)

The simulation flowchart is,

|ψ⟩ → |1⟩(⟨1|+⟨2|)|ψ⟩
|(⟨1|+⟨2|)|ψ⟩|

=
|1⟩

∑
n(c1n|n⟩⟩+c2n−1|n−1⟩)√∑

n |c1n+c2n|2|

|ψ⟩ → |ψ⟩
||ψ⟩|

=
∑

n c1n|1⟩|n⟩+c2n−1|2⟩|n−1⟩√∑
n(|c1n|2+|c2n|2)

projection ↘ ↙ renormalization

dynamic evolution

|ψ(t+ dt)⟩ = e−ıHeffdt|ψ⟩
↖ ↓ ↗

yes ζ
?
> ⟨ψ(t+ dt)|ψ(t+ dt)⟩ no

random variable

Absorption or scattering of light causes the optical field to decay as α(t) ∝ e−κt/2.
The projection (in component notation) is implemented by,

c′jn ≡
1√∑

n(|c1n|2 + |c2n|2)
cjn , (17.75)



684 CHAPTER 17. ATOMS IN QUANTIZED RADIATION FIELDS

and the dynamical evolution by c′jn ≡ e−κnt/2cjn. Note, that the dissipation due to
cavity losses can also be taken into account by a master equation.

17.2.5 Exercises

17.2.5.1 Ex: Time-evolution in the Jaynes-Cummings model

Derive the equations of motion for σ̂−, σ̂z, and â in the Jaynes-Cummings model.
Show that the number of photons is not a constant of motion, but the total number
of excitations.

17.2.5.2 Ex: The Jaynes-Cummings model

Consider the Jaynes-Cummings Hamiltonian.
a. Determine from the Schrödinger equation the system of differential equations for the
temporal evolution of the coefficients c2,n(t) and c1,n+1(t) in the interaction picture
within the rotating wave approximation (RWA).
b. Calculate the time evolution for the start condition c2,n(0) = 1 and c1,n+1(0) = 0
for the particular case ω = ω0.
c. Generalize the result of item (a) for a multimode field, for which initially (i) all
modes of field k are empty |0⟩ and (ii) the atom is in the excited state |a⟩. Use the
ansatz,

|ψ(t)⟩ = c2(t)e
−ıE2t/ℏ|2, 0⟩+

∑

k

c1,k(t)e
−ı[E1/ℏ+ωk]t|1, 1k⟩ ,

and determine the equations of motion for the amplitudes c2 and c1,k.

17.2.5.3 Ex: Quantum collapse and revival in the Jaynes-Cummings
model

Consider the Jaynes-Cummings Hamiltonian and show that the quantum coherence
between the two atomic levels can disappear altogether for long periods and reappear
later. Explain how this is possible.

17.2.5.4 Ex: Vacuum Rabi splitting

Calculate the Autler-Townes splitting for an excited atom interacting with an empty
cavity.

17.2.5.5 Ex: The Q-function in a Jaynes-Cummings state

Calculate the Q-function for a Jaynes-Cummings state from its definition (17.64).

17.2.5.6 Ex: Creation of quantum correlations in an optical mode

a. We will show in this exercise how, via coherent operations in a three-level system,
we can create Schrödinger-type quantum-type correlations in an optical mode. In the
system shown in Fig. 17.7 we imagine the lower transition excited by π/2-pulses of a
classical resonant microwave radiation (as described by the operation (17.35)). The
upper transition is excited by quantum laser pulses tuned very far out of resonance,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings05.pdf
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thus creating a dispersive dynamics (as described by the operation (17.35)). At time
t = 0 the atom is in state |1⟩. Now, we apply the following pulse sequence: (i) a
microwave pulse with

√
n̄Ω12t = π/2, (ii) an optical pulse with Ω2

23t/4∆23 = π,
(iii) another microwave π/2-pulse, and finally (iv) an optical pulse of light which is
resonant with the transition |2⟩-|3⟩ and projects the population of the atom into one
of the states of the microwave transition. Describe the evolution of the state of the
system during the sequence and determine the final state of the optical mode.
b. Calculate the number of photons for the two cases that, after a measurement, the
atom is found in (i) the lower state and (ii) the upper state. Interprete the results.

Figure 17.7: (a) Level scheme and (b) pulse sequence.

17.2.5.7 Ex: Master equation derived from JC model Hamiltonian for
two-level systems

Write down the Liouvillean for a JC system in matrix form for a density operator
defined like, (

· · · ρn−1
11 ρn22 ρn12 ρn21 ρn11 ρn+1

22 · · ·
)
.

17.2.5.8 Ex: Laguerre polynomials

Calculate the Wigner function for the field generated by a Jaynes-Cummings dynamics
in the photon picture.

17.3 Correlation functions

In the preceding sections and in Sec. 14.3 we have learned, how to characterize quan-
tum fields by (quasi-)probability distribution functions, and how to represent correla-
tions in the Fock or the Glauber basis. But we did not propose experimental schemes
allowing to detect them. Experimental devices, such as interferometers or photon
correlators, necessarily involve space or time coordinates. Hence, we need to devise
quantities for the characterization of correlations, that are compatible with experi-
mental devices. The correlation functions are such quantities, and in the next section
we will focus our attention them.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_PhotonFunctions11.pdf


686 CHAPTER 17. ATOMS IN QUANTIZED RADIATION FIELDS

In order to be able to distinguish classical from genuinely quantum correlations,
we will first a classical description, before introducing a quantum description of the
light field [530].

17.3.1 Classical first and second order coherence

The coherence properties of a light field (or a matter wave) are measured by nth space
time order correlation functions. In quantum mechanics, these are defined by,

g(n)(r1, t1, .., r2n, t2n) ≡
⟨Ê−(r1, t1)..Ê−(rn, tn)Ê+(rn+1, tn+1)..Ê+(r2n, t2n)⟩√
⟨Ê−(r1, t1)Ê+(r1, t1)⟩..⟨Ê−(r2n, t2n)Ê+(r2n, t2n)⟩

.

(17.76)
In the following, we will only consider temporal coherences, e.g. one or more collinear
light beams, km ∥ kn, impinging on a photodetector, (tm− zm

c )− (tn− zn
c ) = τ , since

Ê(r, t) = Ê(ωt − k · r), we can define the the 1st and 2nd order correlation functions
g(1) and g(2), which are particularly important,

g(1)(τ) ≡ ⟨Ê
−(t)Ê+(t+ τ)⟩
⟨Ê−(t)Ê+(t)⟩

and g(2)(τ) ≡ ⟨Ê
−(t)Ê−(t+ τ)Ê+(t+ τ)Ê+(t)⟩

⟨Ê−(t)Ê+(t)⟩2
.

(17.77)
Ignoring the quantized nature of light, we may substitute the field operators by com-
plex numbers, Ê+ → E and Ê− → E∗ and interprete the brackets as pure time
averages,

⟨· · ·⟩t = lim
t→∞

1

t

∫ t

0

· · · dt′ . (17.78)

Defining the intensity as I = 2ε0cE∗E , the coherences become,

g(1)(τ) ≡ 2ε0c
I ⟨E∗(t)E(t+ τ)⟩ and g(2)(τ) ≡

(
2ε0c
I

)2 ⟨I(t)I(t+ τ)⟩ . (17.79)

The correlation functions must be calculated from the field operators simultaneously
respecting time order and normal order. These functions are useful quantities to de-
scribe phenomena such as photon bunching or to understand the fluorescence spectra
or the scattering of light from correlated atoms. g(1) measures the coherence of a
light field (how much it resembles a sine wave). g(2) measures, for a given degree of
coherence, the deviation of the light field from the quantum state that most closely
approximates a classical light (how much it resembles a laser).

The correlation functions g(1) and g(2) are experimentally measured in Young’s
experiment and in the Hanbury Brown-Twiss experiment. The experimental schemes
are explained in Figs. 17.8.

Coherence and chaos are contrary properties of light. They leave their imprint
in the spectrum of the light or in the autocorrelation functions. The emission spec-
trum of a light source generally emerges as a combination of various physical ef-
fects: The active medium gives rise resonances and broadenings, a resonator con-
taining the active medium imprints a modal structure, and the coupling to a ther-
mal bath gives rise to a thermal distribution of the radiation energy according to
Pn = e−ℏω(n+1/2)/kBT /

∑
n e

−ℏω(n+1/2)/kBT .
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Figure 17.8: (a) Scheme of Young’s experiment. (b) Scheme of the experiment of Han-
bury, Brown, and Twiss. Young’s experiment reveals the coherence of a field, that is, its
ability to interfere. In contrast, the Hanbury-Brown-Twist experiment reveals correlations
between the (quasi-)particles constituting the field, that is, effects due to quantum statistics
or interactions.

17.3.2 The Wiener-Khintchine theorem

When the time dependence of a wave is given by E(t), we call

RE(τ) = ⟨E∗(t)E(t+ τ)⟩t (17.80)

the autocorrelation function and the power density

SE(ω) = (FRE)(ω) = |(FE)(ω)|2 (17.81)

the spectrum. This relation is called the Wiener-Khintchine theorem. We may
also consider the normalized quantities, dividing (17.80) and (17.81) by RE(0) =
⟨Ê∗(t)Ê(t)⟩t =

∫∞
−∞ |(FE)(ω)|2dω =

∫∞
−∞ SE(ω)dω. We obtain,

g(1)(τ) =
RE(τ)
RE(0)

, (17.82)

and,

FE(ω) ≡ (Fg(1))(ω) = SE(ω)
RE(0)

=
1

2π

∫ ∞

−∞
g(1)(τ)eıωτdτ . (17.83)

The quantity FE(ω) is called line profile or spectrum. Note that, since,

g(1)(−τ) = g(1)(τ)∗ , (17.84)

we may also write,

FE(ω) = Re
1

π

∫ ∞

0

g(1)(τ)eıωτdτ . (17.85)

Furthermore,
g(2)(−τ) = g(2)(τ) . (17.86)

17.3.3 Coherent and chaotic light

The temporal and spectral properties of a light field are largely determined by the
processes leading to its generation in the light source, that is, whether the light is
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generated by stimulated or spontaneous emission, by a laser or by blackbody radiation,
by a single atom or by atomic gases subject to collisional and Doppler-broadening.
As we have seen above, these properties can be characterized by correlation functions,
which can be calculated from models describing the temporal behavior of the electric
field E⃗(t).

Before we do this for some examples, let us anticipate some important results. Zero
delay correlation functions are easy to calculate for states whose density operator is
known. For some systems we derived them previously:

Table 17.1: Zero delay correlation functions for various types of light fields.

correlation function first order second order

coherent g(1)(0) = 1 g(2)(0) = 1

2nd order coherent g(1)(0) = 1 g(2)(0) ≥ 1

thermal g(1)(0) = 1 g(2)(0) = 2

squeezed g(1)(0) = 1 g(2)(0) = 3 + 1
sinh2 r

bunched g(1)(0) = 1 g(2)(0) > 1

anti-bunched g(1)(0) = 1 g(2)(0) < 1

The temporal behavior of the correlation functions is more tricky and requires
some modeling of the light emission processes: Let us now look at some specific

Table 17.2: Time dependent correlation functions for various types of light fields.

correlation function first order second order

perfectly coherent monochrom. |g(1)(τ)| = 1





0 ≤ g(2)(τ) ≤ ∞
g(2)(0) ≥ g(2)(τ) τ≫τc−→ 1

perfectly chaotic (incoherent) |g(1)(τ)| = δ(0) g(2)(τ) = 1 + |g(1)(τ)|2

partially coherent |g(1)(τ)| <∞
bichromatic or modulated Excs. 17.3.6.1 to 17.3.6.3

cases, for which the correlation functions and spectra can be calculated.

17.3.3.1 Correlation functions for laser light

With the definitions (17.77) it is easy to calculate the autocorrelation functions and
the spectrum of a laser light field,
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laser

E(t) = eıω0t

=⇒ g(1)(τ) =
t−1

∫
e−ıω0τdt

t−1
∫
dt

= e−ıω0τ

=⇒ F
[
g(1)(τ)

]
=

1

2π

∫ ∞

−∞
eı(ω−ω0)τdτ = δ(∆)

g(2)(τ) = 1

. (17.87)

We see that the absolute values of the first and second-order coherences are con-
stant, and that the spectrum is narrow like a δ-function.

17.3.3.2 Correlation functions for chaotic light

For a totally emission chaotic light,

chaotic light

g(1)(τ) = δ(0)

F [g(1)(τ)] = 1

g(2)(τ) = 1 + |g(1)(τ)|
. (17.88)

The last expression is known as Siegert relation. Mono-mode chaotic light can be
seen as incoherent multi-mode light, where all modes except a single mode are filtered
by a Fabry-Pérot etalon. This light is characterized by |g(1)(τ)| = 1 and g(2)(τ) = 2,
despite the coherence length being τ →∞. Do the Excs. 17.3.6.1 to 17.3.6.3.

17.3.3.3 Correlation functions for laser light subject to white noise

For a laser subject to white phase noise (ζ be a normally distributed random number)
we have ,

noisy laser

E(t) = eı[ω0t+ζ(t)]

=⇒ g(1)(τ) =

∫
e−ı[ω0τ+ζ(t+τ)−ζ(t)]dt∫

dt
= eıω0τ−γ|τ |

=⇒ F [g(1)(τ)] =
γ/π

∆2 + γ2

g(2)(τ) = 1

. (17.89)

We see, that the first-order coherence decays exponentially, |g(1)(τ)| = e−γ|τ | 5,
such that the spectrum has a Lorentzian profile. For this reason light having this
characteristic is also called Lorentzian chaotic light. This result has already been

5Note that, in order to satisfy (17.84), we must take the absolute value of the delay |τ |.
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derived in Eq. (16.28) for the natural linewidth of a transition subject to spontaneous
emission. We understand the connection by interpreting spontaneous emission as
being induced by vacuum fluctuations, which do have a white noise spectrum, indeed.

Example 103 (Laser broadening due to spontaneous emission): Laser
light is generated by stimulated emission on a transition between two quantized
levels. The alternance of absorption and stimulated emission induces coherent
Rabi oscillations ensuring the coherence of the emitted light. But we have seen
earlier that spontaneous emission leads to randomly occurring interruptions of
the coherent Rabi oscillations. The probability of finding a coherent interval
decreases exponentially with the evolution time,

p(τ)dτ = γe−γτdτ ,

where γ is the spontaneous decay rate of the dipole moment. From E(t) =
eıω0t+ıζ(t) we calculate,

RE(τ) = ⟨eıω0t+ıζ(t)e−ıω0(t+τ)−ıζ(t+τ)⟩ = e−ıω0τ lim
t→∞

1

t

∫ t

0

eı[ζ(t)−ζ(t+τ)]dt

= e−ıω0τ

∫ ∞

τ

p(τ ′)dτ ′ = e−ıω0τe−γ|τ | ,

and,

FE(ω) =
1

2π

∫ ∞

−∞

RE(τ)

RE(0)
eıωτdτ =

1

2π

∫ ∞

−∞
e−ıω0τe−γ|τ |eı(ω−ω0)τdτ =

γ/π

∆2 + γ2
.

An alternative derivation from Bloch or rate equations is shown in Excs. 17.4.4.3

and 17.4.4.4.

17.3.3.4 Correlation functions for light emitted from pressure-broadened
atomic clouds

In Sec. 16.5.2 we have already seen, that collision or pressure broadening can be treated
by assuming that the light is emitted as a superposition of coherent waves all having
the same frequency, but being randomly interrupted by phase jumps,

E(t) =
∑

n

En(t) with En(t) = eıω0t+ıϕn(t) . (17.90)

The autocorrelation function is then,

⟨E∗(t)E(t+ τ)⟩ = 1

t

∫ ∑

n

e−ıω0t−ıϕn(t)
∑

m

eıω0t+ıω0τ+ıϕm(t+τ)dt (17.91)

= eıω0τ
∑

n,m

1

t

∫
eıϕm(t+τ)−ıϕn(t)dt = N⟨E∗n(t)Em(t+ τ)⟩δnm .

The crossed terms n ̸= m of this expressions vanish. The pressure broadening is
homogeneous, but the fact that the wavepackets are scattered by different atoms
results in a modified first-order coherence,

⟨E∗n(t)En(t+ τ)⟩ = eıω0τ
∑

n

∫
eıϕn(t+τ)−ıϕn(t)dt = eıω0τ

∫ ∞

τ

p(τ)dτ . (17.92)
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The probability density of finding a coherent interval of duration τ is p(τ)dτ =
γce

−γcτdτ , which finally gives,

⟨E∗(t)E(t+ τ)⟩ = Neıω0τ−γc|τ | . (17.93)

The calculation for the 2nd order correlation function (17.79) is analogous,

⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩ =
∑

n,m,n′,m′

⟨E∗m(t)En(t)E∗m′(t+ τ)En′(t+ τ)⟩ (17.94)

=
∑

n

⟨E∗n(t)En(t)E∗n(t+ τ)En(t+ τ)⟩

+


∑

n ̸=m
⟨E∗n(t)En(t)E∗m(t+ τ)Em(t+ τ)⟩+ ⟨E∗m(t)En(t)E∗n(t+ τ)Em(t+ τ)⟩


 ,

neglecting all terms which do not satisfy either E∗n(t)En(t) or E∗n(t)En(t + τ). Now,
assuming a large amount of identical atoms,

⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩ (17.95)

= N⟨E∗n(t)En(t)E∗n(t+ τ)En(t+ τ)⟩+N(N − 1)
(
⟨E∗n(t)En(t)⟩2 + |⟨En(t)E∗n(t+ τ)⟩|2

)

≃ N2
(
⟨E∗n(t)En(t)⟩2 + |⟨En(t)E∗n(t+ τ)⟩|2

)
.

Finally, exploiting the result (17.91) and the definitions of the 1st and 2nd order
correlations functions,

g(2)(τ) =
⟨E∗n(t)En(t)⟩2 + |⟨En(t)E∗n(t+ τ)⟩|2

⟨E∗n(t)En(t)⟩2
= 1 + |g(1)(τ)|2 . (17.96)

In summary,

light emitted from pressure-broadened atomic clouds

E(t) =
∑
n e

ıω0t+ıϕn(t)

=⇒ g(1)(τ) = eıω0τ−γc|τ |

=⇒ F
[
g(1)(τ)

]
=

γ/π

∆2 + γ2c

g(2)(τ) = 1 + e−γc|τ |

. (17.97)

The spectrum is a Lorentzian with the full linewidth γ′ = γ + γc.
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Figure 17.9: (code) First and second-order correlation functions for (red) a laser, (cyan) a

laser subject to phase noise, (blue) a laser subject to collision broadening, (magenta) chaotic

light, and (green) spectrally filtered thermal light.

17.3.3.5 Correlation functions for light emitted from Doppler-broadened
atomic clouds

For light emitted by an ensemble of non-colliding atoms in thermal motion, we must
allow for different frequencies, En(t) = eıωnt+ıϕn , but time-independent phases,

⟨E∗(t)E(t+ τ)⟩ =
∫ ∑

n

e−ıωnt−ıϕn

∑

m

eıωmt+ıωmτ+ıϕmdt (17.98)

=
∑

n,m

∫
e−ıωnt−ıϕn+ıωmt+ıωmτ+ıϕmdt =

∑

n

eıωnτ .

The crossed terms n ̸= m of this expressions vanish. Doppler broadening is inhomo-
geneous. Hence, the probability density for frequencies emitted by thermal atoms is
a Gaussian, p(ω)dω = (2πδ)−1/2e−(ωn−ω0)

2/2δ2dω. For this reason light having this
characteristic is also called Gaussian chaotic light. With the definitions (17.77) it is
easy to calculate the autocorrelation functions and the spectrum of a laser light field,

light emitted from Doppler-broadened atomic clouds

⟨E∗(t)E(t+ τ)⟩ =
N√
2πδ

∫
eıωnτe−(ωn−ω0)

2/2δ2dωn

=⇒ g(1)(τ) = eıωτ−δ
2τ2/2

=⇒ F [g(1)(τ)] =

√
ln 2

πδ2
e− ln 2·ω2/δ2

g(2)(τ) = 1 + e−δ
2τ2/2

. (17.99)

In Exc. 17.3.6.5 we calculate the correlation functions at zero delay.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Coherences.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Coherences.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Coherences.m
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17.3.4 Quantum signatures in first and second order coherence

All calculations of correlation functions made up to this point assumed classical light
fields, except for the anti-bunched g(2)(0) listed in Tab. 17.1. We will see in the fol-
lowing that a quantum calculation yields some features of the second order coherence
that cannot be explained by assuming classical fields. But this does not mean that
we can always decide whether a beam is quantum just by looking at g(2)(0): A light
beam may have quantum correlations that do not violate the classical rules exhibited
in Tabs. 17.1 and 17.2. This is the case, e.g. for squeezed light.

17.3.5 Photon counting statistics

The physical quantities measured in practice are intensities of light fields, i.e. energies
propagating through finite areas of space during finite integration times. Very sensi-
tive detectors may sense the arrival of single photons during finite times (called dead
times) needed to process the information. In semiclassical theory we ignore the exis-
tence of photons, nevertheless the photoeffect signal is delivered by single electrons,
amplified to avalanches of electrons that we will call ’photocount’, and that sum up
to currents for long enough integration times.

17.3.5.1 Quantum correlations

Defining the intensity as Î = 2ε0cÊ+Ê−, the coherences become,

g(1)(τ) ≡ 2ε0c
I ⟨T N Ê−(t)Ê+(t+ τ)⟩ and g(2)(τ) ≡

(
2ε0c
I

)2 ⟨T N Î(t)Î(t+ τ)⟩ .
(17.100)

The correlation functions must be calculated from the field operators simultaneously
respecting time order and normal order.

One rule is easy to derive,

g(2)(0) =
⟨â†â†ââ⟩
⟨â†â⟩2 =

⟨n̂2⟩ − ⟨n̂⟩
⟨n̂⟩2 = 1− 1

⟨n̂⟩ +
(∆n̂)2

⟨n̂⟩2 ≥ 1− 1

⟨n̂⟩ ≥ 0 , (17.101)

for ⟨n̂⟩ ≥ 1. For ⟨n̂⟩ < 1 we have g(2)(0) = 0.

17.3.5.2 Applications of correlated photons

Correlated photons have many applications in modern quantum sensing. Correlations
can be encoded in space, colors, polarization, or time giving rise to phenomena such as
ghost imaging, spooky spectra, time-correlated spectroscopy, two-photon absorption
with femtosecond time resolution, and virtual state spectroscopy among others.

17.3.6 Exercises

17.3.6.1 Ex: Correlation functions for two light modes

a. Calculate |g(1)(τ)|, FE(ω), and |g(2)(τ)| for two interfering and non-interfering
modes neglecting fluctuations.
b. What changes when one mode is broadened by random noise, e.g. induced by
spontaneous emission?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions01.pdf
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17.3.6.2 Ex: Correlation functions and spectra of phase- and amplitude-
modulated light

a. Calculate g(1)(τ), SE(ω), and g(2)(τ) for amplitude-modulated light: Eam(t) =
eıω0t(1 +M cosΩt).
b. Calculate g(1)(τ), SE(ω), and g(2)(τ) for phase-modulated light: Epm(t) = eıω0t+ıM cosΩt.
c. Repeat the calculation (a) for exponentially decaying amplitude-modulated light:
Edam(t) = e−γteıω0t(1 +M cosΩt).

17.3.6.3 Ex: Phase modulation

a. Show that it is not possible to construct a periodic phase modulation function such
that the signal has only two sidebands.
b. From 1 = |eıM sinΩt|2 derive a sum rule for the Bessel functions.
c. Discuss the difference of the spectra

∑∞
k=−∞ Jk(M)eıkΩt and

∑∞
k=−∞ |Jk(M)|eıkΩt.

17.3.6.4 Ex: Non-classicality of antibunched states

Quantized radiation fields can exhibit the feature of antibunching, which is incompati-
ble with the classical concept of radiation. Show that g(2)(0) < 1 entails the possibility
of negative values for the Glauber-Sudarshan P -function, that is, P (α) < 0 at least
for some α.

17.3.6.5 Ex: Zero delay correlation functions

Calculate the zero delay correlation functions for (a) Fock states and (b) thermal
light.

17.4 Spontaneous emission and light scattering

17.4.1 Interaction of atoms with vacuum modes

The Jaynes-Cummings Hamiltonian (17.2), discussed in Sec. 17.2, describes the purely
coherent dynamics of a single immobile two-level atom interacting with a single cavity
mode. The model is simple enough to allow for analytical solutions. However, it
does not include processes of spontaneous emission, which can be understood as the
interaction of the atom with the light modes of the vacuum. That is, we must extend
the Hamiltonian,

Ĥ = Ĥatom + Ĥfield + Ĥatom:field + Ĥvacuum + Ĥatom:vacuum . (17.102)

The evolution of the system represented by the Hamiltonian (17.102) is described by
a total density operator, ρ̂total(t), obeying the von Neumann equation,

dρ̂total
dt

= − ı
ℏ
[Ĥ, ρ̂total] , (17.103)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions10.pdf
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which has the solution,

ρ̂total(t) = e−ıĤt/ℏρ̂total(0)e
ıĤt/ℏ ≡ e−ıLtρ̂total(0) . (17.104)

Often, we are only interested in either the evolution of the light field, or the
internal state of the atom. In these cases, we calculate the trace over all those degrees
of freedom, which are we are NOT interested in,

ρ̂atom = Trvacuum ρ̂total . (17.105)

The procedure is the following. We begin choosing the initial state of the electromag-
netic vacuum as the photonic vacuum ρ̂vacuum = |{0}⟩⟨{0}| and defining a projection
operator onto this state, P̂ ... ≡ ρ̂vacuum(0)Trvacuum ... = P̂ 2.... Then we apply to the
von Neumann equation the rotating wave, the Markov and the Born approximations.
Finally, tracing over the vacuum field variables, we obtain after some calculations
the Bloch-Lindbladt equation or master equation [677] for the atom interacting with
the driving field. For a discussion of the validity of the Born-Markov approximation
[608]. For the relation between the Markov approximation and the Fermi’s Golden
Rule [11].

We emphasize that the Hamiltonian (17.102) describes the interaction of light
with a single immobile atom at the most fundamental level. However, it excludes
many-body effects introduced by quantum statistics or interatomic interactions (to
be discussed in Chp. 27), as well as the center-of-mass motion of the atom and the
impact of photonic recoil (to be discussed in Chp. 20).

In the following section we give a simplified derivation concentrating us on the
situation of a single motionless atom, excited by a laser and emitting photons into
the electromagnetic vacuum.

17.4.1.1 Spontaneous emission

Spontaneous emission can be understood as an energy diffusion process from a system
with a restricted number of degrees of freedom into a large thermal bath. For exam-
ple, although a two-dimensional Hilbert space is sufficient to describe a laser-driven
two-level atom, this atom couples to a huge phase-space by spontaneously emitting
photons into arbitrary directions. We account for his fact by including in the Hamil-
tonian not only the interaction of the atom with the incident laser (wavevector k0,
frequency ωk0

), but also with the modes of the electromagnetic vacuum (wavevec-
tor k, frequency ωk). We will see, that with this Hamiltonian, we can derive, in a
calculation is known as Weisskopf-Wigner theory, the Schrödinger equation for the
amplitudes of the atomic levels (16.147) including spontaneous emission.

Denoting the frequency of the atomic resonance by ωa, the interaction part of the
Hamiltonian is,

Ĥ = ℏgk0 (σ̂
−e−ıωat + σ̂+eıωat)

(
â†k0

eıω0t−ık0·r + âk0e
−ıω0t+ık0·r

)

+
∑

k

ℏgk
(
σ̂−e−ıωat + σ̂+eıωat

) (
â†ke

ıωkt−ık·r + âke
−ıωkt+ık·r

) . (17.106)
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Figure 17.10: Scattering of a laser beam by an atom.

gk0
is the coupling strength of the interaction between the atom and the pump mode,

σ̂− is the atomic deexcitation operator, âk is the annihilation operator of a photon,
and gk = d

√
ω/(ℏε0V ) describes the coupling between the atom and a vacuum mode

whose volume is V . The atom has two states, the ground state |g⟩ and excited state
|e⟩. Since we are considering only one atom fixed in space 6, we can as well locate it
at the origin r = 0. In addition, considering a high power incident laser,

âk0
|n0⟩k0

=
√
n0|n0 − 1⟩k0

≃ √n0|n0⟩k0
, (17.107)

âk0 is approximately an observable proportional to the root of the intensity. As

[âk0
, â†k0

] ≃ 0, we can disregard the quantum nature of the incident field and replace,
Ω0 ≡ 2

√
n0gk0

. Within the rotating wave approximation (RWA), the Hamiltonian
becomes,

Ĥ = ℏ
2Ω0

[
σ̂−eı∆0t + h.c.

]
+ ℏ

∑

k

[
gkσ̂â

†
ke
ı∆kt + h.c.

]
, (17.108)

where we introduced the abbreviations,

∆0 ≡ ω0 − ωa and ∆k ≡ ωk − ωa . (17.109)

The general state of the system is given by,

|Ψ(t)⟩ = α(t)|g⟩a|0⟩k + β(t)|e⟩a|0⟩k +
∑

k

γk(t)|g⟩a|1⟩k , (17.110)

where |j⟩a denotes the atomic state and |n⟩k the number of photons in the scattering
mode.

The temporal evolution of the amplitudes is obtained by inserting the Hamiltonian
(17.108) and the ansatz (17.110) into the Schrödinger equation,

∂

∂t
|Ψ(t)⟩ = − ı

ℏ
Ĥ|Ψ(t)⟩ . (17.111)

As verified in Exc. 17.4.4.1, we obtain,

α̇(t) = −ıΩ0

2 e
ı∆0tβ(t) (17.112)

β̇(t) = −ıΩ0

2 α(t)e
−ı∆0t −

∑
k
ıgkγk(t)e

−ı∆kt

γ̇k(t) = −ıgkeı∆ktβ(t) .

6We do not let the atom be accelerated by photonic recoil.
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Now, we chose the initial conditions,

α(0) = 1 and β(0) = 0 and γk(0) = 0 , (17.113)

we integrate the third equation,

γk(t) = −ıgk
∫ t

0

eı∆kt
′
β(t′)dt′ , (17.114)

and we substitute it in the second equation,

β̇(t) = −ıΩ0

2 α(t)e
−ı∆0t −

∑

k

g2k

∫ t

0

eı∆k(t
′−t)β(t′)dt′ . (17.115)

17.4.1.2 The Markov approximation

For small systems (which certainly is the case of a single atom), we can apply the
Markov approximation 7 claiming that the temporal variation of the amplitudes β(t′)
is slower than the evolution of the system given by eı(ωk−ωa)t in the integro-differential
equation, which is equivalent to an arbitrarily high-order equation. Hence, substi-
tuting β(t′) → β(t) into the integro-differential equation, we reduce it to a simple
first-order differential equation.

In practice, we redefine the integration variable, t′′ ≡ t− t′, to obtain,

d

dt
β(t) = −ıΩ0

2 α(t)−
∑

k

g2k

∫ t

0

eı(ωk−ωa)(t
′−t)β(t′)dt′ (17.116)

= −ıΩ0

2 α(t)−
∑

k

g2k

∫ t

0

e−ı(ωk−ωa)t
′′
β(t− t′′)dt′′ ,

and implement the Markov approximation by setting β(t − t′′) ≃ β(t), and with

lim
t→∞

∫ t
0
e−ı(ωk−ωa)t

′
dt′ = πδ(ωk − ωa), and replacing

∑
k −→ V

(2π)3

∫
d3k, we arrive

at,

d

dt
β(t) ≃ −ıΩ0

2 α(t)−
∑

k

g2kβ(t)πδ(ωk − ωa) (17.117)

= −ıΩ0

2 α(t)− V
(2π)3 β(t)

∫
g2kπδ(ωk − ωa)d3k

= −ıΩ0

2 α(t)− V
(2π)3 β(t)4πg

2
ka
πk2a

1
c = −ıΩ0

2 α(t)− Γ
2β(t) .

In the last step we introduced, as an abbreviation, the spontaneous emission rate,

Γ ≡
∑

k

2g2kπδ(ωk − ωa) = V
πck

2
ag

2
ka
, (17.118)

Finally,

d

dt
α(t) = −ıΩ0

2
β(t) and

d

dt
β(t) = −ıΩ0

2
α(t)− Γ

2
β(t) . (17.119)

7The approximation does not necessarily hold for large clouds of atoms.
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These are exactly the equations for the probability amplitudes (16.147) derived
from the Schrödinger equation, only that now, the spontaneous emission term has
been derived explicitly. Solve the Exc. 17.4.4.2.

Example 104 (Emission stimulated by vacuum fluctuations): Sponta-
neous emission can be regarded as an emission stimulated by vacuum fluctua-
tions. To see this, we write down the resonant optical cross section (ω0 = ωa)
of a driven two-level atom without degeneracies, σ0 = λ2/2π, and the intensity
of an incident laser field, Ī = cNℏω0/V , generating the Rabi frequency (see
(1.107)),

Ω2
0 = σ0

Ī

ℏωa
Γ =

2πc

k2a

N

V
Γ . (17.120)

Now, we assume that the field is, in fact, a vacuum mode containing only half
a photon, N = 1/2, which corresponds to vacuum fluctuations in the mode k0.
Then,

Ω2
1/2 =

πc

k2aV
Γ = g2 . (17.121)

17.4.2 Resonance fluorescence and (in-)coherent light scatter-
ing

The typical situation for a spectroscopy experiment is illustrated in Fig. 17.11: When
a beam of light, understood as a plane wave, strikes an atom (or a cloud of many
atoms), a part of the light is absorbed and reemitted into a direction indicated by a
solid angle dΩ. Light scattering is, of course, a second order process involving two
atomic transitions, one absorption and one emission.

Figure 17.11: (a) Geometry of a scattering experiment. (b) Spectral contributions of light
scattered elastically and inelastically by a three-level atom.

Radiation can be absorbed or scattered by an atom in different ways, depending
on whether the interaction is an elastic scattering or an inelastic scattering process,
a coherent or incoherent, a spontaneous or (bosonically) stimulated process. These
properties characterize many processes, in particular, resonance fluorescence (i.e. ab-
sorption and reemission), Rayleigh scattering, or Raman scattering. In the following,
we will clarify this classification.

Every scattering process is either spontaneous or stimulated 8. Rayleigh scattering
is elastic, that is, the kinetic energy of the scattering atom is the same, before and

8Classical theories of light scattering through the excitation of an electronic motion based on the
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after the scattering process. In contrast, Raman scattering is inelastic. Spontaneous
emission is due to the decay of population from an excited state, and spontaneous
Rayleigh scattering is due to the decay of an induced dipole moment. Both sponta-
neous processes can be regarded as being stimulated by vacuum fluctuations.

17.4.2.1 Deriving the source field expression

We will now calculate the electric field due to spontaneous emission by an atom from
the interaction Hamiltonian for atom-vacuum coupling (17.106) in the RWA,

Ĥ =
∑

k

ℏgkσ̂−â†ke
ıωkt−ıωat−ık·R + h.c. . (17.122)

Now, we assume isotropic coupling, gk = gk, and ωk = ωk, and for simplicity we
position the atom in the origin, R = 0. We use the Heisenberg equation with the
commutation rule [âk, â

†
k′ ] = δk,k′ to derive the temporal evolution of the field oper-

ators,
dâk
dt

= 1
ıℏ [âk, Ĥ] = −ıσ̂−gke

ı(ωk−ωa)t . (17.123)

Neglecting for simplicity polarization, the electric field is given by,

Ê+sct(r, t) =
∑

k

E1âk(t)eı(k·r−ωkt) , (17.124)

where r is now the observation point of the electric field. We restrict to the far-field
and substitute the annihilation operator with the integral of Eq. (17.123) using the
initial condition âk(0) = 0,

Ê+sct(r, t) =
∑

k

E1gk
∫ t

0

σ̂−(t′)eı(ωk−ωa)t
′
dt′eı(k·r−ωkt) . (17.125)

Now, we substitute the sum over k by an integral, as done in (17.117),

Ê+sct(r, t) = −ı
V

(2π)3

∫

R3

E1gk
∫ t

0

σ̂−(t′)eı(ωk−ωa)t
′
dt′eı(k·r−ωkt)d3k . (17.126)

Using the relationships,

gk =
d12E1
ℏ

and E1 =

√
ℏωk
2ε0V

, (17.127)

the final result of the integration yields [530],

Ê+sct(r, t) ≃ −ı
d12k

2
a

4πε0r
σ̂−(t− r

c ) . (17.128)

models of Lorentz or Drude can be found in the script Electrodynamics. Although being classical,
these model are useful for a deeper understanding of many aspects of Compton scattering, Thomson
scattering, and Rayleigh scattering.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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17.4.2.2 Resonance fluorescence

When we introduced the second quantization (14.8) we learned that the field of light
emitted by a radiator in the radiation zone (λ ≪ r) is, taking into account retarda-
tion 9, given by,

⟨ ˆ⃗E+s (r, t)⟩ ∝ ⟨σ̂−⟩ ∝ ρ̃21 and ⟨ ˆ⃗E−s (r, t)
ˆ⃗E+s (r, t)⟩ ∝ ⟨σ̂+σ̂−⟩ ∝ ρ22 . (17.129)

Therefore, the electric field emitted by an atom and the intensity of scattered light
are given by,

⟨ ˆ⃗E+s (r, t)⟩ = −eω
2
aϵ̂ · r12

4πε0c2r
ρ̃21(t− r

c )e
−ıω(t−r/c)

Īs = cε0⟨ ˆ⃗E−s (r, t)
ˆ⃗E+s (r, t)⟩ =

αℏω4
a|ϵ̂ · r12|2
4πc2r2

ρ22(t− r
c )

, (17.130)

with the definition of the Sommerfeld constant α = e2/4πε0ℏc. We calculate the total
flux of emitted photons,

W
(sp)
fi =

∫
Īsr

2

ℏωa
dΩ =

1

ℏωa

∫
αℏω4

a|r12|2 cos2 θ
4πc2

ρ22(t− r
c ) sin θdθdϕ (17.131)

=
8π

3ℏωa
αℏω4

a|r12|2
4πc2

ρ22(t− r
c ) =

2α

3c2
ω3
a|r12|2ρ22(t− r

c ) .

The result coincides with the spontaneous emission rate Γ calculated in (16.40).
A differential scattering cross section can be defined by,

dσ

dΩ
≡ ωĪsr

2

ωsĪ0
. (17.132)

17.4.2.3 Coherently scattered light and saturation

The total intensity of the scattered light being Īs, the fraction of the coherently
scattered light is,

Īcohs

Īs
=
⟨ ˆ⃗E−s (r, t)⟩⟨ ˆ⃗E+s (r, t)⟩
⟨ ˆ⃗E−s (r, t)

ˆ⃗E+s (r, t)⟩
. (17.133)

Inserting the expressions (17.130) and the stationary solution of the Bloch equations
(16.151) with the saturation parameter defined in (16.153),

Īcohs

Īs
=
|ρ̃21(∞)|2
ρ22(∞)

=
1

1 + s
= 1− Ī incohs

Īs
. (17.134)

That is, since the resonance fluorescence is proportional to the excited state popula-
tion, we may define a quantity Stot ≡ ρ22(∞), so that the coherent and incoherent

9The classical version of this formula can be found in the script Electrodynamics, Sec. 9.1.3,
Eq. (8.41).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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parts of the fluorescence are,

Scoh = |ρ21(∞)|2 =
s/2

(1 + s)2
and Sincoh = ρ22(∞)− |ρ21(∞)|2 =

s2/2

(1 + s)2
.

(17.135)
Hence, Sincoh = sScoh.
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Figure 17.12: (code) Elastic (red) versus inelastic scattering (blue) as a function of the

saturation parameter (a) at resonance and (b) for various detunings.

The result (17.135), illustrated in Fig. 17.12(a), means that below saturation scat-
tering is dominated by elastic scattering. Incident light excites the atomic dipole
moment ρ12, that is, charge oscillations which, in turn, emit electromagnetic radia-
tion like a classical antenna. Above saturation the excited atomic state accumulates
an considerable amount of population ρ22 giving rise to spontaneous emission, which
is interpreted as inelastic scattering. This intrinsically quantum feature is a con-
sequence of the quantized nature of the atomic energy levels and has no classical
counterpart. Another interesting feature seen in Fig. 17.12(b) is that, when the inci-
dent light is tuned sufficiently far from resonance, elastic scattering will dominate at
any saturation parameter.

17.4.3 The spectrum of resonance fluorescence

The correlation functions defined in (17.77) represent an interesting concept for de-
scribing resonance fluorescence and for phenomena such as antibunching observed in
resonance fluorescence.

17.4.3.1 The quantum regression theorem

From (17.83) we see that, to compute the spectra of resonance fluorescence, we only
need to compute the correlation function g(1), i.e. the amplitudes of the field Ê(t),
which in turn are related to the field operators (14.8). The field operators follow the
solutions of the Bloch equation, which, being linear, have the following generic form,

ρij(t+ τ) =
∑

k,l

αijkl(τ)ρij(t) + βij(τ) . (17.136)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_InElastic.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_InElastic.m
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The trace condition is satisfied, when (i, j), (k, l) ̸= (1, 1).

To be able to explore the above relationship to calculate correlation functions, we
have to invoke the so-called quantum regression theorem,

⟨Â(t+ τ)⟩ =
∑

i

ξi(τ)⟨Âi(t)⟩ =⇒ ⟨B̂(t)Â(t+ τ)Ĉ(t)⟩ =
∑

i

ξi(τ)⟨B̂(t)Âi(t)Ĉ(t)⟩ .

(17.137)

Example 105 (Quantum regression applied to the Langevin equation): We
have,

Ȧµ = Dµ(t) + Fµ(t) (17.138)

⟨Fµ(t)Fν(t)⟩ = 2⟨Dµν⟩δ(t− t′) .

We know,

⟨Aµ(t)Fν(t)⟩ = ⟨Dµν⟩ and ⟨Fµ(t)Aν(t)⟩ = ⟨Dµν⟩ (17.139)

and the quantum regression theorem gives,

d

dt
⟨Aµ(t)Aν(t′)⟩ = ⟨Dµ(t)Aν(t′)⟩ , (17.140)

because if t′ < t, the term ⟨Fµ(t)Aν(t′)⟩ vanishes for a Markovian process.

17.4.3.2 Bloch equation for a two-level system

The Fourier transform of the first-order coherence, g(1)(τ) = e−ıωτG(τ), gives,

F (ν) = (Fg(1))(ν) = F [e−ıωτ ] ⋆ F [G(τ)] = δ(ν − ω) ⋆ F [G(τ)] = (FG)(ν − ω) .
(17.141)

Therefore, we can look at the unshifted spectrum, (FG)(ν). Since the fluorescence
spectrum is determined by the first-order coherence, which depends on the field op-
erators, which in turn depend on the atomic populations and coherences, we have to
solve the Bloch equation.

For a two-level atom the Bloch equations, having been reduced by the normaliza-
tion condition (16.243) are,

˙⃗ρred =Mρ⃗red + b =



−Γ − ı

2Ω
ı
2Ω

−ıΩ − 1
2Γ− ı∆ 0

ıΩ 0 − 1
2Γ + ı∆





ρ22
ρ12
ρ21


+




0
ı
2Ω

− ı
2Ω


 (17.142)

with the solution (16.245), that is, ρ⃗(t+ τ) = eMτ ρ⃗(t)+ (1− eMτ )ρ⃗(∞) with ρ(∞) =
−M−1b. This solution can be cast in the following form,

ρkl(t+ τ) =
∑

(mn)

α(kl)(mn)(τ)ρmn(t) + β(kl)(τ) , (17.143)
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where (mn), (kl) = (22), (12), (21) identifying,

α(kl)(mn)(τ) =



α22,22 α12,22 α21,22

α22,12 α12,12 α21,12

α22,21 α12,21 α21,21


 ≡



(eMτ )11 . .

. . .

. . .


 = eMτ (17.144)

β(kl)(τ) =



β22
β12
β21


 ≡



−[(1− eMτ )M−1b]1

.

.


 = −(1− eMτ )M−1b .

Using quantum operators in the interaction image, |k⟩⟨l| = σ̂kl, we have,

⟨σ̂12(t)⟩ = ⟨σ̂†
21(t)⟩ = ρ12(t)e

ıω0t and ⟨σ̂22(t)⟩ = ⟨σ̂12(t)σ̂21(t)⟩ = ρ22(t) .
(17.145)

yielding,

⟨e(k−l)ıω0(t+τ)σ̂kl(t+ τ)⟩ =
∑

(mn)

α(kl)(mn)(τ)⟨e(m−n)ıω0tσ̂mn(t)⟩+ β(mn)(τ)⟨1⟩ ,

(17.146)
or,

⟨σ̂kl(t+ τ)⟩ (17.147)

=
∑

(mn)

e(l−k)ıω0τα(kl)(mn)(τ)⟨e(l−k+m−n)ıω0tσ̂mn(t)⟩+ e(l−k)ıω0τβ(mn)(τ)⟨e(l−k)ıω0t⟩ .

Applying the quantum regression theorem to the Bloch equations, we get for an
arbitrary time-dependent operator B̂(t),

⟨B̂(t)σ̂kl(t+ τ)⟩ =
∑

(mn)

e(l−k)ıω0τα(kl)(mn)(τ)⟨e(l−k+m−n)ıω0tB̂(t)σ̂mn(t)⟩

+e(l−k)ıω0τβ(mn)(τ)⟨e(l−k)ıω0tB̂(t)⟩
.

(17.148)

17.4.3.3 Correlation functions

We now look at the radiation field, which is related to the dipole moment operator
via,

Ê− = γσ̂21 , (17.149)

where γ is simply a constant. Substituting this relation in the correlation functions
(17.77) we obtain,

g(1)(τ) =
⟨σ̂21(t)σ̂12(t+ τ)⟩
⟨σ̂21(t)σ̂12(t)⟩

=
⟨σ̂21(t)σ̂12(t+ τ)⟩

⟨σ̂22(t)⟩
(17.150)

g(2)(τ) =
⟨σ̂21(t)σ̂21(t+ τ)σ̂12(t+ τ)σ̂12(t)⟩

⟨σ̂21(t)σ̂12(t)⟩2
=
⟨σ̂22(t)σ̂22(t+ τ)⟩
⟨σ̂22(t)⟩2

.
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Now we can calculate, letting ξi(τ) ≡ α(12)(mn), Ĉ(t) ≡ 1, and B̂(t) ≡ σ̂21(t),

g(1)(τ) =

∑
(mn) e

ıω0(t+τ)e(m−n)ıω0tα(12)(mn)(τ)⟨σ̂21(t)σ̂mn(t)⟩+ eıω0(t+τ)β(12)(τ)⟨σ̂21(t)⟩
⟨σ̂22(t)⟩

(17.151)

g(2)(τ) =

∑
(mn) e

(m−n)ıω0tα(22)(mn)(τ)⟨σ̂22(t)σ̂mn(t)⟩+ β(22)(τ)⟨σ̂22(t)⟩
⟨σ̂22(t)⟩2

.

Using σ̂21σ̂mn = σ̂2nδm1,

g(1)(τ) = eıω0τ
α(12)(12)(τ)⟨σ̂21(t)σ̂12(t)⟩+ β(12)(τ)⟨eıω0tσ̂21(t)⟩

⟨σ̂22(t)⟩
(17.152)

g(2)(τ) =
α(22)(21)(τ)⟨eıω0tσ̂22(t)σ̂21(t)⟩+ α(22)(22)(τ)⟨σ̂22(t)σ̂22(t)⟩+ β(22)(τ)⟨σ̂22(t)⟩

⟨σ̂22(t)⟩2
.

Returning to the density operator and letting t→∞,

g(1)(τ) = eıω0τ

[
α(12)(12)(τ) + β(12)(τ)

ρ21(∞)

ρ22(∞)

]
and g(2)(τ) = eıω0τ

β(22)(τ)

ρ22(∞)
,

(17.153)
that is,

g(1)(τ) = eıω0τ

[[
eMτ

]
(12)(12)

−
[
(I− eMτ )M−1b

]
(12)

[M−1b]
(21)

[M−1b](22)

]

g(2)(τ) = eıω0τ
[(I−eMτ )M−1b]

(22)

[M−1b](22)

. (17.154)

These correlation functions can easily be calculated via a numerical resolution of the
Bloch equations (17.142). Fig. 17.13 shows the correlation functions and the fluores-
cence spectrum derived by Fourier transform of the first-order correlation function
(17.82). Assuming resonant excitation, ∆ = 0, analytic formulas can be derived, as
will be exercised in Excs. 17.4.4.3 and Exc. 17.4.4.4.

The spectrum 17.13(d) exhibits three lines known as the Mollow triplet. Note that
the spontaneous emission triplet is only observed in the presence of a driving laser,
because it is the laser excitation which causes the splitting. Indeed, the splitting and
the position of the lines are easily understood in the dressed states picture visualized
in Fig. 17.1: The coupling of the two-level atom to a light field splits up the levels |n⟩
and |n+1⟩ by an amount corresponding to the Rabi frequency Ω. Now, the transition
from the two excited state |n + 1⟩ levels to the ground state |n⟩ levels can occur on
three different frequencies. In Exc. 17.4.4.5 we calculate the Mollow spectrum for a
transition between one ground and three excited Zeeman states. Fig. 17.14 illustrates
the various methods to analyze scattered light, but not all of them yield information
on the Mollow triplet.

17.4.3.4 Mollow spectrum from effective Hamiltonian

The Mollow triplet is easily understood in the dressed states picture. On the other
hand, we know that (for classical light) the semi-classical picture is totally equivalent
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Figure 17.13: (code) (a) Temporal evolution of the excited state population ρ22(t) (cyan) and

coherence ρ12(t) (magenta) of a laser-driven two-level atom with Ω = 5Γ. (b) Correlation

function g(1)(τ) and (c) g(2)(τ). The blue curves in (b-c) are obtained by numerical simula-

tions of the Bloch equations and subsequent application of the quantum regression theorem

(17.154). The green dots are obtained from an analytic solution derived in Exc. 17.4.4.3. (d)

Mollow spectrum obtained by numerical FFT of g(1)(τ).

(its just a unitary transform of the dressed states picture). Developing a physical
picture the Mollow triplet in the semi-classical framework may give us a deeper insight.
Generally, the Mollow spectrum is anyhow calculated using the semi-classical Bloch
equations, via the correlation function g(1)(τ) and the Wiener-Khintchine theorem,
but the on the way the physical intuition is lost.

For example, looking at the stationary solution of the Bloch equations (16.151),
we see that ρ⃗(∞) is time-independent, so that we might be surprised to see correla-
tions in time domain (and consequently a structured spectrum) at all. This surprise
results from a common misconception that may arise considering the damping of ρ⃗(t)
predicted by the Bloch model, as illustrated e.g. in Fig. 16.3: It seems that the atoms
eventually cease oscillating between the ground and excited states. In most experi-
ments, measurement are made on a large number of atoms and indeed the oscillations
are damped.

In fact, however, every individual atom undergoes a complicated unpredictable
trajectory alternating times of coherent evolution with spontaneous emission events
(called quantum jumps). The damped behavior only results as an average over many
such quantum trajectories. In this light, the reason for g(1)-type correlations is a
subtle interplay between coherently and incoherently scattered light: The spontaneous
emission probability is amplitude-modulated with the Rabi frequency.

An alternative way to calculate the Mollow spectrum consists in solving the
Schrödinger equation with the effective Hamiltonian, as done in Exc. 17.4.4.2 and
17.4.4.6. The results are shown in Fig. 17.15. While providing an intuitive picture
of the origin of of the Mollow triplet a quantitatively correct treatment requires a
Monte-Carlo wavefunction simulation [594] (see Sec. 18.1.2).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
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Figure 17.14: Schemes for analyzing resonance fluorescence: (a) Heterodyning [634], (b) tem-
poral correlation, (c) spectrum [778, 635], (d) demodulation. Only the schemes (b) and (c)
yield information on the Mollow triplet.

17.4.3.5 Weak excitation and the role of collisions

For the case of a weakly excited two-level atom, |Ω| ≪ Γ, we have analytic solutions
(16.157) of the Bloch equation. We can then take the coefficients αijkl and βij and
insert them into the correlation functions,

g(1)(τ) = e−ıωτ , (17.155)

g(2)(τ) = 1 + e−2γτ − 2 cos∆τ ,

F (ωs) = (Fg(1))(ωs) = δ(ωs − ω) .

These functions show that the spectrum is essentially composed of Rayleigh scattering
at the frequency of the incident light. The δ-shaped fluorescence spectrum shows,
that the contribution of elastically scattered light dominates below saturation, which
confirms the results (17.135) illustrated in Fig. 17.12. The light is ’antibunched’ and,
at higher τ exhibits a damped oscillation around the value 1.

If pressure broadening is taken into account, the two-level Bloch equations are
given by (16.151), where γ′ = γ + γcoll is the width of the collision-broadened line.
Within this model and in the limit Ω ≪ Γ, the resonance fluorescence spectrum is
given by [530],

F (ωs) =
γ′ − Γ

γ′
γ′/π

(ω0 − ωs)2 + γ′2
+

Γ

γ′
δ(ωs − ω) . (17.156)

So, we find that, even at low intensities, a continuous spectrum due to inelastic scat-
tering appears around the resonance frequency ω0 additionally to the elastic Rayleigh
peak.
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Figure 17.15: (code) (a) Time evolution of the norm of a decaying driven two-level atom.

(b) Time evolution of the ground and excited state amplitudes. (c) First-order auto-

correlation function, and (d) spectrum.

17.4.4 Exercises

17.4.4.1 Ex: Derivation of the rate equations for two-level atoms

Inserting the ansatz (17.110) into the Schrödinger equation, derive the equations of
motion (17.112) for the wavefunction amplitudes.

17.4.4.2 Ex: Non-Hermitian time evolution

Study the time evolution |ψ(t)⟩ = e−ıĤefft/ℏ|ψ(0)⟩ with the effective Hamiltonian,

Ĥeff =

(
0 ℏ

2Ω
ℏ
2Ω − ıℏ2 Γ

)

starting from the initial condition ⟨2|ψ(0)⟩ = 1. Calculate the evolution of |ψ(t)⟩ and
the norm ⟨ψ(t)|ψ(t)⟩. Plot the time evolution of the norm for various ratios Ω/Γ and
interpret the curves. Alternative solution:
We set ℏ = 1 and calculate the eigenvalues E± and the unitary transformation matrix
U , where UĤeff = ÊU and

Ê ≡
(
E+ 0

0 E−

)
.

The eigenvalues are,

E± = − ıΓ4 ± 1
4

√
4Ω2 − Γ2 Ω→0−→ 0,− ı

2Γ .

The unitary transformation matrix is nothing else than the eigenvector matrix,

U =

(
2E++ıΓ

Ω
2E−+ıΓ

Ω

1 1

)
=

(
ıΓ
2Ω +

√
1− Γ2

4Ω2
ıΓ
2Ω −

√
1− Γ2

4Ω2

1 1

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_MollowEffectiveH.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_MollowEffectiveH.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_MollowEffectiveH.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_AtomoNiveisdois.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_NonhermitianEvolution.pdf
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We get for the evolution,

e−ıĤefft

(
0

1

)
= Ue−ıÊtU−1

(
0

1

)

=

(
2E++ıΓ

Ω
2E−+ıΓ

Ω

1 1

)(
e−ıE+t 0

0 e−ıE−t

)( 2E++ıΓ
Ω

2E−+ıΓ
Ω

1 1

)−1(
0

1

)

=

(
− (2E++ıΓ)(2E−+ıΓ)

2Ω(E+−E−) (e−ıE+t − e−ıE−t)

− (2E−+ıΓ)
2(E+−E−)e

−ıE+t + (2E++ıΓ)
2(E+−E−)e

−ıE−t

)

=

(
Ω√

4Ω2−Γ2
(e−ıE+t − e−ıE−t)

1
2

(
1− ıΓ√

4Ω2−Γ2

)
e−ıE+t + 1

2

(
1 + ıΓ√

4Ω2−Γ2

)
e−ıE−t

)

= e−Γt/4

( −2ıΩ√
4Ω2−Γ2

sin t
√
4Ω2−Γ2

4

cos t
√
4Ω2−Γ2

4 − Γ√
4Ω2−Γ2

sin t
√
4Ω2−Γ2

4

)
.

The result is identical to the one previously derived.

17.4.4.3 Ex: Resonance fluorescence and antibunching via Bloch equa-
tions

a. Derive the analytic solution of the Bloch equations for a resonantly driven two-level
atom.
b. Calculate the 1st-order correlation function g(1)(τ) from the formula (17.154).
c. Derive the spectrum of resonance fluorescence [593].
d. Derive the 2nd-order correlation function g(2)(τ) from the formula (17.154).

17.4.4.4 Ex: Resonance fluorescence via rate equations

Repeat Exc. 17.4.4.3 neglecting coherences, i.e. replacing the Bloch equations by rate
equations,

˙⃗ρ =




−R R+ Γ 0 0

R −R− Γ 0 0

0 0 −γ 0

0 0 0 −γ


 ρ⃗ ,

where R = Ω2/2γ is the pump rate.

17.4.4.5 Ex: Fluorescence spectrum of a four-level system

A more realistic transition, allowing for a vectorial nature of the radiation field, in-
volves one ground and three excited Zeeman states (e.g. the strontium 1S0-

1P1 tran-
sition). In this case, the emitted light is,

Ê−(t) = Ê−σ−(t) + Ê−π (t) + Ê−σ+(t) .

Calculate the first-order correlation function and the fluorescence spectrum of this
transition.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions06.pdf
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17.4.4.6 Ex: Semi-classical picture of the Mollow triplet

Calculate the first-order correlation function from the solution of the Schrödinger
equation with the effective Hamiltonian derived in Exc. 17.4.4.2.

17.4.4.7 Ex: Monte-Carlo simulation of the Mollow triplet

Implement a Monte-Carlo simulation of the Mollow triplet for a driven two-level atom
according to [194, 594].

17.5 Light scattering from multi-level atoms

17.5.1 Quantum beats

The phenomenon of quantum beats is another simple example of effects beyond semi-
classical theory, requiring a full second-quantized calculation. In semi-classical theory
(SCT), there is an interference or beat note term for both V-type and Λ-type atoms,
while in quantum electrodynamics (QED) only V-type atoms exhibits a beat term.

In the semi-classical picture, the state vector of electrons is [749],

ψ(t)⟩ = c1e
−ıω1t|1⟩+ c2e

−ıω2t|2⟩+ c3e
−ıω3t|3⟩ . (17.157)

Writing the non-vanishing dipole matrix elements as d12 = e⟨1|r|2⟩, d23 = e⟨2|r|3⟩ a
three-level atom has two microscopic oscillating dipoles,

P(t) = d12(c
∗
1c2)e

ıω12t + d23(c
∗
2c3)e

ıω23t + c.c. . (17.158)

In the semi-classical picture, the radiated field will be a sum of these two terms,

E+ = E1e−ıω12t + E2e−ıω23t . (17.159)

This leads to an interference or beat note term in a square-law detector,

|E+|2 = |E12|2 + |E23|2 + E∗12E23e[ı(ω12−ω23)t] + c.c. , (17.160)

regardless of whether state |2⟩ decays simultaneously to |1⟩ and |3⟩ or vice versa.

Figure 17.16: Level configuration of a Λ-system (left) and a V -system (right).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions08.pdf
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17.5.1.1 Quantum electrodynamics calculation

For the quantum electrodynamical calculation, we use the creation and annihilation
operators from second quantization of quantum mechanics. Let Ê+n = âne

−ıωnt be
the annihilation operator and Ê−n = â†ne

ıωnt be the creation operator with n = (12)
or n = (23). Then the beat note becomes,

⟨ψV (t)|Ê−12(t)Ê+23(t)|ψV (t)⟩ and ⟨ψΛ(t)|Ê−12(t)Ê+23(t)|ψΛ(t)⟩ (17.161)

for the Λ and the V -system, respectively. The state vector for each type of system is,

|ψV (t)⟩ =
∑

i=1,2,3

ci|i, 0⟩+ c1|c, 112⟩+ c2|c, 123⟩ (17.162)

and,

|ψΛ(t)⟩ =
∑

i=1,2,3

c′i|i, 0⟩+ c′1|b, 112⟩+ c′2|c, 123⟩ . (17.163)

The beat note term becomes,

⟨ψV (t)|Ê−1 (t)Ê+2 (t)|ψV (t)⟩ = κ⟨112023|a†1a2|012123⟩e[ı(ω12−ω23)t]⟨3|3⟩ (17.164)

= κe[ı(ω12−ω23)t]⟨3|3⟩

for the V -system and

⟨ψΛ(t)|Ê−1 (t)Ê+2 (t)|ψΛ(t)⟩ = κ′⟨112023|a†1a2|012123⟩e[ı(ω12−ω23)t]⟨2|3⟩ (17.165)

= κ′e[ı(ω12−ω23)t]⟨2|3⟩

for the Λ-system. However, orthogonality of the eigenstates requires ⟨3|3⟩ = 1 and
⟨2|3⟩ = 0. Therefore, there is a quantum beat note term for V-type atoms, but not
for Λ-type atoms.

This difference originates in quantum mechanical uncertainty. A V-type atom
decays to state |3⟩ via the emission with ω12 and ω23. Since both transitions decayed
to the same state, one cannot determine along which path each decayed, similar to
Young’s double-slit experiment. However, Λ-type atoms decay to two different states.
Therefore, in this case we can identify the path by the end product.

Quantum beat spectroscopy is a technique which allows for Doppler-free resolution
provided the separation of the adjacent levels is less than the Doppler width. It
consists in generating a coherently distributed population of two upper states, e.g. via
a short laser pulse, and detecting the beat frequency.

17.5.2 Two-photon transitions

We will now apply the Kramers-Heisenberg formula (5.111) to photon scattering pro-
cesses ω → ωs. The states are then product states of atomic excitations and photonic
modes |m,n, ns⟩. In particular, the final state must take into account the mode into
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which light is scattered,

1

τ
=

2π

ℏ2
∑

f

∑

ks

∣∣∣⟨f, n− 1, 1|Ĥ(2)|i, n, 0⟩ (17.166)

+
1

ℏ
∑

m

⟨f, n− 1, 1|Ĥ(1)|m⟩⟨m|Ĥ(1)|i, n, 0⟩
ωi − ωm

∣∣∣∣∣

2

δ(ωf − ωi) .

The initial energy is ωi → nω, the final energy ωf → (n − 1)ω + ωs + ωf , two
intermediate states are possible, |m⟩ → |m,n − 1, 0⟩ and |m⟩ → |m,n, 1⟩ over which
we must sum, that is ωm → ωm + (n − 1)ω and ωm → ωm + nω + ωs. They are
illustrated by the Feyman diagrams in Fig. xx. Hence, and neglecting the non-linear
contribution Ĥ(2),

1

τ
=

2π

ℏ3
∑

f

∑

ks

∣∣∣∣∣
∑

m

⟨f, n− 1, 1|Ĥ(1)|m,n, 0⟩⟨m,n, 0|Ĥ(1)|i, n, 0⟩
ω − ωm

(17.167)

+
⟨f, n− 1, 1|Ĥ(1)|m,n− 1, 1⟩⟨m,n− 1, 1|Ĥ(1)|i, n, 0⟩

−ωm − ωs

∣∣∣∣∣

2

δ(ωf − ω + ωs) .

Evaluated far from resonance, ω ≫ ωm, this result leads to Thomson and Compton
scattering. Close to resonance the second term of the sum may neglected.

The matrix elements can be evaluated by the electric dipole Hamiltonian in second
quantization,

1

τ
=

2π

ℏ
∑

ks

∣∣∣∣∣
∑

m

ΩfmΩmi
ω − ωm

∣∣∣∣∣

2

δ(ωf − ω + ωs) . (17.168)

We convert the transition rate into a cross section via,

∑

ks

→ V

(2π)3

∫ ∫
k2sdksdΩ =

V

(2πc)3

∫ ∫
ω2
sdωsdΩ . (17.169)

17.5.2.1 Transition rates for n-photon processes

It is adequate to move to a continuum of final states of the field. The sum over the
final states includes a sum over the modes k and the polarizations λ,

∑

f

=
∑

k

∑

λ

−→ 1

h3

∫

R6

d3pd3r
∑

λ

=
V

(2πc)3

∫

Ω

dΩ dω ω2
∑

λ

. (17.170)

We now insert for the matrix element (first term in ()) the cartesian multipole expan-
sion () and obtain,

1

τ
=

2π

ℏ2
∑

f

∣∣∣∣∣⟨f | − ıe
√

ℏω
2ε0V

[ε̂ · dE + ...]|i⟩
∣∣∣∣∣

2

δ(ω − ωf )
∑

λ

(17.171)

−→ 2π

ℏ2
V

(2πc)3
e2ℏω
2ε0V

ω2
∑

λ

∫
|ε̂ · ⟨g|dE |e⟩+ ıε̂ · ⟨g|qE |e⟩ · k...]− ...|2 dΩ .
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Finally, letting
∑
λ = 2,

1

τ
=
αω3

πc2

∫
|ε̂ · ⟨g|multipole-tensor|e⟩wavenumber-tensor|2 dΩ . (17.172)

For example, for dipole radiation, letting ε̂ = êz,

1

τ
=
αω3

πc2

∫
|ε̂ · ⟨g|dE |e⟩|2 d cos θdϕ (17.173)

=
αω3

πc2
|⟨g|dE |e⟩|2

∫
| cos θ|2d cos θdϕ =

4αω3

3c2
|⟨g|dE |e⟩|2 .

17.5.2.2 Absorption

In first order perturbation theory we have Fermi’s Golden rule,

1

τ
=

2π

ℏ2
∑

f

|⟨f |Ĥint|i⟩|2δ(ωf − ωi) . (17.174)

In the dipolar approximation, Ĥint = −d · E⃗ , and separating the field and atomic
degrees of freedom, |f⟩ = |Nf ⟩|Af ⟩, we get for absorption processes,

1

τ
=

2πe2

ℏ2
∑

Nf

∣∣∣⟨Nf |Ê−|Ni⟩ · ⟨Af |ε̂ · d̂|Ai⟩
∣∣∣
2

δ(ωf − ωi) . (17.175)

Generalizing to a statistical mixture of Fock states via
∑
Nf ,Ni

⟨Ni|Ê+|Nf ⟩pi⟨Nf |Ê−|Ni⟩ =
Tr (ρ̂Ê+Ê−), we may also write,

1

τ
=

2πe2

ℏ2
|Mabs|2δ(ωf − ωi)Tr (ρ̂Ê+Ê−) , (17.176)

where

|Mabs|2 ≡ ⟨Af |ε̂ · d̂|Ai⟩ . (17.177)

For an incoming photon ω, we get ωf = Ef and ωi = Ei + ω. See Fig. 17.17(a).

17.5.2.3 Spontaneous and stimulated emission

In complete analogy to the absorption process, but now using the scattered field,

Ĥint = −d · ˆ⃗Es, we get for emission processes,

1

τ
=

2πe2

ℏ2
|Mem|2δ(ωf − ωi)Tr (ρ̂Ê+s Ê−s ) , (17.178)

where

|Mem|2 ≡ ⟨Af |ε̂s · d̂|Ai⟩ . (17.179)

For an outgoing photon ωs, we get ωf = Ef + ωs and ωi = Ei.
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Figure 17.17: Feynman graphs for (a) absorption, (b) spontaneous emission, (c) stimu-
lated emission, (d) two-photon absorption, (e) spontaneous Raman, (f) stimulated Raman,
(g) spontaneous second harmonic generation, (h) and stimulated second harmonic genera-
tion.

17.5.2.4 Two-photon absorption

In second order perturbation theory we have the Kramers-Heisenberg rule,

1

τ
=

2π

ℏ2
∑

f

∣∣∣∣∣
∑

m

⟨f |Ĥint|m⟩⟨m|Ĥint|i⟩
ω − ωm

∣∣∣∣∣

2

δ(ωf − ωi) . (17.180)

In the dipolar approximation, Ĥint = −d· ˆ⃗E1−d· ˆ⃗E2, and separating the field and atomic
degrees of freedom, |f⟩ = |Nf ⟩|Af ⟩, we get for two-photon absorption processes,

1

τ
=

2πe4

ℏ4
∑

Nf

∣∣∣∣∣∣
∑

Nm,Am

⟨Nf |E−2 |Nm⟩⟨Nm|E−1 |Ni⟩⟨Af |ε̂2 · d̂|Am⟩⟨Am|ε̂1 · d̂|Ai⟩
ω1 − ωm

(17.181)

+
⟨Nf |E−1 |Nm⟩⟨Nm|E−2 |Ni⟩⟨Af |ε̂1 · d̂|Am⟩⟨Am|ε̂2 · d̂|Ai⟩

ω2 − ωm

∣∣∣∣∣

2

δ(ωf − ω1 − ω2) .

Generalizing to a statistical mixture of Fock states via
∑
Nf ,Ni

pi|⟨Nf |Ê−2 Ê−1 |Ni⟩ =
Tr (ρ̂Ê+1 Ê+2 Ê−2 Ê−1 ), we may also write,

1

τ
=

2πe4

ℏ4
|Mtpa|2δ(ωf − ωi)Tr (ρ̂Ê+1 Ê+2 Ê−2 Ê−1 ) , (17.182)

where

Mtpa ≡ ⟨Af |ε̂2 · d̂G(Ei + ω1)ε̂1 · d̂|Ai⟩+ ⟨Af |ε̂1 · d̂G(Ei + ω2)ε̂2 · d̂|Ai⟩ . (17.183)

For two incoming photons ω, we get ωf = Ef and ωi = Ei+ω1+ω2. Here, G denotes
the photon propagator,

G(ω) =
∑

m

|Am⟩⟨Am|
ω − Em

. (17.184)
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Figure 17.18: Feynman graphs for (a) absorption, (b) spontaneous emission, (c) stimulated
emission, (e)(i-iii) spontaneous Raman.

17.5.2.5 Spontaneous and stimulated Raman process

In complete analogy to the two-photon absorption process, but now using the incident
and the scattered fields, Ĥint = −d · E⃗1−d · E⃗s, we get for spontaneous and stimulated
Raman processes,

1

τ
=

2πe4

ℏ4
|Mram|2δ(ωf − ωi)Tr (ρ̂Ê+1 Ê−s Ê+s Ê−1 ) , (17.185)

where

Mram ≡ ⟨Af |ε̂s · d̂G(Ei + ω1)ε̂1 · d̂|Ai⟩+ ⟨Af |ε̂1 · d̂G(Ei − ωs)ε̂s · d̂|Ai⟩ . (17.186)

For an incoming photon ω1 and a scattered photon ωs, we get ωf = Ef + ωs and
ωi = Ei + ω1.

17.5.2.6 General n-photon processes

The transition probability in n-th order perturbation theory can be formulated in a
general way as,

1

τ
=

2πe2

ℏ2n
|M (n)

fi |2δ(ωf − ωi)Tr (ρ̂Ê±1 Ê±2 ...Ê∓2 Ê∓1 ) , (17.187)

where

Mfi(ωn, ..., ω1) ≡ Sp⟨Af |ε̂nd̂G(Ei ± ω1 ± ...± ωn−2 ± ωn−1) ... (17.188)

... ε̂n−1d̂G(Ei ± ω1 ± ...± ωn−2) ...

... ε̂1 · d̂G(Ei ± ω1)|Ai⟩ .

The upper signs hold for absorbed photons (up to n), the lower for emitted photons,
ωf = Ef + ω1 + ...+ ωn and ωi = Ei + ω1 + ...+ ωn.

For n-photon processes, there are theoretically up to n + 1 different types, each
one with n! possible temporal sequences, which can be illustrated in Feynman graphs.
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Additionally, for every emitted photon can be either spontaneous or stimulated. The
number of possible time sequences is reduced, if some absorbed or emitted photons
have the same frequency by m! (if m is the number og identical photons).

For example there are (3+1) different types of three-photon processes: 3 photons
in, 2 photons in 1 out, 1 photon in 2 out, 3 photons out.

For example second harmonic generation: 3! possible time sequences, 2 processes,
2 equivalent photons = 3!2

2! possible Feynman graphs.

17.5.3 Exercises

17.5.3.1 Ex: Two-photon transitions in rubidium

Considering the following transitions of rubidium, 5S1/2 − 5P1/2 at 795 nm with
Γ795 = (2π) 6 MHz linewidth 5S1/2 − 5P3/2 at 780 nm with Γ780 = (2π) 6MHz, and
5P3/2 − 5D5/2 at 776 nm with Γ776 = (2π) 700 kHz linewidth. Calculate the rate
for resonant two-photon transitions from the ground state to the 5D5/2 level without

bothering about hyperfine splitting induced by a laser intensity of I = 1 mW/cm
2
.

17.5.3.2 Ex: Spin relaxation in a dipole trap

Consider a transition in a hypothetical atomic species without nuclear spin between
two levels 2S1/2 and 2P1/2 driven far-off resonance. Calculate the spin relaxation rate
as a function of the detuning.

17.5.3.3 Ex: Rayleigh scattering and spin relaxation

Derive the rates for Rayleigh scattering and spin relaxation for 87Rb driven far-off
resonance. Help: Determine the hyperfine structure of the D1 and D2 lines and
calculate the transition rates between sublevels from the Kramers-Heisenberg formula.
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Chapter 18

Quantum measurement

Since its foundation, the theory of quantum mechanics was driven by the urge to
clarify the relationship between the world and what we can learn about it, that is, be-
tween reality and the observer. Scientists such as Bohr, Heisenberg, Schrödinger, and
Einstein defended controversial positions and struggled for the correct interpretation
of quantum mechanics. The measurement process is supposed to provide informa-
tion about the world out there, but it is not clear whether this information can be
complete and accurate, or whether there are limitations or hidden variables. Also, it
was unclear, to what extend a measurement can be non-invasive or whether it would
always perturb the phenomenon under investigation. The most important step in
this question was the Copenhagen interpretation formulated by Bohr, Heisenberg and
Born in 1927 and elaborated later by von Neumann and Dirac. Although contested
many times in the past, it’s essence still remains valid today.

In this chapter we will study the measurement process from the viewpoint quan-
tum mechanics and discuss some seemingly paradoxical effects, that will allow us to
deepen our understanding. Among them are the quantum jump, Schrödinger’s cat,
the quantum Zeno effect, and the Einstein-Podolski-Rosen paradox.

18.1 The reality and the observer

According to the Copenhagen interpretation, theoretical predictions have a probabilis-
tic character. However, this is not an expression of the imperfection of the theory, but
of the intrinsically indeterministic character of quantum processes 1. Moreover, the
Copenhagen interpretation desists to attribute to objects of the quantum formalism,
such as wavefunctions and operators, an immediate reality. Instead, the objects of
the formalism only represent vehicles for a probabilistic prediction of the results of
measurements. These results are only truly real elements of quantum theory. It is ob-
vious, that the quantum theory and its interpretations are of fundamental importance
to the scientific view of the world and our concept of nature.

18.1.1 Schrödinger’s cat

In the microscopic world, the relationship between the sample and the observer is very
delicate. And this delicacy is at the origin of quantum effects that seem paradoxical

1Note that it is problematic to identify unpredictability and indeterminism. We may be unable
to predict specific events, without having to assume that these events occur in a random manner.

719
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through our classical concept of the world. It is, thus, not surprising that one of
the most fascinating areas of investigations is the interface between the classical
and the quantum, the macroscopic and the microscopic worlds. For the pioneers of
quantum mechanics the most important questions were of the type: ’How is it possible
that a microscopic particle flies simultaneously through two slits?’ Nowadays, we
are accustomed to such paradoxes, and we simply accept the fact that we have to
consider a particle as a wave. Nevertheless, we still do not understand very well,
why the classical and the quantum world behave so differently. ’Why does quantum
mechanics allow for quantum superpositions states, which are absolutely forbidden in
classical physics?’, ’Why are the fundamental laws of the quantum world invariant to
the arrow of time, while the macroscopic world always evolves from the past to the
future?, ’How can it be that quantum mechanics allows for effects having no cause,
like spontaneous emission, while the everyday world seems to be deterministic?’

Figure 18.1: Double slit and Schrödinger’s cat.

Quantum mechanics must, in some limit, clearly encompass classical physics. But
in spite of Ehrenfest’s correspondence principle, this fact is far from being trivial.
Some predictions of classical and quantum physics are fundamentally different and,
in some cases, even contradictory. The famous Schrödinger cat states are the epitome
of this fact: In one version of this paradox, a particle crosses a double slit. Behind
one of the slits is a detector which, as soon as it registers a particle, actuates a device
killing a cat. We know that in quantum reality the particle crosses both slits in a
superposition state, so that the cat should be in a superposition state as well. Hence,
quantum cats can be in a superposition of ’dead’ and ’alive’.

We believe nowadays that the answers to the above questions are somehow buried
in processes that destroy the quantum superposition of Schrödinger cats during the
transition from the microscopic to the macroscopic world. However, the details of
these quantum coherence destruction processes, called decoherence, are very compli-
cated and the subject of serious efforts in contemporary research. It is one of the mo-
tivations for trying to create in laboratories the largest possible (quasi-macroscopic)
quantum systems, bring them in Schrödinger cat-like superposition states and study
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Figure 18.2: The measurement of a quantum system presupposes the interaction of the
system with a reservoir, which disturbs its dynamics.

their decoherence 2.

18.1.1.1 Quantum measurement

Every unperturbed system follows the Schrödinger equation. Once its Hamiltonian
has been determined, the formal solution,

|ψ⟩ = e−ıĤt/ℏ|ψ0⟩ , (18.1)

allows to calculate the time evolution, that is, the trajectory of the wavefunction. The
evolution is coherent and reversible in time.

Now, the process of measuring a pure quantum state includes –according the
Copenhagen interpretation and as discussed in Sec. 1.4.7– two consecutive steps: In
the first step, the interaction of the quantum sample with the measuring device (which
from now on we will call meter) destroys all coherences and projects the pure state
into a statistical mixture of eigenstates of the meter. Following von Neumann, the
impact of the meter on the quantum system is so strong, that its coherent evolution
is interrupted and it is projected onto the degree of freedom that the apparatus
wants to measure, e.g. its position or its momentum, but not both in the same time.
The projection transforms a pure quantum state |ψ⟩ into a statistical mixture ρ of
eigenstates,

ρ̂sample = |ψ(t)⟩⟨ψ(t)|↷ ρ̂proj =
∑

k
|⟨ψ|k⟩|2|k⟩⟨k| . (18.2)

This process is irreversible, that is, it separates the past from the future. The projec-
tion is not described by the Schrödinger equation. Instead, the sudden reduction of
the state must be postulated, as done by von Neumann’s famous axiom.

In a second step, the observer looks at the measuring device and confirms one of
the possible results. Thus, he transforms the state into a eigenstate of the device 3:

ρ̂proj ↷ ρ̂meter = |k⟩⟨k| . (18.3)

From this moment, we can again leave the quantum system alone until the next
measure.

2There are attempts to introduce the concept of the time arrow also in the microscopic world: ’In
an isolated system, spontaneous processes occur in the direction of increasing entropy.’ [582, 312].

3We note that, only if all commuting observables of the system are measured and acknowledged,
ρ̂meter becomes a pure state. Otherwise ρmeter remains a partial mixture.
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From the viewpoint of the quantum system, the evolution of the measurement
process appears discontinuous, because it destroys all possible coherences between its
states. In fact, the problem comes from the non-ideal behavior of the measuring device
(symbolized by | ↑⟩ before the measurement). An ideal non-invasive measurement 4

would leave the quantum state |ψ⟩ unchanged:

|ψ⟩| ↑⟩ H−→ |ψ⟩| ↗⟩ , (18.4)

while the measuring device changes to a state (| ↗⟩ after the measurement) indicating
the current state of the system. However, this is normally impossible without previ-
ously established correlation between |ψ⟩ and | ↑⟩. In a real meter device, the coupling
between |ψ⟩ and | ↑⟩ requires that the meter and the system to be non-orthogonal.

18.1.1.2 Measurement-induced decoherence

A more modern view of the quantum measurement is the following: When the outer
world (called reservoir, observer or meter) reads a quantum system, it causes, due to
this transfer of information, an irreversible demolition of coherence. Consequently,
the density operator condenses to its diagonal. On the other hand, the system as a
whole (including the sample and the reservoir) always evolves coherently according
to the von Neumann equation with the Hamiltonian of everything Ĥall:

˙̂ρ =
ı

ℏ
[ρ̂, Ĥall] . (18.5)

If Ĥsample is the small quantum system under investigation, a complete description
of the measurement process requires the inclusion of the observer, that is, the total
Hamiltonian is,

Ĥ = Ĥsample ⊗ Ĥmeter =

(
sample 0

0 meter

)
. (18.6)

Ideally, the system evolves independently without being disturbed by the meter. Un-
fortunately, this also means that the meter evolves independently, that is, it is not
influenced by the system and thus does not provide information about the system.
To allow a transfer of information, we need to couple the respective spaces by an
interaction Ω, such that,

Ĥ =

(
sample Ω

Ω meter

)
. (18.7)

Tracing over all degrees of freedom of the universe except those of the quantum
system, the von Neumann equation (18.5) turns into a master equation,

˙̂ρsample =
ı

ℏ
[ρ̂, Ĥsample] + Lreservρ . (18.8)

4See the discussion of the quantum non-demolition measurement.
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Figure 18.3: Spontaneous emission can be seen as a coupling of the system under investiga-
tion to an external meter, because it delivers information to the meter, even if only to tell
us: ’The system was in an excited state, but now it’s in a ground state.’

Example 106 (Quantum measurement in a two-qubit system): To discuss
this at an example, we consider the simplest imaginable system: Two two-level
atoms, the first one representing the quantum system under investigation and
the second the meter. We introduce the following basis:

|1⟩ ≡ | ↓⟩| ↓⟩ =


1

0

0

0

 , |2⟩ ≡ | ↑⟩| ↓⟩ =


0

1

0

0

 , |3⟩ ≡ | ↓⟩| ↑⟩ =


0

0

1

0

 , |4⟩ ≡ | ↑⟩| ↑⟩ =


0

0

0

1

 .

The Hamiltonian of independent atoms is,

Ĥ = | ↓⟩⟨↓ | ⊗ | ↑⟩⟨↑ | .

The discussion about the correct interpretation of the measurement process is still
ongoing. Modern theories describe the state reduction in terms of quantum decoher-
ence due to interactions of the system with the environment. Other interpretations
involve decoherent histories or assume multiple worlds [643]. On the practical side,
the current interest in quantum decoherence is motivated by the fact that this phe-
nomenon may turn out to be the fundamental factor limiting the useful operation
of quantum computers. Another interesting area where quantum mechanics meets
classical physics is the phenomenon of quantum chaos.

18.1.2 The quantum jump

Obviously, the whole quantum measurement process, including the discontinuity of
the state projection, could be fully understood within a grand model of the complete
system, which would include the measuring device. In practice, this is illusory, because
of the excessive number of degrees of freedom of the classical measuring device (e.g. a
Schrödinger cat).

On the other hand, many characteristics of quantum measurement can be illus-
trated in a simple three-level atom with a weak transition representing the quantum
sample and a strong transition representing the meter. The assertion defended in
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Figure 18.4: One of the first pictures of a single Ba+ ion.

the following is, that this three-level system, called quantum amplifier, gives a deep
insight into what happens during the process of state reduction and, therefore, can
be considered as paradigmatic for theories on quantum measurement.

To be able to discuss the dynamics of this system on a firmer ground, we will first
introduce the quantum Monte Carlo wavefunction simulation method (MCWF).

18.1.2.1 Quantum Monte-Carlo wavefunction simulation of a two-level
system

The possible occurrence of spontaneous emission produces a dynamics called quantum
trajectory, which can be described by a non-hermitian effective Hamiltonian,

Ĥeff = ℏ∆σz + ℏΩσ+ + c.c.− ı

2
Γσz =

(
0 Ω

Ω ∆− ıΓ2

)
, (18.9)

aiming at including energy dissipation processes. The problem with this Hamiltonian
is that, for being non-hermitian, [Ĥeff, Ĥ

†
eff] ̸= 0, it also generates a non-unitary

dynamics, e−ıĤefft ̸= eıĤ
†
efft. This means that the mere possibility of spontaneous

emission prevents the reversibility of the dynamics. We observe a temporal decrease
of the norm ⟨ψ(t)|ψ(t)⟩ indicating a loss of energy,

⟨ψ|ψ⟩ = ⟨ψ0|e−ıĤeffteıĤefft|ψ0⟩ −→ e−Γt . (18.10)

The loss of normalization during the evolution, until the next quantum jump occurs,
is due to the dissipation of energy toward the reservoir,

Tr ρsample → 0 while Tr

(
ρsample 0

0 ρreserv

)
= 1 , (18.11)

and represents a measure of the probability that an irreversible process has occurred
during the evolution time.

Dissipative processes can be simulated by playing dices with random numbers ζ.
We divide time into small intervals dt and propagate the wavefunction from ψ(t)
to ψ(t + dt). After each interval we evaluate the probability p = 1 − ⟨ψ(t)|ψ(t)⟩
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accumulated during the time period [0, t + dt] that a dissipative process (such as
spontaneous emission) has occurred. Now, we generate a random number ζ, uniformly
distributed between 0 and 1, which we compare to probability the probability p. In
case, ζ > 1 − ⟨ψ(t)|ψ(t)⟩, we conclude that there was no dissipative process, and we
let the system proceed in peace, only renormalizing the wavefunction to compensate
for the losses [580, 194]. Otherwise, if ζ < 1 − ⟨ψ(t)|ψ(t)⟩, we conclude that there
was a dissipative process, and the system is projected into the eigenstate ψ0. This
projection is abrupt and called quantum jump. Now, the evolution restarts from zero,
ruled by the effective Hamiltonian. The simulation implemented via,

|ψ(t)⟩↷ |ψ(t+ dt)⟩ ≡
(

(1−ıĤdt)|ψ(t+dt)⟩√
⟨ψ(t)|ψ(t)⟩

if ζ > 1− ⟨ψ(t)|ψ(t)⟩
|ψ0⟩ if ζ < 1− ⟨ψ(t)|ψ(t)⟩

)
. (18.12)

This is the method called quantum Monte Carlo wavefunction simulation.
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Figure 18.5: (code) a) Quantum Monte Carlo wavefunction simulation. It is important

to be aware, that a trajectory generated by a MCWF simulation (18.12) only represents

one of many possible trajectories of the system. (b) The evolution of the density matrix

ρ(t) = |ψ(t)⟩⟨ψ(t)| (blue curve) is nothing else, than the average (black curve) over all

possible MCWF trajectories for the system. A movie of this simulation can be watched here

(watch movie).

The effective two-level Hamiltonian (18.9) dissipates via spontaneous emission,
which is included in the dynamics through the possibility for the system to suffer a
state reduction. The modification of |ψ(t)⟩ by non-observation of spontaneous emis-
sion, reduces the population of the state excited by 1− 1

2Γdt, while the ground state
population remains unchanged. Every quantum jump projecting the system into the
ground state constitutes a measurement, because it corresponds to a detected fluo-
rescence photon.

18.1.2.2 Three-level systems: The epitome of quantum measurement

Let us now return to the mysterious interaction between the sample and the meter,
which we want to unravel by comparing two possible procedures: 1. treating the
sample and the meter separately and explain the extraction of information following
the von Neumann postulate; 2. treating the sample and the meter by a global theory.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/LM_Measurement_TwolevelMonteCarlo_Movie.avi
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As said above, the inclusion of the meter in a global theory is, in general, difficult.
For this reason, to perform the comparison, we choose the simplest imaginable system:
the three-level system with two transitions connecting to a common ground state and
excited by radiation fields. As shown in Fig. 18.6(a) this three-level system can be
an atom with a strong transition and a weak transition, for example, the dipolar
transition S1/2 − P1/2 and the forbidden quadrupolar transition S1/2 − D5/2 in a
single Ba+ ion. We will now name the ’strong transition’ as meter and the ’weak
transition’ as sample and show that this system allows to study the von Neumann
measurement process including the direct observation of quantum jumps 5. At the
same time, the system is simple enough for a complete theoretical description. In this
sense, the three-level system becomes the epitome of a quantum measurement device.

We turn our attention to the three-level atom: Obviously, the atom will prefer-
entially scatters photons on its strong dipolar transition. However, at times when
the valence electron is ’shelved’ in the metastable state excited by the quadrupole
transition, no fluorescence can be observed on the strong transition.

Figure 18.6: (a) Quantum measurement at the example of a three-level atom incorporating
a weak (sample) transition and a strong (meter) transition. (b) Random Telegraph signal in
the resonance fluorescence due to quantum jumps.

Quantum jumps were experimentally observed in single trapped ions, whose lowest
energies form a three-level systems [616, 727, 728, 75].

18.1.2.3 Quantum Monte-Carlo wavefunction simulation of the quantum
amplifier

When both lasers driving the weak and the strong transition are irradiated simulta-
neously, the coherence on the weak transition is easily perturbed by the dynamics of
the strong transition. To resolve this problem Dehmelt invented what he called the
quantum amplifier. The idea consists in alternately irradiating the sample laser (at
stage S −D in Fig. 18.7) and the meter laser (at stage S − P in Fig. 18.7) 6.

5The observability of quantum jumps as manifestations of sudden state reductions has been the
object of long-standing debates: ’If we have to go on with these damned quantum jumps, then I’m
sorry that I ever got involved with quantum mechanics.’ [741].

6The absence of the ’meter’ laser during the ’sample’ stage avoids saturation broadening and
light-shifts of the ground state. Since the ground state is shared by both transitions, its broadening
would reduce the spectral overlap between the ’sample’ transition and the driving laser and therefore
the probability to excite the metastable level. This inhibition of the coherent dynamic by too strong
or too frequent measurements is known as quantum Zeno effect: The more an observer tries to
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The alternating irradiation of the lasers S −D and S − P can also be treated by
the Monte Carlo quantum wavefunction simulation method (18.12) using the effective
Hamiltonian,

Ĥeff =




0 1
2Ωsp

1
2Ωsd

1
2Ωsp −∆sp − ı

2Γsp 0
1
2Ωsd 0 −∆sd


 , (18.13)

where the Rabi frequencies Ωsd and Ωsd are switched on alternately.
In the simulation 18.7 the quantum jumps to the shelved metastable state D5/2

appear as long periods without population in the P1/2 level (first period S−P , where
the population of S1/2, illustrated by the red curve, gradually tends to 0 for long
times). The reduction of the system to the shelved state actually occurs by non-
observation of fluorescence on the strong transition. The projection needs a finite
time, simply because we can not be sure whether the non-observation is actually due
to shelving or the incidental absence of scattering events on the S − P transition:
After all, it is not predictable, when the next photon will be spontaneously emitted,
even though the lifetime of the excited state is short. But for longer observation times
it becomes increasingly unlikely that the absence of photons is not due to shelving. It
is this unlikeliness, which lets the population rapidly converge towards the metastable
state. In the second S − P period, Fig. 18.7 shows fast transitions to the P1/2 fol-
lowed by sudden decays to the ground state. These processes correspond to photon
absorption and spontaneous reemission by the strong transition. The succession of
the photon scattering events is so fast, that the signal recorded by photodetectors
appears as a continuous fluorescence. The sudden transitions between bright and
dark periods shown in Fig. 18.6(b), which occur totally randomly, are interpreted as
quantum jumps.

18.1.2.4 Comparison with Bloch equations and interpretation of quantum
jumps

We already mentioned in Fig. 18.5, that a trajectory generated by a MCWF simulation
(18.12) represents one possible evolution of the system. In Chp. 16 we got to know
an alternative way of predicting the evolution of a system, based on density operator
obeying a master equation, which in the context of atomic excitation levels is called
Bloch equation. Comparing MCWF trajectories (red curves in Fig. 18.7) with Bloch
vector evolutions (green curves) it becomes apparent, that the Bloch vector evolution
does not produce quantum jumps, but is always smooth and continuous.

In most cases, our knowledge about the actual state of an atom comes from the
collection of spontaneously emitted photons. The observation of a photon projects
the atomic state into the ground state. However, this concept is not included in the
Bloch equations, as we just saw in Fig. 18.7. So, as it seems, we have to take back our
statement, that the three-level Bloch equation describe the complete system, although
they somehow contain spontaneous emission.

Let us go one step back and ask, where the Bloch equations came from. In
fact, as we learned in Sec. 17.4 and will deepen in Sec. 15.1, they are derived from a
von Neumann equation for the three-level system plus the degrees of freedom of the

extract information from a system, the more he inhibits its evolution. We will discuss this effect in
more detail in Sec. 35.3.2.2.
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Figure 18.7: (code) Quantum amplifier comparing Monte-Carlo quantum simulations (red

lines) and Bloch equations (black lines), which coincide well with the averages over 100

Monte-Carlo trajectories (green lines). The periods S−D (white background) represent the

free evolution of the quantum system, the periods S − P (yellow background) represent the

measurement periods.

vacuum modes receiving the spontaneously emitted photons by tracing over the latter
ones.

We will not be able to handle all degrees of freedom. However, we can generalize
the Bloch equations in the following way [593, 907]. We project the total density
operator ρAFR of the atom plus the driving field plus the reservoir of vacuum modes
into the subspace of the atom and the driving field consisting of exactly n photons,

ρ(n) = TrR (P (n)ρAFR) , (18.14)

and derive, from the von Neumann equation, the master equation for the atomic state
ρ(n) under the constraint of a fixed number of photons n in the field. The master
equation differs only in one term from the usual Bloch equations: The expression

Γ12ρ
(n)
22 , which describes the spontaneous decay of the population of the excited state

of the meter transition, is replaced by the expression Γ12ρ
(n−1)
22 :

d

dt
ρ(n) = (L|1⟩Γ12⟨2|)ρ(n) + |1⟩Γ12⟨2|ρ(n−1) , (18.15)

The substate with of n photons violates the trace condition,
∑
j ρ

(n)
jj ̸= 1. The

physical explanation for this is the following: While induced emission and absorption
maintain the number of photons in the combined light-atom system (like in the Jaynes-
Cummings model), spontaneous emission decreases the number of photons, leading
to an irreversible loss of energy. The quantum jump observed in MCWF model

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_QJMonteBloch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_QJMonteBloch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_QJMonteBloch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_QJMonteBloch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_QJMonteBloch.m
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corresponds, in the modified equations (18.15), to a collapse of the subspace described
by ρ(n) with the time constant Γ12 and a birth of another subspace ρ(n−1), whose
evolution is guided by another (analogous) Bloch equation, now for n − 1 photons.
Each fluorescence detection at time t = 0 determines the initial condition for the
future development of the system: ρ(n)(0) = 0 and ρ(n−1)(0) = |1⟩⟨1|. The probability
density c(t) for a new observation of spontaneous emission at time t with detection
efficiency η, or in other words, the histogram of the durations of dark periods in
the fluorescence signal is related to the solution ρ(n) of the homogeneous part of the
equation (18.14) via,

c(t) = ηΓ12ρ̃
(n)
22 (t) = η

4∑

j=1

d

dt
ρ̃
(n)
jj (t) , (18.16)

The second step immediately follows from the homogeneous part of equation (18.15).

18.1.2.5 Final remarks

The explanations of the last sections show that Bohr’s and Schrödinger’s views can
be reconcealed. They simply depend on whether the measuring transition is excluded
or included in the description of the dynamics. The quantum jump is an artifact
arising from the separation of the quantum system under study (object) from the meter
(observer) assumed to strongly interact with the system! In any case (strong or weak
interaction), this separation is not compulsory once a more complete model including
the meter is at hand. However, as the dynamics of the meter and the object evolve on
different time scales, a separation of the dynamics leading to apparently discontinuous
trajectories is only meaningful for strong meter interactions.

As soon as this has been understood, that is since the 1980-th, the apparent
paradox is simply not on the agenda any more. Recent claims of having unraveled
the mystery [586] are just not timely and only show that the author did not understand
the full meaning of a ’quantum jump’ or, at most, did not read the pertinent literature.

18.1.2.6 Kraus operator for position measurement

As a canonical example of a Kraus operator [53, 143] we take Ĥ = x̂ ⊗ p̂, where the
position and the momentum satisfy the commutation relation, [x̂, p̂] = ı. The initial
state of the ancilla be a Gaussian distribution,

|ϕ⟩ = 1

(2πσ2)1/4

∫
dq′e−q

′2/4σ2 |q′⟩ . (18.17)

The position wavefunction of the ancilla is,

ϕ(q) = ⟨q|ϕ⟩ = 1

(2πσ2)1/4
e−q

2/4σ2

. (18.18)

The Kraus operators are (compared to the previous discussion, we now let λ = 1),

M(q) = ⟨q|e−ıx̂⊗p̂|ϕ⟩ = 1

(2πσ2)1/4
e−(q−x)2/4σ2

, (18.19)
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since the operator e−ıx̂⊗p̂ makes a spatial translation when applied to the degree of
freedom of the position. The corresponding POVM elements are,

E(q) =M†
qMq =

1√
2πσ2

e−(q−x)2/2σ2

, (18.20)

which obey
∫
dqE(q) = I.

Calculate ⟨ψq|ψq⟩ = ⟨ψ′|M(q)†M(q)|ψ′⟩.
Note that limσ→0E(q) = |x = q⟩⟨x = q|. That is, in a particular limit, these

operators converge to a strong measurement of position. For σ → ∞, we speak of
weak measurement.

Another example would be the three-level atom of Dehmelt’s quantum amplifier.

18.1.3 Welcher Weg information

18.1.3.1 The Elitzur and Vaidman bomb testing problem

Mixing the concepts of particles and waves we sometimes arrive at seemingly para-
doxical conclusions. One example is Elitzur and Vaidman’s bomb testing problem.
They imagined a Mach-Zehnder interferometer with the particularity that the re-
flecting mirror of one of the arms be connected to a device measuring the photonic
recoil. That is, when a photon passes through this arm, the mirror undergoes a small
acceleration, which is sufficient to activate an explosive bomb.

Now, we distinguish two cases: 1. The recoil detector does not work, i.e. the bomb
is not armed. 2. The bomb is armed. We now adjust the interferometer in a way
to produce destructive interference in one of the two interferometer output ports. If,
having sent many photons through the interferometer, we never saw any photons in
the ’dark’ port, we can be almost sure that the bomb is not operational.

In case the bomb is operational, the observation of a photonic recoil destroys
the interference pattern at the interferometer outputs. It has to do so, because the
exploding bomb informs us, in which arm the photon has passed. However, with an
operational bomb the interference pattern is also destroyed, when the photon passes
through the other arm, since the fact that the bomb didn’t explode tells us, that the
photon went the other way.

The funny conclusion is now, that it may happen, that a photon traverses the
interferometer in the arm that does not contain the bomb and exits through the
’dark port’. The probability of this happening is only 25%, but nevertheless the
observation of a photon in the ’dark port’ informs to us that the pump is operative
without ever having interacted with it 7.

18.1.4 Exercises

18.1.4.1 Ex: Schwartzeneggers cat

Explain why we will never observe a real cat in a dead-alive superposition.

7See https://www.thorlabs.com/newgrouppage9.cfm?objectgroup id=6635

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_QuantumJump00.pdf
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Figure 18.8: Schrödinger’s cat according to Ekhö, Le monde miroir by Arleston and Bar-
bucco: Quantum superposition or zombie cat?

18.1.4.2 Ex: Dispersive quantum jumps

Consider a three-level system in V-configuration, as depicted in Fig. 16.7(b), with an
unstable state |1⟩, a ground state 2⟩, and a metastable state |3⟩. Discuss whether the
atom shelved in state |3⟩ is sensitive to light-shift and power broadened induced by
a laser resonant to the |1⟩ − |2⟩ transition. E.g. will power-broadening only effect the
transition rate |1⟩ −→ |3⟩ or also |3⟩ −→ |1⟩?

18.2 Repeated measurements

18.2.1 The quantum Zeno effect

A famous problem raised by the Greek philosopher (490-430 AC)Zeno goes like this:
Achilles and a turtle organize a race. The arrogant Achilles leaves a 100-meter lead
to the turtle. The race begins. Achilles soon covers the 100 meters, only to find out
that meanwhile the turtle has advanced by 10 meters. He continues running to cover
the 10 meters, only to find out that meanwhile the turtle has advanced by 1 meter,
and so on 8. A presentation on the subject is available at (watch talk).

Interestingly, Zeno’s problem has a counterpart in quantum mechanics. Let us do
the following Gedankenexperiment: A laser beam passes through a dense series of n

8In another version of his paradox, Zeno questions the possibility of motion at the example of a
flying arrow: At any instant of time it occupies a space equal to its size. That is, at any particular
moment of its flight, it is at rest, in a space that does not move. That is, any kind of motion is
impossible. Nowadays, we know that this paradox is false, because time and motion are not discrete.
But this can only be understood on the basis of infinitesimal calculus [587].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_QuantumJump01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumZeno
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polarizers, each one being rotated by an angle π
2n with respect to the preceding one.

Each polarizer performs a local measurement of beam polarization. The result of this
arrangement is that, in the limit of an infinitely dense series, the continuous measure-
ment of the system completely governs its evolution and rotates the polarization by
an angle of π/2 9.

In every version of the Zeno effect, the system is inhibited from evolving freely,
because of too frequent measurements of its current state. Achilles would surely be
able to overtake the turtle, if he did not always check on her to assess the remaining
distance [420] 10.

O efeito Zeno quântico 
Leandro Augusto Zago nº5882143 

 

 

Resumo 

O efeito Zeno quântico vem sendo questionado e estudado a mais de 50 anos, causando espanto 

nos estudantes e pesquisadores novatos pelo fato de apresentar resultados não esperados do ponto de 

vista determinístico. Nesse trabalho iremos detalhar um pouco esse problema tentando explicitar alguns 

pontos relevantes para compreender o fenômeno.  

 

 

Introdução 

A evolução de um sistema instável é notoriamente governada por três tempos distintos: o tempo 

curto, onde predomina uma função quadrática, o tempo intermediário, onde temos propriamente a 

governança do padrão exponencial e o tempo longo, onde a função potência prevalece. 

A equação de Schrödinger nos leva inevitavelmente a termos em tempos curtos, esse padrão é 

predominado por uma função quadrática que foi batizada por Misra e Sudarshan em 1977 por região 

“Zeno”, em alusão ao famoso filósofo Zenão de Eleia que propôs o paradoxo da flecha. 

  Zenão propôs vários paradoxos, no caso específico da flecha, ele diz que se uma flecha em voo 

instantaneamente ocupa sempre o seu espaço, e que algo parado também ocupa sempre o seu mesmo 

espaço, então uma flecha em voo em qualquer instante também está em repouso. 

 

Fig.1- Gráfico dos distintos tempos de um sistema instável. 

 

Figure 18.9: Quadratic time dependence of an excited state population.

The temporal evolution of the wavefunction of a system described by the Hamilto-

nian Ĥ is |ψ(t)⟩ = e−ıĤt/ℏ|ψ0⟩. We can then calculate the amplitude and probability
for the system to stay in the initial state,

⟨ψ0|ψ(t)⟩ = ⟨ψ0|e−ıĤt/ℏ|ψ0⟩ and P (t) = |⟨ψ0|ψ(t)⟩|2 . (18.21)

For short times we can expand,

⟨ψ0|ψ(δt)⟩ = |ψ0⟩ −
ı

ℏ
Ĥδt/ℏ|ψ0⟩ −

1

2ℏ2
Ĥ2δt2|ψ0⟩+ ... = |ψ0⟩+ |δψ⟩ , (18.22)

such that,

⟨ψ0|ψ(δt)⟩ ≃ 1− ı
ℏ
Ĥδt− 1

2ℏ2
Ĥ2δt2 and P (δt) ≃ 1− 1

ℏ2
(⟨Ĥ2⟩0−⟨Ĥ⟩20)δt2 . (18.23)

In this way we can extract the Zeno time from the above equations, τZ = ℏ2/
√
⟨Ĥ2⟩0 − ⟨Ĥ⟩20.

We now make N successive von Neumann measurements within a time t, which leads
to a measurement frequency of τ−1. The measurements are conceived as to verify,
whether the system is still in its initial state, but each measurement projects our

9An analogous experiment can be imagined by a series of Stern-Gerlach measurements of the spin
of an atom.

10The quantum Zeno effect was often used to justify the physical relevance of the state reduction
postulate. It was shown, however, that this postulate is not essential for understanding the quantum
Zeno effect [63]. The effect already follows directly from the Schrödinger equation and therefore
has a purely dynamical nature. This shows that the projection is a purely mathematical construct
without physical reality (see Sec. 18.1.2).
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system back to its initial state, from where it has to start the transition process from
scratch. Under these conditions, the population of the initial state will evolve like,

P (N)(τ) = P (N)(t/N)N . (18.24)

Fig. 18.10 shows the evolution for five measurements separated by time intervals τ . In
comparison with the evolution, when no measurements are taken (dashed line), the
evolution with measurements inhibits the depletion of the initial state. Extrapolating
the number of measurements to infinity, the probability (18.24) converges to 1,

[
1−

(
t

NτZ

)2
]N

N large−→ e−t
2/Nτ2

Z
N→∞−→ 1 . (18.25)

See Excs. 18.2.4.1 and 18.2.4.2.
Podemos ilustrar esse efeito com um gráfico. 

 

 

Notemos que foram feitas cinco medidas com intervalos de tempo τ e podemos ver pela linha 

tracejada a expectativa de sobrevivência do estado caso não fosse feita medida alguma, notamos uma 

diferença muito grande, pois a cada medida o sistema retorna ao estado de evolução que está em regime 

de tempos curtos. Há ainda de se notar que caso extrapolássemos o numero de medidas para infinito 

nossa probabilidade iria cada vez mais se aproximar da unidade, e esse resultado é absurdamente 

surpreendente! 

 

 

 

Sistema de dois estados quântico 

Um dos sistemas mais simples para ilustrar esse fenômeno é o sistema de dois estados oscilando 

pela frequência de Rabi. Podendo ser ilustrado pictoricamente por um átomo sendo incidido por um laser 

que possui frequências de ressonância com estados de transição desse mesmo átomo. 

Nesse caso temos a hamiltoniana da interação: 

 

Onde os estados + e – são descritos pelas matrizes de Pauli e σ1,2,3 são auto estados. 

 

 

Figure 18.10: Inhibition of the decay of a state by repeated measurements (here N = 5).
The dashed (solid) line represents the survival probability with (without) measurements.
The gray line represents an exponential interpolation function.

Suppression of the evolution of a quantum system due to the quantum Zeno effect
was observed experimentally [420] using beryllium ions. Nevertheless, the discussion
about the correct interpretation of this effect and its relationship to trivial power
broadening is not closed. Some works have even proposed the possibility of an anti-
Zeno effect [16, 844], where observation would accelerate the evolution of the system.
Currently the quantum Zeno effect is also studied for possible applications in metrol-
ogy, computation, and quantum information [464].

When the quantum Zeno effect was proposed for the first time, it was considered
a paradox: How could an unstable particle never decay, just by being continually
observed? And what would happen to Schrödinger’s cat, whose live depends on state
of the particle? Could we save it from its cruel fate just by observing it?

Another interesting question concerns the quantum nature of the quantum Zeno
effect. Is it really non-classical? On one hand, the quantum Zeno effect supposes the
complete reduction of the system to an eigenstate. However, we can imagine classical
measurements that also reduce the state (such as the above-mentioned measurement
of the polarization of a beam of light).
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18.2.2 Quantum projection noise

The intrinsic indeterminism of quantummechanics has serious consequences for metrol-
ogy. To show this, we consider the example of a system of two levels |+⟩ and |−⟩.
This system can be in a superposition state |ψ⟩. The probability 11 to find the system
in one of the two states |±⟩ is,

p± = ⟨P̂±⟩ = |⟨ψ|±⟩|2 = 1− p∓ , (18.26)

where P̂± is the projection operator. The result of a measurement of the population
is afflicted by an inherent uncertainty expressed by the variance,

(∆p±)
2 = ⟨P̂ 2

±⟩−⟨P̂±⟩2 = ⟨±|ψ⟩⟨ψ|ψ⟩⟨ψ|±⟩− (⟨±|ψ⟩⟨ψ|±⟩)2 = p±(1−p±) . (18.27)
In other words, the random projection of the system on the eigenstate basis induces
a noise called quantum projection noise 12. This noise inhibits the determination
of the probabilities p± in a single measurement. On the other hand, by measuring
populations on a sample of N atoms or by repeating the measurement N times with a
single atom under identical conditions, we can reduce the uncertainty. The probability
of finding an atom r times in the state |+⟩ is [419],

PN,r,+ =

(
N

r

)
pr+(1− p+)N−r . (18.28)

The expectation value and variance of this binomial distribution are [419],

r̄ =

N∑

r=0

rPN,r,+ = Np+ , (∆r)2 =

N∑

r=0

(r−Np+)2PN,r,+ = Np+(1−p+) . (18.29)

Thus, the standard deviation decreases with the number of atoms or measurements,

σ =
∆r

r̄
∼ 1√

N
. (18.30)

The increase of knowledge on the population of a two-level system by repeated
measurements can be illustrated by a simple simulation exhibited in Fig. 18.11(a). Ex-
periments are performed by comparing p2 with a random number η. Two outcomes
are possible r = 0, 1. The histograms narrow as the number of experiments increases.
In practice, a measurement is performed using the quantum amplifier method illus-
trated in Fig. 18.6 [411].

In a sense, the coin behaves as quantum, which is not surprising. It is more sur-
prising that an atom behaves in a quantum way as well, which is the message of
Bohr’s quantization postulate. However, the atoms have a crucial advantage over
coins: they can be entangled with other atoms. Entanglement comes down to a viola-
tion of the statistical independence assumption underlying the binomial distribution
and all results and consequences derived from it, e.g. the standard quantum limit.

11We adopt here the viewpoint of the Copenhagen interpretation of the quantum state reduction,
but we note that a discussion based on statistical mixtures described by density matrices gives the
same results.

12Projection noise can be interpreted as shot noise. However, the optical shot noise in photode-
tectors is generated by the repartition of the field energy into discrete photons, the projection noise
is the consequence of the discretization of the electronic excitation levels.



18.2. REPEATED MEASUREMENTS 735

0 0.5 1

p+

0

5

10

(N
+

1)
P
N
,r
,+
(p

+
)

N = 1
N = 20
N = 40
N = 60
N = 80
N = 100

(a)

0 0.5 1

Gt (π)

0

0.5

1

P
N
,r
,+
(G

t)

(b)

Figure 18.11: (code) (a) Simulation of the increase of knowledge on the population

of a two-level system by repeated measurement, PN,r,+(p+)/
∫ 1

0
PN,r,+(p+)dp+. The

population of the state |+⟩ was set to p+ = 0.2. (b) Determination of the most likely
Rabi pulse length Gt = 2arcsin(r/N)1/2.

Example 107 (Quantumness and discreteness): Quantum mechanics is

generally associated with phenomena like (i) a wave-like propagation of mat-

ter and the ensuing possibility of superposition states, (ii) a discretization of

eigenvalue spectra resulting from localization, and (iii) the possibility of en-

tanglement. Criteria (i) and (ii) are, however, not exactly unique to quantum

mechanics.

(i)

(ii) We may define discrete states in classical physics, as well. In this sense, quan-

tum projection noise and the quantum Zeno effect are not intrinsically quantum

effects. They result from a discretization of states, but are not conditioned to

the Schrödinger equation. For example, projection noise can be observed when

tossing a coin, and the ’quantum’ Zeno effect can be observed by repeatedly

projecting a laser beam onto one of two polarization axes.

Example 108 (Spontaneous emission and saturation): Another more sub-

tle example is the saturation of strongly driven two-level systems. Only ’quan-

tum’ emitters are saturable, but their quantumness really only comes from their

discrete level structure, so that one might be tempted to consider classical sat-

urable emitters with discrete levels. The problem which arises here is, however,

that transitions between orthogonal states are classically forbidden.

What do we mean when we say that the phenomenon of saturation is an intrinsic

’quantum’ feature! ? (See example 111.)

An atomic two-level system is ’quantum’ in the sense that is has discrete states.

On the other hand, a coin also does.

An atom weakly driven by radiation can be described in the linear optics regime

like a classical antenna.

Strongly driven, the atom can evolve into a superposition of those two states.

The evolution is grasped by Bloch equations. But the evolution of a classical

spinning top subject to torque (or a classical electric dipole inside an electric

field) is described by the same equations.

We observe Ramsey fringes with a spinning top! So, interference fringes are not

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LighMatter/LM_Measurement_ProjectionNoise.m
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necessarily associated with a wave-like nature of some degree of freedom, light

wave or matter wave! However, we need something oscillating (like a wave). In

the case of an excited spinning top it is the precessional motion.

In this sense, atomic clocks operate in a classical regime?!? How to recognize

quantumness 1.0? In which regime does any classical description fails? Can a

spinning top be saturated? Is it really impossible to simulate a classical system

exhibiting saturation?

Saturability is not essential, because clock transitions are saturable and yet be-

have classical. More relevant is spontaneous emission. At weak saturation spon-

taneous emission can be neglected because the excited state is not populated,

which justifies classical description by linear optics. At strong saturation spon-

taneous emission can be neglected because stimulated emission is overwhelming,

which also justifies classical description.

18.2.2.1 Rabi experiments

The method of repeated measurements can be extended to map time-dependent dy-
namics of the two-level system. Under the influence of a radiation field, the population
of the two-level system (which we assume free of spontaneous emission) performs Rabi

oscillations, ρ++(t) =
Ω2

G2 sin
2 Gt

2 , where G =
√
∆2 +Ω2. The probability of finding

the system in state |2⟩, therefore, varies in time, p+(t) = ρ++(t), and the binomial
distribution (18.28) becomes,

PN,r,+(t) =

(
N

r

)(
Ω
G

)2N
sin2r Gt2 cos2N−2r Gt

2 . (18.31)

When we increase the number of measurements, N → ∞, this function condenses
around a narrow peak at the position Gt = 2arcsin

√
r/N . The width of the peak

evolves like 2 arccos(2−1/2N ). Fig. 18.11(b) shows a simulation demonstrating how
repeated measurements gradually pin down the pulse area Ωt.

In summary, even for perfectly efficient population measurements (e.g. using the
microwave-optical double resonance method) it is impossible to measure the prob-
ability p+ with a single atom in a single experiment. As such an observation only
admits two possible results, ’fluorescence observed’ or ’fluorescence not observed’,
i.e. ρ++ = 1 or ρ++ = 0, a whole range of possible populations between 0 and 1 is
excluded. Therefore, a single observation only provides ’partial’ information, which
can be gradually improved with each consecutive observation.

A presentation on this topic is available here (watch talk).

18.2.2.2 Ramsey experiments

The Ramsey experiment is basically equivalent to the Rabi experiment described
above except for an additional rotation in configuration space allowing for the mea-
surement of the phase precession of the coherence between the Ramsey pulses via
population spectroscopy. The Ramsey fringes are approximated by p+ = 0.5(1 +
cos[(ω − ω0)T ]). The interesting magnitude is the frequency uncertainty,

∆r

(∂r/∂ω)|(ω−ω0)T=π/2
=

√
Np+(1− p+)
N(∂p+/∂ω)

=
1

T
√
N

. (18.32)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/ProjectionNoise
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18.2.2.3 Spin squeezing and the Heisenberg limit

The above considerations apply to independent measurements. When the atoms are
maximally correlated they occupy EPR-like states, |ψ⟩ = p+|+++ ..⟩+p−|−−− ..⟩,
such that it is sufficient to measure a single atom to know the state of all others.
This means that the ratio ∆r/r̄ is just the one of a single measurement, but the
signal strength and hence the signal-to-noise ratio increase by the factor N . Thus
the standard deviation scales with 1/N rather than with 1/

√
N . This is the so-called

Heisenberg limit. For Ramsey interferometers we get [869, 97, 110, 576],

∆r

(∂r/∂ω)|(ω−ω0)T=π/2
=

1

TN
. (18.33)

Example 109 (Interferometry with condensates): It is an interesting ques-

tion, whether condensates can improve metrology and enhance the precision of

atomic clocks. The answer is no, if we only replace the thermal atomic cloud by

a condensate! To see this, we consider an interferometer in configuration space

measuring a phase (and therefore a frequency shift) by the method of Ramsey

spectroscopy. The states are coupled by a radiation adjusted for π/2 pulses.

The condensate Fock state factorizes the Schrödinger equation with the Hamil-

tonian Ĥ =
∑N
i=1(H

(i) +V
(i)
12 ) into N identical equations for every single atom.

The dynamic evolution of this state will be the same as the one for a thermal

state. However, this is not true for two Fock state condensates in both entrance

channels of the interferometer.

The first radiative beamsplitter divides N1. This division produces an atom

number uncertainty in each state, which come together with a well-defined phase

relationship between the two states. By providing at the second port of the in-

terferometer another Fock state N2, one increases the atom number uncertainty

and therefore (because entropy must be conserved in coherent processes) the

phase precision. It’s a bit like a massive parallel computing for every possible

repartition of the populations of both states. Of course the two Fock states can-

not be obtained by dividing a single condensate in two in a coherent manner,

except if the repartition is measured afterward.

The Fock state is a maximally spin-squeezed state (sub-Poissonian statistics).

The beam-splitters (which only perform unitary rotations) create starting from

the Fock state a quantum entanglement, which is the deeper reason for the im-

provement of the resolution of the interferometer up the the Heisenberg limit by

reducing the quantum projection noise [110].

Quantum correlations and spin-squeezed states are the same phenomena seen in
different bases. Often the term of quantum entanglement is used in an energy bases,
while spin squeezing is described in a Dicke state bases.

We may also consider real space interferometers. This allows us to use for creating
the Fock states the recently discovered method of transforming BECs into Mott insu-
lator states. Of course it is important to use condensates. First of all, we need Fock
states, i.e. states with strong on-site quantum correlations with well-defined phase re-
lations between every pair of atoms from the same site. Furthermore, Mott insulators
have thus far only been seen with CBEs.
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18.2.3 Quantum non-demolition measurements

18.2.4 Exercises

18.2.4.1 Ex: The quantum Zeno effect

Discuss the quantum Zeno effect at the example of a laser beam passing through a
birefringent medium. Compare the situations without polarizers and with an infinite
number of vertical polarizers.

18.2.4.2 Ex: The quantum Zeno effect

A two-level atom resonantly driven by a laser can be described by the Hamiltonian:

H =

(
0 1

2Ω
1
2Ω 0

)
.

The solution of the Schrödinger equation gives,

|ψ(t)⟩ = e−ıtĤ/ℏ|ψ0⟩ =
(
cos 1

2Ωt ı sin 1
2Ωt

ı sin 1
2Ωt cos 1

2Ωt

)(
1

0

)

provided the atom is initially in the ground state ⟨ψ0| =
(
1 0

)
. A measurement of

the ground state population can only be done by a projection of the wavefunction,
that is, the measurement yields the result ∥|1⟩⟨1|ψ(t)⟩∥2. What is the final state of
the atom,
a. when the ground state population is measured once after an evolution time of
t = π/Ω;
b. when the ground state population is measured once after n time intervals tn =
π/nΩ;
c. when the ground state population is measured n times after evolution times of
tn = π/nΩ;
d. when n→∞.

18.2.4.3 Ex: The quantum Zeno effect

Consider a system described by a time-independent Hamiltonian Ĥ.
a. Calculate the probability P (t) of the system to remain in its initial state |Ψ0⟩ in
the short time approximation, that is, considering until the second-order expression
expansion term for the probability. Use the simplification:

τz =
ℏ√

⟨Ĥ2⟩ − ⟨Ĥ⟩2
,

where the term τz is called the Zeno time.
b. If N measurements are performed during a time t, we have the time interval
T = t/N between measurements. When a measurement is performed, the system is
projected on the initial state and the temporal evolution must start from zero. Thus,
after N measurements, the probability of the system remaining in the initial state is
given by [P (T )]N . Show that for an infinite number of measurements, N → ∞, the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_EfeitoZeno1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_EfeitoZeno2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_ZenoQuantico.pdf
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system remains in the initial state without loss of probability: [P (T )]N = 1. Interpret
the result.
c. One of the simplest imaginable systems, a laser-driven two-level system executing
Rabi oscillation, is described by the Hamiltonian:

Ĥ =

(
0 Ω

Ω 0

)
.

Find the expression for τz as a function of the Rabi frequency Ω for the initial state
(1 0)†.
d. Choosing the evolution time t = 0.01τz ≪ τz and performing N = 5 measurements
during this time interval, how likely is the system to remain in the initial state?
e. Let us now include a decay channel for the state (0 1)† with Γ = 4γ, such as to
simulate a system with continuous measurement. The system is initially prepared in
the state (1 0)†. If we now observe emission by decay, it means that the system left
the initial state. We now have the effective Hamiltonian:

Ĥ =

(
0 Ω

Ω −2ıγ

)
.

For this system, the probability amplitude for the initial state is:

⟨Ψ0|Ψ(t)⟩ = 1

2

(
1 +

γ

∆

)
e−(γ−∆)t/ℏ +

1

2

(
1− γ

∆

)
e−(γ+∆)t/ℏ ,

with ∆ =
√
γ2 − Ω2. For a decay rate γ ≪ Ω, calculate the probability that the

system remains in the initial state. Interpret the result.
Formulas:

ex = 1 + x+ x2

2 +O(x3) , (1− x)N = 1−Nx+O(x2)

cos2(x) = 1− x2 +O(x3) , Ĥ =

(
0 Ω

Ω 0

)
→ e−iĤt/ℏ =

(
cos Ωt

ℏ −ı sin Ωt
ℏ

−ı sin Ωt
ℏ cos Ωt

ℏ

)
.

18.3 Geometric and topological phases

We consider a Hamiltonian Ĥ(R(t)), which only depends implicitly on time, that is,
via some time-dependent parameter R(t). Then the Hamiltonian evolves by develop-
ing a non-measurable dynamic phase and additionally accumulates a geometric phase
(also called topological phase or Berry phase. This geometric phase, which depends
on the trajectory, is adiabatically followed in parameter space. Let us consider the
time-evolution of a state |ψ(t)⟩ [77],

Ĥ|ψ(t)⟩ = ıℏ∂t|ψ(t)⟩ , (18.34)

assuming that at any instant of time the system stays in a eigenstate |n(R)⟩,

Ĥ|n(R)⟩ = En(R)|n(R)⟩ . (18.35)
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When Ĥ moves along a trajectory C : t→ R(t), then we see from,

|ψ(t)⟩ = exp

[
− ı

ℏ

∫ t

0

En(R(t′))dt′
]
exp(ıγn(C))|n(R(t))⟩ , (18.36)

that, while the first exponential describes the standard dynamical phase, the phase
γn : C → γn(C) is not integrable, i.e. γn cannot be expressed as a function of R(t) and
is not single-valued meaning that from R(T ) = R(0) we cannot infer γn(T ) = γn(0).
Substituting (18.36) in (18.34), we find,

Ĥ(R(t))|ψ(t)⟩ = ıℏ|ψ̇(t)⟩ =
(
En + ıℏıγ̇n(t) + ıℏṘ(t) · ∇R

)
|ψ(t)⟩ . (18.37)

Since for a particular eigenstate,

Ĥ(R(t))|n(R(t))⟩ = En|n(R(t))⟩ , (18.38)

we infer,
γ̇n(t) = ıṘ(t) · ⟨n(R(t))|∇R|n(R(t))⟩ . (18.39)

The integrated phase change upon evolution of the state from |ψ(0)⟩ to |ψ(T )⟩ around
a closed loop is then,

γn(C) = ı

∮

C

⟨n(R)|∇R|n(R)⟩ · dR ≡
∮

C

A⃗(R) · dR , (18.40)

where A⃗ is known as Berry connection.
The condition of adiabaticity is essential for emergence of geometric phases. The

system always remains in an eigenstate (fixed quantum numbers) when we vary pa-
rameters of the environment more slowly than all characteristic constants of the sys-
tem, even when the Hamiltonian is time-dependent (variable eigenvalues).

18.3.1 Properties of the Berry phase

18.3.1.1 Gauge invariance

We have seen in 1.7.4 that the gauge transformation (1.326), Ucl(ξ) = e−ıξ(R), leaves
the Schrödinger equation invariant. Applied to an eigenstate,

|ñ(R)⟩ = e−ıξ(R)|n(R)⟩ , (18.41)

the Berry connection becomes,

˜⃗A(R) = ı⟨eıξ(R)n(R)|∇R|e−ıξ(R)n(R)⟩ = A⃗(R) +∇Rξ(R) . (18.42)

It is apparently gauge-dependent, so that the local Berry connection A⃗n(R) can never
be physically observable. On the other hand, the Berry phase is,

γ̃n(C) = γn(C) +

∫

C

∇Rξ · dR = γn(C) + ξ(t)− ξ(0) . (18.43)

For a closed loop, continuity of the gauge field requires ξ(T )− ξ(0) = 2πm. Hence, up
to an integer multiple of 2π, closed loop Berry phases remain gauge-invariant under
arbitrary gauge transformation and may be related to physical observables.
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18.3.1.2 Berry curvature

It is often advantageous to convert the path integral (18.40) into a surface integral
using Stokes’ theorem. Defining the Berry curvature as,

V⃗n(R) ≡ ∇R ×An(R) , (18.44)

we obtain,

γn(C) =
x
S

V⃗n(r) · dS . (18.45)

The Berry curvature can be expressed as [77],

Vn(r) = Im
∑

m ̸=n

⟨n(r)|∇rĤ(r)|m(r)⟩ · ⟨m(r)|∇rĤ(r)|n(r)⟩
(Em(r)− En(r))2

. (18.46)

This will be shown in Exc. 18.3.3.1.

Example 110 (Geometric phase in a two-level system): We consider the
following state [686],

n±(r) = cos θ|g⟩ ± e±ıϕ sin θ|e⟩ .

Now, we want to calculate the geometric phase,

γ± =

∮
C

ı⟨n±(r)|∇r|n±(r)⟩dr .

Applying the gradient in spherical coordinates,

∇r = êθ
1

r

∂

∂θ
+ êϕ

1

r sin θ

∂

∂ϕ
+ êr

∂

∂r

to the function |n+⟩, we find,

∇r|n+(r)⟩ = −êθ sin θ
r
|g⟩+ êθ

e±ıϕ cos θ

r
|e⟩+ êϕ

ıeıϕ

r
|e⟩ ,

and,

ı⟨n±(r)|∇r|n±(r)⟩ = ıêϕ
ı sin θ

r
.

Finally,

γ+ =

∮
C

− sin θ

r
êϕdR =

∮
C

− sin θ

r
r sin θdϕ =

∮
C

sin2 θϕ̇dt .

Example 111 (Berry phase on the Bloch sphere): We consider the example
of a two-level system without decay described by the Bloch vector ϱ⃗ defined in
(16.126) and whose evolution is govern by the Hamiltonian (16.129),

Ĥ = 1
2
G · σ ≡

ReΩ

ImΩ

∆/2


σxσy
σz

 .
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Now, we change the parameters regrouped in G adiabatically. It is easy to see
that,

E± = ±R/2 and ∇GĤ = σ⃗/2 ,

such that,

Vn(r) = Im
⟨n±(G)|∇GĤ(G)|n∓(G)⟩ · ⟨n∓(G)|∇GĤ(G)|n±(G)⟩

(E+(G)− E−(G)2
= ± G

2G3
.

The geometric phase accumulated on a closed loop C = ∂S surrounding an area
S = 4πΩS on the surface of the Bloch sphere is,

γn(C) = ∓
∮
C

dS

2G2
= 4π ∓

∮
C

dR = ∓ΩS(C)

2

and thus equal to half the enclosed solid angle ΩS . The Berry phase can be

measured in Ramsey experiments, as discussed in Exc. 18.3.3.2.

18.3.1.3 Generalization of the Berry phase according to Aharonov

We will now drop the conditions imposed to the Hamiltonian with regard to its
adiabatic behavior and request that the state must be a eigenstate [161]:

Ĥ|ψ(t)⟩ = ıℏ|ψ̇(t)⟩ . (18.47)

A process is cyclic, when there is a τ , such that,

|ψ(τ⟩ = eı[f(τ)−f(0)]|ψ(0)⟩ . (18.48)

Defining the space of radii by |ψ̃(t)⟩ = e−ıf(t)|ψ(t)⟩, we obtain,

|ψ̃(τ)⟩ = |ψ̃(0)⟩ , (18.49)

and from the Schrödinger equation we obtain,

f(t)− f(0) = − 1
ℏ

∫ t

0

⟨ψ(t)|Ĥ(t)|ψ(t)⟩dt+
∫ t

0

⟨ψ̃(t)|ı ddt |ψ̃(t)⟩ ≡ δ + β . (18.50)

Therefore, in the space of radii we have a closed curve:

C : [0, τ ] −→ ψ(t) ∈ H (18.51)

↓ e−ıf(t)

C ′ : [0, τ ] −→ ψ̃(t) ∈ P .

The dynamic phase δ can be zeroed by an appropriate choice of Ĥ(t), but not the
topological phase β. β does not depend on Ĥ(t), but is a geometric property of the
curve, which projects H onto P. In contrast to eıβ , the phase β is only determined
modulo 2πn.
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18.3.2 Aharonov-Bohm effect

A particular case for topological phases is the Aharonov-Bohm effect, which we will
discuss in the following. The only observables of electromagnetism are the forces of
Coulomb and Lorentz which, in the theory of electrodynamics, are described by elec-
tric and magnetic fields. Electromagnetic potentials can be introduced to simplify
calculations, but they are not observables with a physical reality. In contrast, in
quantum mechanics, electromagnetic potentials are more fundamental than electro-
magnetic fields. This is demonstrated by the Aharonov-Bohm effect.

Figure 18.12: (a) Scheme for measuring the Aharonov-Bohm effect. The electrons propa-
gate as wavepackets whose centers-of-mass are not subject to forces, but whose de Broglie
waves are phase-shifted by the vector potential. (b) Aharonov-Casher effect: the electrodes
Φ do not produce electric fields inside the conductors; even so, one observes constructive
or destructive interference at the output of the interferometer, depending on the applied
potential.

The idea of this effect is schematized in Fig. 18.12. An electron beam is coherently
divided into two arms (e.g. by a double slit) passing both sides of an infinitely extended

and perfectly shielded solenoid. In this way the magnetic field B⃗ vanishes in the region
outside the solenoid, but there must exist nonetheless a potential vector A, because
we observe on the screen an interference pattern of the two arms of the electronic
interferometer. When pass a current through the solenoid, we observe a displacement
of the interference pattern.

18.3.2.1 Aharonov-Bohm effect and gauge transformation

Let R and S be two disconnected spatial regions. Suppose that the electric and
magnetic fields are kept zero in region R. Then, it is classically impossible to measure
some change in the dynamics of a body confined to the region R resulting from a
change of the magnetic field confined to the region S. The Aharonov-Bohm effect
shows that the opposite is true: Electrons in the magnetic field-free region R do sense
magnetic field fluxes in a region S, despite the regions R and S having no intersection!

In the classical theory of electromagnetism, in a region of empty space (except for

electric charges and electric currents), the electric E⃗(r, t) and magnetic fields B⃗(r, t)
are related to the electric charge ρ(r, t) and current densities j(r, t) according to the
Maxwell equations. When we know for a spatial region the sources ρ and j and the
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boundary conditions that the fields E⃗ and B⃗ must fulfill, we can determine the fields
as solutions of Maxwell’s system of partial differential equations.

In classical electrodynamics, observed from some inertial frame, the electromag-
netic force Fem acting on a point-like body with charge q, at position r, and with
velocity v, is given by the Lorentz force:

Fem(r(t), t) = qE⃗(r(t), t) + qv(t)× B⃗(r(t), t) . (18.52)

Electrodynamic theory affirms the existence of two functions Φ(r, t) and A(r, t), such
that,

B⃗(r, t) = ∇×A(r, t) and E⃗(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
. (18.53)

Thus, we can use the equations (18.53) to rewrite the Maxwell equations.
The so-defined potentials Φ and A are not unique, but any Φ and A leading to the

same fields E⃗ and B⃗, and thus to the same physics, are equivalent. We will, however,
fix Φ and A adopting an additional condition that must be obeyed, i.e. we will adopt
a particular gauge. For the discussion of the Aharonov-Bohm effect, we will adopt
the Lorentz gauge defined by,

∇ ·A(r, t) +
1

c2
∂Φ(r, t)

∂t
= 0 , (18.54)

where c is the propagation velocity of light in vacuum.

18.3.2.2 Equation for quantum particle exposed to a vector potential A

Assume a particle (without spin) of mass m and charge q, whose wavefunction is

confined to a region R (connected by paths). We demand Φ = 0 and E⃗ = 0 = B⃗, but
we let A ̸= 0, that is, ∇×A(r, t) = 0. Note that along with (18.53) this forces A to
be stationary. According to quantum mechanics the wavefunction Ψ of the particle
must obey the following Schrödinger equation:

1

2m

(
ℏ
ı
∇− qA(r)

)2

Ψ(r, t) + V (r)Ψ(r, t) = ıℏ
∂Ψ(r, t)

∂t
. (18.55)

In (18.55) the potential vector A is present, even if ϕ, E⃗ , and B⃗ are kept zero through-
out the region R.

Since the rotation A vanishes in R, considering that the integral can be calculated
for any path contained in R that is deformable to a (arbitrarily chosen) point O ∈ R,
we can define the following scalar field:

g(r) ≡ q

ℏ

∫ r

0

A(x) · dx . (18.56)

From (18.56) we have:

∇g(r) = q

ℏ
A(r) . (18.57)

Now, we have already shown in Sec. 1.7.4, that the wavefunction

ψ(r, t) ≡ e−ıg(r)Ψ(r, t) (18.58)
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corresponds to the gauge transform (1.326) and, given the condition (1.325), satisfies
the same Schrödinger equation as Ψ(r, t). We showed this explicitly in Exc. 18.3.3.3.
Thus, the presence of a potential vector in the region R, even in the absence of
fields, causes a phase shift eıg(r) of the wavefunction. An interesting issue studied in
Exc. 18.3.3.4 is, whether this implies that the freedom of choice of the gauge field is
lost.

Example 112 (Observation of the Aharonov-Bohm effect): Imagine an
electron beam passing through a double-slit, as shown in Fig. 18.12(a). The elec-
tronic wavefunction diffracts through both slits, which produces an interference
pattern on a subsequent screen. Now, just after the double-slit, in the shade
of the region separating the two slits, we place an ideal infinitely long solenoid
traversed on its axis by a constant, however, adjustable flux of magnetic field.
The magnetic (and also the electric) field of the solenoid is confined to a re-
gion S, and the confinement can be guaranteed, e.g. with layers of shielding
materials, including superconductors. On the other hand, the wavefunctions of
the electrons are manifestly zero in this S region. In the R region, where the
electronic wavefunction may be non-zero, the fields are kept zero. R and S have
no overlap, both R and S are separately connected by paths.
We will show that the flux of the magnetic field in S can be measured through
the electronic dynamics in the region R, although the electron is never in the
region S, but confined to the field-free region R. This is the Aharonov-Bohm
(magnetic) effect.
The field B⃗ in the inner region of the solenoid is given by (I is the electric current
in the wire, N is the density of windings),

B⃗(r, t) = µ0IN êz .

Outside the solenoid, that is, for ρ > a, we have,

A(r, t) =
ΦB
2πρ

êϕ ,

where ΦB = πa2B(0, t) is the magnetic field flux B⃗ through the cross section of
the solenoid.
At a point rsim of the screen, located in the plane of symmetry of the system,
we calculate g(rsim) from Eq. (18.56) for two different paths: both starting at
the source and ending at the screen, but one going through the left slit, the
other through the right slit:

g(rsim) =
q

ℏ

∫ rsim

0

A(x) · dx =
qΦB
2πℏ

∫ (
1

ρ
ϕ̂

)
· (ρϕ̂dϕ) = ±qΦB

2ℏ
.

The + sign means, that the integration was done in the sense parallel to A, and
thus in the sense of I in the solenoid. The sign - holds for the other integration
path. The phase difference, at point rsim, between these two paths will be:

δ =
qΦB
ℏ

.

That is, the phase difference (experimentally observable via a shift of the in-
terference pattern) is directly proportional to the magnetic field flux B⃗, even
though the wavefunction is zero in the region S, where the B⃗ field is confined.
Let us also imagine another situation: Instead of an electron source producing
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a beam, let us confine an electronic wavefunction on a closed path circling the
solenoid at a distance b, but inside the region of R. That is, the electron follows
a field line BA ∝ êϕ. Then it can be shown, that the flow ΦB removes the
degeneracy of the energy levels of the electron:

En =
ℏ2

2mb

(
n− qΦB

2πℏ

)2

,

with integer, that is, n = 0,±1,±2, ... [344].

The Aharonov-Bohm phase is a (topological) Berry-phase [77]. This is shown
explicitly in Exc. 18.3.3.5.

18.3.2.3 Generalizations of the Aharonov-Bohm effect

The Aharonov-Bohm effect can be generalized to the internal degrees of freedom of a
single atom, that is, from real space to configuration space. Let us imagine a Mach-
Zehnder interferometer, where one of the arms crosses a constant homogeneous field
region. The corresponding Lorentz force F =

∫
d3r ρ(r)E⃗(r) + j(r) × B⃗(r) vanishes,

but the de Broglie wave undergoes a phase shift χ =
∫
Ĥintdt:

scalar potentials

χ = −
∫
eϕdt ∇ϕ = 0 for e−

−
∫
d · E⃗dt ∇× E⃗ = ∇ · E⃗ = 0 Mg, Yb+

−
∫
µ⃗ · B⃗dt ∇× B⃗ = ∇ · B⃗ = 0 n, Yb+

vector potentials

−
∮
eAdr ∇×A = 0 e−, (ABE)

−
∮
d× B⃗dr ?

−
∮
µ× E⃗dr n, Ca, (ACE)

Example 113 (Topological phase in configuration space): We consider a

temporal Ramsey experiment with a single trapped ion by exciting a hyperfine

transition. Between the pulses we apply a magnetic field for a time t. The accu-

mulated phase will be ϕ = (µ⃗ · B⃗/ℏ)t. This phase corresponds to the precession

of the dipole moment excited by the first Ramsey pulse. The phase can be in-

terpreted in analogy to Aharonov-Bohm effect, considering that 1. the magnetic

field is homogeneous, and 2. despite this fact still acts on the spin, not exerting

a force, but causing a phase shift.

18.3.3 Exercises

18.3.3.1 Ex: Derivation of the Berry curvature

Derive the expression (18.46) for the Berry curvature.

18.3.3.2 Ex: Measurement of the Berry phase in a two-level system

Discuss how the Berry phase in a two-level system can be measured via a Ramsey
experiment.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica02.pdf
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18.3.3.3 Ex: The Aharonov-Bohm effect as a gauge transform

Show explicitly that the wavefunction transformed by a gauge transformation (18.58)
satisfies the Schrödinger equation.

18.3.3.4 Ex: Aharonov-Bohm effect and gauge transformation

The phase of the interference pattern in the Aharonov-Bohm effect is fixed by the
magnetic flux through the solenoid. Does that mean, that we lose the freedom of
choosing an arbitrary gauge potential?

18.3.3.5 Ex: Aharonov-Bohm effect as a geometric phase

Show that the Aharonov-Bohm effect represents a particular case of a geometric phase.

18.4 Further reading

P.L. Saldanha et al., Inconsistency of a realistic interpretation of quantum measure-
ments a simple example [DOI]

B. Hacker et al., Deterministic creation of entangled atom-light Schrödinger-cat
states [DOI]

18.4.1 on quantum jumps

A. Schenzle et al., Macroscopic quantum jump in a single atom [DOI]

A. Schenzle et al., Possibility of quantum jumps [DOI]

W. Nagourney et al., Shelved Optical Electron Amplifier: Observation of Quantum
Jumps [DOI]

P. Zoller et al., Quantum jumps in atomic systems [DOI]

T. Erber et al., Resonance Fluorescence and Quantum Jumps in Single Atoms, Test-
ing the Randomness of Quantum Mechanics [DOI]

J. Dalibard et al., Wave-Function Approach to Dissipative Processes in Quantum
Optics [DOI]

K. Mølmer et al., Monte-Carlo Wave-Function Method in Quantum Optics [DOI]

Z. K. Minev et al., To catch and reverse a quantum jump mid-flight [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica05.pdf
http://doi.org/10.1007/s13538-020-00757-8
http://doi.org/10.1038/s41566-018-0339-5
http://doi.org/10.1103/PhysRevA.34.3127
http://doi.org/10.1103/PhysRevA.33.2127
http://doi.org/10.1103/PhysRevLett.56.2797
http://doi.org/
http://doi.org/10.1016/0003-4916(89)90016-X
http://doi.org/10.1103/PhysRevLett.68.580
http://doi.org/10.1364/JOSAB.10.000524
http://doi.org/10.1038/s41586-019-1287-z
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18.4.2 on projection noise

R.H. Dicke, Coherence in Spontaneous Radiation Processes [DOI]

M. Kitagawa et al., Spin-squeezed states [DOI]

W.M. Itano et al., Quantum projection noise: Population fluctuations in two-level
systems [DOI]

D.J. Wineland et al., Squeezed atomic states and projection noise in spectroscopy
[DOI]

Ph. Bouyer et al., Heisenberg-Limited Spectroscopy with Degenerate Bose-Einstein
Gases [DOI]

R. Huesmann et al., Single-Atom Interferometry [DOI]

L. Salvi et al., Squeezing on Momentum States for Atom Interferometry [DOI]

18.4.3 on geometric phases

M.V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes [DOI]

Y. Aharonov et al., Significance of Electromagnetic Potentials in the Quantum The-
ory [DOI]

E. Cohen et al., Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and
beyond [DOI]

http://doi.org/10.1103/PhysRev.93.99
http://doi.org/10.1103/PhysRevA.47.5138
http://doi.org/10.1103/PhysRevA.47.3554
http://doi.org/10.1103/PhysRevA.50.67
http://doi.org/10.1103/PhysRevA.56.1083
http://doi.org/10.1103/PhysRevLett.82.1611
http://doi.org/10.1103/PhysRevLett.120.033601
http://doi.org/10.1098/rspa.1984.0023
http://doi.org/10.1103/PhysRev.115.485
http://doi.org/10.1038/s42254-019-0071-1


Chapter 19

Nonlinear optics

The discipline of nonlinear optics studies phenomena that occur as a consequence of
modifications of the optical properties of materials by the presence of light. Such
modifications are appreciable only, when the interacting light is sufficiently intense,
i.e. of the order of the interatomic electric field,

Eat =
e2

4πε0a2B
≃ 5.14 · 1011 V/m , (19.1)

which explains that nonlinear effects could only be studied properly after the advent
of the laser.

In general, light-matter interaction is expressed through the relationship between
the polarization induced in the medium, P(ω), with the optical light field, E(ω). In
linear optics this relation can be expressed as,

P̃(ω) = ε0χ(ω)Ẽ(ω) . (19.2)

But in the perturbative regime of non-linear optics this expression must be generalized
to a series of powers of the electric field,

P̃(ω) = ε0[χ
(1)(ω)Ẽ(ω) + χ(2)(ω)Ẽ2(ω) + χ(3)(ω)Ẽ3(ω) + ...] , (19.3)

so that higher order polarization terms, P(n)(ω) = ε0χ
(n)EN (ω), are considered.

Therefore, the phenomena are non-linear in the sense that they depend non-linearly
on the optical field applied to the material. In a more complete treatment, in terms
of the optical properties of materials, P̃ and Ẽ are vector fields and the electric
susceptibility is a tensor. However, to simplify the treatment, we consider the fields
as scalars and χ(n) as constants independent of the frequency ω.

Examples of non-linear optical phenomena are: parametric processes of sum and
difference frequency generation, as shown in Fig. 19.1, optical parametric oscillation,
and the dependence of the refractive index with the optical intensity. Examples of non-
parametric processes are: multi-photonic absorption, stimulated Raman scattering,
and saturated absorption. In the latter example, the absorption coefficient of the
material decreases with increasing light intensity:

α =
α0

1 + I/Is
. (19.4)

Saturated absorption is an example where a perturbative approach is not capable of
providing good results, and its most reliable description is given by the approximation
of a two-level quantum system.

749
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Figure 19.1: Parametric (a) sum and (b) difference frequency generation. (c) Third harmonic
generation.

It is also important to emphasize that parametric processes are those, in which
the initial and final quantum states of a system are identical. Consequently, the
population of an initial state can only be moved to a virtual state, different in energy
by ∆E, for a short time lapse limited by Heisenberg’s uncertainty principle (ℏ/∆E).
Nonparametric processes are those involving population transfer between real energy
levels, eigenstates of the system’s Hamiltonian. In terms of the electrical susceptibility
of the medium, χ(n) is a real quantity for parametric and an imaginary one for non-
parametric processes.

19.1 The nonlinear optical susceptibility

The description of nonlinear optical phenomena can be approached from a variety of
perspectives, most of which are semi-classical in the sense that the matter is treated
quantum mechanically, while the electromagnetic radiation is treated classically. One
possible description explores the wave nature of the radiation, using Maxwell’s equa-
tions to describe the generation of new spectral components by the nonlinear terms of
the polarization. More generally, this description explains how different frequencies
can be coupled through their nonlinear interaction with the material. It can be shown
that the electromagnetic wave equation in the nonlinear regime is,

∇Ẽ − n2

c2
∂2

∂t2
Ẽ =

1

ε0c2
∂2

∂t2
P̃ , (19.5)

such that P̃ = P̃(1) + P̃(nl). In this view, P̃(nl) acts as a source of frequencies, several
of that are incident.

Although electromagnetic theory is capable of explaining several aspects of non-
linear optics, it is the quantum description that provides explicit expressions for non-
linear optical susceptibility. There are three main motivations for obtaining quantum
expressions:

• They reveal a functional form of the nonlinear optical susceptibility and show
how they depend on microscopic parameters of the material, such as transition
dipole moments and atomic energy levels.

• They exhibit the intrinsic symmetries of nonlinear susceptibility.
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• They can be used to calculate numerically the values of nonlinear susceptibilities.

The numerical predictions of quantum theory for nonlinear optical susceptibilities
are particularly accurate in the case of atomic vapors, because the atomic parameters
of these are known with sufficient precision for the theory to provide reliable results.

Two quantum mechanical formalisms can be used for the calculation of nonlinear
optical susceptibilities. Perturbation theory is used to make predictions on non-
resonant systems, i.e. situations where the photon energy is much smaller than the
energy separation between two eigenstates of the material. On the other hand, when
the interactions are close to resonance, such that it becomes necessary to include relax-
ation processes, the state-density matrix formalism is used. Although this approach
is more complex, it provides better results.

19.1.1 Exercises

19.2 Quantum interference

We have seen earlier that a dark resonance in Λ-shaped three-level systems create
superposition states between the two stable ground states which allow the adiabatic
elimination of the excited state. Dark resonances may be understood as destructively
interfering excitation paths at Raman-coherences between inneratomic transitions.
Quantum interference is at the origin of various other phenomena which are discussed
in the following sections.

19.2.1 Lasing without inversion

The question of the necessity of population inversion to construct a laser has been the
subject of debates. Indeed, even an ordinary two-level system may exhibit gain with
a small frequency interval [592] known as Mollow gain. Lasing without population
inversion may also result from a splitting of emission and absorption spectra caused
by atomic recoil as in the example of CARL [101].

Various schemes of a laser without inversion (LWI) have been proposed. Here is
one of them [619]. We will discuss an example in Exc. 19.2.3.1.

19.2.2 Brillouin scattering

Stimulated scattering of phonons is called stimulated Brillouin scattering (SBS). Like
Raman-scattering (SRS) Brillouin-scattering is a limiting factor for the transmission
efficiency in optical fibers. It is used in acousto-optic modulators (AOM). While SBS
is based on the exchange of phonons between atoms bound in crystals, SRS is based
on the exchange of phonons between atoms bound in molecules.

Raman-scattering (in a restricted historical sense) is very common technique of
molecular spectroscopy. The process is Rayleigh-scattering at an electronic transition,
but towards a different vibrational substate. Brillouin-scattering also involves the
motional state of the scatterer, but its center-of-mass motion rather than some internal
degree of freedom. It is also related to polariton scattering in solids, which produces
optical phonons, rather than acoustic phonons.
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Figure 19.2: Dressed states level scheme for LWI. Quantum interference between two possible
Raman transitions (green) leads to a cancellation of the ground state population. When the
upper level |h⟩ is incoherently pumped, gain can be reached for a weak probe field. Inserting
the atoms in a cavity one can reach lasing [408].

If a strong electromagnetic field (pump laser) is irradiated into a medium (typi-
cally a crystal or a fluid) it produces a time-varying electrostrictive strain, which can
be understood as the reaction force of particles dislocated from their equilibrium po-
sition. The strain is quantized into phonons and may drive a sound wave. This wave
modulates the optical dielectric constant ε and thus create a periodic polarization
P⃗. This polarization may now interact with the incident electric field (pump laser

ω2,k2, E⃗2). The resulting energy exchange can, under suitable circumstances, lead to

simultaneous amplification of a probe wave (ω2,k2, E⃗2) and a sound wave (ωs,ks, us).

Let us consider a 1D geometry, kj = kj êz and E⃗j = Ej êx. (More general geome-
tries can be considered [892]). The pump field E2(t, z) causes a strain ∂us/∂z via
longitudinal displacements us(z, t) of test volumes. This strain produces a modula-
tion of ε by δε = −γ∂us/∂z, where γ is the strain coefficient (or coupling strength).
The modulation of the dielectric constant δε now modulates the interaction energy
δU = − 1

2δεE2, which exerts work p∂us/∂z = δU against the pressure p. The pres-
sure modulation creates a force F = −∂p/∂z = 1

2γ∂E22/∂z. We can now set up a
Fokker-Planck type force equation,

ρ
∂2us
∂t2

=
γ

2

∂E22
∂z
− η ∂us

∂t
+ T

∂2us
∂z2

, (19.6)

where ρ is the mass density, T the elastic constant and η acoustic dissipation. vs ≡
ωs/ks =

√
T/ρ is the free propagation velocity of sound. Simultaneously we know

that the light wave propagates like,

∂2Ej
∂z2

+ µε
∂2Ej
∂t2

+ µ
∂2PNL,j
∂t2

. (19.7)

We insert the ansatz Ej(t, z) = 1
2E0j(z)eı(ωjt−kjz)+c.c. and us(t, z) = 1

2u0s(z)e
ı(ωst−ksz)+

c.c. first into the above equations. We use the approximations k2sus ≫ d2us/dz
2 ≪
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ksdus/dz and |∂(E2E∗1 )/∂z| ≪ |ksE2E∗1 | and focus on the real parts. Assuming that
the pump field E2 is undepleted, stimulated Brillouin-scattering is described by the
following set of equations,

dE∗1
dz

= −α
2
E∗1 −

γk1ks
4ε1

E∗2us (19.8)

dus
dz

= − η

2ρvs
us −

γ

8ρv2s
E2E∗1 .

Here ρ is the mass density, optical losses are described by α, and η is the dissipation
constant for phonons. ε1 ≈ ε0. The scattering satisfies the Bragg condition k2−k1 =
ks. The above equations describe exponential gain and threshold behavior for E1 and
us. For backscattering k1k2 = −k1k2 the rate of growth for the probe E1 is influenced
by the values of E1 lying ahead in the direction k1. This is by virtue of the sound beam
propagating in opposite direction to E1 and provides the positive feedback being at
the origin of exponential gain.

The equations are reminiscent to the CARL equations. The difference is the nature
of the mediating force field: The CARL force is mediated by photons. The mediation
is thus instantaneous. Photons do not require a medium in order to propagate. In
contrast, the Brillouin-gain is mediated by phonons. Phonons propagate through a
gas by collisions. Sound needs a medium to propagate. In dilute gases where CARL is
observed, collisions are totally neglegible. Brillouin-scattering may lead to bunching,
which propagates along ks. But similar to water waves, which do not transport the
water molecules, the bunching does not lead to a net transport of atoms.

Just like CARL and the superradiant Rayleigh scattering in BECs SBS can be
understood as being mediated by dipole-dipole interactions (i.e. the exchange of real
or virtual photons between atoms). In a BECs SBS can be interpreted as phonon-like
excitations (smaller momentum transfer) due to dipole-dipole interactions [324], while
CARL are particle-like excitations due to dipole-dipole interactions (the nature of
scattered particles changes from recoiling atoms to phonons). Note that while ultralow
temperatures are necessary, these effects are not base on superfluidity, i.e. binary
collisions. Thus the speed of sound is not the Bogolubov sound. The question is
whether quantum degeneracy plays a role.

19.2.3 Exercises

19.2.3.1 Ex: Lasing without inversion

Explain the phenomenon of lasing without inversion in the dressed states picture for
a V-type three-level system.

19.3 Further reading

G. Kurizki et al., Free-electron lasing without inversion by interference of momentum
states [DOI]

D. Bloch et al., Atom-wall interaction [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Nonlinearoptics_QuantumInterference01.pdf
http://doi.org/10.1103/PhysRevLett.70.1433
http://doi.org/arxiv.org/abs/physics/0503146
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G. Nienhuis, Nonlinear selective reflection from an atomic vapor at arbitrary inci-
dence angle [DOI]

E. Pleghaar, Quantitative investigation of the effect of resonant absorbers on the
Goos-Hänchen shift [DOI]

http://doi.org/10.1103/PhysRevA.38.5197
http://doi.org/10.1103/PhysRevLett.70.2281


Chapter 20

Atomic motion in force fields

So far –and especially in Sec. 2.7.2– we analyzed the motion of quantum particles
in potential landscapes without specifying the physical origin of the potentials. We
know the gravitational force, which can be derived from the Earth’s homogeneous
attraction,

F = −∇Vgrav = −∇(mgz) = −gmêz . (20.1)

Another fundamental force comes from electromagnetism. We have already studied
–mainly in Sec. 10.4– the reaction of the electronic shell in atoms subjected to applied
electromagnetic fields.

In contrast, the present chapter is devoted to the motion of the atomic center-of-
mass subject to forces resulting from interactions with electromagnetic fields. We will
begin, in the first section, with electromagnetic forces of the Coulomb-Lorentz type
acting on charges (e.g. ions), permanent electric dipoles (e.g. polar molecules), or per-
manent magnetic dipoles (e.g. paramagnetic atoms). Also, more complex situations
will be discussed, such as the scattering of light by confined atoms, atoms interacting
with optical cavities, and adiabatic potentials.

The second section will entirely be devoted to the forces exerted by light beams,
in particular the radiation pressure and the optical dipole force, which are nowadays
widely used in atomic cooling and trapping experiments. We will leave the issue of
the application of these forces to Chp. 26 and concentrate here on the (semiclassical
or quantum) derivation and the interpretation of the forces. In fact, to understand
optical forces acting on atoms, we need to consider their internal degrees of freedom.

Apart from the degrees of freedom related to their center-of-mass motion (kinetic
or potential energy), many quantum objects are endowed with internal degrees of free-
dom, for example, the motion of electrons inside atoms or molecules. In the simplest
case, the Hamiltonian of such a system is composed of an outer part, comprising the
kinetic and the potential energy, and an inner part counting for the excitation energy
ℏω0 of an internal state |e⟩,

Ĥatom =
p2

2m
+ V (r) + ℏω0|e⟩⟨e| . (20.2)

The time scale of the electronic motion is usually very rapid compared to the motion
of the nucleus, where (almost) the entire mass of the atom is concentrated. Therefore,
the external (nuclear) dynamics decouples from the internal (electronic) one, which
allows the separation of the total wavefunction in two parts,

|ψ⟩ = |ψ⟩ext|ψ⟩ele , (20.3)

755
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where for a simple two-level atom, |ψ(t)⟩ele = cg(t)|g⟩ + ce(t)|e⟩, with the atomic
ground state |g⟩ and the excited state |e⟩. The external states are eigenstates of the
momentum in the case of a free particle, |ψ⟩ext = |p⟩. For particles confined in a po-
tential the external states are the vibrational eigenstates, |ψ⟩ext = |n⟩. The temporal
evolutions of the internal and external degrees of freedom are governed by indepen-
dent Schrödinger equations. For cold atomic clouds the kinetic energy is much smaller
than the excitation energy, which allows the separation of the energy scales. That is,
the internal degrees of freedom are frozen in the ground state. Many phenomena, for
example, Bose-Einstein condensation and the dynamics of condensates are described
in this regime.

Figure 20.1: The internal degrees of freedom of cold atoms are thermally frozen.

Nevertheless, the fact that it is thermally frozen does not prevent the intentional
excitation of the internal degree of freedom by irradiating electromagnetic fields tuned
close to resonances and coupling electronic energy levels. In the case of coupling, the
external and internal degrees of freedom must both be considered.

20.1 Electromagnetic forces

Obviously, in order to allow for forces acting on the atomic center-of-mass, the atomic
Hamiltonian must contain terms depending on the center-of-mass coordinates:

F = −⟨∇Ĥatom:field⟩ . (20.4)

We will see shortly that some of the terms may be dissipative, other conservative.
The impact of electromagnetic fields on the internal dynamics of atoms has al-

ready been studied in the Chp. 10. Here, we will focus on the force on the center-of-
mass exerted by the gradient of electromagnetic potentials, where the Hamiltonian in
Eq. (20.4) of a charge interacting with electromagnetic fields is obtained in minimum
coupling (10.11) by,

Ĥatom:field =
1

2m
(−ıℏ∇− qA)2 + qΦ ≃ −ℏ

2

2m
∇2 +

ıℏq
m

A · ∇+ qΦ . (20.5)

From this formula we can, in principle, calculate all electromagnetic forces.
The coupling of external and internal degrees of freedom is mediated by the pho-

tonic recoil transferred to the atom during absorption and emission processes. That
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is, the feature that the interaction with light simultaneously excites the atom and
exerts a force couples the degrees of freedom. This fact manifests itself in the Hamil-
tonian of the atom interacting with a light field (17.8) by the appearance of terms
joining operators acting on different degrees of freedom,

Ĥ = ℏωâ†â+ Ĥatom:field + Ĥatom (20.6)

where Ĥatom:field = ℏg(r̂)eık·r̂â†σ̂ + c.c. ,

where σ̂ ≡ |g⟩⟨e| and â ≡∑n

√
n|n⟩⟨n+1| and ℏg(r̂) ≡ d12 ·E⃗1(r̂) is the coupling con-

stant or one-photon Rabi frequency. The Hamiltonian is that of the Jaynes-Cummings
model, except that in addition to the field operators â and the atom transition oper-
ators σ̂, appears an operator for the position of the atom r̂, whose quantum features
we have not taken very seriously so far. It appears in the Rabi frequency and also in
the term eık·̂r. Now, we must remember, that

Urec = e−ık·̂r = |p+ ℏk⟩⟨p| (20.7)

is the unitary operator of the photonic recoil in the absorption process introduced
in Sec. 1.7.3 and extensively discussed in Sec. 2.6.2. We shall shortly see, that it is
precisely this term in the Hamiltonian that gives rise to all phenomena related to light
forces on atoms.

The presence of the position operator in the Jaynes-Cummings Hamiltonian in-
troduces a new degree of freedom. With no external potential (that is, the sys-
tem is invariant to spatial translations), this degree of freedom is simply the atomic
center-of-mass momentum, such that the new set of quantum numbers is |j, n,p⟩.
Strictly speaking we have to span the whole Hilbert space by an external product,
Ĥele ⊗ Ĥfield ⊗ Ĥext.

Often a semi-classical description treating the light field a classically is sufficient,
â ≃ √n with n the number of photons. Then the Hamiltonian (20.6) simplifies to,

Ĥatom:field = ℏ
2Ω(r̂)e

ık·r̂σ̂ + c.c. , (20.8)

with the Rabi frequency Ω(r) =
√
n2g(r).

20.1.1 Forces on charges and electric dipole moments

As shown in Eq. (10.8), the equations (20.4) and (20.5) (obviously) lead to Coulomb-
Lorentz forces on charges and currents.

In atomic optics, the Coulomb-Lorentz force is used, for example, to accelerate or
trap ions (see Sec. 26.5) and other electrically charged particles.

Atoms naturally do not exhibit permanent electric dipole moments, when they are
not subject to external electric fields. In contrast, polar molecules (such as heteronu-
clear dimers), which have permanent electric dipole moments can have their motion
be influenced by inhomogeneous electric fields (see Sec. 26.5.3).



758 CHAPTER 20. ATOMIC MOTION IN FORCE FIELDS

20.1.2 Forces on magnetic dipole moments

Neutral atoms are insensitive to electric fields. But as we have already seen in Chp. 10,
the orbital motion of the electrons corresponds to a circular current generating a per-
manent magnetic dipole moment µ⃗, which can interact with external magnetic fields.
We have already shown in the calculation (10.15) and (10.19) that the interaction
energy (20.5) can be written as,

Ĥmagn = −µ⃗J · B⃗ = −gJµB

ℏ
J · B⃗ −→ −gJµB

ℏ
|J| |B⃗| = −gJµBmJB , (20.9)

where the Landé factor is given by the formula (10.21),

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (20.10)

Here, J = L + S is the total angular momentum resulting from the coupling of the
total angular orbital momentum and the total spin of all electrons. If the atom has
a nuclear spin I other than zero, then F = J + I replaces J in Eq. (20.9), and the
g-factor generalizes to (10.35) 1,

gF ≃ gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
. (20.11)

In Sec. 10.2 we used the formula (20.9) to calculate the Zeeman shift of internal
energy levels. But, according to the formula (20.4), the interaction also generates a
force acting on the center-of-mass of atom,

f = −gFµBmF∇B . (20.12)

In case of absence of hyperfine structure we simply replace F by J .
Obviously, force is conditioned by the existence of a gradient of the absolute value

of the magnetic field. It was first used in the famous Stern-Gerlach experiment, which
led to the discovery of the electron (see Sec. 3.3.3). In atomic optics (see Sec. 26.4), this
force is widely used to createmagnetic traps for cold atoms. Resolve the Excs. 10.2.7.2,
20.1.4.1, and 20.1.4.2.

20.1.3 Adiabatic potentials

Adiabatic potentials can be used to realize more complicated trapping geometries
[177]. To study adiabatic potentials we consider the two-level system | 12 , 12 ⟩ ↔ |12 ,− 1

2 ⟩
coupled by an incident radiation (e.g. a radiofrequency). A generalization to multilevel
systems F > 1

2 is simple. The dressed states Hamiltonian of our two-level system is
a 2× 2 matrix,

Ĥadiab(z) =

(
1
2µBgFB(z)− 1

2ℏω
1
2ℏΩ

1
2ℏΩ − 1

2µBgFB(z) + 1
2ℏω

)
. (20.13)

1Note that the formula only applies to weak fields. For strong fields the Zeeman unfolding changes
to the Paschen-Back unfolding of the hyperfine structure.
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For simplicity, we assume a one-dimensional geometry, B = B(z), but we can easily
generalize to three dimensions. The eigenvalues of Ĥ are,

E±(z) = ± 1
2

√
ℏ2Ω2 + [µBgFB(z)− ℏω]2 . (20.14)

Sufficiently far from resonance, ℏΩ≪ |µBgFB(z)− ℏω|, we obtain,

E±(z) ≃ ± 1
2 [µBgFB(z)− ℏω]± ℏ2Ω2

4[µBgFB(z)− ℏω]
, (20.15)

where the second term can be interpreted as the dynamic Stark shift of the energy
levels.

To illustrate the influence of the radiofrequency, we calculate the potential en-
ergy and the dressed states assuming a linear 1D magnetic field gradient B(z) ≡ zb.
Fig. 20.2(a) illustrates the radiofrequency coupling and Fig. 20.2(b) the dressed states
for two magnetic substates coupled by a radiofrequency. The minimum emerging in
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Figure 20.2: (code) (a) Potential energies for a hyperfine structure F = 1
2
with a g-fator

of g = − 2
3
(as e.g. in the ground state 2S1/2 of 6Li). A radiofrequency (arrow) couples the

substates mF = ± 1
2
. Here, b = 200G/cm and ω = 2π× 5 kHz. (b) Uncoupled dressed states

(dotted line), coupled dressed states (solid line), and dynamic Stark shifts (dash-dotted)

approximated far away from resonance. The Rabi frequency is Ω = 2π × 700Hz.

the upper curve of Fig. 20.2(a) may serve as a confinement potential. Using an rf-
radiation composed by several frequencies, potential minima can be realized at several
distances z. In Exc. 20.1.4.3 we calculate an example.

In the dressed states basis with the Hamiltonian (20.13), the force is calculated
from,

F(r) = ⟨F̂(r)⟩ = −Tratom:laser ρ̂∇rĤadiab = −
∑

n,j

⟨n, j|ρ̂∇rĤadiab|j, n⟩ . (20.16)

We consider only one dimension and disregard the degrees of freedom of the radiation
field,

F (z) = −Tratom:laser ρ̂∂zĤadiab (20.17)

= −
∑

j

⟨j|ρ̂∂z
(
µBgFB

2 |1⟩⟨1| − ℏω
2 |1⟩⟨1| −

µBgFB
2 |2⟩⟨2|+ ℏω

2 |2⟩⟨2|+ ℏΩ
2 e

ıkzσ̂+ + c.c.
)
|j⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
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Here we neglect any possible position dependence of Ω,

F (z) = − 1
2µBgF∂zB

∑

j

⟨j|ρ̂(|1⟩⟨1| − |2⟩⟨2|)|j⟩ = − 1
2µBgF∂zB(ρ11 − ρ22) . (20.18)

If the atoms enter the coupling area adiabatically, the populations of the adiabatic
potentials will only depend on z. This is analogous to the adiabatic transfer via adi-
abatic sweeps or STIRAP pulse sequences. If the atoms are too fast, the populations
also depend on history (i.e. the recent trajectory of the atoms), which can result in
Landau-Zener transitions to other (possibly untrapped) states.

20.1.4 Exercises

20.1.4.1 Ex: The Stern-Gerlach effect

Consider initially motionless 87Rb atoms trapped in a superposition of two the trap-
pable Zeeman states |F,mF ⟩ = |2,+2⟩ and |1,−1⟩. Suddenly a magnetic gradient of
∂zB = 100G/cm is applied for 2ms. Calculate the spatial separation of the atoms
being in either one of the two states after 10ms of ballistic expansion.

20.1.4.2 Ex: Potential for magnetic trapping

Invent a potential for magnetic confinement.

20.1.4.3 Ex: Adiabatic potentials

An adiabatic potential can be used to create more complicated trapping potentials
[177]. To study these potentials we consider a system of two Zeeman states m = 1

2
coupled by a radiofrequency radiation ℏω. The dressed states Hamiltonian of our
two-level system is a 2× 2 matrix,

Ĥ =

(
1
2µBB − 1

2ℏω
1
2ℏΩ

1
2ℏΩ − 1

2µBB + 1
2ℏω

)
,

defining the energetic zero in the middle between the states. Now, assume that the
magnetic field grows linearly along the axis z, B(z) = z∂zB, where ∂zB is the gradient.
Also assume that the radiofrequency is tuned in resonance with the difference of the
energies of the Zeeman states at some distance z0 such that, ℏω = µBz0∂zB.
a. Calculate the eigenenergies of the coupled system as a function of z.
b. Expands eigenenergies around the position z0.
c. What would be the oscillation frequency of the trapped atoms inside the adiabatic
potential?
d. Expands the eigenenergies in ℏΩ for locations away from resonance.

20.2 Optical forces

Light carries momentum, and the scattering of light by an object produces a force on
that object. Although these properties of light are direct consequences of Maxwell’s
classical theory of electromagnetism, they were only verified in 1933 by Frisch, who

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag03.pdf
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observed a very small transverse deviation (3 · 10−5 rad) of an atomic sodium beam
exposed to the light of a lamp. With the invention of the laser, it became easier to
observe the light’s mechanical effects, because the more intense and highly directional
laser light exerts much larger forces. Although these results sparked the interest in
using light forces to control the motion of neutral atoms, the fundamental bases for
understanding the physics of light forces were not developed before the late 1970s.
Unequivocal experimental demonstrations of cooling and trapping of atoms were not
performed before the mid-1980s. In this section we will discuss some fundamental
aspects of light forces. Practical schemes used to cool and trap neutral atoms will be
presented in Secs. 26.2 and 26.3.

The light force acting on an atom can be of two types: a spontaneous dissipative
force and a conservative dipole force. The spontaneous force arises from the recoil
experienced by an atom when it absorbs or emits a quantum of light. As we saw
in Sec. 1.2.6, when an atom scatters light, the resonant scattering cross section can

be written as in Eq. (1.72), σ0a = g2
g1

λ2
0

2π , where λ0 is the resonant wavelength. In
the optical region of the electromagnetic spectrum the wavelengths of light are of the
order of several hundred nanometers, and the resonant cross sections for scattering
become very large, (∼ 10−9 cm2). Each absorbed photon transfers a quantum of
momentum ℏk to the atom in the direction of propagation. Spontaneous emission
following an absorption process occurs in random directions and, hence, averaged
over many absorption-emission cycles, it cancels to zero. Consequently, the total
spontaneous force acts on the atom in the propagation direction of the light, as shown
schematically in the diagram of Fig. 20.3. The saturated photon scattering rate via
spontaneous emission (the reciprocal value of the excited state’s lifetime) sets the
upper limit for the magnitude of the force. This force is called radiation pressure
force.

The dipolar gradient force can be easily understood by considering light as a clas-
sical wave. It is simply the time-averaged force resulting from the interaction of the
transition dipole –induced by the oscillating electric field of the light– with the gra-
dient of the electric field amplitude. The strength of this gradient can be controlled,
e.g. by focusing the light beam. By tuning the optical frequency below or above an
atomic transition, we can control the sign of the force acting on the atom: Tuning
the light below resonance attracts the atom to the center of the light beam, tuning
it above resonance repels it. The dipole force is a stimulated process without en-
ergy exchange between the field and the atom. Photons are absorbed in one light
mode and reappear by stimulated emission in another one. However, conservation
of momentum requires that the change in the propagation direction of the scattered
photons from an initial mode to a final mode leaves the atom with a recoil. Contrary
to spontaneous force, there is, in principle, no upper limit for the magnitude of the
dipole force, since it is a function of the field gradient only and the detuning.

Within the theory of electromagnetism we calculate radiative forces on charges
via Maxwell’s stress tensor 2. The interaction of radiation with atoms having internal
degrees of freedom exhibiting resonances can be treated qualitatively by the Lorentz

2See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 6.2.3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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model 3.

In the following, we will show quantitative semi-classical and quantum calcula-
tions: The force of a light beam on an atom can be calculated in many different ways,
each emphasizing a slightly different aspect: From the classical Lorentz force exerted
on an atom by electromagnetic fields we can derive a semi-classical Fokker-Planck
equation [793]. In Sec. 20.2.1 we will derive the two contributions (dipole force and
radiative pressure) within a semi-classical theory [328]. Wineland et al. [871] chose
as starting point the cross section for an elementary scattering process (Sec. 20.2.3).
Dalibard et al. [195] developed a quantum theory using the dressed states represen-
tation (Sec. 20.2.2). And Cirac et al. [155] showed an approach based on the master
equation (Sec. 20.2.3).

20.2.1 The dipolar gradient force and the radiation pressure
force

To compute the forces of light on an atom, we describe the atom as a two-level system:
A fundamental level |1⟩ and an excited level |2⟩ decaying to the fundamental level
with the rate Γ. The energy difference between the levels is ω0 ≡ E2 −E1. The light
with frequency ω is derived from a laser beam, which can be detuned from the atomic
transition, ∆ ≡ ω−ω0. To describe the interaction, we consider the part (20.8) of the
total Hamiltonian describing the interaction [195]. Using the semi-classical density
operator ρ̂ 4, we can calculate the force that the light field exerts on the atom,

F(r) = ⟨F̂(r)⟩ = −Trat ρ̂∇rĤatom:field (20.19)

= − 1
2ℏ
∑

j
⟨j|ρ̂|∇r

(
Ω(r)eık·r−ı∆t|2⟩⟨1|+Ω(r)e−ıkr+ı∆t|1⟩⟨2|

)
|j⟩

= − 1
2ℏ∇rΩ(r)

(
⟨1|ρ̂eık·r−ı∆t|2⟩+ ⟨2|ρ̂e−ık·r+ı∆t|1⟩

)

− ı
2ℏkΩ(r)

(
⟨1|ρ̂eık·r−ı∆t|2⟩ − ⟨2|ρ̂e−ık·r+ı∆t|1⟩

)
.

Now, we let the atom be at the position r = 0,

F(0) = − 1
2ℏ∇rΩ(0)(ρ12e

−ı∆t + ρ21e
ı∆t)− ı

2ℏkΩ(0)(ρ12e
−ı∆t − ρ21eı∆t) . (20.20)

The quantities ρ12 ≡ ⟨1|ρ̂|2⟩ = ρ∗21 are the coherences, which develop in a two-
level system excited by a laser beam. Inserting the stationary solutions of the Bloch
equations (16.151),

ρ22 =
Ω2

4∆2 + 2Ω2 + Γ2
and ρ12 =

(2∆− ıΓ)Ω
4∆2 + 2Ω2 + Γ2

e−ı∆t . (20.21)

we obtain

F(0) = − 1
2ℏ

4∆Ω

4∆2 + 2Ω2 + Γ2
∇rΩ+ ℏk

ΓΩ2

4∆2 + 2Ω2 + Γ2
. (20.22)

3See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 7.2.4.
4Treating the motional and the optical degrees of freedom as classical the density operator only

contains the atomic excitation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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With the definition of the cross section, σa(∆) = σa0
Γ2

4∆2+2Ω2+Γ2 ,

F(0) = − 1
2ℏ∆∇r ln

(
1 +

2Ω2

4∆2 + Γ2

)
+ ℏk

Ω2

Γ

σa(∆)

σa0
. (20.23)

The resonant cross section for a ’classical’ transition is σa0 = 3λ2/2π.
Apparently, the force comprises two contributions. The dipolar gradient force can

be derived from a potential. It is proportional to the intensity gradient and can
be interpreted as resulting from absorption processes immediately followed by self-
stimulated emission. Near resonance it is dispersive. Far from resonance it can be
approximated by,

Fdp = ∇r
−ℏ∆Ω2

4∆2 + Γ2

|∆|≫Γ−→ −∇r
ℏΩ2

4∆
. (20.24)

The radiation pressure force is dissipative. Close to resonance it is absorbing. It is
proportional to the phase gradient and the only force exerted by plane waves. It
can be interpreted as resulting from absorption processes followed by spontaneous
emission. With Ω2 = σa0ΓI/ℏω we get a formula,

Frp = ℏk
I

ℏω
σa(∆) = ℏkγsct , (20.25)

which describes the force as a product of the number of photons in the incident beam,
I/ℏω, the absorption cross section, σa(∆), and the recoil momentum per photon, ℏk.
γsct is the scattering rate. Fig. 20.3(a) illustrates the radiation pressure force.

Figure 20.3: (a) Upon absorption of a photon an initially resting atom receives a recoil
momentum kick ℏk. As the re-emission is isotropic, averaged over many absorption-emission
cycles, the net force is only given by the absorption process. (b) The dipole force may be
interpreted as a coherent redistribution of photons between spatial modes of a focused light
beam.

The dipole gradient force (and the associated potential) is often used to spatially
confine atoms, and the radiation pressure force is often used to cool them down. Note



764 CHAPTER 20. ATOMIC MOTION IN FORCE FIELDS

that we still need to correct Eqs. (20.24) and (20.25) to take into account the square
of the average over the possible spatial orientations of the transition matrix element
d12/3. As illustrated in Fig. 20.3(b), the dipole force may be interpreted as being due
to coherent redistribution of photons between partial spatial modes of a non-uniform
(e.g. focused) light beam. The orientation of the force depends on the sign of the
detuning and can be understood in terms of the Lorentz model treating the atom as
classical radiator 5.

The saturation parameter,

s =
1
2Ω

2

∆2 + 1
4Γ

2
, (20.26)

allows to write the dipolar gradient force and the radiative pressure force as,

Fdp = −ℏ∆
6

1

1 + s
∇s = ℏ∆

6
∇ ln[1 + s] and Frp =

ℏkΓ
6

s

1 + s
. (20.27)

Eq. (20.27) shows that the radiation pressure force ’saturates’ as s increases, and
is therefore limited by the spontaneous emission rate. The saturation parameter
essentially describes the relative importance of terms appearing in the denominator
of the line profile function for the light forces. The spontaneous emission rate is an
intrinsic property of the atom, proportional to the square of the atomic transition
dipole moment, whereas the square of the Rabi frequency is a function of the incident
laser intensity. If s≪ 1, the spontaneous emission is fast compared to any stimulated
process, and the light field is said to be weak. If s ≫ 1, the Rabi oscillation is fast
compared to spontaneous emission and the field is considered as strong. The line
profile factor indicates a ’power broadening’ by saturation of a factor of

√
2. Note

that the dipolar gradient force and potential, Eqs. (20.27), do not saturate when the
intensity of the light field is increased. Usually Fdp and Udp are used to manipulate
and trap atoms in a laser beam tuned far away from resonance in order to avoid
absorption.

Often, the transition moment can be oriented using circularly polarized light. In
this case, all previous expressions for Fdp, Frp, and Udp should be multiplied by 3.
From now on we will abandon the average over the orientations and only use d212 for
the square of the transition dipole moment. Solve Excs. 20.2.5.1 and 20.2.5.2.

20.2.2 Semiclassical calculation of dipole force and radiative
pressure

In quantum mechanics we calculate the force from the Heisenberg equation [328],

F̂ =
d

dt
p̂ =

ı

ℏ
[Ĥ, p̂] = −∇rĤatom:field . (20.28)

Thus, the force is given by the gradient of the interaction energy between the atom
and the light field. Within the dipole approximation the interaction energy is given

5See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 7.2.4.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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by d · E⃗(r). The force is now,

F(r) = ⟨F̂(r)⟩ = ⟨∇r[d · E⃗(r)]⟩ = ⟨(d · ∇r)E⃗(r)⟩ − ⟨d× (∇r × E⃗(r))⟩ (20.29)

≡ FC(r) + FL(r) .

The first contribution can be interpreted as the Coulomb force acting on the
electron performing rapid oscillations at the position r(t) = r0 + e−1P⃗(r0, t). The
second term is the time-averaged Lorentz force acting on the oscillating electric dipolar
moment [381, 384, 382],

FC = e⟨E⃗⟩ and FL = −⟨d× ∂tB⃗⟩ = ⟨∂td× B⃗⟩ . (20.30)

The relation between the light-induced electric dipole moment and the polarizability,
d = α(E⃗)E⃗ , where ανν ≡ αν + ıβν and Eν ≡

√
Iνe

ıψν , becomes,

F =

3∑

ν=1

αν∇Iν + 2

3∑

ν=1

βνIν∇ψν . (20.31)

20.2.3 Force exerted by a quantized radiation field

Photons carry one unit of momentum p = ℏk, which they transfer to the atom during
an absorption or emission process. That is, the light exerts a recoil on the atoms.
Spontaneous emission couples to all radiative modes of the electromagnetic vacuum,
Ĥcm:vacuum =

∑
j Ĥcm:laser(kj). We can trace over these variables and only keep those

of the atom and the laser. Following Cirac et al. [871, 155], the randomness of the
recoil by spontaneous emission is accounted for by,

ρ̂→
∫

4πR2

S(r)eık·rρ̂e−ık·rdΩ , (20.32)

such that the Lindblad operator becomes,

Latomρ̂ = −Γ{σ̂†σ̂ρ̂(t)− 3
4π

∫
S(r)eık·rσ̂ρ̂(t)σ̂†e−ık·rdΩ+ ρ̂(t)σ̂†σ̂} (20.33)

Lcavityρ̂ = −κ{â†âρ̂(t)− 2âρ(t)â† + ρ̂(t)â†â} ,

where e±ık·r =
∑

p |p∓ık·r⟩⟨p| and S(r) = 1
2

(
1 + (k·rkr )

2
)
and dΩ = dφd cosϑ. From

this they calculate the force and establish a Fokker-Planck equation for the Wigner
function.

20.2.4 Refraction of atoms by light and of light by atoms

Non-resonant light acts on the external degrees of freedom of atoms by a phase shift
of the Broglie wave, exp

[
ıℏ−1

∫
U(r, t)dt

]
, and simultaneously on the internal degrees

of freedom by a dynamic Stark shift or light shift of the energy levels by the value of
U(r). The Bloch vector defined by,

ρ ≡




1√
2
cgc

∗
e

1√
2
c∗gce

|ce|2 − |cg|2


 (20.34)
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describes, under the influence of the dispersive interaction, a precession around the
polar axis. This was discussed in Exc. 16.7.3.9. The Stark shift causes a rotation of
ℏ−1U(r)t. Simultaneously, the atom is subjected to a force, which corresponds to
the gradient of the potential −∇U(r), as illustrated in Fig. 20.4(a). We see that the
phase shifts of the Broglie wave and the Bloch vector are equal. Finally, the light
mode phase is also shifted by the same amount in an effect called refraction. That is,
the internal, external, and optical degrees of freedom are entangled.

Figure 20.4: Diagram (a) shows product states and dressed states for blue detuning. Note
that the population is in the upper level and that the atom is subject to a repulsive weak field
seeking force when it enters the laser beam. Diagram (b) is similar, but for red detuning.
The population is in the lower level and the atom is subject to an attractive high field seeking
force.

This fact has a practical use in atomic interferometers, because it is often easier
to detect an interference of internal excitation states rather than of Broglie waves.
Because of the entanglement, it is sufficient to measure one interference pattern to
know the other one.

By local variations of the potential U(r), e.g. induced by a focused laser beam,
it is possible to manipulate a Broglie wavefront in the same way that, in classical
optics, we manipulate the wavefront of a light beam by lenses or other objects, such
as for instance, the refractive index represented by an atomic cloud near resonance,
as illustrated in Fig. 20.4(b).

The orientation of the force depends on the light frequency as compared to the
resonant frequency. The dipolar force attracts the atom to regions where the light field
is strong, when the frequency is tuned below ω0, and it attracts the atom to regions
of weak fields, when tuned above ω0. Integration over the relevant spatial coordinates
results in an effective potential or barrier to the atom. The qualitative behavior of
the dipolar potential and its effect on the motion of atoms is easily visualized in the
dressed states picture. Fig. 20.5 shows what happens when an atom enters a well
defined region of an optical field, for example a focused laser beam.

Outside the atom-dipole coupling zone the expression ℏΩ is despicable and the
’dressed states’ are just the atom-field product states. When the atom enters the
field, this expression becomes nonzero and the atom-field states combine to produce
a set of dressed states. The energy levels of the product states ’repel’ each other and
approach the dressed states levels. Assuming that the laser is sufficiently detuned to
maintain the absorption rate negligible, the population remains in the ground state.
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Figure 20.5: Analogy between light optics and atomic optics.

We see that blue (red) detuning leads to a repulsive (attractive) potential for atoms
remaining in the grounded state. In addition, since ℏΩ is directly proportional to the
root of the laser intensity, an increase in that intensity (optical power per unit area)
obviously amplifies the force on the atom (F ≃ ∇RΩ).

20.2.5 Exercises

20.2.5.1 Ex: Dipole force for large detunings

Verify that in the limit of large detunings the dipole potential Eq. (20.23) tends to

−→ Ω2

4∆ .

20.2.5.2 Ex: Radiation pressure

Calculate the radiation pressure force exerted on a strontium atom by a laser beam
in plane wave geometry (I = 100mW/cm2) tuned (i) at resonance and (ii) ∆/2π =
−50MHz below the resonance at 461 nm (Γ/2π = 30.5MHz).

20.2.5.3 Ex: lin-lin standing wave

Calculate the electric field of two counter-propagating linearly polarized laser beams
of equal intensities,

E⃗lat(r, t) = 1
2

∑

k=±kêz

E0ε⃗keı(k·r−ωkt+ϕk) + c.c. ,

but different polarizations in the spherical basis.

20.2.5.4 Ex: Sub-lattices

Consider two laser standing wave laser beams crossing each other under an angle of
90◦,

E⃗1 = ε⃗1e
ı(kx−ωt) and E⃗2 = ε⃗2e

ı(ky−ωt) ,

with arbitrary elliptical polarizations ε⃗i and study the scalar light-shift potential,

Us = −
αs
4
|E⃗ |2 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag055.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag06.pdf
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as well as the vector light-shift potential,

Uv = B⃗eff · F where B⃗eff = ıαv ε⃗
∗ × ε⃗

in the xy-plane. αv is the vector part of the atomic polarizability and B⃗eff an effective
magnetic field [225, 508, 17].

20.3 Photonic recoil on free and confined atoms

A trap confining the atomic motion can dramatically modify the way in which they
interact with light 6. For instance, a trapping potential may alter the scattering rate,
the scattering angle, and the transfer of photonic recoil. However, potentials do not
exist in microscopic reality, not more than friction forces do. What exists, as we learn
in electrodynamics, are electromagnetic fields exerting Coulomb and Lorentz forces.
When we write down the Hamiltonian Ĥ = p2/2m+V (r) in quantum mechanics, we
already make an important approximation, because the potential V (r) is an artifact
obtained by tracing over all those degrees of freedom, which are necessary to generate
a force field that can be approximated by a conservative potential.

In the great majority of situations, the approximation is very good. Problems may
however arise, when the momentum conservation comes into play, which is the case
e.g. of light scattering from ultracold atoms being accelerated by the photonic recoil
and shifting the scattered light via the Doppler effect. We then have to address the
issue of photonic recoil conserving (or not) the momentum.

Let us begin with a recapitulation of the classical picture of the scattering pro-
cess applying the rules of energy and momentum conservation to the elastic collision
between a free atom and a photon. This process is known as Compton scattering.

20.3.1 Recoil- and Doppler-shift in classical mechanics

In classical mechanics we speak of elastic scattering when no energy is transferred
to internal degrees of freedom of the collision partners, so that kinetic energy and
momentum stay conserved. This concept can be transferred to quantum particles
(e.g. atoms) and photons. In elastic Compton scattering, if the atoms keep their
initial internal excitation, the law of momentum conservation requires the transfer of
photonic momentum to the scattering atom which, consequently, changes its kinetic
energy. To compensate for this kinetic energy change, the frequency of the scattered
light must change in order to preserve the total energy, as illustrated in Fig. 20.6(b).

We will calculate in the following the frequency distribution of the light scattered
by an atom as a function of its initial velocity p1, of the frequency ω1 of the incident
light and of the scattering angle, that is, the angle between the modes k1 and k2. We
begin by writing the laws of conservation of energy and momentum,

ℏk1 + p1 = ℏk2 + p2 (20.35)

ℏω1 +
p21
2m

= ℏω2 +
p22
2m

.

6The interaction also depends on other parameters, such as the geometry of the confinement
potential and on cooperative effects (bosonic stimulation), but this will be discussed later.
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Figure 20.6: (a) Kicking an atom along its dispersion relation. (b) Scheme of the Compton-
scattering of light.

Eliminating p2 from the second equations, we obtain,

ℏω1 −
ℏ2k21
2m

− ℏk1 · p1

m
= ℏω2 +

ℏ2k22
2m

− (ℏk1 + p1) · ℏk2

m
. (20.36)

The photonic recoils of the incident and of the scattered light are almost equal,

ωrec ≡
ℏk21
2m
≃ ℏk22

2m
, (20.37)

such we can approximate,

ω2 = ω1

1− ℏω1

mc2 −
p1
mc cos∢(k1, p1)

1− ℏω1

mc2 cos∢(k1, k2)−
p1
mc cos∢(p1, k2)

, (20.38)

using ω1 = ck1, or also,

ω2 − ω1 = ω1

ℏω1

mc2 [−1 + cos(ϑin − ϑout)] + p1
mc (cosϑout + cosϑin)

1− ℏω1

mc2 cos(ϑin − ϑout)−
p1
mc cosϑout

, (20.39)

where we call the angles ϑin = ∢(k1, p1), ϑout = ∢(k2, p1), and ϑ = ϑin − ϑout =
∢(k1, k2). For non-relativistic velocities, the denominator is approximately 1:

ω2 − ω1 = 2ωrec(−1 + cosϑ) + k1v1(cosϑout + cosϑin) , (20.40)

with p1 = mv1. The first term describes the recoil shift and the second term the
Doppler shift.

The second term vanishes for initially at resting atoms, p1 = 0, and Eq. (20.40)
simplifies to,

ω2 − ω1 = 2ωrec(−1 + cosϑ) . (20.41)

It also vanishes for atoms which have no velocity component in the scattering plane
spanned by the wavevectors k1 and k2, that is ϑout = 180◦−ϑin 7, for which case we
get the maximum recoil shift,

ω2 − ω1 = −4ωrec . (20.42)

7This situation is often realized in Bragg scattering from optical lattices [766, 768, 767].
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The recoil shift is a consequence of momentum conservation.

The recoil shift is typically on the order of ω2−ω1 ≈ (2π) 10 kHz, which in many
situations is negligible (e.g. when we deal with thermal atomic clouds), such that we
can consider the scattering as elastic., i.e. the first term can be disregarded. Con-
sidering, for simplicity, only backscattering, cosϑout = cosϑin = 1, then Eq. (20.40)
simplifies to,

ω2 − ω1 = 2k1v1 . (20.43)

Obviously, the frequency shift depends on the initial velocity through the Doppler
shift k1v1. In a thermal gas, the velocities are distributed according to the Maxwell-
Boltzmann distribution. Therefore, Rayleigh scattering of light off a cloud of free
thermal atoms is subject to Doppler broadening 8.

20.3.2 Kicking a free atom

A conceptual difficulty arises from the incompatibility of scattering picture (generally
described in homogeneous space with momentum conservation) and the trapping pic-
ture (when it is described in inhomogeneous space without momentum conservation).
The difficulty can be avoided by separating the processes into a ’kick’ followed by a
harmonic oscillation, for which we have to calculate the time-dependence of the states
and the observables. We will leave the discussion of such a scattering process to 20.3.3
and for the time being just focus on the time evolution of a harmonic oscillator that
just received a kick.

By a ’kicking’ an atom we denote a change of momentum within an arbitrarily
short amount of time. The shorter the kick-time the larger is, according to Heisen-
berg’s uncertainty relation, the spectrum of possible kinetic energies that can be
reached by the kick (see Sec. 5.4.3). However, the spectrum is restricted by the free-
particle dispersion relation, as illustrated in Fig. 20.6(a).

The kick is not a realistic physical concept, as it corresponds to an infinitely
strong and infinitely short force 9. In a microscopic scattering process it assumes an
infinitely heavy collision partner, while we are more interested in photon scattering.
Consequently, in this case the spectrum of reachable energies is determined by the
frequency of the photon and the free-particle dispersion relation. We will now turn
our attention to the (Compton-)scattering of light by free atoms.

20.3.3 (In-)elastic light scattering from a single weakly or strongly
confined atom

We mentioned in the last subsection that a scattering process is elastic when none of
the collision partners changes its internal excitation energy. The situation becomes,
however, more complex when one of the collision partners is confined in a potential,
as we will show in the following.

8This Doppler broadening is explored e.g. in RIR spectroscopy, where the momentum distribution
in p1 reveals as a frequency distribution ∆ω = ω2 − ω1 of Bragg-scattered light, which can be
measured by beating with an irradiated idler mode, which can be chosen as being identical to k2.

9which is what allows us to write down a potential
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20.3.3.1 Cooperativity in light scattering

In light scattering cooperativity means breaking of the isotropic symmetry for the
angular distribution of scattered modes. In this sense, the anisotropic scattering
from an atom confined in an anisotropic trap is cooperative. But there are other
cooperative scattering effects messing with isotropy and shaping the density-of-states,
like the Purcell effect in the presence of an optical cavity or a photonic band gap
concentrating optical modes in a specific solid angles [376]. Another cooperative effect,
which is observed in the presence of other atoms, has to do with bosonic stimulation
by the optical output mode (as in Bragg scattering [766, 768, 767]) or the momentum
sidemode (as in stimulated matter wave 4WM). These effects, which all need to be
considered in calculations of the static structure factor ruling the scattering of light,
are often strong enough to hide the role of an anisotropic trapping potential. In the
following subsections we will disregard all these effects and concentrate on a single
trapped atom.

The simple picture of Compton scattering presented in Sec. 20.3.1 holds for free
atoms, whose dynamics is totally understood in terms of their internal electronic

excitation (Ĥele), the kinetic energy of their center-of-mass (Ĥcm = p2

2m ), the radiation

field (Ĥrad) (which may be treated classically under the circumstances discussed here),
and the coupling (Ĥint) of all three degrees of freedom,

Ĥfree = Ĥele + Ĥcm + Ĥrad + Ĥint . (20.44)

Transition probabilities are readily calculated using Fermi’s Golden rule, because
the density-of-states distributions for the final radiation modes receiving the scat-
tered photons (photonic density-of-states) and the recoil modes receiving the scat-
tered atoms (phononic density-of-states) are white, that is, without resonances, and
isotropic.

In the presence of an imposed trapping potential, an additional term appears
in the Hamiltonian, which has the capacity of dramatically changing the scattering
features,

Ĥcm =
p2

2m
+ V̂trp(r) . (20.45)

The confining potential may or may not depend on the internal state of the atom.
For ions in a Paul trap it does not depend, but for atoms in magnetic traps it usually
depends,

Ĥatom = |g⟩Ĥcm,g⟨g|+ |e⟩(Ĥcm,e + ℏω0)⟨e| (20.46)

Ĥcm,j =
p̂2

2m
+ Vj(r) ,

where ω0 is the frequency of the atomic transition. In the following, however, we will
treat potentials that are independent of the internal atomic state.

20.3.3.2 Resolved sideband regime

As discussed in Sec. 16.5.5, incident light is absorbed by an atom harmonically oscil-
lating in a trap with frequency ωtrp on a spectrum of discrete sidebands separated
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by ωtrp with amplitudes given by Jn(kv0/ωtrp). The modulation index kv0/ωtrp =
kx0 = 2πx0/λ corresponds to the Lamb-Dicke parameter. When the modulation am-
plitude is within the so-called Lamb-Dicke regime, kv0 ≪ ωtrp, the first sidebands
become smaller than the carrier, J1(kv0/ωtrp) < J0(kv0/ωtrp) and, therefore, do not
contribute to the Doppler width of the frequency distribution. That is, the linear
Doppler effect vanishes.

Figure 20.7: Absorption profile in the regimes of (a) weak binding (η > 1) for the cases of
and unresolved sidebands (blue curve) and resolved sidebands (red curve), and (b) strong
binding (Lamb-Dicke regime η < 1) for the same cases as in (a).

The relative size of the characteristic frequencies ωrec, ωtrp, and Γ define charac-
teristic regimes, as illustrated in the table.

confinement sidebands

weak η > 1 unresolved
ωtrp

Γ < 1

strong η < 1 resolved
ωtrp

Γ > 1

20.3.3.3 The Mößbauer effect

The role of photonic recoil in the scattering of light by confined atoms has been
unraveled by Mößbauer, who performed scattering experiments of γ-photons on a 57Fe
crystal on a narrow transition of this isotope at 14 keV (0.086 nm). The linewidth
of this transition, Γ ≈ (2π) 1MHz, is much narrower than the recoil-shift, ωrec ≈
(2π) 500MHz ≫ Γ, so that we should expect the scattered light to be considerably
recoil-shifted and Doppler-broadened. In fact, the recoil-shift should be so large, that
scattered photons cannot be reabsorbed by other atoms on this transition being at
rest. This is not what Mößbauer observed in his experiments. He found that scattered
photons can be reused for subsequent scattering, which means that the scattering must
be elastic.

The explanation for this unexpected observation is that, if the nucleus is embedded
in a crystal, the vibrational frequencies, which are even higher than the photonic recoil
frequency, ωtrp ≈ 2π · 3THz, are unreachable. That is to say, we are in the resolved
sidebands Lamb-Dicke regime, ωtrp ≫ ωrec ≫ Γ. Here, the phonons corresponding
to the vibrations cannot be excited, so that the recoil momentum must be absorbed
by the whole lattice, whose entire mass is so large, that the photon frequency is not
recoil-shifted by the scattering process. Hence, the first-order Doppler effect is avoided
and the measured width of the transition is just the natural linewidth. Furthermore,
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the atom remains in the same vibrational state of their localizing potential. This is
the Mößbauer effect.

γ for 57Fe optical for 172Yb+

photon energy ≈ 14 keV ≈ 4× 1018 Hz ≈ 3 eV ≈ 640THz

recoil ≈ 2meV ≈ 500MHz ≈ 10−10 ≈ 20 peV ≈ 5 kHz ≈ 10−11

linewidth ≈ 5 neV ≈ 1MHz ≈ 2× 10−13 ≈ 5 feV ≈ 1Hz ≈ 2× 10−15

lattice vibrations ≈ 10meV ≈ 3THz ≈ 3 neV ≈ 1MHz

Table 20.1: Comparison of γ-radiation and the optical regime.

A similar effect can be observed with trapped atoms driven on very narrow tran-
sitions, as we will discuss in the following.

20.3.3.4 Coupling of internal and external motion by photonic recoil,
tracing over the internal excitation

When discussing the transfer of momentum to a harmonic oscillator in 2.6.2, we did
not say how the momentum shift could be realized in practice. As we have seen in
the example of the Mößbauer effect, a possible way is via the photonic recoil received
on a light scattering process. The coupling of the relevant degrees of freedom of the
system induced by the absorption of a photon by an atom is accounted for by an
additional interaction term Ĥint in the Hamiltonian. The relevant degrees of freedom
are the electronic orbital |i⟩, the vibrational state |n⟩, and the number of photons |N⟩
in the light mode, assumed to be a plane wave E⃗(r, t) = E0êye

ıkzz−ıωt. Neglecting the
quantum nature of the light, we will disregard this degree of freedom in the following.
Assuming that the trapping potential is the same for all electronic orbitals, as in
(20.46), the total state can be expressed as a product state, |n, i⟩ ≡ |i⟩ ⊗ |n⟩. The
interaction Hamiltonian,

Ĥint =
ℏΩ
2

(eıkẑâ|e⟩⟨g|+ e−ıkẑâ†|g⟩⟨e|)− |e⟩ℏω⟨e| , (20.47)

couples the dynamics on the internal transition, given by the Rabi frequency ℏΩ ≡
⟨e|dy|g⟩E0, with the absorption (or stimulated emission) of a photon â, and the trans-
fer of a recoil momentum. The last term comes from the transformation into the
interaction picture 10. With this our total Hamiltonian (20.46) becomes,

Ĥ = ℏωtrp(b̂
†b̂+ 1

2 ) + |e⟩ℏ(ω0 − ω)⟨e|+ ℏΩ
2 (eıkẑ|e⟩⟨g|+ e−ıkẑ|g⟩⟨e|) . (20.48)

So, vibrational states are only coupled via electronic transitions,

⟨n, g|Ĥint|0, g⟩ = 0 and ⟨n, e|Ĥint|0, g⟩ = 1
2ℏΩ⟨n, e|eıkẑ|0, g⟩ . (20.49)

10Note, that this Hamiltonian cannot be used to describe spontaneous emission. To do so, we need
to allow for 3D systems and decay modes,

Ĥ = ℏωtrp(|n⟩⟨n|+ 1
2
) + ℏ(ω0 − ω)|e⟩⟨e|+ ℏΩ

2
(e−ıki ·̂rσ̂†âki

+ c.c.) + ℏg
∑
kf

(eıkf ·̂rσ̂â†kf
+ c.c.) .
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Hence, we have to span the complete Hilbert space of all operators like σ̂† =
∑
n |n⟩⟨n|⊗

|e⟩⟨g|.
We can expand the system’s state into,

|ψ(t)⟩ =
∞∑

n=0

(cn,g|n, g⟩+ cn,e|n, e⟩ , (20.50)

and insert it together with the Hamiltonian (20.48) into the Schrödinger equation.
Projecting onto the states ⟨n, g| and ⟨n, e|, we easily derive the following equations of
motion,

dcn,g
dt

= −ıωtrp(n+ 1
2 )cn,g −

ıΩ

2

∞∑

m=0

cm,e⟨n|e−ıkẑ|m⟩

dcn,e
dt

= −ıωtrp(n+ 1
2 )cn,e − ı(ω0 − ω)cn,e −

ıΩ

2

∞∑

m=0

cm,g⟨n|eıkẑ|m⟩
. (20.51)

The fact that only terms proportional to ⟨n|eikẑ|m⟩ contribute can be understood
in terms of the Franck-Condon overlap between the vibrational states to be coupled.
And the fact that the energy of the harmonic oscillator, and thus the effective detuning
∆n ≡ ω − ω0 − ωtrp(n+ 1

2 ), depend on the vibrational state couples the internal and
the external dynamics.

Figure 20.8: (a) Absorption (1) and Rayleigh scattering (2) in a weakly confining trap, where
the momentum must stay conserved. (b) Illustration of the regime ωrec > Γ, where the atom
moves during the absorption process. (c) Absorption and Rayleigh scattering in a strongly
confining trap.

Nevertheless, the off-diagonal coupling elements only contain the degrees of free-
dom of the harmonic oscillator.

20.3.3.5 Momentum kick by photonic recoil

We said earlier that a momentum kick can drive an atom from the vibrational ground
state |0⟩ into a coherent superposition of states |α⟩, except when the Lamb-Dicke
parameter is very small. When the kick is realized via photonic recoil, e.g. when an
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electronically excited atom decays to the ground state, the frequency of the emitted
photon depends on the final vibrational state of the atom. That is we expect a
coherent superposition of light frequencies, which in the limit η > 1 generates a
Doppler broadening and in the limit η < 1 stays unshifted as for elastic scattering.

Let us now consider a single confined atom and address the question of the ab-
sorption probability. In first-order perturbation, using the Hamiltonian (20.48), the
transition rate for absorption of a photon incident in z-direction is given by Fermi’s
Golden Rule,

1

τ
=

d

dt
|⟨n, e|eıĤt/ℏ|0, g⟩|2 ≃ 2π

ℏ2
|⟨n, e|Ĥ|0, g⟩|2 (20.52)

=
2π

ℏ2
|⟨n, e|ℏΩ2 (eıkẑσ̂† + e−ıkẑσ̂)|0, g⟩|2 =

πΩ2

2
|⟨n, e|eıkẑ|0, e⟩|2 .

Obviously, it is thus sufficient to calculate ⟨n|eikẑ|0⟩, i.e. we can trace over the internal
degrees of freedom. Using our previous results (2.152), we find with α = −ikatrp/

√
2,

1

τ
=
πΩ2

2
|⟨n|α⟩|2 =

πΩ2

2
e−|α|2 |αn|2

n!
. (20.53)

The interpretation of this result is that the absorption of a photon by an atom in
state |0, g⟩ transfers recoil by leaving the vibrational state of the atom in a coherent
superposition state. Inversely, for the emission process from state |0, e⟩ within the
Lamb-Dicke regime, most of the time we will encounter the emitted photon at the
resonance frequency ω0, and rarely at ω0 − ωtrp. In any case, energy conservation is
satisfied, since,

∑

n

nℏωtrp⟨n|α⟩⟨α|n⟩ =
∑

n

nℏωtrpe
−|α|2 |α|2n

n!
= ℏωtrp|α|2

∑

n

ne−|α|2 |α|2n−2

(n− 1)!

=
ℏ2k2

2m
⟨α|α⟩ = ℏωrec . (20.54)

Thus energy and momentum conservation are automatically satisfied by the way the
kick is implemented.

20.3.3.6 A single anisotropically trapped atom in first-order perturbation

Let us now consider a single atom (e.g. a trapped ion) confined in an 3-dimensional
anisotropic trap (e.g. strong confinement in one and weak confinement in the other
direction) and address the question, whether the scattering will be anisotropic, as well.
We generalize the problem to three dimensions by allowing for quantized vibrational
states in three dimensions, σ̂† =

∑
n |n⟩⟨n| ⊗ |e⟩⟨g| with |n⟩ = |nx, ny, nz⟩.

In first-order perturbation, using the Hamiltonian (20.48), the transition rate for
absorption or emission is given by Fermi’s Golden Rule,

1

τ
=

d

dt
|⟨n, e|eıĤt/ℏ|0, g⟩|2 ≃ 2π

ℏ2
|⟨n, e|ℏΩ2 (eık·̂rσ̂† + e−ık·̂rσ̂)|0, g⟩|2 (20.55)

=
πΩ2

2
|⟨nx, e|eıkx̂|0, e⟩⟨ny, e|eıkŷ|0, e⟩⟨nz, e|eıkẑ|0, e⟩|2 .
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Obviously, it is thus sufficient to calculate ⟨nj |eıkẑ|0⟩, i.e. we can trace over the
internal degrees of freedom. Using our previous results (2.152), we find with αj =
−ıkjatrp,j/

√
2,

1

τ
=
πΩ2

2
|⟨nx|αx⟩⟨ny|αy⟩⟨nz|αz⟩|2 =

πΩ2

2
e−|αx|2−|αy|2−|αz|2 |αnx

x α
ny
y αnz

z |2
nx!ny!nz!

.

In Exc. 20.3.4.1 we calculate and illustrate the transition matrix elements ⟨0|eıkẑ|0⟩
and ⟨n|eıkẑ|0⟩.

20.3.3.7 A single anisotropically trapped atom in second-order perturba-
tion

To understand Rayleigh scattering, we need to go to second perturbation order sum-
ming over all intermediate vibrational states according to the Kramers-Heisenberg
formula,

dσ

dΩ
=

d

dt
|⟨n, g,kf |eıĤt/ℏ|0, g,ki⟩|2 ≃

2π

ℏ2
|⟨n, g,kf |

∑

m

Ĥ(1)|m, e⟩⟨m, e|Ĥ(1)

ωi − ωm
|0, g,ki⟩|2

=
πℏ2Ω4

8

∣∣∣∣∣
∑

m

⟨n,kf |e−ıq·̂r|m⟩⟨m|eıq·̂r|0,ki⟩
Ei/ℏ+ (0ωx + 0ωy + 0ωz +

3
2 )− Em/ℏ− (mxωx +myωy +mzωz +

3
2 )

∣∣∣∣∣

2

=
πℏ2Ω4

8

∣∣∣∣∣∣
∑

mx,my,mz

⟨nx, ny, nz|e−ikf ·̂r|mx,my,mz⟩⟨mx,my,mz|eıki ·̂r|0, 0, 0⟩
(Ei − Em)/ℏ−mxωx −myωy −mzωz

∣∣∣∣∣∣

2

=
πℏ2Ω4

8

∣∣∣∣∣∣
∑

mx,my,mz

∏

j=x,y,z

⟨nj |e−ikjfrj |mj⟩⟨mj |eikjirj |0⟩
(Ei − Em)/ℏ−mxωmx −myωmy −mzωmz

∣∣∣∣∣∣

2

.

(20.56)

The transition matrix elements can be calculated via (2.157). This expression repre-
sents (in the same time) the dynamic structure factor of the single trapped atom.

Example 114 (Axial incidence): Let us consider the particular case of Rayleigh
scattering from the ground state of light incident in the direction ki ≡ kiz êz.
We can then simplify,

dσ

dΩ
=
πℏ2Ω4

8

∣∣∣∣∣∑
mz

⟨0|e−ıkxf x̂|0⟩⟨0|e−ıkyf ŷ|0⟩⟨0|e−ıkzf ẑ|mz⟩⟨mz|eıkziẑ|0⟩
−mzωtrp

∣∣∣∣∣
2

=
πℏ2Ω4

8
e−|αfx|2−|αfy|2−|αfz |2−|αiz |2

∣∣∣∣∣∑
mz

1

(Em − Ei)/ℏ−mzωtrp,z

αmz
fz α

mz
iz

mz!

∣∣∣∣∣
2

=
πℏ2Ω4

8
e−(kf ·atrp)

2/2−(ki·atrp)
2/2

∣∣∣∣∣∑
mz

1

(Em − Ei)/ℏ−mzωtrp,z

(− 1
2
kfzkiza

2
trp,z)

mz

mz!

∣∣∣∣∣
2

,

where atrp ≡ (atrp,x atrp,y atrp,z). Looking into scattering into transverse direc-
tion, kf,z = 0, we get,(

dσ

dΩ

)
⊥
=

πℏ4Ω4

8|Em − Ei|2
e−k2

fxa
2
trp,x/2−k2

fya
2
trp,y/2−k2

iza
2
trp,z/2 .
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Looking into backscattering, kf,z = −ki,z,(
dσ

dΩ

)
∥
=
πℏ2Ω4

8
e−kiatrp,z)

2

∣∣∣∣∣∑
mz

1

(Em − Ei)/ℏ−mzωtrp,z

(− 1
2
k2iza

2
trp,z)

mz

mz!

∣∣∣∣∣
2

.

we expect a spectrum with vibrational resonances.

20.3.4 Exercises

20.3.4.1 Ex: Transition elements in anisotropic harmonic traps

a. Calculate and illustrate ⟨0|e−ık·r̂|0⟩ for an anisotropic trap with cylindrical sym-
metry.
b. Calculate ⟨n|e−ık·̂r|0⟩ and ∑nx,ny,nz

⟨n|e−ık·̂r|0⟩.

20.3.4.2 Ex: Periodicity of a lattice

Calculate eıap̂e2ıkẑe−ıap̂.

20.3.4.3 Ex: Energy commutators

Calculate the commutator between the kinetic and the potential energy for (a) a
harmonic oscillator and (b) a standing wave dipolar potential.

20.4 Further reading
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20.4.1 on optical forces

T.W. Hänsch et al., Cooling of Gases by Laser Radiation [DOI]

D.J. Wineland et al, Laser Cooling of Atoms [DOI]

A. Ashkin, Trapping of atoms by resonance radiation pressure [DOI]

E.L. Raab et al., Trapping of Neutral Sodium Atoms with Radiation Pressure [DOI]

Ph.W. Courteille et al., Highly Versatile Atomic Micro Traps Generated by Multi-
frequency Magnetic Field Modulation [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_RecoilElmag01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_RecoilElmag02.pdf
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http://isbnsearch.org/isbn/978-0-198-50696-6
http://doi.org/10.1119/1.18911
http://doi.org/10.1016/0030-4018(75)90159-5
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http://doi.org/10.1103/PhysRevLett.40.729
http://doi.org/10.1103/PhysRevLett.59.2631
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Preface to the part Collective Scattering of Light and Corre-
lations

In Chp. 16 we discussed the interaction of light with individual atoms. In the prac-
tice of spectroscopy, however, we often work with ensembles of scatterers. Depending
on their spatial distribution (e.g. disordered, quasi-continuous, periodic), their motion
(hot gas or cold cloud), the possible existence of correlations between them, the pres-
ence of boundary conditions (e.g., free space, cavities, or photon bands), and finally, in
case of degenerate quantum gases, of a possible bosonic stimulation of the scattering
process, we expect new collective effects.

In chapter 22 we will discuss several examples, in particular, localization effects
induced by disorder, super- and subradiance, Bragg scattering, and the formation of
forbidden photonic bands in periodic lattices. Chp. 22 is devoted to the impact of
optical cavities on scattering. In Chp. 23 we discuss effects resulting from correlations
between many atoms. In Chp. 24 we turn our attention to quantum information.
Finally, phenomena leading to self-organization, such as the collective atomic recoil
laser, will be discussed in Chp. 25.
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Chapter 21

Cooperativity in light
scattering

This chapter starts with introducing as the main theoretical tools the structure factor
and the coupled dipoles model. In Sec. 21.1 we will derive the formalism and learn, how
to employ it to calculate, e.g. the spatial distribution of light scattered by an atomic
cloud and the radiation pressure force on the atoms focusing on situations, where
interatomic interactions induced by the incident light can be neglected. In Sec. 21.3
we will, disregarding the atomic’s cloud graininess and disorder, introduce the smooth
density approximation and compare it to macroscopic Mie scattering. In Sec. 21.4
we will focus on cooperative effects inducing collective lineshifts and broadenings,
such as the Lorentz-Lorenz and the Lamb shift. We will also discuss disorder-induced
localization effects, super- and subradiance. In Sec. 21.3 we investigate Bragg scatter-
ing, i.e. scattering from periodically ordered atoms, and finally in Sec. 22.1 we study
scattering from correlated atoms.

Figure 21.1: (a) Artist’s view of multiple scattering of a photon through a dilute cloud. (b)
Atomic cloud as a bulk object characterized by a refraction index n(r). (c) Illustration of a
photonic band in an optical lattice.

21.1 Theoretical tools and models

As mentioned above, the process of light scattering by an atomic cloud depends on
several factors, many of which can be summarized by a quantity called the structure
factor. This structure factor, obtained in perturbation theory, describes the prob-
ability for the light to be scattered into a particular direction as a function of the
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properties of the atomic cloud (spatial distribution, motion, etc.). The quantity is
well suited for dealing with stationary situations.

On the other hand we have at our disposal a microscopic theory called the cou-
pled dipole model. In this model we treat every individual atom as a dipole, which
interacts with all other atoms by rescattering the incident light. The resolution of the
Schrödinger equation allows, several approximations having been made, to calculate
the dynamics of the system.

21.1.1 The structure factor and definition of cooperativity

One way of characterizing the scattering process is by structure factor. The static
structure factor is the normalized response of a system to a perturbation with the
wave vector q. It can be understood as the final density of states for the atom after
the scattering process. In contrast, the dynamic structure factor also considers the
final density of states for the emitted or scattered photon. That is, on one hand, the
frequency and momentum of the photon must satisfy the Bragg condition. On the
other hand, the density of available states can also be structured, for example, when
the scattering process takes place inside a cavity.

In lowest-order perturbation theory (Fermi’s Golden Rule) we get the general
expressions [460],

dσ

dΩsdω
=

(
dσ

dΩs

)

1

S(q, ω) , (21.1)

that is, the effective scattering cross section is reduced to the effective Rayleigh scatter-
ing cross section by an isolated atom times a geometric term called dynamic structure
factor,

S(q, ω) ≡ 1
2π

∫
dteıωt⟨ρ̂(q, t)ρ̂†(q, 0)⟩ , (21.2)

where,

ρ̂(q, t) =

∫

V

n̂(r, t)eıq·rd3r (21.3)

is Fourier transform of the atomic density. Thus, S(q, ω) is the Fourier transform of
the density-density correlation function. On the other hand,

∫
eıωtdω = 2πδ(t), and

we calculate the static structure factor,

S(q) ≡
∫
S(q, ω)dω = ⟨ρ̂(q, 0)ρ̂†(q, 0)⟩ . (21.4)

In the equations (21.2) and (21.3) we have written the quantities ρ̂(q, t) and n̂(r, t)
as operators, in order to allow for the possibility, that the atomic ensemble is a
quantum gas, i.e. a Bose-Einstein condensate characterized by a single wavefunction
ψ̂(r, t) normalized to the density distribution, ρ̂(r, t) = ψ̂†(r, t)ψ̂(r, t). We shall return
to this subject in Sec. 29.1.1. In the following, we will restrict ourselves to atoms
localized in space with well-defined velocities and calculate the structure factor (i) for
disordered clouds of atoms excited by the passage of a photon in Sec. 21.1.6 and
(ii) for Bragg scattering by optical lattices in Sec. 21.5. In these cases, we find in the
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literature often another definition of the structure factor as the expectation value of
the Fourier transform of the atomic density,

S(q) = ⟨ρ̂(q)⟩ , (21.5)

Thus, it describes the amplitude of the electric field of the scattered radiation. In order
to avoid confusion we will call this quantity structure coefficient and denote it by a
calligraphic S. We study the structure factor for various atomic density distributions
in Excs. 21.1.8.1 to 21.1.8.3.

Example 115 (Structure factor of a discrete cloud): In case of discrete
clouds, n(r, t) =

∑
j δ

(3)(r − rj), we can disregard the quantum nature of the
operators. The relationship (21.3) immediately gives,

ρ(q, t) =
∑
j

eıq·rj(t) (21.6)

and the relationship (21.2),

S(q, ω) = 1
2π

∫
dteıωtρ(q, t)ρ∗(q, 0) = 1

2π

∫
dteıωt

∑
j,k

eıq·[rj(t)−rk(0)] . (21.7)

Assuming atoms fixed in space, rj(t) = rj ,

S(q, ω) =
∑
j,k

eıq·(rj−rk)δ(ω) . (21.8)

That is, without recoil the light must be scattered elastically.

The notion of cooperativity is fundamental for any problem involving scattering of
radiation and, depending on the specific area of physics, is called by many different
names, such as Purcell factor, cavity-to-free-space scattering ratio, or phase matching
condition. Here, we will regard cooperativity as any deviation of the structure
factor from isotropy . For example, Bragg scattering and optical cavities are highly
cooperative, because they favor scattering in particular directions 1.

21.1.2 The scalar coupled dipoles model

In the following, we develop the coupled dipoles model, within which we define the
structure factor for light scattering by a cloud of scatterers making the following
assumptions:

• The light is (mostly) treated as a scalar field. That is, we disregard effects due
to the polarization of light and assume two-level atoms. Generalizations are
shown in Sec. 21.6.4 [763, 559].

• Atoms are supposed to be fixed in space. That is, we disregard the Doppler shift
of moving atoms and the photonic recoil. Therefore, it will suffice to consider
the static structure factor.

1Note that cooperativity does not request the atoms to interact and exists in the single scattering
regime. In the multiple scattering regime other forms of collective phenomena, such as collective
Lamb shifts emerge, as we will see later on.
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• Atoms are initially uncorrelated and not degenerate. That means that we ne-
glect effects such as bosonic stimulation or Fermi blocking 2.

Be ω0 the frequency of the incident light, ωa the frequency of the atomic resonance,
and ω the frequency of the scattered light. The Hamiltonian is nothing more than
the generalization of (17.106) to several assumed atoms located at the positions rj ,

Ĥ =

N∑

j=1

ℏgk0(σ̂je
−ıωat + σ̂†

je
ıωat)(â†k0

eıω0t−ık0·rj + âk0e
−ıω0t+ık0·rj )

+
∑

k

N∑

j=1

ℏgk(σ̂je−ıωat + σ̂†
je
ıωat)(â†ke

ıωkt−ık·rj + âke
−ıωkt+ık·rj )

. (21.9)

Here, Ω0 = 2gk0
√
n0 is the Rabi frequency of the interaction between an atom and

the incident light (which is treated as a classical field with n0 photons), σ̂j is the
deexcitation operator for the j-th atom, âk is the photon annihilation operator, and
gk = d

√
ω/(ℏε0Vph) describes the coupling between the atom and the vacuum modes

the volume of which is Vph. The j-th atom has its lower and upper states denoted by
|gj⟩ and |ej⟩, respectively. That is, we treat the atoms as simple two-level systems.
We also assume that all atoms are excited by the same unperturbed incident laser
beam, thus neglecting their dephasing along the laser path or induced by near-field
effects (which could arise for large spatial densities).

Within the rotating wave approximation RWA the Hamiltonian simplifies to,

Ĥ = ℏ
N∑

j=1

[gk0 σ̂j â
†
k0
eı(ω0−ωa)t−ık0·rj + h.c.] (21.10)

+ ℏ
N∑

j=1

∑

k

[gkσ̂j â
†
ke
ı(ωk−ωa)t−ık·rj + h.c.] .

The RWA only considers energy-conserving terms in single-photon processes. But
this is an artifact from the field quantization. Energy conservation can be warranted
by considering multi-photon virtual processes, which as a whole, conserve energy.
These terms appear in the full Hamiltonian, but are neglected in the RWA. While the
RWA often is a good assumption in single atom quantum optics, this is frequently
not the case for collective scattering. Here, we adopt the RWA to a simplify the
subsequent solution of the Schrödinger equation, but we will need to generalize the
results obtained a posteriori, as shown in the discussion of Sec. 21.1.4.

We call |0⟩a = |g1, .., gN ⟩ the atomic ground state, |j⟩a = |g1, .., ej , .., gN ⟩ the
state where only the atom j is excited, and we assume that the system is in a the

2Spontaneous emission by an atom in a Fermi gas of temperature T = 0 can not occur if the
photon wave vector is inside the Fermi lake, q < kF .
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superposition of states described by 3,

|Ψ(t)⟩ = α(t)|0⟩a|n0⟩k0 |0⟩k +

N∑

j=1

βj(t)|j⟩a|n0 − 1⟩k0 |0⟩k (21.11)

+
∑

k

γk(t)|0⟩a|n0 − 1⟩k0
|1⟩k .

With this ansatz we imply that at every instant of time, there can be at most only
one excitation in the atomic cloud. The temporal evolution of the amplitudes is
obtained by inserting the Hamiltonian and the ansatz into the Schrödinger equation,
ıℏ∂t|Ψ(t)⟩ = Ĥ|Ψ(t)⟩. Once the evolution of the amplitudes is calculated, we can
determine the observables of the system, such as the radiative pressure force or the
amplitudes of the scattered radiation fields or the fields inside the cloud.

Figure 21.2: Scheme of the interaction of a light beam with a sample of atoms.

Example 116 (Interaction Hamiltonian in the rotating frame): The
Hamiltonian in the rotating wave approximation is,

Ĥ = ℏg
(
σ̂e−ıωat + σ̂†eıωat

)(
â†eıω0t + âe−ıω0t

)
≃ ℏg

(
σ̂â†eı∆0t + σ̂†âe−ı∆0t

)
.

For the Pauli matrices we have the following rules,

[σ̂z, σ̂] = −σ̂ and [σ̂z, σ̂
†] = σ̂† ,

such that,

[σ̂z, Ĥ] = ℏg
(
−eı∆0tâ†σ̂ + e−ı∆0tâσ̂†

)
[σ̂z, [σ̂z, Ĥ]] = ℏg

(
eı∆0tâ†σ̂ + e−ı∆0tâσ̂†

)
= Ĥ

[σ̂z, [...[σ̂z, Ĥ]]...] = ℏg
[
(−1)neı∆0tâ†σ̂ + e−ı∆0tâσ̂†

]
.

3This ansatz is well adapted to situations where the RWA holds. Otherwise, additional counter-
rotating terms must be included [286].
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Using the Baker-Haussdorff formula,

eıω0tσ̂z Ĥe−ıω0tσ̂z = Ĥ + [ıω0tσ̂z, Ĥ] + 1
2!
[ıω0tσ̂z, [ıω0tσ̂z, Ĥ]] + ...

= ℏg
∞∑
n=0

(ıω0t)
n

n!

[
(−1)neı∆0tâ†σ̂ + e−ı∆0tâσ̂†

]
= ℏgeı∆0tâ†σ̂

∞∑
n=0

(−ıω0t)
n

n!
+ ℏge−ı∆0tâσ̂†

∞∑
n=0

(ıω0t)
n

n!

= ℏg
(
e−ıωatâ†σ̂ + eıωatâσ̂†

)
.

21.1.2.1 Temporal evolution of the amplitudes

The time evolution of the amplitudes is obtained by inserting the Hamiltonian Ĥ and
the ansatz |Ψ(t)⟩ into the Schrödinger equation,

∂

∂t
|Ψ(t)⟩ = − ı

ℏ
Ĥ|Ψ(t)⟩ . (21.12)

one obtains with Ω0 = 2gk0
√
n0,

α̇(t) = −ıΩ0

2 e
ı∆0t

N∑

j=1

βj(t)e
−ık0·rj (21.13)

β̇j(t) = −ıΩ0

2 α(t)e
−ı∆0t+ık0·rj −

∑

k

ıgkγk(t)e
−ı∆kt+ık·rj

γ̇k(t) = −ıgkeı∆kt
N∑

j=1

βj(t)e
−ık·rj .

We set the initial conditions,

α(0) = 1 , βj(t) = 0 , γk(t) = 0 . (21.14)

For low excitation rate, we can set α(t) ≃ 1. Integrating the third equation,

γk(t) = −ıgk
N∑

j=1

e−ık·rj
∫ t

0

eı∆kt
′
βj(t

′)dt′ , (21.15)

and substituting it into the second equation,

β̇j(t) = −ıΩ0

2 α(t)e
−ı∆0t+ık0·rj −

∑

k

g2k

N∑

m=1

eık·(rj−rm)

∫ t

0

eı∆k(t
′−t)βm(t′)dt′ .

(21.16)
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21.1.3 The Markov approximation

For small systems, R < λ, we can make use of the Markov approximation, which holds
when the collective decay time tdecay < R/c. Larger systems persist memory effects,
which may lead to (Rabi) collective Rabi oscillations. In the Markov approximation
given by βj(t

′) ≃ βj(t) the integro-differential equation (which is equivalent to a dif-
ferential equation of arbitrarily high order) reduces to a simple first order differential
equation. Defining 4,

βj ≡ β̃je−ı∆0t+ık0·rj , (21.17)

we obtain,

d

dt
α(t) = −ıΩ0

2

N∑

j=1

β̃j(t) (21.18)

d

dt
β̃j(t) = ı∆0β̃j(t)−

Ω2
0

4

N∑

m=1

∫ t

0

β̃m(t′)dt′

−
∑

k

g2k

N∑

m=1

eı(k−k0)·(rj−rm)

∫ t

0

e−ı(ωk−ω0)t
′′
β̃m(t− t′′)dt′′ ,

where we substituted t′′ ≡ t− t′ in the last integral. Now, using the Markov approx-
imation β̃m(t− t′′) ≃ β̃m(t), with lim

t→∞

∫ t
0
e−ı(ωk−ω0)t

′
dt′ = πδ(ωk − ω0), and with the

rate of spontaneous emission,

Γ ≡ Vph
πc

k20g
2
k0 , (21.19)

the third term becomes for the case m = j,

∑

k

g2k

∫ t

0

e−ı(ωk−ω0)t
′′
β̃j(t− t′′)dt′′ ≃

∑

k

g2kβ̃j(t)πδ(ωk − ω0) (21.20)

=
Vph
(2π)3

β̃j(t)

∫
g2kπδ(ωk − ω0)d

3k =
Vph
(2π)3

β̃j(t)4πg
2
k0πk

2
0

1

c
=

Γ

2
β̃j(t) .

The third term becomes for the case m ̸= j, evaluating the sum over the wavevectors
by
∑

k →
Vph

(2π)3

∫
d3k,

∑

k

g2k

N∑

m̸=j

eı(k−k0)·(rj−rm)

∫ t

0

e−ı(ωk−ω0)t
′′
β̃m(t− t′′)dt′′ (21.21)

≃
∑

k

g2k

N∑

m̸=j

eı(k−k0)·(rj−rm)β̃m(t)πδ(ωk − ω0)

=
Vph
(2π)3

N∑

m ̸=j
β̃m(t)

∫
g2ke

ı(k−k0)·(rj−rm)πδ(ωk − ω0)d
3k =

Γ

2

N∑

m ̸=j
γjmβ̃m(t) ,

4Later on we will be particularly interested in so-called timed Dicke states characterized by β̃j = β̃
independent on j.
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with

γjm ≡
2

Γ

Vph
(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

g2ke
ı(k−k0)·(rj−rm)π

c
δ(k − k0)k2 sin θdkdθdϕ . (21.22)

Finally,

d

dt
β̃j(t) = ı∆0β̃j(t)−

Ω2
0

4

N∑

m=1

∫ t

0

β̃m(t′)dt′ − Γ

2

N∑

m=1

γjmβ̃m(t) , (21.23)

or

d

dt
α(t) = −ıΩ0

2

N∑

j=1

β̃j(t) (21.24)

d

dt
β̃j(t) = ı∆0β̃j(t)− ı

Ω0

2
α(t)− Γ

2

N∑

m=1

γjmβ̃m(t) .

This means that the problem is reduced to finding the γjm. Continuing the eval-
uation of Eq. (21.22),

γjm =
1

Γ
g2k

Vph
4π2c

e−ık0·(rj−rm)

∫ ∞

0

∫ 2π

0

∫ 1

−1

eık|rj−rm| cos θd cos θdϕδ(k − k0)k2dk

=
1

Γ
g2k
Vph
πc

e−ık0·(rj−rm)

∫ ∞

0

sin k|rj − rm|
k|rj − rm|

δ(k − k0)k2dk

= e−ık0·(rj−rm) sin k0|rj − rm|
k0|rj − rm|

. (21.25)

Isolating the self-decaying term and assuming low saturation, α(t) = 1, we get,

˙̃
βj =

(
ı∆0 −

Γ

2

)
β̃j −

ıΩ0

2
− Γ

2

∑

m ̸=j
γjmβ̃m . (21.26)

In Exc. 21.1.8.4 we will analyze the validity of the Markov approximation for typical
cold atoms experiments.

21.1.4 General solution with exponential kernel, validity of the
RWA

The RWA is valid for max(Ω,Γn)≪ ω,

∫ t

0

dt · e−ı(ωk−ω0)t ≃ P
(

1

ωk + ω0

)
− ıP

(
1

ωk − ω0

)
+ πδ(ωk − ω0) . (21.27)

The whole expression leads to the exponential kernel, the first two terms are the
cosine part, the third term is the sine part. The rotating wave approximation consists
in neglecting the first term, i.e. it only concerns the cosine part of the kernel.
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Within the RWA we got 5,6,

γjm = e−ık0·(rj−rm) ı sin(k0|rj − rm|)
ık0|rj − rm|

. (21.28)

Without the RWA we would have found [750, 745, 746, 805],

γjm = e−ık0·(rj−rm) e
ık0|rj−rm|

ık0|rj − rm|
. (21.29)

An alternative derivation from a Green function approach to the master equation is
presented in Sec. 23.3.2 (see Eq. (23.133)).

There has been a controversy between Friedberg and Scully about the role of
virtual photons (or collective Lamb-shift) [292, 804, 293, 747]. These terms result
from counterrotating terms in the rotating wave approximation. Scully assumes timed
Dicke states in infinitely large clouds and finds the contributions weak. Friedberg
does a mode expansion of the cloud and finds that different modes decay at different
velocities. This yields time-dependent radiation patterns, which can be temporarily
larger in backward direction.

Normally, the RWA is a good approximation, when Ω≪ ω. Deviations from this
approximations lead e.g. to the Bloch-Siegert shift and important corrections for very
far-detuned (quasi-electrostatic) optical trapping. The above requirement is not well
satisfied for our experiment, since ΩN =

√
NΩ ≃ 1..10THz.

Be |b1b2...aj ...bN ⟩ the state with all atoms in the ground state except atom j being
in the excited state. Hence, the cloud’s state is simply expressed by the wavefunction,

Ψatom(t) =

N∑

j=1

βj(t)|b1b2...aj ...bN ⟩ . (21.30)

For large σ the radiation pressure is independent on the choice of the kernel.
In fact we may even set the kernel to 0. For small σ there appears a considerable
deviation. Interestingly, the imaginary part of the kernel gets important for higher
densities, even when the optical density is maintained, e.g. by compressing the cloud
in z-direction. This means that the collective Lamb shift becomes more apparent is
small compressed clouds. But we postpone a more thorough discussion to Sec. 21.4.

The analytic expansion into eigenmodes assumes the RWA. Hence, the numerics
deviate from the analytics for small σ and large N . Is it possible to generalize the
expansion to the exponential kernel (see [805])? The authors also suggest that the
scattered radiation be frequency-shifted due to the imaginary part of the kernel. This
might be an interesting observable for experiments.

21.1.4.1 Low collective saturation

Note that for low saturation, α(t) = 1, the first term simply becomes − ı
2Ω0. Even

though the single atom excitation rate may be small in case of large detuning, the

5Note that dipole-dipole interactions are mediated by the exchange of virtual photons. Hence,
they are included in the Hamiltonian when the RWA is NOT applied.

6Note that Maxwell’s equations contain non-RWA terms.
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collective Rabi frequency
√
NΩ can be large. The presence of many excitations in

the cloud means, that higher Dicke states are populated. Then we may expect a
complicated many-body dynamics, if decay into other states than the timed Dicke
state is possible.

Even though the single atom excitation rate may be small in case of large detuning,
the collective Rabi frequency

√
NΩ can be large. The presence of many excitations

in the cloud means, that higher Dicke states are populated. Then we may expect a
complicated many-body dynamics, if decay into other states than the timed Dicke
state is possible.

The model we use (ground state + first excited state in the times Dicke basis) does
not allow more than 1 photon for N atoms. For such a model, neglecting saturation
means ’much’ less than 1 atom in the excited state, i.e. the probability of having the
any atom in the excited state is less than 1. But having N atoms, this means that
each atoms should have a excited state population of much less than 1/N . Including
the saturation in the naive way, means that when this term NΩ2

0 is not negligible,
than we will have less atoms in the first excited state of the timed Dicke basis, than
if when we would neglect saturation. This is precisely why we call this saturation,
we cannot take more atoms away from the ground state, because the system cannot
absorb more than one photon. But when this term is not longer negligible, then
in a cloud of N atoms, this does not prevent us from taking atoms away from the
ground state (we have N atoms which each can take one photon). Either the term is
negligible (and we could drop it) or we will try to keep its contribution (even at first
order in NΩ2

0), but then we cannot neglect the possibility of having 2 atoms excited.

21.1.4.2 Steady-state solution

In steady-state the equations of the coupled dipoles model can be solved numerically
for an arbitrary (ordered or disordered) cloud of immobile atoms located at positions
rj illuminated by an electric field.

Assuming scalar light and the validity of the Markov approximation, and further-
more defining β̄j ≡ β̃je

ık0·rj and Ω̄0(rj) ≡ Ω0(rj)e
ık0·rj , and using the exponential

kernel,

γ̄jm =
eık0|rj−rm|

ık0|rj − rm|
, (21.31)

the Eq. (21.26) for the atomic states reads,

d

dt
β̄j =

(
ı∆0 −

Γ

2

)
β̄j −

ıΩ̄0(rj)

2
− Γ

2

∑

m̸=j

γ̄jmβ̄m . (21.32)

Defining the matrix,

Mjm ≡ (ı∆0 − Γ
2 )δjm − Γ

2 (1− δjm)γ̄jm =



ı∆0 − Γ

2 ıγ12
Γ
2 · · ·

ıγ21
Γ
2 ı∆0 − Γ

2
...

. . .


 , (21.33)
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we can rewrite Eq. (21.34) as,

d

dt
β̄j =

∑

m

Mjmβ̄m −
ı

2
Ω̄0(rj) . (21.34)

The steady-state solution of is simply obtained by ˙̄βj = 0 [176, 134],

Mjmβ̄m(∞) = ı
2 Ω̄0(rj) . (21.35)

This equation can now be solved by the dipole moment amplitudes,

β̄m(∞) = (Mjm)−1 ı
2 Ω̄0(rj) , (21.36)

where we use the exponential kernel,

γjm =
eık0(|rj−rm|+δjm)

ık0(|rj − rm|+ δjm)
, (21.37)

where the trick with the δjm-symbol helps to remove divergences for equal atom
positions.

In this form the solution is immediately suitable for numerical implementation of
the coupled dipoles model, although in practice the number of atoms is limited to
N < 10000 for ordinary PCs.

21.1.4.3 Limit of dilute clouds

Dilute clouds are characterized by a large interatomic distance k0|rj − rm| ≫ 1. In
this case, the non-diagonal elements of the kernel (21.33) quickly vanish, and the
equations of motion (21.34) decouple to,

d

dt
β̄j =

(
ı∆0 −

Γ

2

)
β̄j −

ı

2
Ω̄0(rj) . (21.38)

21.1.4.4 Characterization of the atomic cloud in steady-state

Plot the spacial dependence of the phases of the atomic dipoles, ϕ(rj) = Im (ln β̃j).

21.1.4.5 Time-dependence

In order to calculate the time-dependence, we reconsider the equation (21.34) for the
excitation amplitudes. Its solution is formally given by the sum of the general solution
of the homogeneous equation and a particular (e.g. the asymptotic) solution of the
inhomogeneous equation,

β̄j(t) = eMjmtβ̄m(0) + (I− eMjmt)β̄m(∞) . (21.39)

Inserting the steady-state solution we finally get,

β̄j(t) = eMjmtβ̄m(0) + (I− eMjnt)M−1
mn

ı
2 Ω̄0(rm) . (21.40)
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Figure 21.3: Phase delay in the excitation of the atomic dipoles (a) without rescattering
(γjm = 0) and (b) with rescattering.

21.1.5 Calculation of light scattering in steady-state

To calculate the distribution of scattered light, we start from the Heisenberg equation
for the field operator [286],

dâk
dt

=
1

ıℏ
[âk, Ĥ] = −ıgkeı(ωk−ωa)t

N∑

j=1

σ̂je
−ık·rj . (21.41)

where the fast oscillating term proportional to eı(ωk+ωa)t has been neglected. Now,

Êsct(r, t) =
∑

k

Ekâk(t)eı(k·r−ωkt) , (21.42)

where Ek =
√
ℏωk/2ε0Vph. Integrating Eq. (21.41) with âk(0) = 0, inserting it in

Eq. (21.42), and approximating the sum over the modes k by an integral, we obtain,

Êsct(r, t) = −ı
Vph
8π3

N∑

j=1

∫ t

0

dt′σ̂j(t− t′)eıωat

∫
d3k Ekgkeık·(r−rj)−ıckt′ . (21.43)

Introducing spherical coordinates, d3k = dkk2dϕdθ sin θ, and integrating the angular
part Eq. (21.43) becomes,

Êsct(r, t) = −ı
Vph
4π2

N∑

j=1

1

|r− rj |

∫ t

0

dt′σ̂j(t− t′)eıωat
′× (21.44)

×
∫
dkkEkgk[e−ıck(t

′−|r′−rj |/c) − e−ıck(t′+|r′−rj |/c)] .

Assuming the radiation spectrum centered around k ≃ k0, we approximate kEkgk ≃
k0Ek0gk0 . Then, extending the lower limit of integration of k to −∞, we obtain for
t < |r− rj |/c [666, 530],

Êsct(r, t) ≃ −
dk20
4πε0

N∑

j=1

eık0|r−rj |

|r− rj |
σ̂j(t− |r− rj |/c) . (21.45)
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where we may neglect the radiation retardation in the limit t≫ σR/c. Using (21.19)
and expressing the coupling strength,

ℏgk = dEk with Ek =

√
ℏωk

2ε0Vph
, (21.46)

we get,

Êsct(r, t) ≃ −
ıℏΓ
2d

N∑

j=1

γoj(r)σ̂j(t) , (21.47)

where we defined the abbreviation,

γoj(r) ≡
eık0|r−rj |

ık0|r− rj |
. (21.48)

When applied on the state of Eq. (21.11), neglecting virtual transitions, it yields
Êsct|Ψ⟩ = Esct|g1, ..., gN ⟩, where Esct is the electric field radiated by the excited atoms.
Once the excitation amplitudes βj(∞) are known, the scattered light field and the
total field can easily be calculated via [720],

Esct(r) = ⟨Êsct(r)⟩ = −
ıℏΓ
2d

N∑

j=1

γoj(r)βj(∞) and Etot = Elas + Esct , (21.49)

Example 117 (Light scattering from a Gaussian beam): Fig. 21.4 shows
an example of light scattering from an incident light field parametrized as a
Gaussian beam,

Elas(r) = ϵ̂E0 w0

w(z)
e−r

2/w(z)2+ıkz+zıkr2/2R(z)−ıφ(z) = ϵ̂
ℏ
|d|Ω0(r)e

ık0·r . (21.50)

Note that, for the chosen parameters, the result does not depend on the inter-

action terms. I.e. we can as well set the kernel to 0.

Note, that the phase factor eık0·r can either be attributed to the atomic dipole
moments or to the field. Here, N = 125 atoms are periodically arranged in a three-
dimensional cubic lattice.

21.1.6 Calculation of the steady-state radiation pressure force

Let us now calculate the radiative pressure force exerted by an incident beam of
light k0 on an atom j located at position rj inside an atomic cloud, as illustrated in
Fig. 21.2,

dp̂j
dt

= F̂j = −∇rj Ĥ . (21.51)

Inserting the Hamiltonian in the RWA (21.10),

F̂j = ıℏk0gk0

[
σ̂j â

†
k0
eı(ω0−ωa)t−ık0·rj − h.c.

]
(21.52)

+
∑

k

ıℏkgk
[
σ̂j â

†
ke
ı(ωk−ωa)t−ık·rj − h.c.

]
.
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Figure 21.4: (code) (a) Geometry of light scattering from a cubic lattice with lattice constant

d = 100 nm. The light is irradiated from below and is partially reflected. (b) Intensity

distribution of scattered light along the yellow plane.

Introducing ∆0 = ω0 − ωa, the expectation value of the force separates in two
contribution,

⟨F̂j⟩ ≡ Faj + Fej = ıℏk0gk0
[
α∗(t)βj(t)e

ı∆0t−ık0·rj − c.c.
]

(21.53)

+
∑

k

ıℏkgk
[
βj(t)γ

∗
k(t)e

ı(ωk−ωa)t−ık·rj − c.c.
]

= ıℏk0gk0 [α
∗(t)β̃j(t)− c.c.]

+
∑

k

ıℏkgk
[
β̃j(t)e

−ı(ω0−ωk)t+ı(k0−k)·rjγ∗k(t)− c.c.
]
,

where we reintroduced the abbreviation (21.17). In particular, the term m = j in
the sum of Fej vanishes since

∑
k k = 0. Substituting γk with equation (21.16),

Faj + Fej = ıℏk0gk0 [α
∗(t)β̃j(t)− c.c.] (21.54)

−
∑

k

ℏkg2k

[
β̃j(t)e

−ı(ω0−ωk)t+ı(k0−k)·rj
N∑

m=1

eık·rm
∫ t

0

e−ı(ωk−ωa)t
′
β̃∗
m(t′)dt′ − c.c.

]

= −2ℏk0gk0Im [α∗(t)β̃j(t)]

−
∑

k

ℏkg2k
N∑

m=1

[
β̃j(t)e

ı(k0−k)·(rj−rm)

∫ t

0

eı(ω0−ωk)(t
′−t)β̃∗

m(t′)dt′ − c.c.
]
,

and applying the Markov approximation (21.20),

Faj + Fej = −2ℏk0gk0Im [α∗(t)β̃j(t)] (21.55)

−
∑

k

ℏkg2k
N∑

m=1

[eı(k0−k)·(rj−rm) π
c δ(k − k0)β̃j(t)β̃∗

m(t)− c.c.] .

This is the expression for the force acting on an atom at the position rj . Knowing
the stationary excitation amplitudes βj(∞) and assuming α(∞) ≃ 1, the radiation
pressure force can numerically be calculated. Remembering Ω0 = 2gk0 we get for the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMScalar.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMScalar.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMScalar.m
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absorption force acting on atom j,

Faj = −2ℏk0gk0Im β̃j(∞) . (21.56)

To evaluate the emission force acting on atom j, for every atom m of the sum, we
need to average over all possible scattering angles. To do so, we choose a reference
frame in which the z-component of k is directed along r̂jm =

rj−rm
|rj−rm| , that is,

k = êx,jmk sin θjm cosϕjm + êy,jmk sin θjm sinϕjm + r̂jmk cos θjm , (21.57)

and evaluate the sum over the wavevectors by
∑

k →
Vph

(2π)3

∫
d3k,

Fej = −
N∑
m=1

β̃j(∞)β̃∗
m(∞)

Vph

(2π)3
π

c

∫
R3

dθjmdϕjmdk ℏk

sin θjm cosϕjm
sin θjm sinϕjm

cos θjm

× (21.58)

× g2k[eı(k0−k)·(rj−rm)δ(k − k0)k2 sin θjm − c.c.

= −ℏk0 Γ

8π

N∑
m=1

eık0·(rj−rm)β̃j(∞)β̃∗
m(∞)

∫ π

0

∫ 2π

0

dθjmdϕjm

sin θjm cosϕjm
sin θjm sinϕjm

cos θjm

×
× e−ık·|rj−rm| cos θjm sin θjm − c.c. .

remembering Γ =
Vph

πc k
2
0g

2
k0

from Eq. (21.19). The integrals over ϕjm vanishes whereas
the integral over θjm becomes, using,

∫ π

0

dθ sin θ cos θe−ıα cos θ = 2ı
α cosα− sinα

α2
= −2ıj1(α) , (21.59)

we find,

Fej = −ℏk0
Γ

4

N∑

m=1

eık0·(rj−rm)β̃j(∞)β̃∗
m(∞)r̂jm× (21.60)

×
∫ π

0

cos θjm sin θjme
−ık|rj−rm| cos θjmdθjm − c.c.

= ıℏk0
Γ

2

N∑

m=1

eık0·(rj−rm)β̃j(∞)β̃∗
m(∞)r̂jmj1(k|rj − rm|)− c.c.

= −ıℏk0
Γ

2

N∑

m=1

fjmβ̃j(∞)β̃∗
m(∞)− c.c. ,

where we defined 7,

fjm = −j1(k|rj − rm|)eık0·(rj−rm)r̂jm . (21.61)

7For exploitation in MATLAB we may express the spherical Bessel function by a Bessel function
of the first kind: jn(x) =

√
π/2xJn+1/2(x).
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In summary we got,

Faj = −ıℏk0Ω0Im β̃j(∞)

Fej = −ıℏk0Γ
N∑

m=1

fjmIm [β̃j(∞)β̃∗
m(∞)]

. (21.62)

The steady state absorption and the emission part of the radiation pressure force on
the center of mass of the atomic cloud follow from,

Fa =
1

N

∑

j

⟨F̂aj⟩ and Fe =
1

N

∑

j

⟨F̂ej⟩ . (21.63)
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Figure 21.5: (code) Force distribution upon scattering of a photon by an atom of an spherical

Gaussian cloud (a) without and (b) with rescattering according to Eqs. (21.63).

As long as the RWA and the Markov approximation are valid and only the lowest
Dicke state is considered (no collective saturation), this simulation is supposed to be
exact and contains all the physics including, e.g. multiple scattering. Fig. 21.5 shows
a comparison of the cases when the off-diagonal components of the kernel (21.37)
are present or not. Apparently, the presence of rescattering dramatically spoils the
radiation pressure force, a phenomenon that we will extensively study in Secs. 21.1.7
and 21.3 [286, 39, 40, 657, 79, 41].

21.1.7 The structure coefficient of the ’timed’ Dicke state

When a beam of light passes through an atomic cloud, its phase fronts will excite the
atomic dipole moments as it traverses the cloud. That is, understanding the beam
as a plane wave eı(k0·r−ωt), the dipoles start to oscillate with relative phase delays
eık0·(rj−rm) depending on their position along the optical axis k0. The resulting
collective state has been termed timed Dicke state [748]. Assuming that this phase
delay is the only parameter distinguishing two atoms, we may write with Eq. (21.17),

β̃j(t) = βj(t)e
ı(∆0t−k0·rj) ≡ 1√

N
β(t) , (21.64)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_HaloForce.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_HaloForce.m
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where β is the macroscopic dipole moment. Note, that the fact that β(t) does not
depend on the atomic position does not imply a continuous density distribution. The
atoms are still sitting at their positions rj ; only are their dipole moments synchronized
to the incident light wave.

The assumption of a timed Dicke state for the atomic cloud is, nevertheless, an
approximation which is not always good [286]. For example, it neglects dispersive
phase shifts of the excitation of the atomic dipole moments by the pump laser beam
being delayed on its propagation due to its interaction with the atoms. If such phase
shifts (and absorption as well) are radially inhomogeneous, this can lead to deforma-
tion of the pump laser beam’s phase front and thus to lensing. We will discuss this
in Exc. 21.1.8.5 and in Sec. 21.3.

21.1.7.1 Structure coefficient for ’timed’ Dicke states

We start again with the Eqs. (21.24) inserting the ansatz of timed Dicke states,

β̇(t) =
1

N

N∑

j=1

β̇(t) =
1√
N

N∑

j=1

d

dt
β̃j(t) (21.65)

=
1√
N

N∑

j=1

(
ı∆0β̃j(t)− ı

Ω0

2
α(t)− Γ

2

N∑

m=1

γjmβ̃m(t)

)

=

(
ı∆0 −

Γ

2
NsN

)
β(t)− ı

√
NΩ0

2
α(t) ,

where we introduced the abbreviation,

sN ≡
1

N

1

N

N∑

j,m=1

γjm . (21.66)

Taking the kernel from (21.25), we get,

sN =
1

N

2

Γ

Vph
(2π)3

∫

R3

g2k
1

N

N∑

j,m=1

eı(k−k0)·(rj−rm)π

c
δ(k − k0)k2 sin θdkdθdϕ

=
1

N

2

Γ

Vph
(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

g2kN |SN (k, θ, ϕ)|2π
c
δ(k − k0)k2 sin θdkdθdϕ

=
1

4π

∫ π

0

∫ 2π

0

|SN (k0, θ, ϕ)|2 sin θdθdϕ , (21.67)

introducing the normalized structure coefficient,

SN (k) ≡ ρ(q) = 1

N

N∑

j=1

eı(k−k0)·rj , (21.68)

where q = k− k0 and ρ(q) is the structure coefficient defined in (21.3).
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In steady state, β̇(t) = 0, and disregarding saturation, α(t) ≃ 1, the solution of
(21.65) reads,

β(∞) =

√
NΩ0

2∆0 + ıΓNsN
, (21.69)

such that,

|β(∞)|2 =
NΩ2

0

4∆2
0 +N2Γ2s2N

(21.70)

Im [α(∞)β∗(∞)] =
N3/2ΓΩ0sN

4∆2
0 +N2Γ2s2N

.

The time-dependent solution is easily obtained as,

β(t) = β(0)e(ı∆0−ΓNsn/2)t + β(∞) . (21.71)

The evolution of the cloud very much depends on the initial conditions, e.g. βj(0) = 1
for the uniformly excited symmetric state βj(0) = eık0·rj for timed Dicke states.

In cylindrical coordinates the structure coefficient can be written,

S(k, θ, ϕ) = 1

N

N∑

j=1

eı(kxj sin θ cosϕ+kyj sin θ cosϕ+(k cos θ−k0)zj) . (21.72)

It basically tells the angular distribution of the scattered light. Fig. 21.6 shows nu-
merical calculations and analytical approximations of the structure factor for various
shapes and sizes of the atomic cloud. Obviously, the radiation pattern very much
depends on the size of the spherical cloud. For R < λ it is isotropic, for R > λ
scattering mainly occurs in forward direction. Furthermore, if the cloud is ellipsoidal
the radiation pattern is shifted into forward direction.

21.1.7.2 Time evolution of radiation modes

We are interested in the power emitted into the solid angle Ωk, P (t) ∝ |γk(t)|2. For
timed Dicke state (21.64) we get immediately from the equations of motion,

γ̇k(t) = −ıgkeı∆kt
N∑

j=1

βj(t)e
−ık·rj (21.73)

= −ıgkeı(∆k−∆0)t
1√
N
β(t)

N∑

j=1

eı(k0−k)·rj = −ıgkeı(∆k−∆0)t
√
NSN (k) .

We see that the time-dependence factorizes from the structure factor, which is the
only component containing an angular dependence. The same holds for symmetric
Dicke states defined by |βj | = |βm|.
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Figure 21.6: (code) Numerical calculation of S(k, θ) according to (21.68) for 104 atomic

positions rj chosen by a random number generator. For the graphs (a-b) the cloud is homo-

geneous and spherical and has the sizes R = λ (red) and R = 10λ (blue). For the graphs

(c-d) the cloud is Gaussian and spherical and has the same sizes as (a-b). For the graphs

(d-e) the cloud is homogeneous and ellipsoidal with aspect ratio Rz/Rρ = 3 and has the same

radial sizes as in (a-b).

21.1.7.3 Light scattering in the ’timed Dicke state’

The scalar electric field scattered by an arbitrary distribution of atoms has been
calculated in (21.49). Substituting the stationary timed Dicke state (21.69), we get,

Esct(r) = −
ıℏΓ
2d

√
NΩ0

2∆0 + ıΓNsN

N∑

j=1

eık0|r−rj |

ık0|r− rj |
. (21.74)

Note that the ’timed Dicke’ state starts from the assumption of an infinitely extended
plane wave incident light field. This excludes situations where the incident beam size
is smaller than the cloud’s size.

21.1.7.4 Force in the ’timed Dicke state’ on a particular atom in a cloud

The time-dependent expressions (21.56) for the forces in the coupled dipoles model
can be further evaluated for timed Dicke states (21.64),

Faj + Fej (21.75)

= −2ℏk0gk0√
N

Imβ(t)−
∑

k

ℏkg2k
N

N∑

m=1

[
eı(k0−k)·(rj−rm)π

c
δ(k − k0)|β(t)|2 − c.c.

]

= −2ℏk0gk0√
N

Imβ(t)−
∑

k

ℏkg2k
[
SN (k)e−ı(k−k0)·rj π

c
δ(k − k0)|β(t)|2 − c.c.

]
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureFactors.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureFactors.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureFactors.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureFactors.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureFactors.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureFactors.m
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Figure 21.7: (code) Time-dependent of (a) the dipole amplitudes and (b) the forces for

σ = 1, ∆0 = 20Γ, Ω0 = 0.01Γ, and η = 1.

Evaluating the sum over the wavevectors by
∑

k →
Vph

(2π)3

∫
d3k,

Faj + Fej =
−2ℏk0gk0√

N
Imβ(t) (21.76)

− |β(t)|2 Vph

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

ℏkg2k
[
SN (k, θ, ϕ)e−ı(k−k0)·rj π

c
δ(k − k0)− c.c.

]
k2 sin θdθdϕdk .

Let us consider an atom sitting on axis, rj = 0, and use cylindrical coordinates,
k0 = k0êz and k = êxk sin θ cosϕ+ êyk sin θ sinϕ+ êzk cos θ, and using the definition
(21.19) of Γ,

Faj + Fej =
−2ℏk0gk0√

N
êzImβ(t) (21.77)

− |β(t)|2 Γ

8π
ℏk0

∫ π

0

∫ 2π

0

(êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ) [SN (k, θ, ϕ)− c.c.] sin θdθdϕ .

Using the abbreviation,

f̃N ≡
1

4π

∫ π

0

∫ 2π

0

ReSN (k0, θ, ϕ) sin θ cos θdθdϕ , (21.78)

the z-component becomes,

Fzaj + Fzej = −
2ℏk0gk0√

N
Imβ(t)− |β(t)|2Γℏk0f̃N . (21.79)

In steady state and normalizing to the standard radiation pressure,

Fz1j = Γℏk0
Ω2

0

4∆2
0 + Γ2

= ℏk0σ(∆)
I

ℏω
, (21.80)

where σ(∆0) is the optical cross section and I the intensity of the incident light, we
can write,

Fzaj + Fzej
Fz1j

=

(
−2ℏk0gk0√

N
Imβ(∞)− |β(∞)|2Γℏk0f̃N

)
4∆2

0 + Γ2

Γℏk0Ω2
0

. (21.81)

Finally, inserting the the expression (21.69) for the dipole moment, we obtain for the
timed Dicke state,

Fzaj + Fzej
Fz1j

=
(2∆0/Γ)

2 + 1

(2∆0/Γ)2 +N2s2N
N(sN − f̃N ) , (21.82)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceTime.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceTime.m
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using Ω0 = 2gk0 .
The factors sN and fN can be calculated exactly, as will be done in Exc. 21.1.8.6,

sN =
1

N2

N∑

j,m=1

sin(k0|rj − rm|)
k0|rj − rm|

cos[k0(zj − zm)] (21.83)

fN =

√
π

2

1

N2

N∑

j,m=1

J3/2(k0|rj − rm|)
(k0|rj − rm|)3/2

k0(zj − zm) sin[k0(zj − zm)] .

However, this is only practicable for atom numbers small enough for numerical sim-
ulations. For larger atom number we may use the analytic expressions including the
disorder term [80].

21.1.7.5 Force on the center of mass of the cloud

The force acting on the center of mass of the atomic cloud is given by the average of
the forces (21.76) sensed by particular atoms,

Fa + Fe =
1

N

N∑
j=1

(Faj + Fej) (21.84)

= −2ℏk0gk0√
N

Imβ(t)

− |β(t)|2 Vph

(2π)3

∫
R3

ℏkg2k

[
SN (k, θ, ϕ)

1

N

N∑
j=1

e−ı(k−k0)·rj π

c
δ(k − k0)− c.c.

]
k2 sin θdθdϕdk

=
−2ℏk0√

N
gk0Imβ(t)− |β(t)|2

Vph

(2π)3

∫
R3

ℏkg2k2|SN (k, θ, ϕ)|2 π
c
δ(k − k0)k2 sin θdθdϕdk .

Using cylindrical coordinates, k0 = k0êz and k = êxk sin θ cosϕ + êyk sin θ sinϕ +
êzk cos θ, and the definition of Γ,

Fa + Fe =
−2ℏk0√

N
êzgk0Imβ(t) (21.85)

− |β(t)|2 Γ

8π
ℏk0

∫ π

0

∫ 2π

0

(êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ) 2|SN (k, θ, ϕ)|2 sin θdθdϕ .

Using the abbreviation,

fN ≡
1

4π

∫ π

0

∫ 2π

0

|SN (k0, θ, ϕ)|2 sin θ cos θdθdϕ , (21.86)

we get for the z-component an analogous formula to (21.79),

Fza + Fze =
−2ℏk0gk0√

N
Imβ(t)− |β(t)|2 Γ

8π
ℏk0

∫ π

0

∫ 2π

0

2|SN (k, θ, ϕ)|2 sin θ cos θdθdϕ

= −2ℏk0gk0√
N

Imβ(t)− |β(t)|2Γℏk0fN . (21.87)

In steady state and normalizing again to the standard radiation pressure (21.80),

Fza + Fze
Fz1

=

(
−2ℏk0gk0√

N
Imβ(∞)− |β(∞)|2Γℏk0fN

)
4∆2

0 + Γ2

Γℏk0Ω2
0

. (21.88)
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Finally, inserting the the expression (21.69) for the dipole moment, we obtain for the
timed Dicke state,

Fza + Fze
Fz1

=
(2∆0/Γ)

2 + 1

(2∆0/Γ)2 +N2s2N
N(sN − fN ) , (21.89)

using Ω0 = 2gk0 . Inserting the expressions (21.67) for sN and (21.86) for fN , we may
also write,

F0a + F0e

Fz1
=

(2∆0/Γ)
2 + 1

(2∆0/Γ)2 +N2s2N
N

1

4π

∫ π

0

∫ 2π

0

|SN (k, θ, ϕ)|2(1− cos θ) sin θdθdϕ .

(21.90)

Let us assume in the following that the scattering of every single photon can
be treated independently [746]. In particular, the density distribution may change
between two scattering events. The force is something like the first moment of the
structure factor. This makes it so adapted to measure fluctuation-induced deviations
from the structure coefficient 8.
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Figure 21.8: (code) (a-c) Calculation of the structure coefficient |S(k = k0, θ, ϕ = 0)|2 for an

isotropic homogeneous density distribution. (d-f) Calculation of the force I(θ) =
∫ 2π

0
|S(k =

k0, θ, ϕ)|2(1 − cos θ)dϕ. The red curves show numerical calculations based on (21.68), the

green curves show analytical calculations according to (21.119). (a,d) k0R = 1 and N = 100.

(b,e) k0R = 5 and N = 100. (c,f) k0R = 5 and N = 1000.

We want to compare this force to the force acting on a cloud of N uncorrelated
scatterers, i.e. atoms receiving recoil from the pump photons but reemitting isotrop-

8Insert a clarifying discussion of what we said in the EPDJ and what we did not: We said there is
a collective effect coming from the structure factor of the cloud. We did NOT say that interatomic
interactions are essential...!

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDensity.m
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ically,

⟨Func,z⟩ =
Vph
(2π)3

σ(∆)
I

ℏω
ℏk0

∫ ∞

0

∫ π

0

∫ 2π

0

|SN (k, θ, ϕ)|2k2 sin θdθdϕdk . (21.91)

For such a cloud the structure coefficient is SN = N−1/2. Note that this is unlike N
atoms in the Dicke limit, where SN = 1.

A dense homogeneous cloud with SN (k) ∝ δ3(k0 − k) does not scatter light and
experiences no force, ⟨Fhom⟩ = 0. This is however not true any more in the limit of
small extended clouds, where fluctuations introduce disorder. This can be shown by
simulating a random atomic distribution rj and integrating the resulting force over all
possible k. For simplicity we assume a very sharp momentum distribution, |k| = |k0|
or

Vph

2π2

∫∞
0
k2dk = 1,

⟨Fz⟩ = σ(∆)
I

ℏω
k0(sN − fN ) . (21.92)

Finally to compare with experiment we evaluate the ratio,

⟨Fz⟩
⟨Func,z⟩

= 1− fN
sN

. (21.93)

We describe the cloud as being made of two fractions: An isotropically scattering
fraction of N0 =

√
N disordered atoms, whose structure factor is Siso(k) = 1, and

a forward scattering homogeneous cloud with structure factor Shom(k) = δk0,k. The
surface integration of the total structure factor,

SN (k) =
N0

N
Siso(k) +

N −N0

N
Shom(k) =

N0

N
+
N −N0

N
δk0,k ≃

N0

N
(21.94)

yields the same N -dependence of the force,

⟨Fz⟩
⟨Fiso,z⟩

=
1

4πN2

∫ π

0

∫ 2π

0

|
√
N |2(1− cos θ) sin θdθdϕ =

1

N
. (21.95)

The interpretation is the following. In the experimentally realized situation, we
are very far in the large cloud limit completely dominated by forward scattering,
which means that if the cloud were homogeneous no radiation pressure force should
be expected at all. However diffuse scattering from disordered atoms (or fluctuations)
disturbs the forward scattering. It is this scattering which gives rise to radiation
pressure.

There is an interesting analogy: Diffuse scattering not only inhibits forward scat-
tering in homogeneous clouds, but also coherent backscattering from ordered struc-
tures. E.g. in optical lattices [767] it disturbs the detection of photonic band gaps.
In an optical lattice the atoms are in the Dicke limit and do not absorb photonic re-
coil. Hence, no displacement due to radiation pressure is expected. However, diffuse
scattering is observed as absorptive features in the spectra [82, 767].

The Bragg scattering is expressed by a periodic structure factor. A widely used
approach to describe the impact of disordered atoms in lattices is to divide the cloud
into a perfectly ordered part with density nfDW and isotropically scattering part
with density n(1− fDW ) [767]. The factor fDW is known as Debye-Waller factor. In
Exc. 21.1.8.7 we try an alternative traetment of radiation pressure based on a Monte-
Carlo simulation.
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21.1.7.6 Cooperative scattering and single photon superradiance

A non-isotropic structure factor scattering light into a specific direction of space
(e.g. the Bragg angle) at a rate scaling like Nα with α > 1 needs several ’cooperating’
particles. In this sense cooperation only means, that the particles be arranged in space
in a particular way, i.e. in a lattice or in a particular bulk shape like a homogeneous
sphere or a Gaussian cigar-shaped density distribution. It also immediately becomes
clear that disorder ought to play a major role. However, cooperation goes further,
since cooperative scattering can be observed in spontaneous emission of an atomic
cloud being excited by just a single photon. Single-photon superradiance is the topic
of the following sections.

For now let us state that a non-isotropic structure factor results in collective
scattering. The density distribution (which is the Fourier transform of the structure
factor) can adopt two extremes: A periodic lattice results in backscattering into
specific directions, a homogeneous clouds shows nothing but forward scattering. Both
situations are never perfectly realized, but are subject to density fluctuations (Debye-
Waller factor in a lattice, radiation pressure in a homogeneous cloud).

A single photon on its trip through an atomic cloud successively excites the atomic
dipole moment thus establishing a phase relation between potential radiators [254,
806, 747, 807]. One could think that the scattering process localizes atom and photon,
i.e. only one atom scatters. However, we don’t know which atom scatters, and this
introduces a correlation of the dipole moments along the propagation direction of the
light beam.

Figure 21.9: Scattering of a photon by an atom of an ellipsoidal cloud.

While normally the radiation rate of a dilute cloud is ∝ N , in the presence of
coherent interactions it scales as ∝ N2. Coherent interactions are not conditioned to
overlapping space functions of the atoms, i.e. it is not compulsory that the density
be n−1/3 > λ. For example, scattering from ordered structures also scales as ∝ N2

[446]. However, the scattering will be dramatically different if n−1/3 < λ.

Spontaneous emission radiation pattern from uncorrelated scatterers only depend
on the relative orientation of σ̂ and B⃗, but not on the k-vector of the incident light.
This also holds for Dicke superradiance in the small cloud limit, but not for large
clouds. Here forward scattering dominates.

We have seen in this section that, despite its simplicity, the coupled dipoles model
has a large range of applications. It allows for a deeper understanding of known clas-
sical phenomena and, as we will study in Excs. 23.2.4.9 to 23.2.4.2 and in forthcoming
sections, it allows to unravel new effects.
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21.1.8 Exercises

21.1.8.1 Ex: Structure coefficient of a linear array

a. Based on the definition (21.1) compute the structure factor of a linear array of
point-like scatterers.
b. Based on the definition (21.2) compute the structure factor of a linear array of 10
Gaussian density distributions.

21.1.8.2 Ex: Structure factor of a cloud

a. Based on the definition (21.1) compute the structure coefficient of (i) a slit, (ii) a
pinhole, and (iii) a homogeneous spherical cloud.
b. Based on the definition (21.3) compute the structure coefficient of a homogeneous
spherical cloud.

21.1.8.3 Ex: Structure coefficient and Snell’s law

Calculate the structure coefficient for a light beam passing through a plane interface
between two dielectrics.

21.1.8.4 Ex: Validity of Markov approximation

a. Calculate the single-atom scattering rate for a rubidium cloud of N = 106 atoms
driven with P = 100mW laser power focused into a waist of w0 = 100µm and detuned
by ∆ = (2π) 100GHz from the D2-line at 780 nm [134].
b. Assume for the cloud a homogeneous spherical density distribution with radius
R = 250/k0. Based on Ref. [806] estimate whether the Markov approximation is
valid.

21.1.8.5 Ex: Lensing by a dense atomic cloud with the coupled dipoles
model

Simulate the pump laser phase shift and lensing by a small dense cloud by the coupled
dipoles model for red and blue detuning. Discuss the influence of rescattering by re-
moving artificially the off-diagonal terms from the scattering kernel. Discuss whether
lensing is observed within the timed Dicke approximation.

21.1.8.6 Ex: Exact calculation of projected structure coefficients

Calculated the integrals (21.66), (21.78), and (21.86).

21.1.8.7 Ex: Monte-Carlo simulation of cooperative radiation pressure

In a regime of negligible interatomic interaction single photons are scattered by indi-
vidual atoms, which thereby receive the entire photonic recoil. That is, the accelera-
tion occurs in quantized steps, which can be easily resolved in experiments [416, 765]
with Bose-Einstein condensates. In the absence of collective effects, we generally
observe halo-shaped momentum distributions. Because of the recoil received upon
absorption, the halos are centered at ℏk, and since the emission is generally isotropic,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure09.pdf
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they have a radius of ℏk. On the other hand, as we have seen earlier, cooperative
effects can suppression radiation pressure. In the following we try a different approach
based on a Monte-Carlo simulation with a Langevin force.
This approach starts from the idea that it is possible to simulate the radiation pres-
sure without explicit calculation of the force by treating the scattering process as a
Langevin force. The simulation describes the scattering of single photons by individ-
ual atoms. Cooperativity is included 1. in the scattering rate, which is influenced by
collective effects, 2. by weighing the probability for the direction (θ, ϕ) into which the
photons are scattered with the structure factor. The enhancement of the collective
scattering rate corresponds to the rate of absorption part of the radiation pressure,
9,10

γc = γR
Fc,abs

F1,abs
= σopt(∆0)

I

ℏω
· 4∆2

0 + Γ2

4∆2
0 +N2Γ2s2N

N ,

where sN = N−1 + (2σ)−2. The structure factor is numerically calculated for a
randomly distributed cloud.

21.1.8.8 Ex: Super- and subradiance with two atoms

Super- and subradiance have been observed in two ion crystals [665, 227]. In this
exercise, we study this system in the framework of the coupled dipoles model.
a. Calculate the structure coefficient of this system.
b. Write down the equations of motion (21.26) and solve them in steady-state.

21.1.8.9 Ex: Signatures of subradiance

Super- and subradiance are contained in the coupled dipoles model. Try to identify
the presence of subradiant states via a reduced decay rate of β(t) starting from the
timed Dicke state.

21.1.8.10 Ex: Other applications of the coupled dipoles model

Discuss whether the coupled dipoles model can be extended to provide a micro-
scopic description of gaseous metamaterials (negative refractive index) and the Goos-
Hänchen, Imbert-Fedorov, Spin-Hall, and Ewald-Oseen effects, and interference with
a LO. Is it possible to check Ewald-Oseen’s theorem in media with negative refractive
index?

9Note that in reality the scattering of a photon converts the scattering atom into a coherent
superposition of directions into which the atom might have scattered. This is of course not described
by the simulation.

10Although the atomic motion is frozen, it is not correct to say that the external degree of freedom
is not involved in the collective dynamics, since the spatial atomic distribution shapes the structure
factor.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_SuperSubradiance01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_SuperSubradiance02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_SuperSubradiance03.pdf
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21.2 Coupled dipoles model with real atoms

21.2.1 Limitations of the classical vectorial Green function

The vectorial Green function (ED) correctly describes the interaction between point-
like classical oscillating dipoles at all inter-dipolar distances R [153]. It contains
terms oscillating with kR, where k is the wavenumber of the radiation, and scaling
with the distances as 1/R, 1/R2, and 1/R3. Although the Green function ignores
any internal structure of the dipoles, it has been successfully used within the coupled
dipoles model (CDM) to describe the coupling between atoms interacting with each
other by exchanging radiation near an atomic transition.

In reality, however, the internal atomic structure consists of electronic orbitals
which react to the presence of other atoms via van der Waals forces and by form-
ing adiabatic molecular potentials causing frequency shifts of the atomic resonances
at small interatomic distances. Moreover, the molecular potentials resulting from
interatomic forces develop a rich ro-vibrational structure, which contributes to the
complexity of the collision process in the presence of light. The ro-vibrational spectra
may even reach into the molecular decay widths. That is, there are bound states at
energies below the dissociation limits smaller than Γ. At sufficiently high densities the
vibrational levels of excited state potentials may add a resonance structure causing
red-blue asymmetries e.g. in transmission spectra.

The calculation of molecular potentials is a difficult task [858]. At long range the
molecular potentials have terms proportional to 1/R6, 1/R8, and 1/R10. However, the
vibrational level structure also depends on the shape of the potential at short range.
In the case of cold collisions the atoms do not penetrate deeply into the adiabatic
potentials, which then may be modeled by a generic shape whose few parameters
are adjusted for coincidence between the vibrational level structure and experimental
data. Experimentally, the ro-vibrational structure is revealed by photoassociation
spectroscopy [858]. For introductory literature on cold binary collisions in a light
field see f.ex. [858, 444].

Even in the absence of radiation, colliding atoms exert forces on each other. How-
ever, if the primary focus is the transport of light through the atomic cloud, we may
at first neglect the force induced by the molecular potentials and concentrate on level
shifts.

At long range resonant dipole interaction scaling as R−3 will dominate the atomic
collision dynamics in the presence of light. It mainly depends on the radiative decay
width and only weakly on short range features of the molecular potentials. Thus, as
a first step in understanding how the existence of atomic degrees of freedom can be
incorporated into the CDM, we may concentrate on this interaction.

Here, we want to study all this for dense 88Sr (and 172Yb) clouds. In Sec. 21.2.2
we recapitulate the molecular level structure, and in Sec. 21.2.4 we look more closely
at the vectorial Green tensor.

21.2.1.1 Delocalized atoms

If one wants to understand the interaction of light with dense clouds of atoms, the
assumption of classical motionless atoms is somewhat paradox: If the atoms stand
still, they have an infinite de Broglie wavelength; that is, they ’sense’ the presence of all
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other atoms. Even if Sr atoms are as hot as 1µK the thermal de Broglie wavelength
is about λtherm = 200 nm, which corresponds to a density of λ−3

therm = 1014 cm−3.
Atomic clouds with this temperature and density approach unit phase space density.

Even if we disregard wavefunction symmetrization issues and quantum statistics,
by the fact that the atoms are delocalized, their interaction with light is modulated
with the Frank-Condon overlap of their wavefunctions.

21.2.2 Molecular level structure

The low-lying adiabatic potentials of Sr2 dimers have been determined through ab
initio calculations [109] and photoassociation measurements [808, 614]. We find to
find reliable data on the strontium-88 ground state potential X1Σ+

g connecting to the
1S0+

1S0 collisional channel and the excited state potentials A1Πg, A
1Πu, and A1Σ+
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Figure 21.10: Sr2 potentials connecting to 1S0+
1S0 and 1S0+

1P1.

Fig. 21.10 shows the excited state potential spaghetti found in [808]. The potentials
which are relevant for our Sr1 experiment need to be identified. The ground state
potential is given in [788, 204].

21.2.2.1 88Sr2 ground state potential X1Σ+
g

The X1Σ+
g potential has been determined via two-color photoassociation spectrocopy

[788],

VX1Σ+
g
(R) =





A+ B
Rn for R < Ri

Tm +
∑
i aix

i

−C6

R6 − C8

R8 − C10

R10 for R > Ro

(21.96)

where x ≡ (R−Rm)/(R+ bRm) and vlast = 62, J = 0 and Rrot = 100aB .



21.2. COUPLED DIPOLES MODEL WITH REAL ATOMS 811

21.2.2.2 88Sr2 excited state potential (2)1Σ+
u

The (2)1Σ+
u long-range potential at large internuclear distances,

V1Σ+
u
(R) = D − C3

R3
+

ℏ2[J(J + 1) + 2]

2µR2
(21.97)

with the reduced mass µ = mSr/2, the transition wavelength λ = 460.73 nm, the
decay width Γ = (2π) 30.5MHz, and the resonant dipole interaction coefficient

C3 ≃
3ℏΓ
2k3

= 18.5013 a.u. , (21.98)

which can be obtained from the Green function in the limit of small distances, kR≪ 1.

X1Σ+
g hc× cm-1 rA n a.u. [788] a.u. [204]

C6 1.4955× 107 3103.5 3103

C8 5.1175× 108 3.7926× 105 3.792× 105

C10 2.495× 1010 6.6034× 107 4.215× 107

(2)1Σ+
u

C3 5.9712× 105 18.3609

C6 −5.1541× 107 −10696
C8 8.9977× 108 6.6682× 105

Table 21.1: For the transformation between SI units and a.u. see Sec. 6.1.2.

Example 118 (Ytterbium potentials): The 174Yb2 potentials are character-

ized by Γ = (2π) 29.128MHz and λ = 399 nm [809, 824, 266, 467].

21.2.2.3 Vibrational levels and wavefunctions

Once the relevant potentials are known, we need to calculate their vibrational struc-
ture. To this end we probably need to fit the potentials with analytic functions,
calculate the vibrational levels using the Fourier grid method [550, 250, 785], and
check that the results coincides with photoassociation spetra such as the ones ob-
tained in [614, 663, 895, 788, 204]. An example of a Fourier grid calculation is shown
in Fig. 21.11(a).

The Fourier grid calculations also deliver the vibrational radial wavefuntions. Col-
lisional wavefunctions can be obtained by solving the radial Schrödinger equation, see
red curve in Fig. 21.11.

Note, that in Fig. 21.11 the Fourier grid method yields good results for theX1Σ+
g

ground state potential, which is relatively shallow and short ranged, yielding 63 bound
states. This is not the case for the (2)1Σ+

u excited state potentials, which extends to
huge range and supports hundreds of bound states. Here, an adapted Fourier grid
method must be employed [477].
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Figure 21.11: Fourier grid calculation for the states X1Σ+
g and (2)1Σ+

u . Potentials (black)
and vibrational structure. The dash-dotted potential only accounts for the C3 long range
force. The red wavefunction is the collisional channel at T = 0. The green wavefunctions are
vibrational states, the depth in the potential corresponds to the eigenenergies, the indicated
vibrational quantum number v′ is counted from the dissociation limit.

21.2.3 Photoassociation

To calculate the interaction strength, as we will show below, we must evaluate the
Franck-Condon overlap between the collisional ground state wavefunction and reso-
nant repulsive or near-resonant vibrational excited state wavefunctions. In the context
of the CDM we are predominantly interested in small light detunings. In this case,
only very long range wavefunction play a role, which are dominated by long range
van der Waals forces. We may therefore neglect the short range potential and set,

Vg(R) = −
C6

R6
and ± C3

R3
, (21.99)

and only consider the highest bound states.

21.2.3.1 The LeRoy-Bernstein method

The LeRoy-Bernstein method allows us to estimate the highest bound levels. It only
applies near the dissociation limit, where the semi-classical formula of quantization is
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valid,

v + 1
2 =

√
8mred

ℏ2

∫ Rt

0

dR
√
E(v)− V (R) . (21.100)

Inserting the potential (21.112) we get,

E(v∗) = −Eloc
(
√
2π

(n− 2)Γ
(
1 + 1

n

)

2Γ
(
1
2 + 1

n

) v∗
)2n/(n−2)

, (21.101)

where v∗ = vD − v is a number counting the vibrational levels from the top to the
bottom starting at the dissociation limit and Eloc is the localization energy calculated
in (21.114),

Eloc = −
8ℏ6

m3C2
3

. (21.102)

Figure 21.12: (a) Vibrational states of the (2)Σ+
u potential of Yb2 dimers obtained by the

mapped Fourier grid method [477]. (b) Energies of the highest vibrational states as a function
of the vibrational quantum number v∗ obtained by the LeRoy-Bernstein method. The states
inside the red box have been measured [809].

Fig. 21.13 shows a comparison of the vibrational states bound via the Fourier grid
method (green dots) and the LeRoy-Bernstein formula (blue dots). Although the
coincidence should be good at low v′ the contrary is observed. The reason is a failure
of the Fourier grid method at extremely long range.

21.2.3.2 Long range wavefunctions

21.2.3.3 Optical cross sections

Calculate optical cross sections at all relative velocities.

21.2.3.4 PA spectra

Calculate PA spectra as a function of temperature.
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Figure 21.13: Collisional and vibrational wavefunctions in C6 ground state and C3 excited
state potentials [444] in the presence of (a) blue and (b) red-detuned light (C6 = 1500 a. u.,
C3 = 18 a. u., ∆a = (2π) 700GHz). The colored curves denote (red) the wavefunction of
two atoms colliding on their ground state with a velocity corresponding to 2µK, (blue) a
wavefunction repelled from the excited state potential, (cyan) an unbound wavefunction
of the excited state potential, and (green) a vibrational wavefunction of the excited state
potential.

21.2.4 Generalization of the CDM

Discuss whether this can be treated in a generalized Green function or in a generalized
CDM.

Discuss similarities with Rydberg dressing/blockade?

21.2.4.1 Hamiltonian for the CDM

The many-body Hamiltonian and the Lindbladian read,

Ĥ = 1
2

∑

j

[
Ω(rj)σ̂

+
j + h.c.

]
−
∑

i,j

∆jiσ̂
+
j σ̂

−
i (21.103)

L†[Â] = 1
2

∑

i,j

Γij(2σ̂
+
i Âσ̂

−
j − σ̂+

i σ̂
−
j Â− Âσ̂+

i σ̂
−
j ) .

How to include van der Waals forces [631]?

21.2.4.2 Exclusion volume

At short distances the CDM is wrong, because the inner degrees of freedom come into
play. In the past the problem has been avoided by introducing an ’exclusion volume’,
i.e. a volume determined by an interatomic distance which are simply discarded from
the analysis. The radius was typically set to rmin = n−1/3/π ≈ 73 nm = 1400aB .
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Figure 21.14: [444].

21.2.5 Green tensor for parallel classical dipoles

The Purcell factor allows us to calculate the modification of the decay rate in the
presence of a Green tensor. Assuming that the interacting dipoles are parallel, êd =
ê′d, we have,

Γij = 3λΓ(0)ê∗d ImG(ri, rj , ω) êd (21.104)

= 3
2Γ

(0)

[
(1− (êd · êR)2)

sin kR

kR

+(1− 3(êd · êR)2)
(
cos kR

k2R2
− sin kR

k3R3

)]
,

where R ≡ ri − rj .
Similarly, the Lamb shift can be calculated,

∆ij = − 3
2λΓ

(0)ê∗d ReG(ri, rj , ω) êd (21.105)

= 3
4Γ

(0)

[
(1− (êd · êR)2)

cos kR

kR

−(1− 3(êd · êR)2)
(
sin kR

k2R2
+

cos kR

k3R3

)]
.

At long distances, kR > 1, the results (21.104) and (21.105) simplify to,

∆ij ≃ − 3
4Γ

(0)[1− (êd · êR)2]
cos kR

kR
(21.106)

Γ
(b)
ij ≃ 3

2Γ
(0)[1− (êd · êR)2]

sin kR

kR
.

And since the radiatively induced dipoles are perpendicular to their distance, êd · êR,

∆ij ≃ − 3
4Γ

(0) cos kR

kR
(21.107)

Γ
(b)
ij ≃ 3

2Γ
(0) sin kR

kR
,
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we recover the scalar model. Obviously, at very long distances, kR≫ 1, ∆ij → 0←
Γij .

At small distances, kR≪ 1, the results (21.104) and (21.105) simplify to,

∆ij = − 3
4Γ

(0) 3(êd · êR)2 − 1

k3R3
(21.108)

Γij =
3
2Γ

(0) 1− (êd · êR)2
kR

.

and assuming interaction between induced dipoles the same formula becomes,

∆ij ≃
C3

R3

{−1 for êd = êR
1
2 for êd ⊥ êR

(21.109)

with the abbreviation,

C3 =
3Γ

2k3
. (21.110)

21.2.5.1 Van der Waals C3 coefficient

Hence, the C3 coefficient of van der Waals resonant dipole interaction is obtained
directly from the vectorial Green tensor. This indicates that the corresponding long
range potential,

Vlr(R) = −
C3

R3
(21.111)

results from a reorientation of the atomic dipoles due to molecular forces [152] p. 56.
This effect is (probably) accounted for in the CDM at short distances, kR < 100aB ≈
5 · 10−9.

21.2.5.2 Estimation of the localization energy

One consequence of Heisenberg’s uncertainty relation is that a certain localization
energy is always required to localize a particle. The zero-point energy of the harmonic
oscillator is an example: If the potential is shallower than this energy, it will not be
capable of localizing a particle.

As another example, let us consider the attractive potential,

V = −Cn
Rn

. (21.112)

The space available for the particle is limited between the classical turning point,
which for a given energy is Rt = (Cn/|E|)1/n. The momentum corresponding to this
energy is kt = (2mred|E|/ℏ2)1/2. Heisenberg’s uncertainty relation requires,

ktRt > π , (21.113)

that is, at least half of the wavelength must fit within the potential (between 0 and
Rt) at the height of the bound state. Therefore,

|E| > Eloc ≡
(

πℏ2

2mred

)1/(1−2/n)

C1/(1−n/2)
n . (21.114)
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For a Coulomb potential, with n = 1 and C1 = e2/4πε0, we obtain the energy of
the ground state of the hydrogen atom,

E > E1 = − e2

4πε02aB

4

π2
, (21.115)

apart from a numerical factor. Note that the condition ktRt > 2n yields the correct
Bohr energies, E = E1/m

2.
For n = 2, we do not get a condition for the energy. For the Casimir-Polder

potential, n = 3 and C3 = 3ℏΓ/2k3, we obtain,

E < − π6ℏ6

8m3
redC

2
3

=
(πℏk)6

2m3
red(3ℏΓ)2

. (21.116)

This means that, in contrast to the Coulomb potential, in order to minimize the
momentum-position uncertainty, the binding energy must be lower than a certain
limit.

21.2.6 Exercises

21.3 Continuous density distributions and Mie scat-
tering

In the last sections we developed the coupled dipoles model describing light scattering
from ensembles of individual microscopic particles by a set of equations of motion,
in the simplest case, one for every atomic dipole. This limits the number of atoms
that can be considered in numerical simulations to a few 1000. On the other hand,
most cold atom experiments nowadays are performed with 105 to 109 atoms. The
following section are devoted to introducing concepts and approximations allowing us
to understand light scattering from large atomic clouds.

The main step will consist in an approximation called smooth or continuous density
approximation, where the discrete distribution of point-like scatterers is replaced by
an inhomogeneous but smooth continuous density distribution characterized by a
refraction index field nrfr(r). The interaction of this density distribution with light is
then treated in the framework of Maxwell’s equations, i.e. inhomogeneities are treated
as macroscopic boundary conditions to the electromagnetic fields. In the following we
will term this regime as Mie scattering.

At first sight Rayleigh scattering from point-like particles and Mie scattering from
extended objects are quite different phenomena. Rayleigh scattering exhibits reso-
nances due to the internal structure of the particles, e.g. an atom. Mie scattering
shows resonances induced by the boundary conditions the scattering objects impose
to the field. On the other hand, from a microscopic viewpoint, any extended object
(e.g. a dielectric sphere) is nothing but an assembly of microscopic scattering parti-
cles. The question we need to study is then whether a description of the diffraction
from this object as the sum of the radiation patterns scattered from the individual
constituent particles is correct; or in how far the graininess of the cloud’s density dis-
tribution and cooperative effects arising from the interaction between the individual
particles play a role [134].
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Interesting phenomena are expected in the transition regime between the limits
of a dense bunch of individual scatterers and macroscopic dielectric objects. One of
them is a strong modification of the radiation pressure force [176], which can conve-
niently be studied with atomic ensembles. The reason is that, in the smooth density
approximation, the cloud can be understood as a macroscopic object characterized
by a refraction index, which can be tuned over huge ranges by changing the cloud’s
density and volume, or by tuning the frequency of the incident light exploiting the
existence of atomic resonances. We will see in the following that it is possible to study
radiation pressure with cold atoms in the Rayleigh-Debye-Gans limit of small phase-
shifts, as well as in the Mie limit of large phase shifts [39]. Despite the absence of
sharp boundaries for the atomic cloud, we predict the occurrence of Mie resonances,
which could be detected experimentally [40].

21.3.1 Continuous density approximation

In light scattering experiments, disorder (or granularity) plays a role when the number
of atoms projected onto a cross section perpendicular to the incident beam is small
enough so that a light mode focused down to the diffraction limit (that is ∼ λ2) would
be able to resolve and count the atoms. In other words, the stochastic fluctuations
induced by the random positions of the atoms can be neglected when the total number
of atoms N is larger than the number of modes ∼ σ2 that fit into the cloud’s cross
section, i.e. when the optical density is b0 = 3N/σ2 ≫ 1. Under this hypothesis, the
differential equation (21.26) for β̃j can be simplified by replacing the discrete sum
over atom positions by an integral over a density distribution ρ(r),

N∑

j=1

→
∫
ρ(r′)d3r′ and β̃j(t)→ β̃(r′, t) . (21.117)

For example, the smoothed structure coefficient reads,

S(k) = 1

N

N∑

j=1

eı(k−k0)rj =
1

N

∫
d3r′ ρ(r′)eı(k−k0)r

′
. (21.118)

In the Exc. 21.3.5.1 we calculate the structure coefficients for a homogeneous spher-
ical cloud of radius R and for a Gaussian ellipsoidal cloud with the rms-width σρ,z:

Shomog.sphere(k) =
3

q3R3 (sin qR− qR cos qR) (21.119)

Sgauss.ellipse(k) = e−
1
2k

2σ2
ρ sin2 θ− 1

2σ
2
z(k cos θ−k0)2 .

The simulated structure factor (red curve in Figs. 21.15) agrees well with the analyt-
ical expression (green curve). Since small clouds have a larger fluctuations, the fact
that the total force is a sum of intensities rather than amplitudes leads to a finite
value at large scattering angles θ.
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Figure 21.15: (code) (a) The red curve shows a calculation of the structure factor: |S(k =

k0, θ, ϕ = 0)|2 for 200 atoms randomly distributed in a homogeneous spherical cloud of

size R = 10/k0. The blue curve shows an average over 500 realizations of such a cloud

according to
∑200
m=1 |S(k, θ, ϕ = 0)|2. The black curve is an analytical calculation according

to Eq. (21.119) [806]. (b) Same curves as in (a) but with a stretched y-axis.

In the continuous limit defined by (21.117) for the equations of motion (21.32) 11,

˙̃
β(r, t) = ı

(
∆0 + ı

Γ

2

)
β̃(r, t)− ı

2
Ω0 −

Γ

2

∫
d3r′ρ(r′)

sin(k0|r− r′|)
k0|r− r′| β̃(r′, t)e−ık0·(r−r′) .

(21.120)

Transforming back to βj ≡ β̃eık0·r, we obtain the fundamental equation for the
dipolar excitation field,

β̇(r, t) = ı

(
∆0 + ı

Γ

2

)
β(r, t)− ıΩ0

2
eık0·r − Γ

2

∫
d3r′ρ(r′)

sin(k0|r− r′|)
k0|r− r′| β(r′, t) .

(21.121)

Example 119 (Connection between coupled dipoles model and Helmholtz
equation): The steady-state solution of (21.121) can also be obtained from the
Helmholtz equation of Maxwell’s theory [286, 39, 40], as shown in 12,

[∇2 + k20n
2
rfr(r)]β(r) = 0 defining n2

rfr(r) ≡ 1− 4πρ(r)

k30(2∆0/Γ + ı)
.

(21.122)

21.3.2 Simulations of the time evolution

We start from the second equation (21.18),

˙̃
βj(t) = ı∆0β̃j(t)−

Ω2
0

4

N∑

m=1

∫ t

0

β̃m(t′)dt′ (21.123)

−
∑

k

g2k

N∑

m=1

eı(k−k0)(rj−rm)

∫ t

0

e−ı(ωk−ω0)(t−t′)β̃m(t′)dt′ .

11Note that the ’timed Dicke’ assumption (21.64) has not been used here.
12See script on Electrodynamics: Electricity, Magnetism and Radiation (2025)Sec. 21.3.2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDebyeWaller.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDebyeWaller.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDebyeWaller.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDebyeWaller.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureDebyeWaller.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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Substituting the timed Dicke state (21.64),

β̇(t) =
1

N

N∑
j=1

β̇(t) =
1√
N

N∑
j=1

˙̃
βj(t) (21.124)

= ı∆0β(t)− NΩ2
0

4

∫ t

0

β(t′)dt′ − Vph

(2π)3

∫
d3k g2kN

2|S(k)|2
∫ t

0

e−ı(ωk−ω0)(t−t′) β̃m(t′)√
N

dt′ ,

where we used
∑N
m=1 e

ı(k−k0)(rj−rm) = N2|S(k)|2 from Eq. (21.67). Finally, at
resonance and low saturation we may neglect the first two terms,

β̇(t) = −N Vph
(2π)3

∫

R
d3k

∫ t

0

dt′ g2kβ(t
′)eı(νk−ω)(t−t

′)|S(k)|2 (21.125)

= −N Vph
(2π)3

∫ t

0

dt′ β(t′)
∫ ∞

0

∫ π

0

g2ke
ı(νk−ω)(t−t′)|S(k, θ)|22πk2 sin θdθdk

= −N Vph
(2π)3

g2k

∫ t

0

dt′ β(t′)
∫ ∞

0

eı(νk−ω)(t−t
′)k2I(k)dk = −Ω2

N

∫ t

0

dt′ β(t′)G(t− t′) ,

with the collective Rabi frequency ΩN =
√
Ngk and the surface integrated structure

factor,

I(k) =

∫ 2π

0

∫ π

0

|S(k, θ, ϕ)|2 sin θdθdϕ , (21.126)

and

G(τ) =
Vph
(2π)3

e−ıωτ
∫ ∞

0

eıckτk2I(k)dk , (21.127)

with ω = ck0 and νk = ck. The integral I(k) has been solved by Nicola for an
ellipsoidal Gaussian density distribution. It is quite close to,

I(k) ≃ I(k0) ≃
√
π

2

1

kσz
eF

2/2[1− erf (F/
√
2)] , (21.128)

with the Fresnel number F = kσ2
r/σz.
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Figure 21.16: (code) Averaging of the structure factor over the whole k-space.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureIntegrated.m


21.3. CONTINUOUS DENSITY DISTRIBUTIONS AND MIE SCATTERING821

21.3.2.1 Analytical method

To evaluate the above integro-differential equation, we use the rule for differentiating
integrals with variable boundaries,

∂

∂t

∫ ψ(t)

ϕ(t)

f(x, t)dx =

∫ ψ(t)

ϕ(t)

∂f(x, t)

∂t
dx+ f(ψ(t), t)ψ′(t)− f(ϕ(t), t)ϕ′(t) , (21.129)

it is easy to show,

∂

∂t

∫ t

0

f(t′)G(t− t′)dt′ = f(t)G(0) +

∫ t

0

f(t′)Ġ(t− t′)dt′ (21.130)

and to thusly evaluate the integral until ∂n

∂tnG(t − t′) gets smooth enough to be ne-
glected.

21.3.2.2 Numerical method

We can directly solve the integro-differential equation numerically using,

G(τ) =

[
1 +

3c

4R
τ − c3

16R3
τ3
]
Θ(3R− cτ) , (21.131)

for a homogeneous spherical cloud and,

G(τ) =
kσ2

r

kσ2
r + icτ

e−(cτ/σz)
2/2 , (21.132)

for an ellipsoidal Gaussian cloud. The iteration is done via,

β(t+ dt) = β(t)− dt Ω2
N

∫ t

0

β(t′)G(t− t′)dt′ . (21.133)

The discretization is done via,

tm+1 = tm + dt (21.134)

βm+1 = βm − dt Ng2k
m∑

m′=1

βm′G(tm − tm′)dt .

With the solution of the integro-differential equation β(t), we can calculate the
probability that atoms are excited [806] 13,

P (t) = |β(t)|2 =
∑

j

|βj(t)|2 =

∫
d3r|β(t, r)|2 . (21.135)

13Compare to Jaynes-Cummings model in a CQED environment: A single photon is coherently
exchanged between the cavity and the atomic excitation, we get Rabi oscillations. Here, the atomic
cloud is the cavity.
We know that the Mollow triplet in the dressed states picture gives rive to an oscillating decay
curve resembling that of Fig. 21.17. Does this curve also have an interpretation in terms of collective
dressed states?
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Figure 21.17: (code) Calculation of the time evolution of β for a homogeneous spherical

cloud. The parameters are λ ≃ 780 nm and c/Ω ≃ 30 cm with Ω =
√
Ngk for typically

gk ≃ 1MHz and N ≃ 106.

Example 120 (Solutions for a homogeneous spherical cloud): For a ho-
mogeneous spherical cloud, we find three regimes characterized by the size of
the cloud compared to the two length scales λ and c/Ω:

β(t) = β(0)


e−NΓt

e−27NΓt/8(k0R)2

cosΩte−3ct/8R

for R < λ≪ c/Ω

for λ < R≪ c/Ω

for λ≪ c/Ω < R

.

21.3.2.3 Complete numerical simulation

In order to be independent from initial conditions, we generate a random distribution
rj′ and solve the differential equation,

β̇j(t) = −Ng2k
∫ t

0

dt′
Vph
(2π)3

∫
d3k

1

N

N∑

j′=1

βj′(t
′)eı(νk−ω)(t−t

′)+ık(rj−rj′ ) . (21.136)

We propagate the amplitudes in time via,

βj(t+ dt) = βj(t)− dtg2k
Vph
(2π)3

∫ t

0

dt′
N∑

j′=1

βj′(t
′)
∫ ∞

0

k2eı(ck−ω)(t−t
′)Ijj′(k)dk ,

(21.137)

where Ijj′(k) ≡
∫ π
0

∫ 2π

0
eık[(xj−xj′ ) sin θ cosϕ+(yj−yj′ ) sin θ sinϕ+(zj−zj′ ) cos θ] sin θdθdϕ, and

discretize via,

tm+1 = tm + dt (21.138)

βj(tm+1) = βj(tm)− dt2g2k
m∑

m′=1

N∑

j′=1

βj′(tm′)Gjj′(tm − tm′) ,

with Gjj′(tm − tm′) =
Vph

(2π)3

∫∞
0
k2eı(ck−ω)(tm−tm′ )Ijj′(k)dk.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureTimeevolve.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureTimeevolve.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureTimeevolve.m
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21.3.3 Radiation pressure force in macro- and microscopic scat-
tering

As mentioned at the beginning of this section, scattering of light by an extended ob-
ject such as an atomic ensemble or a dielectric sphere is fundamentally different from
scattering at a point-like scatterer such as a single atom. On one hand, the finite size
of the object leads to Mie scattering. On the other hand, the spatial distribution of
the scatterers rules the degree of cooperativity. Homogeneous and periodic distribu-
tions tend to scatter cooperatively, whereas disorder suppresses cooperativity. In an
atomic cloud, the amount of disorder can be tuned via the optical density seen by
the incident light, and its role can be studied via the radiation pressure exerted by
the light on the atomic cloud. We present an analytic expression for the radiation
pressure valid for any numbers of atoms and arbitrary density distributions, which in-
terpolates between the regimes of dominating disorder and dominating cooperativity.
Furthermore, we present first experimental signatures of radiation pressure reduction
due to cooperative scattering.

The radiation pressure exerted by a plane wave laser beam with frequency ω0 and
wave vector k0 = k0êz on a single two-level atom with resonance frequency ωa = ω0−
∆0 is correctly described by the standard formula (21.80). Generalization to scattering
by atomic ensembles and extended objects is only possible, if a number of effects is
explicitly taken into account. The most important ones are named in the following.
a. Cooperativity and b. disorder : Cooperativity is the tendency of atoms located in the
same area of space, forming regular structures or being forced by the mode structure
of the environment (e.g. optical cavities) to scatter light synchronously into the same
direction, as in the case of Dicke superradiance. While homogeneously or periodically
distributed atoms concentrate the scattered light in specific solid angles by forward
or Bragg scattering, randomly distributed atoms do not cooperate and scatter light
isotropically. In this respect, cooperativity and disorder are antagonists. c. Mie
scattering and refraction: The finite volume and the shape of the cloud represent
an inhomogeneity at which light is scattered in a global way. As long as the optical
density is low, the pump mode depletion is mainly due to the fact, that the atomic
cloud distorts the phase front of the incident light. For high optical density, scattering
is predominantly absorptive. d. Multiple scattering and e. resonance fluorescence:
Near resonance, multiple scattering leads to radiation trapping. Even off-resonance,
inelastic scattering pumps resonant photons into the atomic cloud, which have a high
probability to be reabsorbed. Taking account of all these effects, the real radiation
pressure can differ by orders of magnitude from the naive prediction of the above
formula.

For smooth density distributions Fc is only limited by Mie scattering at the inho-
mogeneity represented by the finite extend of the atomic cloud [176]. The radiation
pressure depends on the number of atoms N in the volume, and the scaling Fc(N)
depends on the pump laser detuning and the radial cross section of the cloud. But
small scale inhomogeneity within the cloud, i.e. disorder, can play an eminent role for
collective scattering. This is the case, when the number of atoms is beyond a critical
value, which mainly depends on the volume and shape of the cloud. In the following
we will derive an analytic expression for the radiation pressure as a function of atom
number, which interpolates between the regimes of dominating disorder (single-atom
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Rayleigh scattering) and dominating cooperativity (pure Mie scattering).
On the other hand, we point out, that we do not consider multiple scattering in

our treatment. This is a good assumption far from resonance, where the scattering is
predominantly Rayleigh scattering and inelastic scattering can safely be disregarded.
In contrast, our extensions of single to multi-atom scattering are not valid near reso-
nance.

The radiation pressure provides sensitive signatures for the impact of cooperativity
and disorder. We describe an experiment measuring the displacement of cold atoms
confined in a far-off resonance dipole trap and interpret our observations in terms of
collective scattering.

21.3.3.1 Radiation pressure for timed Dicke states

As a first approach we will calculate the radiation pressure for a timed Dicke state
from Eq. (21.89) by explicit analytical integration of the surface-integrated structure
factors s∞ and f∞ in the smooth density limit (21.117) for an ellipsoidal Gaussian
smooth density distribution, as shown in Exc. 21.3.5.2. In the spherical case,

ρ(r) = ρ0e
−r2/2r̄2 with ρ0 =

N

(2π)3/2r̄3
, (21.139)

and introducing σ ≡ kr̄, we get,

s∞ =
1− e−4σ2

4σ2

σ≫1−→ 1

4σ2
(21.140)

f∞ =
1

4σ2

[
1− 1

2σ2
+

(
1 +

1

2σ2

)
e−4σ2

]
σ≫1−→ s∞ − 2s2∞ .

Hence,

Fza + Fze
Fz1

=
(2∆0/Γ)

2 + 1

(2∆0/Γ)2 +N2s2∞
N(s∞ − f∞) . (21.141)

Note that the radiation pressure calculated from Eq. (21.141) also holds for elongated
ellipsoidal Gaussian clouds characterized by an aspect ratio η > 1, even though the
expressions for the surface-integrated structure factors become more complicated.

It is revealing to compare the smooth density expressions (21.141) with numer-
ical simulations based on randomly generated atomic distributions from which the
structure factor is directly from the sum (21.68). Interestingly, we find in certain pa-
rameter regimes (in particular at low atom numbers) considerable deviations between
sN , fN and s∞, f∞ and consequently between the numerical simulations and the ana-
lytic calculations of the radiation pressure. We attribute these deviations to disorder
in the atomic cloud, which is not seen in the smooth density limit, but naturally
incorporated in the numerical approach.

By comparison to numerical simulations [black solid lines and blue circles in
Figs. 21.18(a)] we found that the surface-integrated structure factors in the presence
of disorder are well described by [80],

sN =
1

N
+ s∞ and fN = f∞ . (21.142)
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21.3.3.2 Cooperativity versus disorder

We expect disorder to play a dominant role, when the coarse graininess, which is
related to the average distance between two atoms, |ri − rj |, can be resolved by the
incident light. For the absorption process, this means that disorder gets important,
when the number of spatial modes supported by the pump laser in a radial cross
section of the atomic cloud,

Nca = s−1
∞ ≃ 4σ2 , (21.143)

(for voluminous clouds) surpasses the number of atoms, N < Nca. This is just the
case, when the mean resonant optical density (for a ray passing through the center of
the cloud x = y = 0) is larger than 1,

b0 =

∫ ∞

−∞
dz ρ(z)σopt =

3N

σ2
=

12N

Nca
> 1 , (21.144)

where σopt =
3λ2

2π is the resonant optical cross section and ρ(r) the spherical Gaussian
density distribution (21.139). For the scattering process, the number of modes avail-
able for the reemitted light also counts. Hence, the critical number of atoms that can
be resolved by light scattering is larger than Nca:

Nce = (s∞ − f∞)−1 ≃ 1
2 (2σ)

4 = 1
2Nca · σ2 . (21.145)
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Figure 21.18: (code) (a) Numerical evaluation of sN (blue circles) and fN (blue crosses) [134].

Analytical calculation of sN (black solid line) according to Eq. (21.142). Smooth density limit

of s∞ (red solid line) and f∞ (green crosses). The cloud is assumed spherical, η = 1, and

Gaussian with size σ = 5. (b) Numerical evaluation (blue circles) of the corresponding force

ratio as a function of atom number N for ∆0 = (2π) 2GHz and small collective saturation,√
NΩ0 ≪ ∆0. Analytical calculation in the smooth density limit (green solid line) and

according to Eq. (21.147) (black solid line). The magenta line traces the radiation pressure

force resulting from pump photon absorption only.

In order to simplify the discussion, we neglect saturation, Ω0 → 0. Using ∆0 ≫ Γ
and defining a third characteristic atom number,

Ncr =
2∆0

Γs∞
, (21.146)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
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Eq. (21.141) can be written,

Fc
F1
≃ 1 +N/Nce

1 + (N/Ncr)2
. (21.147)

In the limit of very large detunings, ∆0/Γ ≫ σ2 ≫ 1, the three introduced char-
acteristic atom numbers introduced in Eqs. (21.143), (21.145) and (21.146) satisfy
Nca < Nce < Ncr, and we obtain the N -dependence of the radiation pressure de-
picted in Fig. 21.18.

In the regime N < Nca, radiation pressure is dominated by the absorption process,
sN ≫ fN , because the emission is isotropic. The absorption radiation pressure exerted
on a hypothetical smooth density distribution occupying the same volume as the
atomic cloud [green line in Fig. 21.18] is dramatically reduced with respect to the
single-atom radiation pressure (cyan dash-dotted line). However, disorder suppresses
cooperativity and increases the radiation pressure up to the single-atom value. The
novelty as compared to Ref. [746] is the fact that cooperativity and disorder not only
influence the collective emission of a photon by an atomic cloud, but also the collective
absorption of a photon from a pump laser beam.

Neglecting the photon reemission at higher atom numbers would result in an in-
crease of radiation pressure in the regime Nca < N < Nce (magenta line). However,
in this regime, the emission process becomes increasingly important, sN ≃ fN , be-
cause the emission changes its radiation pattern from isotropic to forward scattering.
Consequently, the radiation pressure is reduced with respect to its purely absorptive
component. This regime is still ruled by disorder, so that the critical atom number
for the impact of disorder on the absorption process, Nca, has no impact. It does not
even show up in the formula (21.147).

In the regime Nce < N < Ncr, disorder steps back and cooperativity wins, so
that the radiation pressure approaches the smooth density limit. Since in this regime,
the smooth density radiation pressure depends on atom number like ∝ N , as already
shown in Ref. [176], we observe an increase of the radiation pressure beyond the single-
atom value. This is only possible, because the collective enhancement of absorption
(magenta line) rises as fast with N , as the collective enhancement of emission.

For even higher atom numbers, Ncr < N , the radiation pressure dramatically
alters its N -dependency from ∝ N to ∝ N−1. This change of behavior is not caused
by the interplay of cooperativity and disorder, but can be understood within the
framework of Mie scattering, as discussed in the next section.

21.3.3.3 Rayleigh-Debye-Gans versus Mie scattering

Radiation pressure is observed in many experiments, as it is the basis for optical
cooling techniques (like magneto-optical traps) and limits the efficiency of resonant
absorption imaging of cold atoms, because their acceleration leads to considerable
Doppler-shifts. However, as stated before, the impact of disorder on radiation pressure
can only be seen for large optical densities, b≫ 1, which may partially explain, why
this effect has not been observed until two experiments explicitly searched for it
[80, 68] (see Fig. 21.19).

Depending on the parameter regime chosen, the measurements exhibited in Fig. 21.19
present data for reduced or enhanced radiation pressure for larger N . As explained
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Figure 21.19: (code) (a) Double-logarithmic plot of the measured (symbols) and calculated

(lines) N dependence of the radiation pressure force. The red symbols and lines correspond

to the detuning ∆0 = (2π) 0.5GHz and the intensity I0 = 95mW/cm2. For the blue

symbols and lines, ∆0 = (2π)4GHz and I0 = 730mW/cm2. The red (bottom) and blue

(top) solid lines show calculations based on the full expression (21.141) without adjustable

parameters. The red (bottom) and blue (top) dotted lines represent just the fraction of

expression (21.141). The dash-dotted lines representing just the parentheses coincide for

both values of ∆0. (b) Same data as (a), but plotted as a function of the push beam phase

shift φ. In this diagram the dotted lines representing the fraction coincide for both values

of ∆0 [68].

above, the reduction is understood as microscopic Rayleigh scattering at disordered
atoms together with superradiant acceleration of the decay, while the enhancement
is observed when the bulk cloud becomes so small and dense that it turns into an
inhomogeneous dielectric sphere refracting and lensing incident light by macroscopic
Mie scattering.

The question then remains why the radiation pressure, with increasing N , after an
initial rise the drops again. To answer this question we must have a look at the phase
shift induced in the pumjp light by the cloud’s refraction index.. From calculations
done in Secs. 1.2.7 and 26.6.1 we know that (below saturation) the optical density b
and the phase shift φ are linked to the refraction index nrfr and the optical scattering
cross section σopt via,

ıb

2
+ φ =

ω

c

∫ ∞

−∞
[nrfr(r)− 1]dz =

(
ı− 2∆0

Γ

)
σopt(∆0)

∫ ∞

−∞
ρ(r)dz (21.148)

where σopt(∆0) =
2π

k2
Γ2

4∆2
0 + Γ2

and nrfr(r)− 1 = − 4πρ(r)

k30(2∆0/Γ + ı)
,

such that,

b = −σopt(∆0)

∫ ∞

−∞
ρ(r)dz = b0

Γ2

4∆2
0 + Γ2

and φ =
2∆0

Γ
b . (21.149)

Estimating coarsely k
∫∞
−∞[nrfr(r) − 1]dz ≃ σ[nrfr(r) − 1], where σ ≡ kr̄, we may

simplify,
ıb

2
+ φ = σ[nrfr(r)− 1] . (21.150)
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At high atom numbers (i.e. in the smooth density limit), the dependency of the radi-
ation pressure on atom number (21.147) exhibits a maximum at Ncr. For an atomic
cloud with density n and the resonant optical density b0, the characteristic atom num-
ber can be expressed in terms of the phase shift φ experienced by the pump laser beam
on its path across the cloud. Absorption losses for the pump beam (e.g. resonance
fluorescence, whose differential cross section contributes σopt to the total scattering
cross section [530]) is completely negligible at large detunings. Only elastic Rayleigh
scattering occurs, which in the smooth density limit of Mie scattering becomes pure
diffraction (real part of the refraction index). We can than understand the atomic
cloud as a non-absorbing dielectric sphere with a Gaussian index of refraction.

Rewriting Eq. (21.147) in terms of the refraction index,

Fc
F1
≃ N

1 + (2φ)2
2

(2σ)4
, (21.151)

we see that, as long as φ < 1
2 , the force increases linearly like ∝ N . The propor-

tionality comes from the perfect (in the sense of not spoiled by disorder) cooperative
enhancement of the scattering rate in the smooth density limit. The enhancement is
only limited by the finite size σ of the cloud, which is accounted for in the second
fraction. This regime, characterized by 14,

σ[nrfr(r)− 1]≪ 1 (21.152)

is termed the Rayleigh-Debye-Gans regime.

For larger phase shifts, φ > 1
2 , refraction more and more distorts the wavefront of

the pump beam, which spoils the pump mode depletion and hence reduces radiation
pressure. Consequently, the radiation pressure decreases again like N−1. This is the
Mie regime of scattering. The maximum is thus a pure diffraction effect, a so-called
Mie resonance. It corresponds to the nrfr, where the Rayleigh-Debye-Gans scattering
approximation looses its validity according to (21.152). In Excs. 21.3.5.3 and 21.3.5.4
we study Mie and Rayleigh-Debye-Gans scattering, and in 21.3.5.5 we discuss the
question is whether recoil is imparted to individual atoms or to the center-of-mass of
the whole cloud.

In the limit of the approximations made, our formula correctly describes the ra-
diation pressure force on extended objects. These objects can either be ensembles of
scatterers like homogeneous, ordered or disordered atomic clouds of arbitrary shapes
and volumes, or macroscopic objects like dielectric spheres. The formula thus rep-
resents a bridge between microscopic Rayleigh scattering and macroscopic Mie scat-
tering. At very low atom numbers, the atomic cloud basically represents a randomly
distributed bunch of scatterers, whose intrinsic disorder spoils cooperativity. The
radiation pressure is then well described by the single-atom value. At large atom
numbers, the atomic cloud forms a smooth density distribution characterized by an
almost perfect a cooperativity, which is only limited by Mie scattering.

14Note the necessity of another condition [nrfr(r) − 1] ≪ 1 termed Born approximation, which
demands that the incident wave be not appreciably reflected.
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21.3.3.4 Light scattering in the continuous density approximation

The scalar electric field scattered by an arbitrary distribution of atoms has been
calculated in (21.49). In the continuous density approximation (21.117), we get,

E⃗sct(r) = −
ıℏΓ
2d

N∑

j=1

eık0|r−rj |

ık0|r− rj |
βj(∞)→ − ıℏΓ

2d

∫
d3r′ρ(r′)

eık0|r−r′|

ık0|r− r′|β(r
′,∞) .

(21.153)
In particular, for a timed Dicke state,

E⃗sct(r) = −
ıℏΓ
2d

√
NΩ0

2∆0 + ıΓNsN

N∑

j=1

eık0|r−rj |

ık0|r− rj |
(21.154)

→ − ıℏΓ
2d

√
NΩ0

2∆0 + ıΓ(1 +Ns∞)

∫
d3r′ρ(r′)

eık0|r−r′|

ık0|r− r′| .

21.3.4 Spherical harmonics expansion and generalized timed
Dicke state

The results derived in (21.141) assumed the cloud to be in a timed Dicke state. As
we have seen in Exc. 21.1.8.5, timed Dicke states do not account for pump laser phase
shifts induced by the cloud’s refraction index. The timed Dicke states might work
well for homogeneous cylinders, but not for ellipsoidal clouds, which we assume in our
analytical treatments. Therefore, a better approach consists in expanding the cloud
into spherical harmonics. Under the assumption that the cloud is radially symmetric,
ρ(r) = ρ(r), we get [286],

β(r, θ, t) =

∞∑

n=0

√
2n+ 1

4π
αn(t)jn(k0r)Pn(cos θ)e

−ık0r cos θ , (21.155)

where the coefficients αn are the solutions of,

α̇n =

[
ı∆0 −

Γ

2
(1 + λn)

]
[αn − αn(∞)] , (21.156)

In steady state,

αn(∞) =
2ın
√
π(2n+ 1)Ω0

2∆0 + ıΓ(1 + λn)
, (21.157)

where,

λn ≡ 4π

∫ ∞

0

drρ(r)j2n(k0r) (21.158)

is the decay rate of eigenmode n.
Inserting this into the steady-state solution (21.121) and integrating over the vol-

ume,

⟨β∞⟩ ≡
2π

N

∫ 2π

0

dθ sin θ

∫ ∞

0

dr2ρ(r)β(r, θ) =
Ω0

N

∞∑

n=0

(2n+ 1)λn
2∆0 + ıΓ(1 + λn)

(21.159)

⟨|β∞|2⟩ ≡
2π

N

∫ 2π

0

dθ sin θ

∫ ∞

0

dr2ρ(r)|β(r, θ)|2 =
Ω2

0

N

∞∑

n=0

(2n+ 1)λn
4∆2

0 + Γ2(1 + λn)2
.
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Example 121 (Spherical harmonics expansion for a Gaussian density
distribution): The density distribution determines the coefficients λn. For a

Gaussian distribution n(r) = N/[(2π)3/2σ3
R]e

−r2/2σ2
R using the sine kernel,

λn = N

√
π

2

e−σ
2

σ
In+1/2(σ

2) .

For a homogeneous sphere, n(r) = n0, of radius σ = k0R, using the sine kernel
[[805], Eq. (18)],

λn =
3N

2
[j2n(σ)− jn−1(σ)jn+1(σ)] .

21.3.4.1 Expansion of the radiation pressure forces

This allows us to calculate the forces,

Fa = −ℏk0Ω0ΓIm ⟨β∞⟩ (21.160)

Fe = −ℏk0Ω2
0Γ

∞∑

n=0

2(n+ 1)λnλn+1[4∆
2
0 + Γ2(1 + λn)(1 + λn+1)]

[4∆2
0 + Γ2(1 + λn)(1 + λn+1)]2 + 4∆2Γ2(λn+1 − λn)2

.
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Figure 21.20: (code) (a) Absorption, (b) emission, and (c) total force for a Gaussian cloud

with the following parameters: σ = 2, ∆0 = 10Γ, Ω0 = 0.001Γ, and η = 1. The magenta

dots show a fully numerical calculation for a randomly generated cloud according to formula

(21.63). The red lines show a calculation according to the complete formula (21.160). The

cyan dots show a calculation assuming timed Dicke states according to (21.82) via numerical

calculation of the structure factor according to (21.83) for the same randomly generated

cloud as for the full simulation. The blue lines are obtained within the timed Dicke state

approximation with structure factors estimated from formula (21.141). (d-f) Same as (a-c)

but with σ = 0.2.
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As seen in Fig. 21.20, the results obtained via the complete analytical formula
(21.160) coincide with the fully numerical simulations according to formula (21.63).
But both disagree with analytical and numerical results obtained within the timed
Dicke state approximation.

It is possible to approximate the Bessel function In+1/2(σ
2) and to obtain analyt-

ical solutions. The new formula works for σ ≫ 1 and η = 1 [286],

Fa =
Ω2

0

Γ

σ2

N
ln

(
1 +

N2Γ2sN
σ2(4∆2

0 + Γ2)

)
=

Ω2
0

4NΓs∞
ln

(
1 +

4N2Γ2s∞sN
4∆2

0 + Γ2

)
(21.161)

Fe = −Fa +
Ω2

0

∆0

σ2

N
arctan

∆ΓN

σ2
(
4∆2

0 + Γ2 + Γ2N
2σ2

) =
Ω2

0

4N∆0s∞
arctan

4∆0ΓNs∞
4∆2

0 + Γ2 + 2Γ2Ns∞

b0 =
3N

σ2

sN =
1

N
+ s∞ =

1

N
+

1

(2σ)2
.

21.3.4.2 Expansion of the scattered radiation intensity

The incident electric field is ...

The radiated electric field
ˆ⃗E(+)(r, t)|ψ⟩ where ˆ⃗E(+)(r, t) =

∑
k εkâke

ık·r−ıωkt,

ˆ⃗E(+)(r, t)|ψ⟩ =
∑

k

εkγk(t)e
ık·r−ıωkt|0⟩|1⟩k (21.162)

= −ıVphgk0εk0k0
4πc
√
N

e−ıω0t
N∑

j=1

βj(t)e
ık0·rj e

ık0|r−rj | − e−ık0|r−rj |

|r− rj |
.

We neglect the second term, which describes an incoming wave and go to smooth
densities. We expand into spherical harmonics and obtain,

ˆ⃗E(+)(r, t)|ψ⟩ = e−ıω0t
∞∑

n=0

Vphgk0εk0
c
√
N

λn
2∆0 + ıΓ(1 + λn)

Ω0(2n+1)ınh(1)n (k0r)Pn(cos θ) .

(21.163)

21.3.4.3 Mie resonances

It is an interesting question whether the maxima found in the curves of Fig. 21.20 can
be associated with Mie resonances [96, 775, 71]. To show this we need to apply the
formalism of Mie scattering to atomic clouds with the smooth density approximation,
where it is described by a continuous refraction index, as studied in Ref. [39]. The Mie
formalism had been developed for homogeneous spheres, which can be dielectric or
absorptive. For more general refractive index distribution the formalism gets quickly
cumbersome 15. Also Mie resonances are generally though of being conditioned to
the existence of sharp boundaries.

The results of Ref. [39] surprisingly show that Mie resonances are expected for
parabolic distributions of atoms, as is the case for example for Bose-Einstein con-
densates in the Thomas-Fermi limit. However, the spectra of Mie resonances exhibit

15There is a treatment for parabolic radial variations [455].
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much less structure. This is understood by the fact that ’whispering galery’ Mie reso-
nances may live on the surface of a sphere whose refraction index drops quadratically
to zero, while cavity type Mie resonances may not.

21.3.5 Exercises

21.3.5.1 Ex: Structure coefficient of a homogeneous spherical and of a
Gaussian ellipsoidal cloud

a. Calculate the structure coefficient of a homogeneous spherical cloud of radius R,
and discuss the limits qR < 1 and qR < 1. Plot the structure coefficient as a function
of θ for various radii R.
b. Calculate the structure coefficient of an ellipsoidal Gaussian cloud having the rms-
widths σz and σr, and discuss the limits qR < 1 and qR < 1. Plot the structure
coefficient as a function of θ for various aspect ratios σz/σρ.

21.3.5.2 Ex: Force coefficients of a homogeneous spherical and of a
Gaussian ellipsoidal cloud

a. Calculate the force coefficients sN , f̃N , and fN from the Eqs. (21.66), Eqs. (21.78),
and Eqs. (21.86), respectively, for a homogeneous spherical cloud of radius R.
b. Repeat the calculation of (a) for an ellipsoidal Gaussian cloud having the rms-
widths σz and σr.

21.3.5.3 Ex: RDG and Mie

Estimate whether it is possible to distinguish Rayleigh-Debye-Gans scattering from
Mie scattering in strontium spectra.

21.3.5.4 Ex: Mie scattering from absorbing spheres

Calculate the force on a homogeneous dielectric sphere as a function of the absorptive
and dispersive part of the refraction index [455].

21.3.5.5 Ex: Momentum halos and heating, is the recoil cooperative?

Discuss the question is whether recoil is imparted to individual atoms or to the center-
of-mass of the whole cloud.

21.4 Scattering from disordered and dense clouds

21.4.0.1 Vectorial light

The procedure can be generalized to the vectorial case [764, 763, 559], where we get
a similar steady-state solution as in (21.37),

β⃗j = (Mjm)−1 ϵ̂ ı
2Ω0(rm) , (21.164)
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only that the dipole moment amplitudes and the incident light field are now considered
as vectors. The expression for the matrix Mjm is the same as in (21.36). However,
the vectorial kernel must be calculated in a different way. Using the abbreviations,

rjm = rj−rm , rjm = |rj−rm|+δjm , cjm =
ı

k0rjm
− 1

(k0rjm)2
, (21.165)

the new vectorial kernel can be written,

γ
(3)
jm =

3γjm
2

(1 + cjm)r2jmδmn − (1 + 3cjm)rjmr⊺jm
r2jm

. (21.166)

The steady-state scattered light field and the total field are now,

E⃗sct(r) = − ıΓ
2

N∑
j=1

3γoj(r)

2

(1 + coj(r))k
2
0|r− rj |2β⃗j − (1 + 3coj(r))[(r− rj) · β⃗j ](r− rj)

|r− rj |2
.

(21.167)

A movie can be assisted at (watch movie).

21.4.0.2 Coherent backscattering

Shining coherent light on a homogeneous cloud, we expect no coherent scattering
(exception made of multiple-atom scattering in backward direction, CBS and of fluc-
tuations like speckle patterns). Like radiation trapping, coherent backscattering (CBS)
is a manifestation of interference in multiple scattering. Just like photon echoes it
is not due to interatomic correlations. While in radiation trapping this leads to an
energy storage inside the atomic cloud connected to destructive interference of the ra-
diation emitted to the cloud’s outside, when the coherent beam is reflected at a diffuse
scattered, one observes speckle patterns. This holds as well for laser light reflection as
for atomic wave reflections at a rough surface. See also (watch talk).

The coherent backscattering is an effect of constructive interference between two
light scattering paths having the exact time-reversed single scattering sequence,

I =

∣∣∣∣∣∣
∑

j

E⃗jeıφj

∣∣∣∣∣∣

2

=
∑

j

∣∣∣E⃗j
∣∣∣
2

+
∑

j ̸=k
E⃗j E⃗∗keı(φj−φk) . (21.168)

Only the second term makes speckles. However, the atomic motion smoothes out
the speckle pattern in all directions. Only in the presence of correlations in the
atomic positions they do not. E.g. in crystals or in the backscattering directions.
Therefore, the constructive interference depends strongly on the backscattering angle
ϑ. Fast atomic motion internal excitations can dynamically break the time-reversal
symmetry of the scattering path, esp. when the laser is close to resonance and the
phase delay per scattering process is long. Coherent backscattering is a weak form of
Anderson localization (also strong localization) of light.

21.4.1 Exercises

21.4.1.1 Ex: The green flash

Discuss whether the ’green flash’ at sunset could be due to superradiant extinction.
It can last seconds because refraction sweeps the ray through the spectrum (see the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Cooperativity_CDMScalar_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/MirrorCBS
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_LocalizationShift01.pdf
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movie Le rayon vert by Éric Rohmer).

21.4.1.2 Ex: Faraday effect with vectorial kernel in the coupled dipoles
model

Try to simulate the pump laser phase shift and lensing by a small dense cloud by the
coupled dipoles model for red and blue detuning. Discuss the influence of rescattering.

21.5 Scattering from periodic structures and pho-
tonic bands

Long-range spatial ordering can have a dramatic influence on the propagation of light
and the cooperativity of scattering, as we have already pointed out in the introduction
of the structure factor in Sec. 21.1.1. This is true for the scattering of electronic waves
in crystals. But atomic gases can also be arranged in periodic luminous potentials
generated by dipolar forces (introduced in Sec. 20.2.2) exerted by counterpropagating
laser beams. Such potentials, called optical lattices, can be realized with various
geometries in 1, 2 or 3 dimensions.

Periodic structures are usually probed by Bragg scattering. This procedure can
be applied to atoms ordered in optical lattices [82, 856, 766, 768]: A test beam with
wavevector kbrg and intensity Ibrg is irradiated into the atomic cloud, and the power
Ps of the first-order reflected beam by Bragg is detected under a solid angle Ωs. Bragg
diffraction is an interference effect of radiation patterns emitted by Rayleigh scattering
from periodically aligned point-like antennas, the interference being constructive in
only specified directions.

For optically dilute lattices, where multiple reflections can be neglected, the imag-
inary part of the atomic response is sufficient to describe Bragg reflection. For op-
tically dense lattices, multiple reflections between consecutive atomic layers lead to
interference phenomena between reflected and transmitted light fields and cause the
emergence of frequency bands, inside which the propagation of light waves through
the cloud is prohibited. These bands are known as forbidden photonic bands.

Photonic bands in optical lattices are interesting for several reasons:

1. They may facilitate the study of the phenomenon of Anderson localization. In
fact, Anderson location of light in atomic gases requires very high densities or
very large optical cross sections. Now, it is expected that, if the disorder is
realized within periodic structures near the Bragg condition, the high density
requirement is dramatically relaxed.

2. They modify the local density of states in a way to suppress spontaneous emis-
sion.

3. In optical lattices, unlike other systems, the scattering is very weak except when
the light is tuned close to atomic resonances. Consequently, the expected for-
bidden bands are very narrow. This bears the advantage that we can adjust
the optical density and tune the photon energy and the Bragg angle (i.e. the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_LocalizationShift02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_LocalizationShift02.pdf
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quasi-momentum) independently, which facilitates the mapping of the disper-
sion relation.

4. Crystals are always hampered by defects in the periodicity [473]. In latest-
generation photonic crystals, the typical distance over which coherent light turns
diffuse is limited to less than 20 µm. This limitation plays no role in optical
lattices, where the delocalized photons rigorously guarantee perfect long-range
order, even though the Debye-Waller factor may introduce local disorder.

Spectra of photonic bands in atomic clouds were detected experimentally [735]
in one-dimensional structures. Most of the above mentioned effects require omnidi-
rectional photonic bands, but this is technically very difficult, mainly because of the
narrow linewidth of the atomic transitions. We will develop this point in the course
of this section. We also mention the prediction of forbidden photon bands in Bose
condensates [554].

A presentation on this subject is available here (watch talk).

21.5.1 Bragg scattering

21.5.1.1 The reciprocal lattice

Let us consider a periodic direct lattice in real three-dimensional space whose elemen-
tary cells are located at positions,

Rn = n1a1 + n2a2 + n3a3 , (21.169)

where n = (n1, n2, n3) with nj ∈ Z and aj are linearly independent vectors describing
the distance of two adjacent elementary cells [182]. Functions extended over the
lattice, e.g. density distributions, are then supposed to be periodic,

n(r) = n(r+Rn) , (21.170)

such that they can be expanded in Fourier series similarly as we did for the introduc-
tion of the Bloch waves in Sec. 4.1,

n(r) = 1
V

∑

m

ρme
ıGm·r , (21.171)

where m = (m1,m2,m3) with mj ∈ Z. The Fourier coefficients are 16,

ρm =

∫ a1

0

∫ a2

0

∫ a3

0

n(r)e−2πı(m1x/a1+m2y/a2+m3z/a3)dxdydz =

∫ 1

0

n(r̃)e2πım·̃rd3r̃ .

(21.172)
The condition (21.170) then yields,

n(r) = 1
V

∑

m

ρme
ıGm·r = 1

V

∑

m

ρme
ıGm·reıGm·Rn = n(r+Rn) , (21.173)

from which we conclude that the vectors Gn of the reciprocal lattice must satisfy,

1
2πGm ·Rn ∈ Z . (21.174)

16In crystallography ρm is called structure factor, but it is not to be confused with the structure
factor defined in (21.5).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/PhotonicBands
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Example 122 (The reciprocal lattice in crystallography): In three dimen-
sions the reciprocal lattice can be constructed by,

Gm = m1b1 +m2b2 +m3b3 (21.175)

with b1 ≡ a2 × a3

V
, b2 ≡ a3 × a

V
, b3 ≡ a1 × a2

V

and V ≡ a1 · (a2 × a3) .

Knowing the density n1(r) within a single cell, which is often the case when the
overlap between the density distributions of adjacent cells is negligible, we can write
the global density distribution as,

n(r) = n1(r) ⋆
∑

m

δ(3)(r−Rm) . (21.176)

Example 123 (Elementary cell with Gaussian distribution): With the

ansatz n1(r) = n0e
−r2/2r̄2 , such that

∫
n1(r)d

3r = n0(2π)
3/2r̄3 = N1,

ρ(∆k) =
∑
m

eım∆k·R
∫
V

n1(r)e
ı∆k·rd3r (21.177)

=
1− eıNs∆kR

1− eı∆kR × n0

∫
V

e−x
2/2r̄2e−y

2/2r̄2e−z
2/2r̄2eı∆k·rd3r

≈ Nsδ(∆k − 2π/R)n0(2π)
3/2r̄3e−6∆k2r̄2 = Nδ(∆k − 2π/R)e−6∆k2xr̄

2

.

21.5.1.2 Impact of disorder in one-dimensional lattices

A wave be incident on a lattice in the direction k0 and scattered into the direction
ks ≡ k0 +∆k. The structure coefficient ρm describes the amplitude of radiation field
scattered by the lattice,

ρm =

∫

V

ρ(r)eı∆k·rd3r . (21.178)

Let the density distribution be,

n(r) =
∑

j

ρj(r) ⋆ δ
(3)(r− rj) = n1(r) ⋆

∑

j

δ(r− jêz λdip

2 ) , (21.179)

that is, for perfect periodicity, introducing the density distribution of a unit cell and
a 1D lattice.

The Debye-Waller factor describes the diffusion of the density over the sites of the
lattice due to the thermal motion,

ρm =

∫

V

n1(r)e
ı∆k·rd3r

∑

j

eı(jêzλdip/2+u)∆k (21.180)

= fi
∑

j

eı(jêzλdip/2+u)∆k = ρmeıu∆k ,
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with
eıu∆k ≈ e−|G|2u2/6 . (21.181)

Example 124 (Optical lattice): The exponential distribution e−6∆k2xr̄
2

is
called Debye-Waller factor and describes the smearing out of the population
over the lattice due to the thermal motion of the atoms. The δ-function sets
the wavevector of emitted light. That is, the power of light is only emitted in
particular directions given by the Bragg condition. Here, the solid angle ∆Ωs

does not depend on the thermal distribution (as long as the atoms are within
the Lamb-Dicke regime), but on the lattice size, which determines the goodness
of the approximation of the Airy function (the sum in the above equation) by
a Dirac δ-function. The width of the Airy function for a lattice of size w0 is
approximately ∆k = 2

√
3/w0. With this the solid angle is,

∆Ωs =
12

k2w2
0

. (21.182)

We can also estimate the solid angle from the diameter d of the Gaussian beam
at a distance x away from a scattering medium of size w0,

d = w0

√
1 +

(
λx

πw2
0

)2

(21.183)

∆Ωs =
πd2

x2
=

λ2

πw2
0

=
4π

k2w2
0

.

The power scattered into this solid angle is,

Ps = |As|2F 2∆Ωs = |As|2e−2WN2∆Ωs . (21.184)

It depends quadratically on the number of atoms. Strictly speaking, the deriva-

tion only applies to perfectly ordered lattices, i.e. all the lattice sites are equally

occupied. Defects lead to diffuse scattering, i.e. a background of isotropically

distributed power at the expense of Bragg scattering. The sharpness of the

Bragg radiation distribution remains intact.

We parametrize the density in an optical 1D lattice as follows:

nl(r) = n0e
(−x2−y2)/2σ2

re−z
2/2σ2

z (21.185)

na(r) =

Ns∑

m=1

δ(r−mdêz) ⋆ nl(r) =
Ns∑

m=1

nl(r−mdêz) .

We will show in Exc. 21.5.5.1, that the structure factor is then,

Sk0
(k) =

n0
N

1− eıNsdqz

e−ıdqz − 1
e−q

2
xσ

2
r/2e−q

2
yσ

2
r/2e−q

2
zσ

2
z/2 . (21.186)

In Exc. 21.5.5.2 we derive the structure factor in spherical coordinates.
Some comments are needed:

1. The structure factor treatment assumes low optical density, which is not neces-
sarily guaranteed when the laser is tuned close to a resonance [766].

2. As the structure factor is independent of the laser detuning, it will not reveal
any spectral structure, such as a band-gap or dip due to diffuse scattering. Also,
absorption is not incorporated into the model.
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21.5.1.3 The structure factor and the Bragg condition

The reciprocal space, obtained by Fourier transformation of the periodic density dis-
tribution, also adopts the shape of a periodic lattice. The Bragg condition requires
that the difference between the incident and emitted wavevectors, ∆k ≡ ks − ki,
matches a vector of the reciprocal lattice, rj = jG. The Bragg condition is thus
automatically incorporated into the structure factor (21.191).

Figure 21.21: Several Bragg lattices.

With the lattice constant d = 1
2λdip the interference is constructive when the

difference of the paths of two beams reflected by different layers is a multiple of the
wavelength,

1
2λdip cosβi +

1
2λdip cosβs = λ . (21.187)

This is illustrated in Fig. 21.21(a). If the transverse distribution can be considered as
homogeneous, as shown in Fig. 21.21(b), we have as second condition,

βi = −βs . (21.188)

That is, the angles of incidence and reflection must be the same, as if we were dealing
with a dielectric mirror. In contrast, if the transverse extent of the atomic layers gets
smaller (until converging to the limit of a one-dimensional chain of point-scatterers,
G ≡ 2kdipêz), we return to the condition (21.187). In intermediate situations, illus-
trated in Fig. 21.21(c), and for λdip cosβi ̸= λ the reflection angle does not follow any
of the relations (21.187) and (21.188).

21.5.1.4 Incoherent background

A finite size or defects in the periodic ordering of the atoms may lead to an isotropic
background of Rayleigh-scattered light,

dPs
dΩs

= |As|2
[
e−2W |F |2 +N1N(1− e−2W )

]
. (21.189)

The amount of photons scattered into the same solid angle as the one of Bragg
scattering is typically for 1D lattices,

(1− e−2W )N1N

e−2W |F |2 = (e2W − 1)
N1

N
≈ 0.002 . (21.190)

However, if we compare the total amount of coherently Bragg-scattered light, we
obtain,

(1− e−2W )N1N

e−2W |F |2
4π

dΩs
≈ 2500 . (21.191)
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21.5.2 Scattering and transfer matrices

For one-dimensional optical lattices, that is, when the atoms are trapped in a po-
tential dipole generated by a stationary light wave, we may consider applying the
transfer matrix formalism developed in Secs. 2.3. The premisses of this model are
the homogeneity and the infinite extent of the cloud in a direction transverse to the
optical axis.

Figure 21.22: Scheme for transfer matrices calculations on 1D-lattices.

With the notation introduced in Fig. 21.22 we find the equations relating the
incident electric fields with the transmitted and reflected ones. If the T -matrix and
the S-matrix are defined by [226],

(E+z
E−0

)
= S

(E+0
E−z

)
and

(E+z
E−z

)
= T

(E+0
E−0

)
, (21.192)

they are connected by,

S =

(
S11 S12

S21 S22

)
=

(
T11 − T12T21

T22

T12

T22

−T21

T22

1
T22

)
(21.193)

and T =

(
T11 T12
T21 T22

)
=

(
S11 − S12S21

S22

S12

S22

−S21

S22

1
S22

)
.

Depending on the boundary conditions the S and T -matrices can have very different
shapes. For example, for classical beam splitters we require energy conservation, while
for atomic scatterers we require reciprocity, meaning that the S shall not depend on
the direction of incidence. On the other hand, energy does not need to be conserved,
since it may be dissipated via spontaneous emission.

21.5.2.1 Transfer matrices for propagation in free space

Propagation in free space along the optical axis by a distance d is described by the
matrices,

Sd =
(
eıkd 0

0 eıkd

)
, Td =

(
eıkd 0

0 e−ıkd

)
. (21.194)

The determinants are,
detSd = e2ıkd ̸= 1 = det Td , (21.195)
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which shows that only the T -matrix is unitary.
If the incident beam hits the cloud under an angle, k · d = kd cos θ = kzd, the

T -matrix must be generalized 17,

Td =
(
eık·d 0

0 e−ık·d

)
. (21.197)

21.5.2.2 Transfer matrices for beam splitters

Beam splitters are described by the matrices,

Sbs =
(
tbs −rbs
rbs tbs

)
, Tbs =

(
tbs +

r2bs
tbs

− rbstbs
− rbstbs

1
tbs

)
=

(
1 − rbstbs
− rbstbs

1
tbs

)
, (21.198)

where the beam splitter transmissity tbs and reflectivity rbs are real numbers. These
matrices satisfy the energy conservation condition,

1 = |S11|2 + |S21|2 = |tbs|2 + |rbs|2 = |S12|2 + |S22|2 (21.199)

0 = S11S
∗
12 + S21S

∗
22 .

Also,
detSbs = t2bs + r2bs = 1 = det Tbs . (21.200)

21.5.2.3 Transfer matrices for atomic scatterers

Atomic scatterers are described by the matrices,

Sat =
(
tat rat
rat tat

)
, Tat =

(
tat − r2at

tat
rat
tat

− rattat
1
tat

)
. (21.201)

Note, that t and r may be complex numbers.
For the S-matrix we find,

I = S†atSat =
( |tat|2 + |rat|2 t∗atrat + r∗attat
t∗atrat + r∗attat |tat|2 + |rat|2

)
. (21.202)

Apparently, the S-matrix does not describe a unitary transform unlike the T -matrix,
for which we find that by construction,

detSat = t2at − r2at ̸= 1 = det Tat . (21.203)

To evaluate the components of the scattering matrices, we calculate the reflection
coefficient β of a classical polarizable sample from the microscopic polarizability and

17Furthermore, as shown in [226] Eq. (A10), the single-atom reflection coefficient must be gener-
alized by replacing,

β → β

2
(cos−1 θ + cos θ) . (21.196)

However, for θ < 60◦ the correction is small.



21.5. SCATTERING FROMPERIODIC STRUCTURES AND PHOTONIC BANDS841

the optical density (depth) of a thin layer, n δz σ0, where σ0 is the resonant optical
cross section,

β = n
kbrg δz

2

αpol

ε0
=
n δz

2

6π

k2brg

−1
ı+ 2∆brg/Γ

=
n δz σ0

2

−1
ı+ 2∆brg/Γ

. (21.204)

We remember that the polarizability is linked to the macroscopic susceptibility χe =
nαpol/ε0

18. The reflection and transmission coefficients are now,

rat =
ıβ

1− ıβ and tat =
1

1− ıβ . (21.205)

Example 125 (Absorption and spontaneous emission): The real part of
both coefficients is associated to amplitude and the imaginary part to phase,

Re tat =
1

1 + β2
= 1 +Re rat , Im rat =

β

1 + β2
= Im tat . (21.206)

Let us also recalculate the quantities (21.202),

|detSat| = |t2at − r2at| =
∣∣∣∣1 + ıβ

1− ıβ

∣∣∣∣ ?
= 1 (21.207)

|tat|2 + |rat|2 =
1 + ββ∗

1− ıβ + ıβ∗ + ββ∗
?
= 1

ratt
∗
at + r∗attat =

ıβ − ıβ∗

1− ıβ + ıβ∗ + ββ∗
?
= 0 .

This means that the S-matrix is not unitary, unless the imaginary part of the
β-coefficient vanishes. A look at the expression (21.204) tells us, that this comes
down to neglecting spontaneous emission, which only is a good assumption far
away from resonance,

β
∆brg≫Γ−→ n δz σ0

2

2∆brg/Γ

1 + 4∆2
brg/Γ

2
≃ n δz σ0Γ

4∆brg
. (21.208)

On the other hand, the fact that the T -matrix is always unitary makes a good

choice for theoretical calculations.

With the substitution (21.205) we get for the scattering and the transfer matrices,

Sβ =
1

1− ıβ

(
1 ıβ

ıβ 1

)
and Tβ =

(
1 + ıβ ıβ

−ıβ 1− ıβ

)
. (21.209)

We note that the employed model is classical, since we describe the gas by a
sequence of layers, each characterized by a refractive index. Applying the transfer
matrix model, we calculate how the incident and reflected light fields transform from
one layer to another. The intrinsically 1D model allows to calculate the reflection,
transmission, and absorption by the atomic lattice as a function of the incident laser
frequency.

18Note the analogy to the calculation (22.34) made for the reflection coefficient of an atom in a
cavity in Sec. 22.1.2,

β =
k

πw2

αpol

ε0
=

6

k2w2

−1

2∆/Γ + ı
=

σ0

πw2

−1

2∆/Γ + ı
.



842 CHAPTER 21. COOPERATIVITY IN LIGHT SCATTERING

21.5.2.4 Concatenating transfer matrices

Transfer matrices for propagation through a structure, such as the passage through
an interface between media with different reflective indices or absorption by a homo-
geneous atomic gas, are obtained by concatenating the matrices. For example, the
propagation of the incident beam through the layer, such that the transfer matrix for
passing the beam through an atomic layer is,

T = Tβ Td . (21.210)

For a periodic structure with Ns identical layers we must obviously concatenate the
matrices like T Ns .

The reflection coefficient is obtained from the S-matrix,

(E+z
E−0

)
= S

(E+0
E−z

)
=

(
T11 − T12T21

T22

T12

T22

−T21

T22

1
T22

)(E+0
E−z

)
. (21.211)

If no beam enters the structure form the reverse side, E−z = 0,

(E+z
E−0

)
−→

((
T11 − T12T21

T22

)
E+0

−T21

T22
E+0

)
. (21.212)

Hence, the total reflectivity and transmissivity of the structure are,

t ≡ E
+
z

E+0
= T11 −

T12T21
T22

, r ≡ E
−
0

E+0
= −T21

T22
. (21.213)

and can be evaluated numerically or analytically [226].

21.5.2.5 Intensity distribution and within a structure

The transfer matrix formalism outlined in Sec. 21.5.2 not only allows to calculate the
overall reflectivity of a structure, but also the local intensity I ∝ |E+a + E−a |2 at a
point z = a inside a structure assumed to extend between an input at z = 0 and an
output at z = b of the optical axis [767]. To calculate this intensity, we first derive
the scattering matrix for the total structure,

(E+b
E−b

)
= T

(E+0
E−0

)
⇐⇒

(E+b
E−0

)
= S

(E+0
E−b

)
, (21.214)

and then set up the transfer matrix T (a) from z = 0 to z = a with 0 < a < b and
obtain the intensity as,

(E+a
E−a

)
= T (a)

(E+0
E−0

)
= T (a)

(E+0
0

)
+ T (a)

(
0

E−0

)
= X (a)

(E+0
E−b

)
, (21.215)

defining

X (a) ≡ T (a)

[(
1 0

0 0

)
+

(
0 0

0 1

)
S
]
. (21.216)
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In the last step we used (21.211) and exploited the boundary condition that, E+0 being
preset, there is no reflection of light behind the structure. Explicitly,

(E+a
E−a

)
= T (a)

(
1

−T21/T22

)
E+0 . (21.217)

The sum gives,

E+a + E−a =

(
T (a)
11 + T (a)

21 −
T21
T22

(T (a)
12 + T (a)

22 )

)
E+0 . (21.218)

Fig. 21.23 shows as an example the intensity distribution inside an optical lattice.
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Figure 21.23: (code) The intensity decreases exponentially over a infinite lattice. For a

finite lattice (here Ns = 1000), the intensity approaches a constant value at the end of

the lattice. The graphs show in solid blue the intensity evaluated at each lattice site, in

dash-dotted red the exponential decay due to absorption in a homogeneous cloud (Lambert-

Beer law), in dashed green the hyperbolic decay following Ohm’s law (calibrated to Lambert

Beer’s law), in cyan the transmission at the end of a lattice of j layers. The parameters are

∆a = Γ/2, average density n = 1011 cm-3, and for panel (a) ∆lat = 5 · 108Γ while for panel

(b) ∆lat = 5 · 108Γ.

21.5.2.6 Transfer matrices for optical cavities

The transfer matrix formalism can be applied to obtain the transmission and reflection
spectra of optical cavities. It can be extended to ring cavities and, in the presence of
(non-saturated) atoms interacting with the cavity, it correctly describes normal mode
splitting [180].

21.5.3 Transfer matrices for optical lattices

A particularly interesting application if the transfer matrix formalism are optical
lattices, which we will treat in the following.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m


844 CHAPTER 21. COOPERATIVITY IN LIGHT SCATTERING

21.5.3.1 Limit of optically dilute clouds

For optically dilute clouds, r ≪ 1, we expect standard Bragg scattering. The atomic
transfer matrix (21.209) can be approximated by,

Tβ =

(
1 ıβ

−ıβ 1

)
, (21.219)

so that we find for the single-layer and transfer matrix,

T = TβTd ≃
(

eıkzd ıβe−ıkzd

−ıβeıkzd e−ıkzd

)
. (21.220)

Near the Bragg angle we have cos θ ≃ cos θbrg = λsp/λdip and near resonance we have
2π/k = λ ≃ λsp, so that, with d = λdip/2, we obtain kzd ≃ π and,

T Ns ≃
(

eıπ ıβe−ıπ

−ıβeıπ e−ıπ

)Ns

=

(−1 −ıβ
ıβ −1

)Ns

= (−1)Ns

(
1 Nsıβ

−Nsıβ 1

)
,

(21.221)
which we will verify in Exc. 21.5.5.3. The total reflectivity being rNs

≃ Nsıβ, we get
the reflection,

|rNs |2 ≃
N2
s β

2
spΓ

2
sp

4∆2 + Γ2
sp

. (21.222)

Thus, the profile of the reflection curve is Lorentzian.

Example 126 (Estimation of the reflectivity in the dilute cloud limit): In
resonance we estimate for typical experimental values Ns = 1000, n = 1017 cm3,
λdip = 797 nm, and Λbrg = 422 nm,

|rNs | = Ns
ndσsp

2
= Nsnλdip

3λ2
sp

8π
≈ 1.7 .

The high reflectivity is not physical, which shows that the assumption of op-

tically diluted clouds is not necessarily satisfied in experimentally achievable

parameter regimes. On the contrary we can expect to reach regimes, where the

clouds are optically so dense, that photonic bands can be expected. That is,

if the goal is to detect a band gap, it helps to have (1) many layers filled with

atoms, (2) high atomic densities per layer.

21.5.3.2 Limit of optically dense clouds

In order to obtain analytical expressions in the regime of dense clouds, we write the
transfer matrix for a single layer, using the expressions (21.209) and (21.211), as
follows [226],

T = TβTd =
(
(1 + ıβ)eık·d ıβe−ık·d

−ıβeık·d (1− ıβ)e−ık·d
)

. (21.223)

Given that det T = 1, the matrix represents a unitary transformation and the eigen-
values can be cast into the form e±ıϕ. Letting,

cosΘ ≡ 1
2Tr T = cos kzd− β sin kzd , (21.224)
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we can write the matrix,

T = I cosΘ + ıA sinΘ = eıΘA (21.225)

with

A =
1

sinΘ

(
β cos kzd+ sin kzd βe−ıkzd

−βeıkzd −β cos kzd− sin kzd

)
(21.226)

The eigenvectors of T , and therefore of each power of T , are Bloch states of the periodic
lattice. We verify in Exc. 21.5.5.4, that the following relationships are satisfied,

Tr A = 0 , A2 = 1 , detA = 1 . (21.227)

The eigenvalues of A sinΘ are λA ± 1. The eigenvalues of the transfer matrix are,

λ = cos kzd− β sin kzd± ı
√
1− (cos kzd− β sin kzd)2 = cosΘ± ı sinΘ (21.228)

= e±ı arccos(cos kzd−β sin kzd) = e±ıΘ .

This decomposition allows us to calculate the transfer matrix for a succession of Ns
layers. We get,

T Ns = eıNsΘA = I cos(NsΘ) + ıA sin(NsΘ) (21.229)

= I cos [Ns arccos(cos kzd− ζ sin kzd)] + ıA sin [Ns arccos(cos kzd− ζ sin kzd)] ,

which gives us the reflection coefficient,

rµ =
(T Ns)12
(T Ns)22

=
ı sin(µΘ)T12

cos(NsΘ) + ı sin(µΘ)T22
(21.230)

=
−ıβeıkzd

sinΘ cot(NsΘ)− ı sin kzd− ıβ cos kzd
.

This is the final result. Near the Bragg angle, cosΘ ≃ 1, we have,

rNs
=

ıβ

sinΘ cot(NsΘ)− ıβ ≃
ıNsζ

1− ıNsβ
(21.231)

|rNs
|2 ≃ N2

s β
2
spΓ

2
sp

4∆2 + (1 + nβ2
sp)Γ

2
sp

.

The intensity reflection profile, therefore, is a Lorentzian also in the limit of thick
clouds. The additional condition for the occurrence of prohibited photonic bands is
a large number of atomic layers, Ns ≫ 1. We note that the model is an extension of
the Kronig-Penney model introduced in Sec. 4.1.3.

21.5.3.3 Application of transfer matrices to real 1D optical lattices

The analytical treatment shown in the previous sections does not take account of
possible lattice imperfections, since the atomic layers are assumed to be identical,
infinitely thin, immobile and located at fixed periodic distances. Realistic optical
lattices are different for several reasons:
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1. Atomic clouds are not perfectly localized in ultra-thin layers, but distributed
in a Gaussian way as a function of the cloud’s temperature. The Debye-Waller
factor (21.180) describes the impact of this distribution on the Bragg model.

2. The atoms are in thermal motion causing an inhomogeneous Doppler shift and
are affected by the photonic recoil received in each scattering process. This
causes a broadening of the reflection profiles and decreases the interference ca-
pability.

3. The number of atoms per layer may vary. Also, the global extent of the cloud is
not infinite, that is, we have Ns layers filled with atoms with a gradual decrease
at the confines of the cloud.

4. The atoms trapped in the optical potential are subjected to a dynamic Stark
shift 19 causing an inhomogeneous broadening of the atomic transition as well.

5. The periodicity of the lattice is slightly modified because the refractive index
experienced by the laser beams creating the dipole potential locally depends on
the atomic density concentrated in the lattice’s anti-nodes. The consequence is
a local decrease of the lattice constant d 20.

All of the aforementioned imperfections may be included in a numerical treatment
of the transfer matrices. For this we subdivide the atomic cloud into sufficiently
thin sublayers, as shown in Fig. 21.22. Each sublayer, being characterized by its own
2D atomic density and its own shift from resonance, is described by an individual
transfer matrix. The matrices are concatenated, and the reflection profile is computed,
as shown in the expression (21.213) [767]. Fig. 21.24 shows a numerical calculation
of a photonic band in a rubidium optical lattice. The experimental variables are
the incidence angle θ of the probe laser and its tuning ∆ from a transition λsp. ∆
determines σ and β via the polarizability (21.193) 21 and thus governs the propagation
of light inside the layers. θ determines kzd and thus probes the periodicity between
the layers.

Depending on the atomic density we can identify different behaviors 22:

1. At the limit of thin lattices, we do not expect multiple scattering. The absorptive
(imaginary) part of polarizability dominates, β ≈ Imβ. Thus, the reflection
coefficient is almost real, reıϕ ≈ |r|, the phase shifts are negligible, the profile
of the reflection spectrum is symmetric. In this scheme, the interference of the
radiation patterns of individual atoms is destructive in all directions, except

19Or ’light-shift’, see Exc. 16.4.4.13.
20More correctly: If between λdip and λD1 a photonic band were created for the laser beams that

produce the optical lattice [226, 855], these beams would be reflected without being able to penetrate
the lattice. In fact, the periodicity changes in such a way, that the frequency of the beams is at the
edge of the band gap. Deutsch et al. [226] showed that a self-consistent solution gives the modified
lattice constant,

d′ =
λdip

2

[
1 +

ϕdip

π
(1− sign∆dip)

]
,

where ϕdip = arctan
(
−∆dip

Γ
nd σD1(∆dip)

)
.

21∆ also enters kzd, but so weakly, that we can despise this dependence.
22The densities are assumed to be sufficiently low to eliminate collective effects such as, for example,

superradiance.
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under the Bragg angle. There are losses caused by scattering in non-paraxial
modes. They are also due to elastic Rayleigh scattering but, because of the
finite Debye-Waller factor, the radiation becomes diffuse and incoherent.

2. At the limit of thick lattices, we have multiple scattering. The (real) dispersive
part of the polarizability is β ≈ Reβ. Thus, absorption is suppressed, we observe
large phase shifts and the reflection spectrum profile is asymmetric. Multiple
beam interference gives rise to global scattering.

Physically, the set parameters consistent of the quasi-momentum and the energy
of the Bloch wave, (Θ,∆), is more relevant because it allows analyzing the dispersion
relation 23. We observe the existence of energies ∆, where the real part of the quasi-
momentum vanishes (modulo π). The 3D representation in Fig. 21.24(e) illustrates
the occurrence of an avoided crossing due to the band gap at the edge of the Brillouin
zone.

Figure 21.24: (code) Numerical calculation of a photonic band in a 1D optical lattice

(wavelength Λdip = 797 nm) far-tuned from the rubidium D1 transition (λD1 = 795 nm).

The probe laser exciting the Bragg resonance is tuned close to the rubidium resonance at

λsp = 422 nm. We assume atomic densities of n = 4 · 1011 cm-3 and Ns = 40000 atomic

layers. (a) Real and imaginary parts of the reflection index (∝ polarizability) as a function

of detuning ∆. (b,c) Real and imaginary parts of the quasi-momentum (x-axis) as a function

of the detuning ∆. (d,e) 2D and 3D representation of the reflection coefficient.

In fact, Bragg resonances can be understood in reciprocal space as reflections at
the edges of the Brillouin zone. Through the angle of incidence of the injected light
beam, we adjust the quasi-momentum. The frequency of the light beam determines
the energy. The forbidden photonic bands are caused by the formation of an energetic
gap in the dispersion relation induced by the interaction of the atoms with the optical
lattice.

23We note, that Θ via the relation (21.224) of the angle of incidence θ, but only weakly of the
energy ∆.
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21.5.3.4 LDOS and the suppression of spontaneous emission in forbidden
photonic bands

The local density of states (LDOS) in a photonic band can be evaluated from [835, 317],

N(ω) = 2ω
∑

k

δ(ω2 − ω2
k) . (21.232)

William found out:

keff =
dϕ

dz
, (21.233)

with ϕ = arctan(Im E/Re E). The E-field between two layers can be calculated using
transfer matrices. The density of the states is given as the derivative of the inverse
function of the dispersion relation:

N(ω) =
dkeff(ω)

dω
. (21.234)

The decrease in the LDOS is equivalent to the suppression of spontaneous emis-
sion 24, that is, an excited atom located inside the lattice will not be able to emit its
photon. This is the condition for a forbidden photonic band to be omnidirectional.
Omnidirectional bands need three-dimensional lattices. Nevertheless, the reduction
of the spontaneous emission rate has already been observed in [376, 875], which can
be interpreted as 1D photonic crystals.

21.5.3.5 Impurities

The formalism allows for the calculation of the impact of localized defects in numerical
simulations. For example, it is instructive to look at the intensity profile along the
structure in the presence of a localized lattice defect. In Fig. 21.25(c) we observe
an intensity peak located at the 100-th atomic layer, exactly where the defect was
introduced. This peak corresponds to a localized evanescent wave. Photons can not
propagate freely through the lattice: they prefer to tunnel between lattice defects the
rather than propagate by radiation.

The curves (a-b) of Fig. 21.25 illustrate how an empty photonic band fills up with
localized states with well-defined energies when noise is added to the periodicity of
the lattice. This situation is similar to that in semi-conductors doped by donor and
acceptor states.

21.5.4 Photonic bands in the Bloch and the coupled dipoles
models

The transfer matrix model is limited in several respects:

1. Firstly, being intrinsically 1D, the model does not apply to 2D or 3D lattices.

2. Also, it does not incorporate the possibility of transverse disorder or effects
linked to the finite transverse extension of the atomic layers, for example, the
limitation of the number of layers participating in multiple reflection (’walk-off’)
[768] or the impact of an imperfect mode matching [766].

24For the same reason, resonant dipole-dipole interactions are suppressed [493].



21.5. SCATTERING FROMPERIODIC STRUCTURES AND PHOTONIC BANDS849

-0.03-0.02-0.01

Re Θ

-5000

0

5000

Δ
/Γ

(a)

-0.01 0 0.01

Im Θ

-5000

0

5000

Δ
/Γ

(b)

0 200 400

N

0

0.2

0.4

lo
ca
l
in
te
n
si
ty

(c)

Figure 21.25: (code) (a,b) Dispersion relation as in Fig. 21.24, but in the presence of ran-

domly distributed defects. (c) Intensity profile along the lattice with a defect located in the

100esima atomic layer.

In contrast, the coupled dipoles model offers several advantages. An optical lat-
tice is, after all, nothing more than a periodically ordered diluted sample of atoms.
Hence, we can apply the coupled dipoles model introduced in Sec. 21.1.2 [721, 720].
The advantages of this model are its applicability to 3D systems and finite and disor-
dered lattices. It also allows the inclusion of all kinds of inhomogeneities such as, for
example, the spatial intensity distribution of a focused incident laser, or the deviation
of the laser beam penetrating an atomic cloud due to refraction. On the other hand,
the model only lends itself to heavy numerical simulations, limiting it to some 10000
atoms.

21.5.4.1 The Bloch model and forbidden electronic bands

The Bloch model is another model to describe 3D periodic systems [25]. It was intro-
duced in Chp. 4 for 1D optical lattices. Its disadvantages are that it supposes infinite
lattices and the absence of defects.

The Bloch model is commonly used to describe the scattering of electron waves in
a solid, where the band gap originates from the Coulomb interaction of the electron
with the atoms of the solid crystal. In contrast, in photonic crystals, the modes with
high (low) frequency ω concentrate their energy in spatial regions with low (high)
dielectric index ϵ. Close to geometric (Mie) resonances this causes a repulsion in
the density distribution of photonic states, and the opening of a gap separating high
frequency bands (air bands) from low frequency bands.

In optical lattices the photons interact with the atomic resonances. Photons and
electrons are distinguished by their different dispersion relations and by the fact that
electronic waves are scalar and photonic waves are vectorial. The electrons of a crystal
are bound to an energy surface and follow the lines of the dispersion relation without
leaving the metal. In contrast, photons are usually injected into the structure, which
gives an additional degree of freedom. Therefore, any point in the phase diagram
can be reached and the dispersion relation only informs, where at which point the
transmission is stronger.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ImpurityLocalization.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ImpurityLocalization.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ImpurityLocalization.m
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Figure 21.26: Attempt of an artistic illustration of the isoenergetic surfaces for electrons in
a metal (left), photons in a 3D optical lattice (center), and photons in a 1D optical lattice
(right). The interaction of atoms with the lattice is much weaker than the interaction of
electrons with the metal, except close to resonances. Therefore, photonic bands are much
narrower than electronic bands.

Table 21.2: Comparison between band gaps photonic crystals and metals.

photonic crystal metal

lattice structure atoms in a stationary wave atoms in a crystal

particles photons electrons in a metal

equations of motion Maxwell Schrödinger

dispersion relation ℏk/c ℏk2/2m
tune Bragg angle and frequency voltage

band gap origin Imα absorption by atoms e− interacting with the atomic nuclei

band gap width < ω0 − ωdip interaction energy

21.5.5 Exercises

21.5.5.1 Ex: Structure coefficient of a 1D lattice

Calculate the structure coefficient of the density distribution (21.185) and the square
|Sk0

(k)|2.

21.5.5.2 Ex: Structure coefficient in spherical coordinates

Write the structure coefficient (21.185) in spherical coordinates.

21.5.5.3 Ex: Reflection in the dilute cloud limit

Verify the calculation (21.229).

21.5.5.4 Ex: Reflection in the dense cloud limit

Verify the representation (21.225).

21.5.5.5 Ex: Photonic band spectra

Plot the 1D-photonic band gap spectrum in a standing wave as a function of ∆pr and
n.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggGrat01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggGrat02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand03.pdf
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21.5.5.6 Ex: Intensity drop inside photonic bands

Plot the intensity of the probe on its passage through the 1D optical lattice.

21.5.5.7 Ex: Intensity drop inside photonic bands in the presence of
disorder

Simulate the intensity of the probe on its passage through the 1D optical lattice inthe
presence of disorder.

21.5.5.8 Ex: Photonic bands with sidebands

Plot the intensity of the probe on its passage through the 1D optical lattice as a
function of detuning in the presence of modulation sidebands.

21.5.5.9 Ex: Photonic bands versus absorption

Compare the signatures of band gaps with absorption.

21.5.5.10 Ex: Structure of a diamond lattice

A geometric configuration of point-like scatterers that can exhibit a broad omnidirec-
tional photonic bandgap is the one of a diamond lattice [160, 726, 25]. In this exercise
we will study such a diamond-shaped lattice.
a. Produce a geometric representation of the primitive cell and a Wigner-Seitz cell.
b. Study the optical lattice generated by the following configuration of incident lasers,

k0 = π
a (0,−2,−1) , k1 = π

a (2, 0, 1) , k2 = π
a (0, 2,−1) , k3 = π

a (−2, 0, 1)

with klaser = ωlaser/c =
√
5π/a.

c. Calculate the forbidden band according to [160, 726, 25].
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Chapter 22

Individual atoms in optical
cavities

So far we have considered the coherent dynamics between atoms and radiation fields
in free space, and we extended the theory to take into account the dissipative coupling
to the electromagnetic vacuum by spontaneous emission and atomic motion. The vac-
uum represents a homogeneous and isotropic reservoir characterized by a continuous
white energy spectrum. The situation changes completely when we place the atom
inside an optical cavity which breaks the translational and rotational symmetries and
imprints a resonance structure into the density of photonic states. Obviously, the
cavity will profoundly change the atomic coupling to the electromagnetic vacuum,
and hence the way in which the atom reacts to incident light, as much with respect
to light scattering as with respect to optical forces.

In this chapter we analyze the coupled dynamics of atoms interacting with the
optical field modes of a cavity pumped by incident laser beams. We first concentrate
in Sec. 15.2 on empty cavities. Then in Sec. 22.1 we turn our attention to the impact of
atoms on the cavity dynamics, in particular its transmission spectrum. Cooperative
and collective effects that may be induced by cavities will be discussed in Chps. 24
and 25.

22.1 Interaction of a cavity with one atom

In Sec. 17.1 we have shown how to describe the dynamics of a single two-level atom
driven by a quantized electromagnetic field and embedded in an electromagnetic vac-
uum under the assumption that the driving field be a plane wave and the vacuum be
isotropic. In the following, we want to relax these conditions. We generalize Eq. (14.7)
replacing the plane wave eık·r by a mode function uk(r) and allowing the coupling
constant (17.8) gk to depend on k. Such a situation corresponds to placing the atom
inside an optical cavity whose macroscopic boundary conditions create a cooperative
environment for the atom. We note that the role of the cavity can be understood
as generating mirror images with which the atom interacts. Furthermore, both the
atomic excitation and the radiation fields may decay. On the other hand, we restrict
to non-interacting atoms, that is, free atoms or atoms trapped in external potentials
that only interact with each other via re-scattering of an incident radiation field,
i.e. no collisions and no properties requiring symmetrization of their wavefunctions.

In Sec. 22.1.1 we study a single atom in a cooperative environment (e.g. a cavity).
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In particular, we will find that spontaneous emission is affected by the presence of
a cavity. A wider discussion of scattering from correlated atoms and of how cavities
can generate correlations is postponed to Sec. 23.1. Then, in Sec. 22.1.2 we will intro-
duce some parameters characterizing the interaction between atoms and cavities. In
particular, we will relate the important notions of the cooperativity of several atoms
and the structure factor for light scattering introduced in 21.1.1 with the cavity-to-
free space scattering ratio, the finesse and the density-of-states of a cavity, simply by
pointing out that a cavity multiplies the number of atoms interacting with a light
mode by the number of its mirror images. In Secs. 22.1.3, 22.1.4, and 22.1.6 we study
the Hamiltonian governing the dynamics of a cavity mode interacting with a single
immobile atom emphasizing the phenomenon of normal mode splitting. In Sec. 22.1.5
we simplify the equations of motion by adiabatically eliminating the internal atomic
degree of freedom. Finally, in Secs. 22.1.7 and 22.1.8 we study the impact of the
atomic center-of-mass degree of freedom (position and velocity) on the dynamics of
the cavity fields. The discussion of backaction of the cavity fields on the atomic motion
is postponed to Chp. 25.

22.1.1 Spontaneous emission in a cooperative environment

22.1.1.1 Atoms in a cooperative environment

The quantization of the electromagnetic field has been presented in Sec. 14.1.1 for
the case of plane wave radiation modes. In the following, we want to generalize the
treatment to arbitrary field modes characterized by mode functions ukλ(r) labeled by
a wavevector and a polarization. These are classical vector functions satisfying the
vector Helmholtz equation and the transversality condition,

[∇2 + k2λ]ukλ(r) = 0 and ∇ · ukλ(r) = 0 , (22.1)

with kλ = ωkλ/c [583]. These classical functions are chosen to form an orthonormal
set, ∫

V

u∗
kλ(r) · uk′λ′(r)d3r = δkk′δλ,λ′ . (22.2)

In free space, the plane wave approximation is generally good,

ufree
kλ (r) =

ϵ⃗λ√
V
eık·r , (22.3)

where ϵ⃗kλ is a polarization vector such that k·⃗ϵkλ = 0 and V is the photon quantization
volume.

Let us now rewrite the quantized transverse vector potential of the radiation field
(14.7) as,

Â(r, t) =
∑

kλ

√
ℏ

2ωkλε0
[ukλ(r)âkλ(t) + u∗

kλ(r)â
†
kλ(t)] . (22.4)

The quantum properties of the electric and magnetic field operators are determined by
the bosonic annihilation and creation operators, âkλ(t) and â

†
kλ(t), respectively, with

usual commutation relations: [âkλ(t), âk′λ′(t)] = 0 and [âkλ(t), â
†
k′λ′(t)] = δkk′δλλ′ .



22.1. INTERACTION OF A CAVITY WITH ONE ATOM 859

For weak-coupling between the atoms and the field, one has the contributions to
the Hamiltonian,

Ĥatom = ℏω0σ̂
z

Ĥfield =
∑

k

ℏωk[â
†
kλ(t)âkλ(t) +

1
2 ]

Ĥatom:field = −ıℏ
∑

k,λ

(σ̂+ + σ̂−)[gkλ(r)âkλ − g∗kλ(r)â†kλ]

, (22.5)

and,

gkλ(r) ≡
√

ωk

2ε0ℏ
d · ukλ(r) (22.6)

is a complex function associated with the coupling strength between the atom and
the field.

By solving the Heisenberg equations of motion for the atomic and field operators
within the Born and Markov approximations (or using the procedure leading to the
expression (17.118)), one obtains the spontaneous emission rate on a transition |e⟩ →
|g⟩ of frequency ω0:

Γ(r) = 2π
∑

k,λ

|gkλ(r)|2δ(ωk − ω0) . (22.7)

which is the same result obtained by the Weisskopf-Wigner theory [583]. To evaluate
the sum we need go to a continuous k-space via,

∑

k,λ

−→ lim
V→∞

∑

λ

V

8π3

∫
d3k . (22.8)

Hence, in free space, inserting the mode function (22.3),

Γ(r) =
πω0

ε0ℏ
∑

k,λ

|d · ukλ(r)|2δ(ωk − ω0) (22.9)

=
ℏω0

8π2ε0ℏ2
lim
V→∞

∑

λ

∫
d3k |d · ϵ⃗kλ|2δ(ωk − ω0)

= lim
V→∞

∑

λ

∫ |d · ϵ⃗kλ|2E⃗2k
ℏ2

2πδ(ωk − ω0)
V

8π3c
k2dΩkdωk .

Obviously, in free space the decay rate does not depend on position. Plugging in the
density of states for free space (1.53) and (16.23), we finally get,

Γ =
∑

λ

∫ |d · ϵ⃗kλ|2E⃗2k
ℏ2

2πδ(ωk − ω0)ρ(ωk,k)dΩkdωk , (22.10)

where the density of states can now be arbitrarily shaped by the presence of boundary
conditions, such as optical cavities or dielectric or metallic surfaces.
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22.1.1.2 Modification of the natural linewidth by cavities

The cooperativity parameter of a cavity is defined as the rate at which an atom emits
into the volume of a cavity mode normalized to the rate at which it would scatter
into free space,

Υ ≡ Γcav

Γfree
. (22.11)

In a cavity, spontaneous emission is strongly modified [376, 377, 378]. An atom
interacting with a cavity will spontaneously emit into the cavity mode at an increased
(reduced) rate, depending on whether the cavity is resonant or out of resonance. The
natural width due to spontaneous decay and the line shift are calculated by integration
over the coupling force between the atom and every available field mode [see (22.9)],

Γ =
x |deg · ϵ⃗k|2|E⃗k|2

ℏ2
2πδ(ω0 − ωk)ρ(ωk,k)dΩkdωk

∆ω =
∑

i

x |dei · ϵ⃗k|2|E⃗k|2
ℏ2

1

ωei − ωk
ρ(ωk,k)dΩkdωk

, (22.12)

with the field amplitude per photon, |E⃗k| =
√

ℏωk/2ε0V , derived in (15.87), and the
index i running over all internal atomic states. These formulas are simply applications
of second-order perturbation theory (5.16) and of Fermi’s golden rule (5.111) for
transition probabilities both weighed with dynamic structure factor of the cavity.

We use the number of modes per unit of frequency range and per unit of solid
angle in free space derived in (15.95) (ρ/V is the density of states),

ρfree(ωk) =
V ω2

k

(2π)3c3
. (22.13)

Setting θk as the angle between the atomic dipole moment and the cavity axis (which
is not in place, yet, as we are still in free space), d · ϵ̂k = d cosαk = d cos(90◦ − θk) =
d sin θk,

Γfree =

∫
d2 sin2 θk

ℏ2
ℏω0

2ε0V
2π

V ω2
0

(2π)3c3
sin θdθdϕ (22.14)

=
d2k3

4πε0ℏ

∫ π

0

sin3 θdθ =
d2k3

3πε0ℏ
.

Since the integration covers the whole solid angle of space 4π and the free space is
isotropic, there is no preferred orientation, and we can perform the integration setting
θ ≡ θk. The result coincides with earlier calculations (16.46).

Now, we put the cavity in place, but tune it off resonance, such that no photons
can be emitted into the solid angle covered by the cavity. That is, in the presence of
the cavity, the solid angle of free space into which photons can be emitted is restricted.
We repeat the calculation (22.14), but now we are not free to choose the axis of the
coordinate system arbitrarily. Instead, we we assume that θk(θ, ϕ) ≃ const over the
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Figure 22.1: Illustration of cooperativity in a cavity. An excited atom can decay by emitting
light into a cavity mode or into free space. Note that the cavity is not pumped directly by
an incident laser beam.

small solid angle covered by the cavity, θ, ϕ ∈ Ωcav,

Γfree/∈cav =

∫

êk /∈cav

d2 sin2 θk
ℏ2

ℏω0

2ε0V
2π

V ω2
0

(2π)3c3
sin θdθdϕ (22.15)

≃ Γfree −
d2k3 sin2 θk
8π2ε0ℏ

∫

êk∈cav

sin θdθdϕ = Γfree

(
1− 3

8π
Ωcav sin

2 θk

)
.

Finally, we study the situation, when the cavity is in place but now tuned on
resonance. Then the density of states in the photon emission directions k ∈ cavity is
modulated by the Airy function (15.96),

ρcav(ωk,k) = ρfree(ωk)L(ωk) . (22.16)

That is, photons can be emitted into the cavity mode with increased probability.
Once again we repeat the calculation (22.14), but now inserting the density of states
of the cavity,

Γcav =

∫

êk∈cav

d2 sin2 θk
ℏ2

ℏω0

2ε0V
2πL(ω0)

V ω2
0

(2π)3c3
sin θdθdϕ (22.17)

≃ d2k3 sin2 θk
8π2ε0ℏ

L(ω0)

∫

êk∈cav

sin θdθdϕ = ΓfreeL(ω0)
3

8π
Ωcav sin

2 θk ,

where, in the last step, we substituted the free space decay rate (22.14). An analogous
calculation for the cooperative Lamb shift ∆ωcav is left to the Exc. 22.1.11.1:

Γcav = Γfree
3
8πΩcav sin

2 θkL(ω0)

∆ωcav = Γfree
3

32πΩcav sin
2 θk

L′(ω0)
L(ω0)

2δfsr
. (22.18)

The quantities Γcav and Γfree∈cav are scattering rates into complementary solid
angles. Now, the total spontaneous emission rate, which determines the lifetime of
the radiating excited state and the spectral width of the transition is simply the sum
of the partial scattering rates,

Γ = Γfree/∈cav + Γcav (22.19)

= Γfree

(
1− 3

8πΩcav

)
sin2 θk + ΓfreeL(ω0)

3
8πΩcav sin

2 θk

= Γfree

[
1 + (L(ω0)− 1) 3

8πΩcav

]
sin2 θk .
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Assuming for simplicity, θk = π/2, we find the extremes of the spontaneous emission
rate, Γenh and Γinh, when the cavity is on or off resonance. With a resonant high
finesse cavity the emission is obtained via kL→ 0,

Γenh = Γfree

[
1 +

(√
1 +

(
2F
π

)2 − 1

)
3
8πΩcav

]
≃ Γfree

(
1 + 3

4π2FΩcav

)
. (22.20)

assuming high finesse, F ≫ 1. With a non-resonant cavity, the emission is obtained
via kL→ π/2,

Γinh = Γfree


1 +


 1√

1 +
(
2F
π

)2 − 1


 3

8πΩcav


 ≃ Γfree

(
1− 3

8πΩcav

)
. (22.21)

For a small solid angle, we can expect a big increase of the scattering into the cavity,
but without noticeable inhibition of the total decay, Γinh ≃ Γfree.

If the atoms are saturated by an incident laser, they scatter light into the cavity
at a rate (apart from a factor 1

2 ),

Γcav = ΓfreeL(ω0)
3
8πΩcav . (22.22)

Without cavity the emission into the same solid angle is obtained via F → 0,

Γfree∈cav = Γfree
3
8πΩcav . (22.23)

The scattering will fill the cavity with photons, until the leakage equalizes the
pumping. When the balance is reached, Γcav will also be the rate at which photons
are emitted by the cavity mode. We calculate an example in Exc. 22.1.11.2.

22.1.1.3 Purcell factor for confocal and concentric cavities

Using the solid angle of a confocal cavity (15.102), the cooperativity parameter is,

Υ ≃ 3F

4π2
Ωcav =

3F

4π2

8πb2

L2
, (22.24)

where b is the clear aperture of the cavity mirrors. That is,

Υ =
F

π

6b2

L2
. (22.25)

22.1.1.4 Purcell factor for the TEM00 cavity mode

With the solid angle (15.108) calculated for a this TEM00 cavity mode we calculate
the cooperativity parameter,

Υ ≡ Γcav

Γfree
= L(ω0)

3
8πΩcav =

√
1 +

(
2F

π

)2
3

8π
Ωcav (22.26)

≃ 3F

4π2
Ωcav =

Γenh
Γfree

− 1 =
3F

4π2

8π

k2w2
0

,
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that is,

Υ =
F

π

6

k2w2
0

, (22.27)

which is also called Purcell factor.

Now, exploiting the relationships (15.108), (22.27), and (15.81),

Ωcav =
8π

k2w2
0

, Υ =
F

π

6

k2w2
0

,
F

π
=
δfsr
κ

, (22.28)

and defining a new quantity,

g2 = 1
4ΥκΓfree , (22.29)

which we will call the atom-field coupling strength, we may rewrite the prefactor
Γfree

3
8πΩcav for the case of Gaussian cavity modes,

Γfree
3

8π
Ωcav =

g2

2δfsr
. (22.30)

Close to a cavity resonance, kL = ω/2δfsr = (ωc+∆c)/2δfsr = 2πN+∆c/2δfsr, the
sine appearing in the Airy function (15.96) may be expanded sin kL = sin∆c/2δfsr ≃
∆c/2δfsr. Furthermore, assuming a high finesse, F ≫ 1, the Airy function simplifies
to,

L(ω0) =

√
1 + (2F/π)2

1 + (2F/π)2 sin2 ω
2δfsr

≃ 2F/π

1 + ∆2
a/κ

2
. (22.31)

Inserting this into the formulae (22.18), where we set θk = π
2 ,

Γcav ≃ g2κ
∆2

c+κ
2

∆ωcav ≃ −2g2∆c

∆2
c+κ

2

. (22.32)

Obviously, the atom-field coupling strength g plays a central role in the modification
of the emission spectra of atoms interaction with cavities. Therefore, we will have to
study this quantity more deeply in the next sections.

Example 127 (Cooperativity of non-degenerate and confocal cavities): For

example, for a non-degenerate linear cavity with finesse F = 110000 and waist

w0 = 50µm at 689 nm, the cooperativity is relatively weak, Υ ≃ 1. Still, at this

cooperativity, half of the spontaneously emitted photons go into a tiny solid an-

gle represented by the cavity. Confocal or concentric cavities may present more

favorable geometries [376, 377, 378]. With N0 = 104 saturated strontium atoms,

the light power scattered into the cavity is Pj = 20 fW. Estimation the cavity

transmission by T ≃ π/F , we expect that a number of T Pcav
ℏω = 107 s-1 photons

can be detected by a photodetector recording the photon number leaking out of

the cavity.
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Figure 22.2: (code) Spontaneous emission on the strontium atom cooling transition

(λ = 689 nm, Γ = (2π) 7.6 kHz) in a L = 3.6 cm long cavity with F = 110000 and

w0 = 50µm. (a) Cooperativity L(ω) from Eq. (15.96) as a function of the detuning of

the cavity. (b) Linewidth Γcav from (22.18)(ii) and (c) frequency shift of the strontium

transition from Eq. (22.18)(ii). (d) Spontaneous emission into the cavity (blue) and into the

open space (red).

22.1.2 Characterization of the atom-field coupling

In Sec. 15.3.1 we started introducing a number of quantities characterizing empty
cavities. We will now pursue this task including their interaction with atoms. In
particular, we will introduce three important quantities allowing us to measure the
degree of quantization of the system: the cooperativity Υ, the saturation parameter
s, and the cavity resolution r.

22.1.2.1 The atomic dipole moment

As usual, the interaction strength of an atom with a light field is measured by the
atom-field coupling constant, which is precisely HALF the single photon Rabi fre-
quency. Using relationships derived in Sec. 15.3.1 and the expression (16.41) for the
atomic dipole moment d, we find,

g ≡ dE1(0)
ℏ

=

√
3πΓω

2k3Vm
=

√
6Γδfsr
k2w2

, (22.33)

where E1(0) the electric field produced by a single photon inside the cavity mode
volume Vm = π

2Lw
2
0 calculated in (15.84), δfsr the free spectral range calculated in

(15.80), and Γ is the spontaneous decay rate. See also (watch talk).

22.1.2.2 Single atom reflection coefficient

Based on the complex atomic polarizability ,

αpol

ε0
≃ 6π

k3
−1

ı+ 2∆/Γ
, (22.34)

the single atom reflection coefficient is defined as,

β∆ =
k

πw2

αpol

ε0
=

6

k2w2

−1
ı+ 2∆/Γ

, (22.35)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/CharacterizeCavity
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Figure 22.3: Relevant parameters for an atom interacting with a cavity.

where ∆a = ω−ω0. The resonant reflection coefficient can be interpreted in terms of
a phase shift that depends on the matching between the resonant optical cross-section
of the atom, σ0 = 3λ2/2π, and the cross section of the optical mode,

−ıβ0 =
σ0
πw2

=
6

k2w2
=

2g2

δfsrΓ
. (22.36)

The total reflection coefficient multiplied with the free spectral range of the cavity,

δfsrβ∆ =
6δfsr
k2w2

−1
ı+ 2∆/Γ

= g2
∆− ıΓ/2
∆2 + Γ2/4

= U0 − ıγ0 = Uγ , (22.37)

is just the single-photon light-shift combined with the single-photon Rayleigh scatter-
ing rate.

Using the dipole moment d =
√
3πε0ℏΓ/k3 and defining the electric field am-

plitude per photon E1 by the photon number n, the power P , and the intensity
I = ε0cnphE21 = 2P/πw2, we calculate for the single-photon Rabi frequency (or atom-
field coupling strength),

g =
dE1
ℏ

=

√
1

ℏ2
3πε0ℏΓ
k3

I

ε0cnph
=

√
1

ℏ2
3πε0ℏΓ
k3

1

ε0cnph

2P

πw2
=

√
6

k2w2
Γ

P

nphℏω
.

(22.38)
Far from resonance, the single-photon light shift (or atom-atom coupling strength) is,

U0 =
g2

|∆a|
=

6

k2w2

Γ

|∆a|
P

nphℏω
= β∆

P

nphℏω
, (22.39)

and the single-photon Rayleigh scattering rate,

γ0 =
g2Γ

∆2
a

=
6

k2w2

Γ2

∆2
a

P

nphℏω
. (22.40)

In a cavity the flux δfsr = P/nphℏω is just the photon round trip rate (or free
spectral range). 1/δfsr is the time a photon interacts with an atom. In free space,
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this does not make sense to me, because I don’t know how define the mode volume. I
can however consider the interaction of a photon with an extended sample of length
L. In this case, a photon interacts with the sample for the time L/c, so that,

U0 =
g2

|∆a|
=

6

k2w2

Γ

|∆a|
c

L
= β∆

c

L
, (22.41)

and

γ0 =
g2Γ

∆2
a

=
6

k2w2

Γ2

∆2
a

c

L
. (22.42)

This means, we can use the CARL equations derived for a ring cavity also in free
space by just substituting κ = δfsr = c/L, where L is now not the cavity but the
sample length.

22.1.2.3 Collective cooperativity

The frequency shift accumulated during a round trip in the cavity, δfsrβ0, becomes
noticeable, when it exceeds the linewidth of the cavity κ. From this condition, we
obtain the optical depth for a single passage through the atomic sample multiplied
by the finesse of the cavity, which is precisely the cooperativity parameter,

Υ ≡ δfsrβ0
κ

=
F

π

6

k2w2
=

4g2

κΓ
. (22.43)

The sensitivity to the atom number can be measured in terms of a critical atom
number Ncrt, which the system can resolve,

Ncrt =
4π

Fβ0
=

1

Υ
. (22.44)

While the strong coupling regime of the CQED requires Υ > 1 with a single atom,
collective cooperativity is reached with N atoms if NΥ > 1 [117, 170]. In this case,
the atomic ensemble couples to the mode like a single ’super-atom’, the coupling
force being magnified to gN = g1

√
N . We have already obtained this result within

the Jaynes-Cummings model for two indistinguishable atoms coupling to the same
light mode and forming a Dicke state (see Sec. 23.1.1).

22.1.2.4 Optical density

Lambert-Beer’s law relates the amplitude of the field transmitted to the incident [see
also Eq. (26.133)],

Et
E0

= exp

[
ıσ(∆a)

(
ı

2
− ∆a

Γ

)∫ ∞

−∞
n(r)dz

]
= e−b/2eıφ . (22.45)

I.e. the field is shifted by an amount φ and absorbed by an amount b. The exponent
(called optical density) can be rewritten, if we assume a number of N atoms homo-
geneously distributed over a cylinder with length L and radius r̄ = w0. Using with
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(1.72),

b = OD(∆a) = −2ıσ(∆a)

(
ı

2
− ∆a

Γ

)∫ ∞

−∞
n(r)dz (22.46)

= −ı g2
g1

λ2

2π

1
2Γ

2

∆2
a +

1
4Γ

2

(
ı

2
− ∆a

Γ

)∫ ∞

−∞

N
π
2w

2
0L
dz =

12N

πk2w2
0

1

1− 2ı∆a/Γ
.

Hence, the optical density is nothing else than the collective cooperativity divided
by the finesse,

OD(0) =
12N

πk2w2
0

=
4g2N
πδfsrΓ

=
κΥN
πδfsr

=
ΥN
F

. (22.47)

22.1.2.5 Saturation parameter in cavities

The saturation parameter for a single photon is given by,

s =
2Ω2

1

Γ2
=

8g2

Γ2
, (22.48)

where Ω1 is the single photon Rabi frequency. Therefore, the number of photons
needed to saturate an atomic transition is,

nsat =
1

s
. (22.49)

We see, that there is a symmetry between Υ and s, that is, between Ncrt and nsat.
The regime NΥ > 1 denotes the collective behavior of N atoms in the same way as
nsat > 1 indicates saturation. While Υ depends only on the phase matching between
the atomic antenna and the cavity, s also depends on the cavity mode volume and
the natural decay rate.

22.1.2.6 Cavity resolution parameter

Comparing the photonic recoil, which is given by,

ωrec =
ℏk2

2m
, (22.50)

with the resolution power of a cavity κ, we can define the resolution parameter,

r ≡ ωrec

κ
. (22.51)

With the three parameters defined in Eqs. (22.43), (22.48), and (22.51) we are
able to measure the degree of quantization of the degrees of freedom involved in the
matter-light interaction in a cavity. The cooperativity Υ measures the resolvability
of single atoms in the atomic cloud, which depends on the phase matching between
the atomic antenna (i.e. its optical cross section) and the focus of the optical mode.
The saturation parameter s measures the resolvability of single photons in the cavity.
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Figure 22.4: (a) If the recoil-induced Doppler shift of the atom moving along the cavity axis
is smaller than the cavity linewidth, the light is preferentially scattered into the cavity mode.
(b) Else it is scattered outside the mode.

And the cavity resolution parameter r measures the resolvability of the Doppler-shift
due to the atomic center-of-mass motion caused by the absorption of a single photon.
If one wants to operate in an environment, where all degrees of freedom involved in
the atom-light interactions are fully quantized, the atoms need to be placed into a
cavity whose characteristic quantities are all large, Υ, s, r ≫ 1.

In Exc. 22.1.11.3 we compare the coupling force and other characteristic parame-
ters for various combinations of atomic species and optical cavities. In Exc. 22.1.11.4
we calculate the number of photons in a cavity pumped in or out of resonance.

22.1.3 Jaynes-Cummings model for one or two radiation modes

To study the dynamics of the coupled atom-cavity system, we consider the Jaynes-
Cummings Hamiltonian (17.18) (or (22.5)), for a more concrete situation. That is,
we allow for optical pumping and decay of internal states with the rates R and Γ, re-
spectively, and we allow for inhomogeneous (however, mostly one-dimensional) mode
functions g(z) = geıkz. On the other hand, we stick to a single atom (or N un-
correlated atoms), we disregard polarization and multi-mode excitation, and we will
explicitly consider and compare two well distinct cases, linear and ring cavities.

22.1.3.1 Linear and ring cavities

From the Heisenberg equations with the Hamiltonian (22.5),

Ĥatom = −∆aσ̂
+σ̂−

Ĥcav = −∆câ
†â

Ĥatom:cav = g(z)â†σ̂− + h.c.

Ĥlaser:cav = −ıη(â− â†)

. (22.52)

The Hamiltonian for a single motionless atom interacting with two cavity modes
|+⟩ and |−⟩ (we may, for instance, consider the counterpropagating modes of a ring
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cavity) reads,

Ĥatom = −∆aσ̂
+σ̂−

Ĥcav = −∆+â
†
+â+ −∆−â

†
−â−

Ĥatom:cav = g(z)â†+σ̂
− + h.c.+ g(z)â†−σ̂

− + h.c.

Ĥlaser:cav = −ıη+(â+ − â†+)− ıη−(â− − â†−)

. (22.53)

22.1.3.2 Time-evolution of an atom in a ring cavity

The coupling of the atom to the cavities g(z) will, in general, depend on the atomic
position. For simplicity let us, however, consider uniform and identical coupling,
g+(z) = g−(z) = g, and furthermore assume that both cavities be on resonance,
∆+ = ∆− = 0. Finally, neglecting spontaneous emission and pumping, the total
number of photons is conserved. With ∆a = ω − ωa we get,

Ĥ = ωâ†+â+ + ωâ†−â− + ω0(σ̂
+σ̂ − 1

2 ) + gâ†+σ̂
− + gâ†−σ̂

− + h.c. . (22.54)

Expanding the operators â± =
∑
n±
|n± − 1⟩⟨n±| and σ̂− = |1⟩⟨2| we can, expand

the state of the system like,

|ψ(t)⟩ =
n∑

k=0

cj,n+,n− |j, n+, n−⟩ . (22.55)

Alternatively, in analogy with Sec. 17.2.2, we may organize the Hilbert space in or-
thogonal subspaces, Ĥ =

⊕
n Ĥn, each one having N ≡ j + n+ + n− energy units

distributed over the atomic excitation state j = 0, 1 and the numbers of photons n±
in each mode. Hence, every subspace is of dimension 2N + 1. In this dressed states
picture, introducing the photon imbalance D ≡ n+−n− = −N, ..., N , we may expand
the coupled state like,

|ψ(t)⟩ =
∞∑

N=0

N∑

D=−N
c̃N,D|N,D⟩ . (22.56)

Obviously, the set of three quantum numbers {j, n+, n−} is equivalent to the set of
two quantum numbers {N,D} and can be recovered by,

j = 1 + (−1)N+D−1 , n± = 1
2 (N ±D − j) . (22.57)
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Hence, states with odd N +D are excited atomic states, and states with even N +D
are ground states. We may now write down the Hamiltonian,

ĤN = (N − 1
2
)ωI2N+1 + (22.58)

+
1

2



∆ g+
√
N

g+
√
N −∆ g−

√
1

g−
√
1 ∆ g+

√
N − 1

g+
√
N − 1

. . . g−
√
N − 1

g−
√
N − 1 ∆ g+

√
1

g+
√
1 −∆ g−

√
N

g−
√
N ∆


.

The subscripts of the coupling constants g+ = g− are there only to clarify to which
mode the photon belongs. Very far from resonance, where the interaction is dispersive,
we may treat the light field perturbatively, as shown in (17.40),

ĤN = (N − 1
2
)ωI2N+1 + (22.59)

+



∆
2
+

Ng2++0g2−
4∆

−∆
2
− Ng2++1g2−

4∆

∆
2
+

(N−1)g2++1g2−
4∆

−∆
2
− (N−1)g2++2g2−

4∆

. . .


,

or with g+ = g−,

(ĤN )DD′ =

[(
N +

1

2

)
ω − 1

2

g2

4∆
+ (−1)N+D

(
∆

2
+

(
N +

1

2

)
g2

4∆

)]
δDD′ .

(22.60)
If only the upper level of the atom interacts with both light fields, all terms with
negative light shift disappear,

(ĤN )DD′ =

[(
N +

1

2

)
ω +

1

2

Ng2

4∆
+ (−1)N+D

(
∆

2
+
N

2

g2

4∆

)]
δDD′ . (22.61)

As shown in Sec. 17.2.2, we propagate the evolution of the coupled state via

|ψ(t)⟩ = e−ıĤt|ψ(0)⟩. As the initial condition we may choose the atom to be in
its ground state and the two field modes in uncorrelated Glauber states,

cj,n+,n− = ⟨j, n+, n−|ψ⟩ = e−|α+|2/2−|α−|2/2 α
n+

+ α
n−
−√

n+!n−!
δj,0 (22.62)

= c̃N,δ = e−|α+|2/2−|α−|2/2α
(N+δ−j)/2
+ α

(N−δ−j)/2
−√

(N+δ−j
2 )!(N−δ−j

2 )!
δ1+(−1)N+δ−1,0 .
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Figure 22.5: (code) Evolution of the coupled atom-ring cavity system. (a) Bloch vector, (b)

photon distributions, and (c) Husimi function.

The observables of interest are the atomic Bloch vector (16.126), whose compo-
nents are obtained from,

ρij = ⟨i|Trn+,n− ρ̂|j⟩ =
∑

n+,n−

⟨i, n+, n−|ψ⟩⟨ψ|j, n+, n−⟩ (22.63)

=
∑

n+,n−

c∗i,n+,n−
cj,n+,n− =

∑

n+,n−

c̃∗n++n−+i,n+−n−
c̃n++n−+j,n+−n− ,

the photon statistics in each mode,

pn+
= ⟨n+|Tri,n− ρ̂|n+⟩ =

∑

j,n−

⟨j, n+, n−|ψ⟩⟨ψ|j, n+, n−⟩ (22.64)

=
∑

j,n−

|cj,n+,n− |2 =
∑

j,n−

|c̃n++n−+j,n+−n− |2 ,

and analogously for pn− , and the field distribution functions, such as the Husimi
function,

πQ+(α) ≡ ⟨α+|Tr i,n−ρ̂|α+⟩ (22.65)

= e−|α+|2 ∑

n−




∣∣∣∣∣∣
∑

n+

c1,n+,n−

αn√
n!

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣
∑

n+

c2,n+,n−

αn√
n!

∣∣∣∣∣∣

2

 ,

and analogously for Q−(α), or the Wigner functions W±(α) from the coefficients
c̃j,n+,n− , respectively, c̃N,δ, as shown in Secs. 14.3.2 and 17.2.3.

22.1.4 Normal-mode splitting in linear and ring cavities

The Jaynes-Cummings model introduced in Sec. 17.2 represents an idealized model of
the interaction of a single cavity mode with a single atom. In this section we reconsider
this model taking into account the facts that the coupling strength may vary in space
(via the introduction of mode functions) and that the cavity may interact with a
reservoir (via the introduction of couplings to pump fields and losses.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_Opticats2Modes.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_Opticats2Modes.m
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We will also study the phenomenon of normal mode splitting, which is one of the
most direct witnesses of an ongoing atom-cavity interaction (see the vacuum Rabi
splitting discussed in Exc. 17.2.5.4).

22.1.4.1 Linear cavities

The starting point is the full Jaynes-Cummings Hamiltonian within the RWA (22.52)
for an atom interacting with one mode of a linear optical cavity,

ĤJC = −∆aσ̂
+σ̂− −∆câ

†â+ g sin kz(â†σ̂− + âσ̂+)− ıη(â− â†) . (22.66)

For linear cavities normal mode splitting is derived in Exc. 22.1.11.5, where we com-
pare the solution obtained by full numerical integration of the Jaynes-Cummings
Hamiltonian (22.52) with an analytical approximation obtained in the weak excita-
tion limit g|α|2 ≪ Γ,∆a

1,

α ≃ η

κ− ı∆c +
Ng2

Γ−ı∆a

=
η

κ+Nγ0 + ı(NU0 −∆c)
. (22.67)

The solution coincides with one obtained for a system, where the atomic degree of
freedom is adiabatically eliminated atom (see Sec. 22.1.5).

22.1.4.2 Ring cavities

The starting point is the full Jaynes-Cummings Hamiltonian within the RWA (22.53)
for an atom interacting with two modes of an optical cavity. For two counter-
propagating modes of a ring cavity it reads,

ĤJC = −∆aσ̂
+σ̂− −

∑

±
∆câ

†
±â± + g(â†±σ̂

−e∓ıkz + â±σ̂
+e±ıkz)− ıη±(â± − â†±) .

(22.68)
Note, that here, we do not treat the recoil e∓ıkz as a degree of freedom, but just
as a parameter depending on the location of the atom. (We will come back to this
in Chp. 25.) Decay processes can be considered in a master or in Heisenberg equa-
tions via jump operators L̂k = σ̂−, σ̂+, â+, â− describing decay processes occurring,
respectively, at rates γk = 2Γ, 2R, 2κ, 2κ.

22.1.4.3 (Anti-)Symmetric modes

Let us now introduce symmetric and anti-symmetric modes by,

b̂s =
1√
2
(â+e

ıkz + â−e
−ıkz) and b̂a = 1√

2
(â+e

ıkz − â−e−ıkz) , (22.69)

1Note that for N uncorrelated atoms, defining a bunching parameter via b ≡ 1
N

∑
j sin kzj and

introducing the abbreviations Uγ ≡ U0− ıγ0 and ∆κ ≡ ∆c+ ıκ, the result (22.67) can be generalized
to,

α ≃ −ıη
NbUγ −∆κ

.
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that is,

â+ =
b̂s + b̂a√
2eıkz

and â− =
b̂s − b̂a√
2e−ıkz

, (22.70)

which satisfy the commutations rules [b̂s, b̂
†
s ] = 1 = [b̂a, b̂

†
a]. We can then rewrite the

Hamiltonian,

ĤJC = −∆aσ̂
+σ̂− +

√
2g(b̂†s σ̂

− + b̂sσ̂
+)−

∑

±
∆câ

†
±â± − ıη±(â± − â†±) (22.71)

= Ĥatom + Ĥatom:cav + Ĥcav + Ĥlaser:cav .

We see that only the symmetric mode couples to the atom. On the other hand, both
modes contribute to the field energy,

Ĥcav = ∆c(â
†
+â+ + â†−â) = ∆c(b̂

†
s b̂s + b̂†ab̂a) . (22.72)

Now, let us check the pump terms,

Ĥlaser:cav = ıη+(â+ − â†+) + ıη−(â− − â†−) (22.73)

= ı√
2

[
(η+e

−ıkz + η−e
ıkz)b̂s − (η+e

ıkz + η−e
−ıkz)b̂†s

+(η+e
−ıkz − η−eıkz)b̂a − (η+e

ıkz − η−e−ıkz)b̂†a
]
.

For η+ = η− = η we get,

Ĥlaser:cav = η
√
2
[
ı(b̂s − b̂†s) cos kz + (b̂a + b̂†a) sin kz

]
. (22.74)

Hence, for kz = 0 only the symmetric mode is pumped (no central peak). On the other
hand, for kz = π

2 only the anti-symmetric mode is pumped, so that no normal-mode
splitting is expected.

For η− = 0 we get,

Ĥlaser:cav =
ıη+√

2

[
e−ıkz(b̂s + b̂a)− eıkz(b̂†s + b̂†a)

]
. (22.75)

Hence, both modes are pumped and we observe three peaks. The normal-mode split-
ting can be observed in transmission spectra, as we will demonstrate in the following.

22.1.4.4 Normal modes of a ring cavity

We start from the Hamiltonian (22.68) and derive the Heisenberg equations,

˙̂σ− = (ı∆a − Γ
2 )σ̂

− − ıg(eıkzâ+ + e−ıkzâ−)σ̂
z (22.76)

˙̂σz = 2ıg(eıkzâ+ + e−ıkzâ−)σ̂
+ − 2ıgσ̂−(e−ıkzâ†+ + eıkzâ†−)− Γ(I2 + σ̂z)

˙̂a± = (ı∆c − κ)â± − ıgσ̂−e∓ıkz + η± .

The stationary solution follows from the expectation values of these equations,

0 = (ı∆a − Γ
2 )⟨σ̂−⟩+ ıg(eıkz⟨â+σ̂z⟩+ e−ıkz⟨â−σ̂z⟩) (22.77)

0 = 2ıg(eıkz⟨â+σ̂+⟩+ e−ıkz⟨â−σ̂+⟩)− 2ıg(e−ıkz⟨â†+σ̂−⟩+ eıkz⟨â†−σ̂−⟩)− Γ(1 + ⟨σ̂z⟩)
0 = (ı∆c − κ)⟨â±⟩ − ıg⟨σ̂−⟩e∓ıkz + η± .
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Neglecting all correlations, we derive from (22.77)(i),

⟨σ̂−⟩ = −ıg
Γ
2 − ı∆a

(eıkzα+ + e−ıkzα−)⟨σ̂z⟩ . (22.78)

Substituting ⟨σ̂±⟩ in (22.77)(ii),
(
1 +

2g2

Γ2

4 +∆2
a

(|α+|2 + |α−|2 + e2ıkzα∗
−α+ + e−2ıkzα∗

+α−)

)
⟨σ̂z⟩ = −1 , (22.79)

and in (22.77)(iii),

(κ− ı∆c)α± −
g2

Γ
2 − ı∆a

(eıkz∓ıkzα+ + e−ıkz∓ıkzα−)⟨σ̂z⟩ = η± . (22.80)

Substituting ⟨σ̂z⟩ from (22.77) in (22.77),

(κ− ı∆c)α± −
g2(Γ2 + ı∆a)(α± + e∓2ıkzα∓)

Γ2

4 +∆2
a + 2g2(|α+|2 + |α−|2 + e2ıkzα∗

−α+ + e−2ıkzα∗
+α−)

= η± .

(22.81)
Assuming weak excitation, g|α±|2 ≪ Γ,∆a, this last expression simplifies to,

(
κ− ı∆c −

g2

Γ
2 − ı∆a

)
α± −

g2

Γ
2 − ı∆a

e∓2ıkzα∓ ≃ η± , (22.82)

or, using the abbreviations,

Uγ ≡ U0 − ıγ0 ≡
g2

∆a + ıΓ
=
g2(∆a − ıΓ2 )

Γ2

4 +∆2
a

, (22.83)

we write,
[κ+ ı(Uγ −∆c)]α± + ıUγe

∓2ıkzα∓ ≃ η± . (22.84)

Resolving for α±,

α± ≃
η± [κ+ γ0 + ı(U0 −∆c)]− η∓(γ0 + ıU0)e

∓2ıkz

[κ+ γ0 + ı(U0 −∆c)]
2 − (γ0 + ıU0)2

, (22.85)

from which we can determine the transmission,

T± =

∣∣∣∣
κα±
η±

∣∣∣∣
2

. (22.86)

This is illustrated in Fig. 22.6.

Example 128 (Generalization for many atoms): ForN uncorrelated atoms,
defining a bunching parameter via b ≡ 1

N

∑
j e

2ıkzj and introducing the abbre-
viations Uγ ≡ U0 − ıγ0 and ∆κ ≡ ∆c + ıκ, the result (22.67) can be generalized
to,

α± ≃ −ı η±(NUγ −∆κ)− η∓NbUγ
(NUγ −∆κ)2 − (N |b|2Uγ)2

. (22.87)
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Figure 22.6: (code) Normal-mode splitting in a ring cavity observed in transmission spectra

T+ calculated from (22.86) with g = κ, η+ = 0.1κ, and Γ = R = 0. (a) The blue curve is

obtained for one-sided pumping (η− = 0), the green curve for symmetric pumping (η− = η+
and kz = 0), and the red curve for anti-symmetric pumping (η− = η+ and kz = π/2). The

green dots are obtained for symmetric pumping via numerical integration of the Hamiltonian

(22.68). (b) Transmission spectra T+ (green) and T− (red) for one-sided pumping. (c) Phase

of the standing wave formed by backscattering of probe light into the mode α−.

Example 129 (Level splitting for some limiting cases): The first limiting
case consists in setting η± = 0 and assuming the light field to be classical. Then
we obtain the Rabi Hamiltonian studied in previous sections,

ĤRabi = −∆aσ̂
+σ̂− + 1

2
Ω(σ̂+ + σ̂−) =

(
0 1

2
Ω

1
2
Ω −∆a

)
.

Its eigenvalues: E1,2 = − 1
2
∆a ±

√
∆2

a +Ω2 exhibit the famous Autler-Townes
splitting.
The second limiting case consists adiabatically eliminating the atomic states.
This is valid if |∆a| ≫ Γ. Then we obtain the cavity Hamiltonian,

Ĥcav = U0(e
−2ıkzâ†+â− + e2ıkzâ+â

†
−) +

∑
±

(U0 −∆c)â
†
±â± − ıη±(â± − â†±) ,

with Lk = â+, â− and γk = 2κ, 2κ, again for the case z = η± = 0. The spectrum

is asymmetric because ∆a ̸= 0 2,3

2We note that, setting z = η± = 0, the cavity Hamiltonian Ĥcav = U0(â
†
+â− + â+â

†
−) − (∆c −

U0)
∑

± â†±â± has the same structure as the Rabi Hamiltonian, which we can write, introducing

annihilation and creation operators ψ̂g,e and ψ̂†
g,e for atoms in ground and excited states, ĤRabi =

1
2
Ω(ψ̂†

eψ̂g + ψ̂†
gψ̂e) − ∆a

∑
j=g,e ψ̂

†
j ψ̂j . This emphasizes the analogy between Autler-Townes and

normal-mode splitting.
3As the atomic degrees of freedom have been eliminated, spontaneous emission must be reintro-

duced by hand when required.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_NormalModePumping.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_NormalModePumping.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_NormalModePumping.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_NormalModePumping.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_NormalModePumping.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_NormalModePumping.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_NormalModePumping.jl
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22.1.5 Adiabatic elimination of internal states

The equations of motion (15.43) describe the evolution of the light fields in counter-
propagating modes of a ring cavity. Without scatterer located in the mode volume,
the modes evolve independently. In contrast, a scatterer (e.g. an atom or a beam split-
ter) may redistribute photons between the modes, whose dynamics thereby becomes
coupled.

We will in the following assume the scatterer as immobile, except for Sec. 22.1.8,
where we consider a vibrating scatterer. Immobile scatterers can, for example, be
heavy masses, such as imperfections on the surfaces of the mirrors of the cavity
(scratches, dust particles, etc.), which can scatter light both, out of the cavity and
into the reverse cavity mode. In laser gyroscopes this backscattering may induce a
locking of counterpropagating modes and hamper their proper operation.

22.1.5.1 Classical derivation of coupled atom-ring cavity equations

The equations of motion (15.43) describe the light fields classically. Hence, it is not
surprising that they can be derived with entirely classical arguments. Here, we will
show this for a ring cavity in the presence of an atom sitting at a fixed position
z on the cavity’s optical axis. We understand the atom as a beamsplitter located
within the mode volume of the resonator and partially reflecting and transmitting
incident light with reflection and transmission coefficients (rβ , tβ) = (ıβ, 1 + ıβ) such
that r2β + t2β = 1. Transmitted (forward scattered) photons may be phase-shifted,
while reflected photons are backscattered into the counterpropagating mode of the
resonator.

Figure 22.7: Scheme of a ring cavity containing an atom.

Similarly, we treat the incoupling mirror as a beam splitter with coefficients
(rin, tin). The incident field αin produces, in the cavity, field amplitudes of α± for
the co- and counterpropagating waves. As in (15.39), we normalize the amplitudes
by the numbers of photons n± ≡ |α±|2. After a round-trip time τ = δ−1

fsr through
the mode volume we have in the position of the incoupling mirror (marked as (1) in
Fig. 22.7) the field,

α+(t+ τ) = −rin(1 + ıβ)eıkLα+(t) + ıβr2ine
2ıkL−2ıkzα−(t) + tinα

in
+ (t) (22.88)

α−(t+ τ) = −rin(1 + ıβ)eıkLα−(t) + ıβe2ıkzα+(t) + tin(1 + ıβ)eıkLαin− (t) .

L is the total length of the ring cavity. For the three mirror ring cavity depicted in
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Fig. 22.7 we have after one round trip τα̇± = α±(t+ τ) + α±(t) 4. Thus, we obtain,

τα̇+ = −
[
1 + rin(1 + ıβ)eıkL

]
α+ + ıβr2ine

2ıkL−2ıkzα− + tinα
in
+ (22.89)

τα̇− = −
[
1 + rin(1 + ıβ)eıkL

]
α− + ıβe2ıkzα+ + tin(1 + ıβ)e2ıkLαin

− .

Obviously, we have kL = ω/δfsr. In the vicinity of a resonance we have, ∆c ≪ δfsr,
and the quantity ω/δfsr is almost integer, ω = 2πNδfsr−∆c, such that we can expand
the exponential, eıkL ≃ 1 − ı∆c/δfsr. Neglecting the exponential eıkL in all terms
except the first ones of both equations and also using τ = δ−1

fsr , we get,

α̇+ = −δfsr [1− rin(1 + ıβ) (1− ı∆c/δfsr)]α+(t) + δfsrıβr
2
ine

−2ıkzα−(t) + δfsrtinα
in
+(t)

α̇− = −δfsr [1− rin(1 + ıβ) (1− ı∆c/δfsr)]α−(t) + δfsrıβe
2ıkzα+(t) + δfsrtin(1 + ıβ)αin

−(t) .
(22.90)

We now connect the transmission of the coupling mirror tin with the decay constant
κ assuming that the light can only leave the cavity through this mirror. We identify,

κint = κ =
Tin
τ

=
t2in
τ

(22.91)

as the part of the light intensity lost during one round trip. Thus, tin =
√
κ/δfsr. Now,

we simplify the prefactor of the first term in Eqs. (22.90) neglecting β and replacing

rin =
√

1− t2in ≃ 1− t2in
2 = 1− 2κτ

2 ,

δfsr

[
1− rin(1 + ıβ)

(
1− ı∆c

δfsr

)]
≃ δfsr

[
1−

(
1− t2in

2

)(
1− ı∆c

δfsr

)]
= κ+ ı∆c . (22.92)

It gives the cavity losses for the two modes during one round trip. We assume here that
losses can only occur via the coupling mirror. However, all losses can be included in a
single appropriate κ. There are usually other losses due to scattering on the surface of
the mirrors or absorption by the atoms. Finally, we obtain for weak atomic reflection
and in resonance, that is, for β ≪ κ and ∆c = 0 the system of equations,

α̇+ = −(κ+ ı∆c)α+ + ıδfsrβe
−2ıkzα− +

√
κδfsrα

in
+ (22.93)

α̇− = −(κ+ ı∆c)α− + ıδfsrβe
2ıkzα+ +

√
κδfsrα

in
−

To calculate the value of β, we need the reflection coefficient of a single atom. It
depends on the polarizability,

rβ =
k

πw2

αpol

ε0

(
=

σ0
πw2

Γ

2∆a

)
. (22.94)

The optical potential to which the atom is exposed is,

ϕ =
I

2c

αpol

ε0
, (22.95)

4For a four mirror ring cavity we would have τα̇±(t + τ) = α±(t + τ) − α±(t), and the sign of
the first term in (22.88) would have to be inverted, because any reflection of the intracavity field at
a cavity mirror introduces a phase shift of π.
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where we write the intensity of light as,

I = 2ε0cE21 |α+e
ıkZ + α−e

−ıkZ | . (22.96)

We normalize once more to the field generated by a single photon, E1 =
√
ℏω/2ε0Vm

with the mode volume, Vm = π
2Lw

2. On the other hand, the potential can be deter-
mined directly through the Rabi frequency,

ϕ(r) =
ℏΩ(r)2

4∆a
, (22.97)

The Rabi frequency Ω(r)2 = 4g2|α+e
ıkZ + α−e−ıkZ |2 is normalized to the frequency

of Rabi generated by a photon g. Using the frequency shift (light-shift) by photon

(22.37), U0 = g2

∆a
, we can also write,

ϕ(r) = ℏU0|α+e
ıkZ + α−e

−ıkZ |2 . (22.98)

A comparison of the above equations gives,

rβ =
ıU0

δfsr
. (22.99)

With an atom in the resonator, we have,

β =
ıU0

δfsr
. (22.100)

We define for convenience, η± =
√
κδfsrα

in
± and we suppose, that tin ≪ 1, rβ ≪ 1 and

β ≪ 1. This ultimately leads to the result,

α̇± = −κα± − ıU0e
∓2ıkzα∓ + η± . (22.101)

Example 130 (Classical CARL equations): If we were to treat the atomic
position z as a degree of freedom, we could calculate the classical potential of
the stationary light wave, and therefore the dipole force,

F = −∇ϕ = −ℏU0∇Z=z|α+e
ıkZ + α−e

−ıkZ |2 , (22.102)

and, consequently, derive the dynamics of the scatterer via,

mz̈ = −2ıℏkU0(α+α
∗
−e

2ıkz − α∗
+α−e

−2ıkz) . (22.103)

This will be studied in Chp. 25. In the remaining sections of this chapter we will

assume the atom to be located at a fixed position.

In the above derivation we assumed, for simplicity, the pump laser on resonance
with the cavity, ∆c = 0. Relaxing this condition, an analogous derivation yields 5,

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0e
∓2ıkzα∓ + η± . (22.104)

5Note, that we have not allowed for spontaneous emission by the atomic scatterer out of the cavity
mode. This approximation is only good far from resonance, ∆a ≫ Γ. We will see in Sec. 25.1.3, how
to generalize the equations of motion for near resonance cases.
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22.1.5.2 Adiabatically simplified Hamiltonian

In a ring cavity, the simplified Hamiltonian,

Ĥ = (U0 −∆c)
∑

±
â†±â± − ıη±(â± − â†±) + U0(â+â

†
−e

2ıkz + â†+â−e
−2ıkz) ,

(22.105)
which can be obtained from the full Hamiltonian via adiabatic elimination of the
excited atomic state, already exhibits this phenomenon. With the above Hamiltonian
we derive from the Heisenberg equation,

˙̂a± = −ı[â±, â]− κâ± = (−κ+ ı∆c − ıU0)â± − ıU0e
∓2ıkzâ∓ + η± , (22.106)

which, after taking the expectation values and disregarding correlations, reproduces
the equations of motion (22.104). Of course, as we eliminated the internal atomic
degree of freedom, spontaneous emission is not accounted for. We may, however, in-
clude it phenomenologically via the substitution U0 → Uγ ≡ U0− ıγ0. The stationary
solution of Eq. (22.106) is exactly the same as the one derived for the full Jaynes-
Cummings model (22.85) under the assumption of weak excitation, g|α±| ≪ Γ,∆a,

α± = −ıη±(Uγ −∆κ)− Uγe∓2ıkzη∓
(Uγ −∆κ)2 − U2

γ

(22.107)

with the abbreviations,

Uγ ≡ U0 − ıγ0 , ∆κ ≡ ∆c + ıκ . (22.108)

Solve the Exc. 22.1.11.6.

22.1.6 Normal mode splitting induced by beam splitting

The fact that (in the weak excitation limit) normal mode splitting is fully described
by the classical field equations (22.104) shows that the phenomenon clearly is not a
quantum effect : a classical beam splitter inserted into the cavity does the same job.
We will now discuss the normal mode splitting in detail based on the adiabatically
simplified equations (22.108).

The equation (22.104) can be written as follows,

ı ˙⃗α =Wα⃗+ ıη⃗ , (22.109)

where α⃗ and η⃗ regroup the amplitudes α± and η±. This equation takes the form of a
Schrödinger equation, where,

W ≡
(
U0 −∆c − ıκ U0e

−2ıkz

U0e
2ıkz U0 −∆c − ıκ

)
(22.110)

would be the Hamiltonian describing the coupling between counterpropagating modes.
The eigenvalues of this matrix are,

W (1,2) = 2U0 −∆c − ıκ , −∆c − ıκ . (22.111)
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This normal mode splitting 6 of the cavity results from the coupling of the two
cavity modes â†+â−. Obviously, the energies and widths of the eigenvalues do not
depend neither on the pump intensities η± nor the z-position of the atom. On the
other hand, the spectral behavior of α±, and hence the observable quantities, such as
the transmission

T± ≡
∣∣∣∣
κα±
η±

∣∣∣∣
2

(22.112)

depend on these parameters. In the following, we will study normal mode splitting in a
ring cavity by a discussion of the expression (22.85) for the cases of (i) anti-symmetric
pumping, (ii) symmetric pumping, and (iii) uni-directional pumping.

(i) Assuming γ0 = 0 and anti-symmetric pumping, η− = η+ and kz = π/2, the
expression (22.85) becomes,

α+ = η+
κ− ı(∆c − 2U0)

[κ− ı(∆c − U0)]2 + U2
0

(22.113)

⇒
∣∣∣∣
α+

η+

∣∣∣∣
2

=
1

κ2 +∆2
c

.

That is, the transmission profile is a Lorentzian.
(ii) For symmetric pumping, η− = η+ and kz = 0,

α+ = η+
κ− ı∆c

[κ− ı(∆c − U0)]2 + U2
0

(22.114)

⇒
∣∣∣∣
α+

η+

∣∣∣∣
2

=
1

κ2 + (∆c − 2U0)2
.

Setting ∆c = ∆a we find from 0 ≡ d
d∆c

∣∣∣α+

η+

∣∣∣
2

a minimum at ∆c = 0 and two maxima

at ∆c = 2U0 =
√
2g. This is the usual normal mode splitting for a ring cavity.

(iii) For uni-directional pumping, η− = 0,

α+ = η+
κ− ı(∆c − U0)

[κ− ı(∆c − U0)]
2
+ U2

0

(22.115)

⇒
∣∣∣∣
α+

η+

∣∣∣∣
2

=
κ2 + (∆c − U0)

2

[κ2 −∆c(∆c − 2U0)]2 + 4κ2(∆c − U0)2
.

That is, the transmission profile is a more complicated and may exhibit up to three
peaks.

22.1.6.1 Unidirectional pumping

For unilateral pumping, η− = 0, and approximating γ0 = 0, the solution (22.85)
simplifies to,

α+(∞) = η+
χ

χ2 + U2
0

and α−(∞) = η+
ıU0e

2ıkz

χ2 + U2
0

. (22.116)

6The splitting is not exactly the vacuum Rabi splitting, which occurs when the excitation can not
be eliminated adiabatically. The vacuum Rabi splitting results from the Jaynes-Cummings [815, 186]
and is caused by the coupling of internal and external states â†σ̂.
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These formulas show that, for weak coupling, U0 ≪ κ, the counterpropagating mode
receives little light. On the other side, for strong coupling (or very high finesse) and
∆c = 0, the intensity is equally distributed, |α+|2 = |α−|2 = η+

2κ
7. We calculate the

splitting of normal modes in Exc. 22.1.11.7.
The counterpropagating modes form, by interference, a standing light wave giving

rise to a dipole potential in the form of a one-dimensional optical lattice. Defining
the phase θ = θ1 − θ2 through,

α+ ≡ |α+|e−ıθ1 and α− ≡ |α−|e−ıθ2 , (22.117)

we verify by the equation (15.39),

E+(ζ, t) = E1|α+(t)|eıkζ + E1|α−(t)|e−ıθ(t)e−ıkζ , (22.118)

and,

1
2ε0cE2

1
I(ζ, t) = 1

E2
1
E+(ζ, t)E−(ζ, t) (22.119)

= |α+(t)|2 + |α−(t)|2 + 2|α+(t)||α−(t)| cos(2kζ + θ) .

That is, the phase indicates the positions of the potential maxima. Inserting the
stationary solution for unilateral pumping (22.116), we derive the expression,

tan θ =
Imα+(∞)α∗

−(∞)

Reα+(∞)α∗
−(∞)

=
Imχıe−2ıkz

Reχıe−2ıkz
=
κ cos 2kz + (U0 −∆c) sin 2kz

κ sin 2kz − (U0 −∆c) cos 2kz
.

(22.120)
Or in other words, the phase of light determines the equilibrium position of the atom
(or vice versa). Two cases are interesting: (i) For ∆c = 0 and U0 ≫ κ the condition
(22.124) turns into tan θ = − tan 2kz. In this case, the phase of the backscattered
field adjusts in such a way, that the atom stays at the valleys of the anti-nodes.
(ii) For ∆c = U0 (or alternatively, when κ ≫ U0,∆c) the condition (22.124) turns
into tan θ = − tan(2kx+ π

2 ), such that the atom is at half height of the potential slope,
exactly at the position, where it is able to backscatter the maximum of photons from
the pumped mode α+ to the mode α−.

22.1.6.2 (Anti-)Symmetric pumping

Let us assume equal intensities for the pumps, but variable phases, η± = ηe±ıϕ, such
that ξ = e−2ıkz−ıϕ. Then, equation (22.85) simplifies to,

α±(∞) = η±
χ− ıUγξ±
χ2 + U2

γ

= η
χ− ıUγe∓2ıkz∓ıϕ

χ2 + U2
γ

. (22.121)

The potential is calculated in the same way as in (22.119). The coherences are,

α±(∞)α∗
±(∞) = η2 (κ−ı∆c∓2U0e

∓ıkz sin kz)(κ+ı∆c∓2U0e
±ıkz sin kz)

(κ2+2U0∆c−∆2
c)

2+4κ2(U0−∆c)2

α±(∞)α∗
∓(∞) = η2 κ2+(∆c∓2ıU0e

∓ıkz sin kz)2

(κ2+2U0∆c−∆2
c)

2+4κ2(U0−∆c)2

e±2ıkz =
α∓α

∗
±

|α−α∗
+|

, (22.122)

7This observation explains why perturbing effects such as backscattering from mirrors imperfec-
tions are dramatically magnified when the finesse is high.
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Figure 22.8: (code) (columns 1 and 2) Steady state field values according to (22.109) for

bidirectional pumping with a single scatterer located at ϕ. (columns 3 and 4) Same for

unidirectional pumping. Here the location of the scatterer does not matter.

such that the relative phase of the counter-propagating waves adjusts itself to,

tan θ =
Imα+(∞)α∗

−(∞)

Reα+(∞)α∗
−(∞)

=
κ2 sin 2ϕ+ 4U2

0 sin2(kz + ϕ) sin 2kz

κ2 cos 2ϕ− 4U2
0 sin2(kz + ϕ) cos 2kz

. (22.123)

The quantity η2/κ2 denotes the number of intracavity photons. According to the
formula (22.123), for a weak atom-field coupling, U0 ≪ κ, the phase adjusts itself to
the external pumps, θ → 2ϕ, while for strong coupling, it adjusts to the position of
the atom, θ → 2kz.

Example 131 (’Pulling’ of the optical mode by the atom): We study the
case U0 ≃ κ considering γ0 = 0 = ∆c and a particular external phase [301],
ϕ = π/2,

α±(∞) = ±ıη κ+ ıU0 ± U0e
∓2ıkz

κ2 + 2ıκU0
(22.124)

θ(∞) = arctan
−4U2

0 cos2 kz sin 2kz

κ2 + 4U2
0 cos2 kz cos 2kz

≃ arctan
−8U2

0

κ2 + 4U2
0

kz ,

expanding the last formula around kz = 0. Fig. 22.9 shows how, with the

increase in the coupling force between the field and the atoms, U0, the phase

tends to lock to the atomic position. However, the phase imposed by the external

pump competes for this privilege. Curiously, this is independent of laser power,

but depends only on the ratio between U0 and κ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhaseSplitting.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhaseSplitting.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhaseSplitting.m
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Figure 22.9: (code) ’Pulling’ of the phase by the atoms for U0/κ = 0, 0.2, 0.5, 1 and
√
2.

The solid curves show the exact phase, the ’dash-dotted’ curves the linear approximation

(22.128).

Example 132 (Resonant case): Assuming that the cavity is in resonance,
∆c = 0, and pumped in a single direction, η− = 0, neglecting spontaneous
emission, γ0 = 0, and assuming low backscattering rates, Us ≪ κ,

α+(∞) ≃ η+
κ

and |α−(∞)| = Us
κ
|α+(∞)| .

Looking at short times, we find that the dynamics of the unpumped mode is
delayed, since,

α̇+(0) ≃ η+ and α̇−(0) ≃ −ıUsα+e
−2ıkrs ,

giving,

α+(0) ≃ η+t and α−(0) ≃ −ıUsη+ t
2

2
e−2ıkrs .

The complete solution of the equations (22.112) with unidirectional pumping,

η− = 0, will be derived in Exc. 22.1.11.8.

22.1.7 Time-dependent solutions

22.1.7.1 Time-dependent solution without pump

To calculate the homogeneous time-dependent solution of the equation of motion of
the ring cavity with η± = 0, we solve the Schrödinger equation (22.109) the way we
learned in quantum mechanics. We start by diagonalizing the matrix (22.110),

W =

(
U0 − ıκ U0e

−2ıkz

U0e
2ıkz U0 − ıκ

)
(22.125)

=

(
e−2ıkz −e−2ıkz

1 1

)(
2U0 − ıκ 0

0 −ıκ

)(
e−2ıkz −e−2ıkz

1 1

)−1

= UEWU
−1 ,

where EW is the matrix of eigenvalues and U a unitary transformation. So,

α⃗ = e−ıWtα⃗0 = Ue−iEW tU−1α⃗0 (22.126)

= e−κt−ıU0t

(
cosU0t −ıe−2ıkz sinU0t

−ıe2ıkz sinU0t cosU0t

)
α⃗0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhasePulling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhasePulling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhasePulling.m
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In Exc. 22.1.11.6 we study the equation of motion numerically. We’ll see an alternative
calculation in Exc. 22.1.11.10. We calculate the coherence by,

α+(t)α
∗
−(t) = e−2κt

[
α0+α0−(cos

2 U0t+ e−4ıkz sin2 U0t) +
1
2 (α

2
0+ − α2

0−)ıe
−2ıkz sin 2U0t

]

z→0−→ e−2κt
[
α0+α0− + 1

2 (α
2
0+ − α2

0−)ı sin 2U0t
]
, (22.127)

making the transition to the Lamb-Dicke regime by z → 0. The phase of the standing
wave is,

tan θ =
Imα+(t)α

∗
−(t)

Reα+(t)α∗
−(t)

z→0−→ α2
0+ − α2

0−
2α0+α0−

sin 2U0t . (22.128)

We see that, in resonance and without pumping, the field adjusts its phase to the atom
and also decays with the rate κ, while the atom redistributes the photons between
modes with the (Rabi-)frequency 2U0. The formula (22.128) does not show any
damping of the phase dynamics in the Lamb-Dicke regime. Thus, in the absence of
pumping, the cavity dissipation reduces only the field amplitudes, but does not damp
the adjustment of the phase to the atomic position.

22.1.7.2 Time-dependent solution with fixed pump

To find the complete solution of the inhomogeneous Schrödinger equation (22.109),
we first calculate the stationary solution,

α⃗(∞) = −ıW−1η⃗ . (22.129)

This particular solution of the inhomogeneous equation, added to the general solu-
tion of the homogeneous equation, gives the general solution of the inhomogeneous
Schrödinger equation,

α⃗(t) = e−ıWtα⃗(0) + (1− e−ıWt)α⃗(∞) . (22.130)

We derive and analyze this solution in the Exc. 22.1.11.11.
Analytical solutions only exist in particular cases. However, they allow a better un-

derstanding of the dynamics. So let’s consider some limiting cases. In Exc. 22.1.11.12
we determine the steady state of an atom interacting with the modes of a unidirec-
tionally pumped annular cavity and calculate the stationary position of the atom in
a unidirectionally pumped ring cavity. In Exc. 22.1.11.13 we derive motion equations
for the ’intensities’ α±α∗

± and ’coherences’ α±α∗
∓.

22.1.8 Forced atomic vibration in a ring cavity

We now assume, that the atom is forced to vibrate by an external force. The vibration
is described by,

kz = kz0 sinωt . (22.131)

We consider small modulation excursions, 1 ≳ kz0 = kv
ω = 2ωrec

ω , which is equivalent
to saying that the oscillation frequency should exceed to recoil shift. In this (Lamb-
Dicke) regime the Bessel-expansion yields,

e±2ıkz0 sinωt =
∑

n

Jn(±2kz0)eınωt ≃ J0(2kz0)± 2ıJ1(2kz0) sinωt ≃ 1± 2ıkz0 sinωt .

(22.132)
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The differential equations for the two counterpropagating ring cavity-field (22.104)
can then be written:

α̇± = (L− 2ıX sinωt)α± + η± , (22.133)

where,

L =

(−κ− ıU0 −ıU0J0
−ıU0J0 −κ− ıU0

)
and X =

(
0 −ıU0J1

ıU0J1 0

)
. (22.134)

We insert the ansatz α± =
∑
n α

(n)
± eınωt, where α̇

(n)
± = 0, into the equations and

project onto the basis eınωt:

ınωx
∑

n

α
(n)
± eınωt =

(
L−X(eıωt − e−ıωt)

)∑

n

α
(n)
± eınωt + η± (22.135)

=⇒ (L− ınω)α(n)
± +X(α

(n+1)
± − α(n−1)

± ) = −η±δn0 .

We define operators S↑↓
n by α

(n+1)
± = S↑

nα
(n)
± for n ≥ 0 and α

(n−1)
± = S↓

nα
(n)
± for

n ≤ 0 and obtain,

[
L−ınω +X(S↑

n − S↓
n)
]
α
(n)
± = −η±δn0 . (22.136)

For n = 0, we get,

α±(∞) = α
(0)
± = −

[
L+X(S↑

0 − S↓
0)
]−1

η± . (22.137)

If we substitute in equation (22.135) α
(n)
± = S↑

n−1α
(n−1)
± = S↓

n+1α
(n+1)
± , we get for

n ≷ 0,

S↑
n−1 =

[
L− ınω +XS↑

n

]−1

X and S↓
n+1 =

[
L− ınω −XS↓

n

]−1

X . (22.138)

By recursive substitution of the lower into the upper equation, the stationary solution
can now be written by means of continued fractions,

S↑↓
0 ≡

1

L− ıω ±X 1
L−2ıω±X 1

···
X
X . (22.139)

α±(∞) in Eq. (22.137) gives us the stationary solution of the differential equation,
time-averaged over an oscillation period.

If we are deep in the Lamb-Dicke regime, we need only consider the first order of
the continued fractions. We set S↑↓

1 = 1 and obtain the simplified equations,

S↑
0 = [L− ıω +X]

−1
X and S↓

0 = [L− ıω −X]−1X (22.140)

α
(0)
± = −

[
L+X

(
S↑
0 − S↓

0

)]−1

η±

α
(1)
± = S↑

0α
(0)
± and α

(−1)
± = S↓

0α
(0)
± .
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Explicitly,

S↑↓
0 =

U0kz0
(κ+ ıU0 + ıω)2 + U2

0 (1− k2x20)

( −U0(1± kz0) ı(κ+ ıU0 + ıω)

−ı(κ+ ıU0 + ıω) −U0(−1± kz0)

)

S↑
0 − S↓

0 =
−2U2

0 k
2x20

(κ+ ıU0 + ıω)2 + U2
0 (1− k2x20)

I2

α± = α
(0)
± + α

(1)
± eıωt + α

(−1)
± e−ıωt . (22.141)

Finally,

α± = −[1 + S↑
0e
ıωt + S↓

0e
−ıωt][L+X(S↑

0 − S↓
0)]

−1η± . (22.142)

The Fig. 22.10 shows how the phase of the ring cavity behaves in time for various
atom-field coupling constants.

Figure 22.10: (code) (a) Photon number and (b) phase shift of the cavity in response to

a modulated atomic position. The parameters are kz0 = 1, κ = (2π) 20 kHz, ω = 2.5κ,

and η± = 10κ. (c) Spectrum recorded behind a cavity mirror with the transmittivity thr.

The spectrum is obtained as the Fourier transform of the g(1)(τ) correlation function of the

transmitted field Eout = thre
ıkaEcav, where eıka is a fixed phase factor depending on the

mirror position a (see Sec. 17.3.2).

It is interesting to study the oscillatory response of the cavity-field to a forced
atomic vibration, because it yields information about the cavity backaction. In fact,
as shown above, the vibrating atom imprints sidebands to the intracavity refractive
index [724, 7]. The sidebands appear in the cavity transmission spectrum. A more
sophisticated method to detect the backaction could be to watch the response in the
beat signal to a periodic modulation of the incoupled fields with a vibrating atom,

α̇± = (−κ− ıU0)α± − ıU0e
∓2ıkz0 sinωtα∓ + ηe±ıϕ0 sinωϕt . (22.143)

We would expect a clear signature for resonance, ωϕ = ω. The sidebands of the
modulated pump would be coupled in, if they coincide. Instead of monitoring the
cavity field, we could search the signature of the backaction in the atomic response.
We will come back to this, when we discuss collective effects and the frequency shift
of the center-of-mass motion. Do the Exc. 22.1.11.14.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
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22.1.9 Input-output theory for a single-ended linear cavity

Until now, we treated the in- and output fields of a cavity as classical variables (see
Secs. 15.2.1), which is not helpful if we wish to detect quantum correlations outside
the cavity. On the other hand, we treated the coupling of a cavity to free space
as beam splitters in steady-state in Sec. 14.5.1. A generalization to time-dependent
systems is provided by the so-called input-output theory [169, 304, 395, 498].

We consider a Hamiltonian containing the cavity and the input field as independent
variables subject to noise,

Ĥ = Ĥatm + Ĥcav + Ĥint (22.144)

= Ĥatm − ℏ∆câ
†â+ ℏg(âŜ+ + Ŝ−â

†)− ℏı
√
κδfsr(ââ

†
in − â†âin)

with

Ŝ =

N∑

j=1

ŝj and η →
√
κδfsrâ

†
in . (22.145)

With this Hamiltonian the Heisenberg equations of motion can be derived for every
dynamic variable â, Ŝ+, Ŝz, and ầın.

22.1.10 Emission spectra of cavities interacting with atoms

The spectral features of light emitted from cavities reveal important information on
the physical processes underlying the atom-cavity interaction. For example, when
atoms interacting with a ’bad cavity’ are incoherently pumped rather than the cav-
ity mode itself, in certain parameter regimes the emission spectra reveals extremely
narrow bandwidths [565, 135] known as superradiant lasing. When in contrast the
cavity is pumped, at sufficiently high collective cooperativity we expect normal-mode
splitting of the emission spectrum.

Below saturation, the atomic states can be adiabatically eliminated, i.e. we end
up with equations of motion only depending on â and â†. An interesting question is
whether this may facilitate the calculations of ⟨â†(t+ τ)â(t)⟩ −→ ⟨α∗(t+ τ)α(t)⟩. It
is not obvious and certainly wrong for the saturated regime. In Exc. 22.1.11.15 we
study the spectrum of resonance fluorescence emitted by a ring cavity incorporating
a beam splitter.

Numerically, the spectra can easily be calculated using the ’QuantumOptics.jl’ or
the ’QuantumCumulants.jl’ frameworks for the Julia programming language [135,
661]. Fig. ?? shows an example calculated for a single atom and a cavity mode
expanded into a Fock basis assuming various photon cut-off numbers.

The spectra exhibited in Fig. 22.11 are understood within the Jaynes-Cummings
model as transitions between the lowest-lying levels, whose energies En in the resonant
case ∆c = 0 = ∆a are given by E0 = 0, E1 = ω ± g, E1 = 2ω, 2ω ± g

√
2 and

E2 = 3ω ± (
√
3−
√
2), 3ω ± g(

√
3 +
√
2).

The approach used in Fig. 22.11 is limited to modest cut-off photon numbers and
thus relatively low saturation parameters, ns1 ≈ 11.7η2+/κ

2 . An alternative approach
is the cumulant expansion method [661]. In Exc. 22.1.11.16 we study the spectrum of
resonance fluorescence emitted by a linear cavity interacting with a single atom.
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Figure 22.11: (code) Emission spectra of a linear cavity interacting with N = 1 atom and

Γ = 0.0022κ, g = 6κ, and η− = 0. The lines colors denote pump rates of (blue) η+ = 0.1,

(red) η+ = 0.5κ, and (green) η+ = 1κ. The line styles denote photon cut-off numbers of

(solid) ncutoff = 1, (dashed) ncutoff = 2, and ncutoff = 5.

22.1.11 Exercises

22.1.11.1 Ex: Cooperative Lamb shift in a cavity

Calculate the cooperative Lamb shift in a cavity from the second formula (22.12) and
plot the result as a function of the cavity detuning.

22.1.11.2 Ex: Cooperative amplification for a rubidium gas in a cavity

Consider an non-degenerate cavity characterized by δfsr = 2GHz, F = 80, and w0 =
6µm. In order to benefit from the cooperativity of the cavity, the atoms must be
within a volume axially delimited by the Rayleigh length and radially by the diameter
of the mode near its waist.
a. Calculate the Rayleigh length for a wavelength of 780 nm and the mode volume.
b. For a given partial pressure of rubidium at room temperature of p ≈ 10−5 Pa,
calculate the average number of atoms within the mode volume.
c. Of these atoms only those with an axial Doppler shift below kvz < κ emit resonantly
into the cavity. Calculate the number of these atoms from the Maxwell-Boltzmann
distribution.
d. Calculate the cooperative amplification of the emission rate into the cavity.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_EmissionSpectrum.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_EmissionSpectrum.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_EmissionSpectrum.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_EmissionSpectrum.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed02.pdf
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22.1.11.3 Ex: Characteristic parameters for various atom-cavity systems

Complete the following table calculating κ, Vm, ωr, g1, Υ, s, and r,
rubidium strontium

Γ 6MHz 6.8 kHz

F 250000 250000

L 100µm 3cm

w0 20µm 70µm

22.1.11.4 Ex: Number of photons in a cavity

a. How many photons are in the mode of a cavity with finesse F = 80000 (i) in
resonance and (ii) out of resonance resonantly pumped with a laser power of Pin =
100µW?
b. What power must be injected to produce 1 photon inside the cavity?
c. Resonant backscattering by the cavity mirrors can scatter photons into the reverse
mode. Typically, P−/P+ ≃ 0.005. Hence, non−,cav = 1.5×107 and noff−,cav = 0.01. Using
advanced techniques it is possible to reduce the number of backscattered photons by
factor of > 20. Assuming that the losses due to backscattering are S = 1 ppm. Can
the resonant backscattering by the mirrors destroy a BEC?
d. What is the amplitude of the output signal in terms of photons?

22.1.11.5 Ex: Saturation-induced bistability in a linear cavity

a. Derive the equations of motion for N immobile atoms located at positions zj along
the optical axis of and interacting with a linear cavity.
b. Assuming steady-state and doing the mean-field approximation isolate an equation
for the cavity field α ≡ ⟨â⟩.
c. Simplify the equation for α for the case of perfect bunching zj = z and solve it
analytically. Identify the instability.
d. Discuss the weak excitation limit.
e. Derive the transmission spectrum in the weak excitation limit.
f. Write down the equation for n = |α|2 for the resonant case, ∆c = 0 = ∆a, in
terms of the single-atom cooperativity parameter Υ ≡ 4g2/γΓ and the single-photon
saturation parameter s1 ≡ 8g2/Γ2.

22.1.11.6 Ex: PDH-probing atoms in a ring cavity

Calculate the steady-state reflection of a phase-modulated laser beam from a ring
cavity neglecting backscattering from the atoms. Demodulate the reflection signal
with the modulation frequency.

22.1.11.7 Ex: Normal mode splitting of a ring cavity

Consider the stationary fields (22.87) developing in a ring cavity containing a homo-
geneous cloud of atoms and pumped in one direction, η− = 0. For this system.
a. Calculate the transmission of the cavity in the direction of mode α+ as a function
of the detunings ∆a and ∆c and the number of atoms.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed08.pdf
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Transmission spectra can be recorded under various boundary conditions. Calculate
the transmission
b. keeping the laser at a fixed frequency ω and varying the cavity length ωc;
c. tuning a cavity resonance to the atomic transition, ωc = ωa, and varying the laser
frequency ω;
d. same as (d), but now calculate the detunings ∆ch where the transmission drops to
1/2;
e. keeping the cavity constant at an arbitrary frequency ωc and varying the laser fre-
quency ω;
f. keeping the laser locked to the cavity, ω = ωc +NU0, and now ramping the cavity
across the atomic resonance.

22.1.11.8 Ex: Time-dependent solution for a ring cavity pumped from
one side below saturation

Derive the complete solution of the adiabatic field equations (22.104).

22.1.11.9 Ex: Filling and drainage of a ring cavity with one fixed atom

Calculate by simulation of the classical cavity equations, how a laser-pumped ring
cavity fills and looses photons in the presence of a single immobile atom.

22.1.11.10 Ex: Position of the phase without pumping of the cavity

Solve the Schrödinger equation (22.110) by inserting ansatz,

α⃗ = α⃗1e
−λ1t + α⃗2e

−λ2t ,

where λ1 = κ+ 2ıU0 and −λ2 = κ are the eigenvalues of the matrix (22.110).

22.1.11.11 Ex: Dynamics of a standing wave in a symmetrically pumped
ring cavity

Solve and discuss the equation (22.130).

22.1.11.12 Ex: Stationary position of the atom in a unidirectionally
pumped ring cavity

What is the steady state position of an atom interacting with the modes of a unidi-
rectionally pumped ring cavity?

22.1.11.13 Ex: Equations of motion for intensities and coherences in a
ring cavity

Derive from the equations (22.104) the equations of motion for intermodal coherences
α+α

∗
+, α−α∗

−, α+α
∗
−, and α−α∗

+.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed16.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed16.pdf
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22.1.11.14 Ex: Backaction of atomic vibration on the modes of a sym-
metrically pumped ring cavity

a. Calculate the Lamb-Dicke parameter for gravitation-induced Bloch oscillations in
a strontium gravimeter, as well as the modulation index. Is the continued fractions
method applicable?
b. Study the dynamics of the counterpropagating light modes of a ring cavity in the
presence of an atom whose position is periodically modulated with a given frequency
by numerical integration of the equations of motion (22.104). Compare with the
results obtained by the method of continued fractions proposed in Sec. 22.1.8.

22.1.11.15 Ex: Fluorescent emission of a ring cavity for one-sided pump-
ing in the adiabatic approximation

Based on the solution of the adiabatic field equations derived in Exc. 22.1.11.8 cal-
culate the emission spectrum of the ring cavity driven below saturation (where the
adiabatic approximation is good) from one side (η− = 0) for both counter-propagating
directions (α±). Compare with numerical solutions.

22.1.11.16 Ex: Emission spectrum of atoms in a linear cavity below
saturation

a. Derive the mean-field evolution equation for the intracavity field α(t) = ⟨â(t)⟩ for
a linear cavity driven below saturation.
b. Is it possible to calculate the autocorrelation spectrum and the emission spectrum
of the cavity from ⟨α∗(t+ τ)α(t)⟩ [135, 661]?
c. Calculate numerically the emission spectrum of a linear cavity interacting with
many atoms using for the cavity mode a Fock state expansion up to a cut-off photon
number of ncutoff = 10. Assume (η,Γ, N, g1,∆) = (0.1κ, 0.002κ, 100000, 0.002κ, 0).
Interpret the result [621, 309].

22.2 Interaction of atoms with surfaces

22.2.1 Local density of states for atoms near surfaces

In the following sections we consider two-level atoms interacting with meta-materials.
An atom consists of a discrete set of levels between which electric or magnetic transi-
tions characterized by dipole moments d can be excited via vectorial laser light. The
meta-material medium is defined by its spatially and frequency dependent relative
permittivity, ε(r;ω) and relative permeability, µ(r;ω) 8.

The way how the atom and the medium interact can be understood introducing
the notion of the photonic local density of states (LDOS). The medium shapes, via ε
and µ, the LDOS for any radiation field the medium can sustain, assuming that the
atom itself does not modify the LDOS. To calculate the density of states one must
solve Maxwell equations and obtain the Green function G(r, r′;ω), which completely
describes the material. The density of states is proportional to the imaginary part

8Note that the assumption of Drude type function is often a good one.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed17.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed17.pdf
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of Green function. Furthermore, the Green function permits to calculate easily the
propagation of an incident light field through the medium 9, and hence the local
radiation intensity E⃗(r;ω).

After this, one has to set up the Hamiltonian for the atom located at position ra
near the dielectric and solve, with a suitable ansatz, the Schrödinger equation. This
yields the time evolution of the atomic state excitation probabilities [442, ?].

22.2.1.1 Density of states from Maxwell’s equations

The density of states (DOS), the group velocity, and the distribution function are
necessary for calculating various macroscopic quantities like specific heat, thermal
conductivity, energy density, and radiation intensity. The local density of states
(LDOS) is a generalization of the DOS and, unlike the DOS, a position dependent
quantity. Like the DOS, the LDOS depends on the type of carrier - electron, phonon,
or photon. It is generally related to the Green’s function of the appropriate govern-
ing equation (Schrödinger equation for electrons, wave equation for long wavelength
phonons, and Maxwell’s equation for photons) and boundary conditions. Here, we
are concerned with the photonic or electromagnetic LDOS [618].

The electromagnetic LDOS is related to the dyadic Green’s function (DGF) of
the vector Helmholtz equation. In free space the electric field and the magnetic
field contributions are equal in the absence of scatterers. In other circumstances,
however, there is a contribution to the LDOS from the magnetic field energy, and
it is related to the magnetic DGF. Since the pioneering work of Purcell it is well
known that the spontaneous emission rate of molecules is strongly affected by their
vicinity to macroscopic objects. The LDOS (both electric and magnetic) also plays
an important role in Casimir forces between objects. The Maxwell stress tensor in
vacuum at thermal equilibrium can be expressed compactly in terms of the electric
and magnetic DGF.

22.2.1.2 Local density of states (LDOS) and the decay rate

The concepts of density of states (DOS) and local density of states (LDOS) can be
introduced starting from the situation of a non-absorbing and non-dispersive medium,
ε(r;ω) = ε(r) ∈ R>0, embedded in a closed cavity with volume V = L3 assuming that
L≪ λ, λ being the wavelength in vacuum). Then, a discrete set of eigenmodes of the
vector Helmholtz equation can be obtained solving the eigenvalue equation [140],

∇×∇× en(r) = ε(r)
ω2
n

c2
en(r) , (22.146)

yielding the eigenvalues ωn/c as well as the eigenfunctions en(r). Since the differential
operator is Hermitian, the eigenfunctions are orthogonal,

∫
ε(r)e∗m(r) · en(r)d3r = δmn . (22.147)

9Note that even without incident radiation the medium influences the atomic dynamics via the
LDOS.
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The DOS ρ(ω) at a frequency ω counts the number of eigenmodes in an infinitely
small frequency range and is defined as,

ρ(ω) = 1
V

∑

n

δ(ω − ωn) . (22.148)

This DOS is a global quantity that characterizes the spectral density of eigenmodes of
the medium as a whole. A local quantity ρ(r, ω) (LDOS) can be introduced through
a summation weighted by the amplitude of the eigenmodes at point r,

ρ(r, ω) =
∑

n

|ên(r)|2δ(ω − ωn) . (22.149)

This relation defines the LDOS in the particular case of a medium for which a discrete
set of eigenmodes can be introduced.

The (electric) LDOS (22.149) can be reformulated in terms of the electric Green
function G(r, r′, ω) being the solution of the vector Helmholtz equation derived in
electrodynamics,

[
∇×∇×−εr(r, ω)

ω2

c2

]
G(r, r′ω) = δ(3)(r− r′)I . (22.150)

The solution can be cast into the shape,

G(r, r′, ω) = c2
∑

n

ê∗n(r
′)⊗ ên(r)

[
PV

(
1

ω2
n − ω2

)
+

ıπ

2ωn
δ(ω − ωn)

]
. (22.151)

With this result, the LDOS can be written,

ρ(r, ω) =
2ω

πc2
ImTr G(r, r, ω) (22.152)

=
2ω

πc2
Tr c2

∑

n

e∗n(r)⊗ en(r)
π

2ωn
δ(ω − ωn) =

∑

n

e∗n(r) · en(r)δ(ω − ωn) .

This result shows that shows that the correct counting of eigenmodes is implicit in
the Green function, although the latter can be computed by solving the Helmholtz
equation without referring to any set of eigenmodes. In particular, the expression
(22.152) even holds for lossy media, when a basis of eigenmodes cannot be defined
[140].

22.2.1.3 Power radiated by a classical dipole

The Green tensor defined by (22.150) permits the calculation of the electric field
generated by a current density according to,

E⃗(r, ω) = ıωµ0

∫

V

d3r′G(r, r′, ω) · j(r′, ω) . (22.153)

For a classical point-dipole the solution can be given explicitly. The radiated
power is simply,

P = − 1
2Re

∫
j∗(r) · E⃗(r)d3r . (22.154)
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With the current density parametrized as j(r) = ḋegδ(r − rs) = −ıωdegδ(r − rs) we
get,

P =
ω

2
Im [d∗

eg · E⃗(rs)] . (22.155)

From (22.154) we obtain,

P =
µ0ω

3

2
|deg|2Im [êd G(r, r′, ω) êd] , (22.156)

where êd is the unit vector along the dipole. In this expression we assume that the
source point rs is located in vacuum, but the Green function G(r, rs, ω) can describe
an arbitrary environment surrounding the emitter. In particular, the emitted power
calculated in this way accounts both for far-field radiation and absorption in the
environment.

In the case of a dipole with a fixed orientation êd, we can define a projected LDOS
(sometimes called partial LDOS),

ρd(rs, ω) =
2ω

πc2
Im [êd G(rs, rs, ω) êd] (22.157)

so that the full LDOS is,

ρ(rs, ω) =
∑

êdx,êdy,êdz

ρd(rs, ω) =
2ω

πc2
ImTr G(rs, rs, ω) . (22.158)

The projected LDOS accounts for radiation by an electric dipole with a given orien-
tation,

P =
πω2

4ε0
|deg|2ρd(rs, ω) . (22.159)

Example 133 (LDOS in free space): In the particular case of a dipole placed
in 3D free space, the power transferred to the environment equals the power
radiated to far-field radiation. It can be obtained from the free-space dyadic
Green function G0(r, rs, ω), whose imaginary part at r = rs is obtained from
the Green tensor calculated for a bulk medium by setting r = r′ = rs,

ImG(0)(rs, rs, ω) = k0
6π

I . (22.160)

With this, the projected LDOS (22.157) along êd becomes,

ρ
(0)
d (rs, ω) =

ω2

3π2c3
, (22.161)

and the full LDOS (22.158),

ρ(0)(rs, ω) =
ω2

π2c3
. (22.162)

The emitted power becomes,

P (0) =
ω4

12πε0c3
|deg|2 . (22.163)
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22.2.1.4 Spontaneous emission by a quantum emitter in the weak cou-
pling regime

The spontaneous emission rate can be evaluated in perturbation theory from Fermi’s
golden rule,

P

ℏω
−→ πω2

4ε0
|d|2ρd(rs, ω) =

πωeg
ℏε0
|d̂eg|2ρd(rs, ωeg) = Γ . (22.164)

The correction factor comes from the fact that in quantum mechanics, unlike in in
classical mechanics, positive and negative frequency components are treated sepa-
rately as absorption resp. stimulated emission.

In free space, with the formula (22.161) we calculate for the relationship between
spontaneous emission rate and the induced dipole moment,

Γ(0) =
ω3
eg

3πℏε0c3
|deg|2 , (22.165)

which coincides with the expression (16.41).

22.2.1.5 Purcell factor and Lamb shift

The Purcell factor is defined as the ratio between the decay rates in the presence and
in the absence of boundary conditions. It can this be evaluated from the expression
(22.164) as,

Γ

Γ(0)
=

ρd(rs, ω)

ρ
(0)
d (rs, ω)

=
6πc

ωeg
Im êd G(rs, rs, ω) êd . (22.166)

22.2.2 Interaction between atomic dipoles

Until now we concentrated on simple dipole in the environment of dielectric bound-
aries. We will now extend the formalism to interacting dipoles located at positions ri
and rj .

Intermolecular energy transfer can occur through two mechanisms, namely, radiation-
less short-range transfer, also called Förster transfer, and radiative long-range transfer
[252, 731]. In the former the distance R between donor and acceptor is small compared
with the electronic-energy-transfer wavelength R≪ λA. The free-space transfer rate
behaves as R−6, which can be explained by the instantaneous (longitudinal) Coulomb
interaction between the two molecules. In the latter the intermolecular distance sub-
stantially exceeds the transition wavelength, R≫ λA. The observed R

−2 dependence
of the transfer rate can be regarded as being the result of emission and reabsorption
of real (transverse) photons, see Sec. 22.1.1.

The Purcell factor (22.166) allows us to calculate the modification of the decay
rate in the presence of a Green tensor. In the absence of boundaries we use the bulk
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medium Green tensor,

Γ(b) = 3λΓ(0)ê∗d ImGb(r, r′, ω) êd (22.167)

= 3
2Γ

(0)

[(
j0(kR)−

j1(kR)

kR

)
I+ j2(kR)(êd · êR)2

]

= 3
2Γ

(0)

[
(1− (êd · êR)2)

sin kR

kR
+ (1− 3(êd · êR)2)

(
cos kR

k2R2
− sin kR

k3R3

)]
,

where k2 = (ω/c)2εµ and R ≡ r− r′ and jn are the spherical Bessel functions of the
first kind.

Similarly, the Lamb shift can be calculated,

∆(b) = − 3
2λΓ

(0)ê∗d ReGb(r, r′, ω) êd (22.168)

= 3
4Γ

(0)

[(
y0(kR)−

y1(kR)

kR

)
I+ y2(kR)(êd · êR)2

]

= 3
4Γ

(0)

[
(1− (êd · êR)2)

cos kR

kR
− (1− 3(êd · êR)2)

(
sin kR

k2R2
+

cos kR

k3R3

)]
,

where yn are the spherical Bessel functions of the second kind. Again, the second
line is obtained for free space.

At long distances, kR > 1, the results (22.167) and (22.168) simplify to,

∆(b) ≃ 3
4Γ

(0)[1− (êd · êR)2] cos kRkR

Γ(b) ≃ 3
2Γ

(0)[1− (êd · êR)2] sin kRkR

, (22.169)

and at very long distances, kR ≫ 1, ∆(b) → 0 ← Γ(b). This atomic dipole-dipole
interaction will play a role in the generation of interatomic correlations studied in
Sec. 23.3.2. Do the Exc. 22.2.3.1.

At short distances, kR≪ 1, and assuming, êd = êR, the same formula becomes,

∆(b) ≃ − 3
2λΓ

(0)ê∗dReGb(r, r′, ω)êd → −C3

R3

Γ(b) ≃ 3λΓ(0)ê∗dImGb(r, r′, ω)êd → 0
(22.170)

with C3 = 3Γ(0)

2k3 .

22.2.2.1 Derivation of the Hamiltonian

First for one atom interacting with a dielectric then for two atoms,

Ĥ =

∫
d3r

∫ ∞

0

dωℏωf̂†(r, ω)f̂(r, ω)+
N∑

i=0

ℏωiσ̂+
i σ̂i−

N∑

i=0

∫ ∞

0

dω
[
d̂i · E⃗(ri, ω) +H.c.

]
.

(22.171)
Here, f̂(r, ω) are polaritonic bosonic operators associated with the annihilation of the
corresponding matter-light elementary excitations. The field operator is [297, 762],

E⃗(r, ω) = ı⃗ϵ

√
ℏ
πε0

ω2

c2

∫ √
Im εr(r′, ω)G(r, r′, ω)f̂(r′, ω)d3r′ . (22.172)



22.3. FURTHER READING 897

22.2.3 Exercises

22.2.3.1 Ex: Coupled dipoles model near dielectrics

Develop the vectorial coupled dipoles model in the vicinity of a dielectric using the
Green tensor formalism.

22.2.3.2 Ex: Scattering Green tensor above a dielectric surface

In this exercise we calculate the Green tensor for two atomic dipoles above a homo-
geneous dielectric filling the z < 0 half space.
a. Formulate the problem.
b. Simplify the scattering Green tensor obtained by [442] for that situation.
c. Simplify the Green tensor by assuming all atoms aligned along the y-axis at equal
height from the dielectric.
d. Assume the atomic dipole moment to be aligned along the z-axis.
e. Derive the Green tensor for a single atom above the dielectric.
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Figure 22.12: Scattering Green tensor for region-wise homogeneous dielectrics.
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Chapter 23

Dicke model and spin
squeezing

In Chps. 16 to 20 we concentrated on understanding the interaction of single atoms
with light fields. In particular, we introduced the Rabi and the Jaynes-Cummings
model. In Chp. 21 we introduced the coupled dipoles model for the interaction of
many atoms with a single photon. In the following chapters, we will extend these
models to several and many atoms and many photons.

It does not come as a surprise that totally new phenomena arise from the collective
interaction of several atoms with a single light mode. For instance, the atomic cloud
can evolve toward a spin-squeezed or an entangled state, or it can emit light in a
super- and subradiant way. The interplay between collective processes and processes
favoring an individualization of the atom-light interaction is subtle, and the different
models used to understand the processes only grasp partial aspects. The difficulty
arises from the complexity of the task of describing the dynamics of N evolving in
a Hilbert space of dimension 2N . Approximations used to reduce the complexity of
the Hilbert space come at the price of eventually loosing some interesting features.
On the other hand, they may also help to crystallize fundamental symmetries, which
allow us to deepen our intuition on the collective behavior of the many-body system.

Famous models used in the description of collective scattering are (among oth-
ers) the Dicke model and the Tavis-Cummings model (see table above). The Dicke
model (presented in Sec. 23.1) assumes a total indistinguishability of the atoms, the
Tavis-Cummings (discussed in Sec. 23.2 and used for the purpose of quantum com-
putation) makes use of the rotating-wave approximation. Both models are based on
the assumption of non-interacting atoms, neither by ground state collisions nor via
radiation exchange, which certainly is a good assumption in the case of dilute atomic
samples. On the other hand, we saw in the discussion of the coupled dipoles model
in Chp. 21 that already the presence of a single photon in an atomic cloud leads no-
ticeable interatomic interaction effects. In Sec. 23.3 we will extend the Dicke model
to interacting atoms.

Finally, new phenomena arise from the presence of optical cavities shaping the
spatial and spectral distribution of electromagnetic vacuum modes (see Chp. 22) and
from the consideration of photonic recoil (see Chp. 25).

899
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23.1 The Dicke model of collective spin states

As we have seen in Sec. 1.5.8, the Hilbert space increases exponentially with the num-
bers of particles considered, the dimension of the Hilbert space of N particles being
2N . This obviously presents a problem for numerical simulations, and simplifying
models are needed. One of them is the Dicke model, where the N atoms are de-
scribed as spin- 12 particles and their collective interaction with a single mode light
field via a single collective spin S with S = N/2. In this model, the dimension of the
Hilbert space only scales polynomially as 2S + 1.

In the next sections, we will introduce this model detailing its advantages and
limitations and emphasizing its relations to super- and subradiance, spin squeezing
and entanglement. In particular we will show that, when the coupling between the
light and matter crosses a critical value, the Dicke model shows a mean-field phase
transition to a superradiant phase.

23.1.1 Dicke states

The Hilbert space of the Dicke model [229, 387] is given by (the tensor product of)
the states of the cavity and of the two-level atoms 1. The Hilbert space of the cavity
can be spanned by Fock states |n⟩. Choosing the basis |+⟩ ≡

(
0
1

)
and |−⟩ ≡

(
1
0

)
, the

states of each two-level atom j = 1, 2, .., N are defined through the spin operators
ŝj = (ŝxj , ŝ

y
j , ŝ

z
j ) acting only an individual atom 2,

ŝxj |...± ...⟩ = 1
2 |...∓ ...⟩ (23.1)

ŝyj |...± ...⟩ = ±ı 12 |...∓ ...⟩
ŝzj |...± ...⟩ = ± 1

2 |...± ...⟩ ,

and satisfying the spin algebra,

[ŝxj , ŝ
y
k] = ıŝzjδj,k , (23.2)

and related to the Pauli spin matrices (1.154) via,

ŝ = 1
2
⃗̂σ , ŝ± = ŝx ± ıŝy = 1

2 (σ̂x ± ıσ̂y) = σ̂± . (23.3)

The Hamiltonian of the Dicke model is,

Ĥ = −∆câ
†â+

N∑

j=1

(
−∆aŝ

z
j + 2g(â+ â†)ŝxj + 2ıg(â− â†)ŝyj

)
. (23.4)

Sometimes in literature the single-atom coupling strength (or half the single-atom
single-photon Rabi frequency) is normalized to the atom number, g ≡ λ/

√
N . The

coupling can be written as the sum of two terms: a co-rotating term that conserves
the number of excitations and is proportional to âσ̂+ + â†σ̂− and a counter-rotating
term proportional to âσ̂− + â†σ̂+.

1Dicke states can also be introduced in the context of the Jaynes-Cummings model (see
Sec. 23.1.1).

2Note, that here and in the following we set ℏ ≡ 0 for simplicity.
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The above Hamiltonian assumes that all the spins are identical, i.e. they have the
same transition frequency, they do not interact with each other, and they equally
couple to the radiation field (e.g. a cavity mode). For the simple system of only
two not mutually interacting spins, s1 and s2, simultaneously coupling to the same
radiation field, the Dicke model has been introduced in Sec. 3.4.2. There, we have
shown that the spin operators can be added, Ŝ = ŝ1 + ŝ2, and the total system be
represented in a coupled basis, where [ŝ1 · ŝ2, Ŝ2] = 0 = [ŝ1 · ŝ2, Ŝ2

z ]. This concept can
be generalized to an arbitrary number of spins, that is, under the above assumption,
one can define macroscopic collective spin operators,

Ŝα ≡
N∑

j=1

ŝαj with [Ŝx, Ŝy] = ıŜz , (23.5)

and α = x, y, z. Using these operators, one can rewrite the above Hamiltonian as

Ĥ = −∆câ
†â−∆aŜz + 2gârŜx − 2gâiŜy (23.6)

with â = âr + ıâi, and it is easy to see that,

[Ĥ, Ŝ2] = 0 ̸= [Ĥ, Ŝz] . (23.7)

That is, the Dicke Hamiltonian preserves the spin ⟨Ŝ2⟩, but interaction with a light
field can change the projection ⟨Ŝz⟩. We will see in the following that this fact as
important consequences for interaction dynamics of atomic ensembles coupled to a
single light mode.

Example 134 (Conservation of total spin under coherent interaction): More

generally, a coherent interaction described by a Hamiltonian that only depends

on collective spin components, H = H(Ŝx, Ŝy, Ŝz), cannot change the total spin

|S|. This is easy to see by doing a Taylor expansion of the Hamiltonian in

the spin components and using [Ŝ, Ŝ2] = 0. As a consequence a coherent (su-

perradiant) spin state will stay coherent forever, unless individual atom-light

interactions or decay processes occur.

23.1.1.1 Degeneracies of Dicke states

Let us now look at states having the same number N of energy packets counting free
photons n and atomic excitations N−n. For example with N = 2, the following states
are possible. The normalization factors are simply the Clebsch-Gordan coefficients.
See Exc. 23.1.9.1.
|S,M⟩ |N

2
,M⟩ |N

2
− 1,M⟩

|n⟩ # = 1 # = 1

0 |1, 1⟩ = |++⟩
1 |1, 0⟩ = 1√

2
(|+−⟩+ | −+⟩) |0, 0⟩ = 1√

2
(|+−⟩ − | −+⟩)

2 |1,−1⟩ = | − −⟩
The right column of the above table contains a singlet state, which decouples from the
triplet states (center column). The fact that it decouples from the deexcited triplet
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state makes the singlet state stable or subradiant 3. See also Fig. 23.10.
For example with N = 3 (see also Exc. 3.4.5.14),
|S,M⟩ |N

2
,M⟩ |N

2
− 1,M⟩

n # = 1 # = 2

0 | 3
2
, 3
2
⟩ = |+++⟩

1 | 3
2
, 1
2
⟩ ∼ |++−⟩+ |+−+⟩+ | −++⟩ | 1

2
, 1
2
⟩

2 | 3
2
,− 1

2
⟩ ∼ |+−−⟩+ | −+−⟩+ | − −+⟩ | 1

2
,− 1

2
⟩

3 | 3
2
,− 3

2
⟩ = | − −−⟩

Example with N arbitrary,
|S,M⟩ |N

2
,M⟩ |N

2
− 1,M⟩ |N

2
− 2,M⟩

|n⟩ # = 1 # = N − 1 # = N(N−3)
2

0 |N
2
, N

2
⟩ = |++++...⟩

1 |N
2
, N

2
− 1⟩ ∼∑perm. | −+++...⟩ |N

2
− 1, N

2
− 1⟩

2 |N
2
, N

2
− 2⟩ ∼∑perm. | − −++...⟩ |N

2
− 1, N

2
− 2⟩ |N

2
− 2, N

2
− 1⟩

...
...

...

N |N
2
,−N

2
⟩ = | − − −−..⟩

We see that the Dicke states are not made to unambiguously label degenerate
states. States |S,M⟩ with S < |M | are largely degenerate. The degeneracy of a Dicke
state with S ≤ N

2 , that is, the number of states |+⟩N+ |−⟩N− composing a single Dicke
state labeled by |S,M⟩ is [306],

# =
(2S + 1)N !

(N2 + S + 1)!(N2 − S)!
. (23.8)

Transitions between energetically degenerate states |S,M⟩ and |S,M ′⟩ with M =M ′

but S ̸= S′ are prohibited.

23.1.1.2 Mean-field approximation and light field elimination

The mean-field approximation consists in replacing the photonic operators by their
expectation values, i.e. assuming classical light. This allows us to remove the light
energy term from the Hamiltonian and replace the coupling strength by the n-photon
Rabi frequency, Ω = 2g

√
n. The Hamiltonian then becomes just a generalization of

the semiclassical one-atom Hamiltonian (16.129) to large spins,

Ĥ = Ŝ ·G = −∆a Ŝz +ReΩ Ŝx + ImΩ Ŝy , (23.9)

allowing for complex Rabi frequencies. We will see in Sec. 23.4.1 how this simplified
Hamiltonian can be derived from (23.6) for the case that the light field is a single
mode in a ’bad cavity’.

In the absence of spontaneous emission, any pure single-atom state is given by,

|ψ⟩ = |ϑ, φ⟩ = cos ϑ2 |+⟩+ eıφ sin ϑ
2 |−⟩ , (23.10)

3Note that, while superradiance as well as subradiance can be explained by classical radiator
models, such as the coupled dipoles model.
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Figure 23.1: (a) Illustration of the Bloch sphere. (b) Bloch spheres of the various super/-
subradiant states with N = 5 atoms. (c) Illustration of (i) a subradiant state, (ii) a fully
stretched coherent spin state, and (iii) a spin-correlated state for N = 3 atoms.

where the angles ϑ and φ point to a location on the Bloch sphere characterizing the
state of the atom. For example, a single initially deexcited atom having been subject
to a π

2 -pulse ends up in the state |π2 , 0⟩. The expectation value of the spin operator
in this state is simply obtained from,

⟨ϑ, φ|Ŝz|ϑ, φ⟩ = cos2 ϑ2 ⟨+|Ŝz|+⟩+ sin2 ϑ2 ⟨−|Ŝz|−⟩ = 1
2 cosϑ (23.11)

⟨ϑ, φ|Ŝ+|ϑ, φ⟩ = eıφ sin ϑ
2 cos ϑ2 ⟨+|Ŝ+|−⟩ = 1

2e
ıφ sinϑ ,

yielding,

⟨ϑ, φ|Ŝ|ϑ, φ⟩ = 1
2



cosφ sinϑ

sinφ sinϑ

cosϑ


 . (23.12)

We will also denote the probability of finding the system in state |±⟩ by,

p+ = ⟨P̂±⟩ = |⟨+|ψ⟩|2 = cos2 ϑ2 = 1− p− . (23.13)

23.1.1.3 Collective spin states

Let us now study the system obeying the Hamiltonian (23.9) in detail. The spin
operators Ŝ satisfy a SU(2) algebra explained in Sec. 3.3.2, i.e. Ŝ × Ŝ = ıŜ. The
common eigenstates of Ŝ2 and Ŝz are denoted by |S,M⟩,

Ŝz = Ŝ+Ŝ− − Ŝ−Ŝ+ with Ŝz|S,M⟩ =M |S,M⟩ (23.14)

N̂± ≡ 1
2 (NI± Ŝz) with N̂±|S,M⟩ = 1

2 (N ±M)|S,M⟩ .

From this we conclude that S = N/2 is half the number of atoms andM the inversion.
We consider an ensemble of N = N+ +N− two-level atoms excited by a definite

number of M photons, such that,

N = N+ +N− and 2M = N+ −N− . (23.15)

Hence, N± = N
2 ±M is the number of atoms in each of the two states. The N atoms

can occupy 2N different collective states. However, when the atoms are identical and
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couple uniformly to the same light mode, all states where the same number of atoms
is excited are energetically degenerate, and the total energy available to the system
is,

E =Mωc . (23.16)

The degeneracy of each many-body state with a given inversion M is given by the
binomial coefficient,

# =

(
N

N
2 +M

)
=

(
N

N+

)
=

(
N

N−

)
such that

N∑

N+=0

(
N

N+

)
= 2N . (23.17)

Therefore, we may set,

|S,M⟩ ≡ |+⟩N+ |−⟩N− . (23.18)

These states are called Dicke states 4.
For the special case N = 2 the transformation from the basis |+⟩N+ |−⟩N− , used in

the Tavis-Cummings model, to the basis |S,M⟩, used in the Dicke model, is a unitary
transformation. It has been extensively discussed in Sec. 3.4 at the example of two
spins, whose complete Hilbert space can be expanded in the uncoupled or in the
coupled basis. For N > 2 the situation is more complicated, since the degeneracies of
both models are different. It is important to be aware that S is not simply half the
atom number, but runs over S = N

2 ,
N
2 − 1, ..., depending on how the individual spins

couple together. The degeneracy of an angular momentum state |S,M⟩ with a specific
inversion M but undefined orbital momentum S is determined by the condition 0 ≤
S ≤M , and given by,

# = N
2 − |M |+ 1 . (23.19)

For example, for N = 2 the possible spin states are given by |s1 − s2| ≤ S ≤ s1 + s2,
that is, S = 0, 1. And for N = 5, M = 3

2 is supported by S = 3
2 and 5

2 . Obviously,
the degeneracy (23.19) is lower than (23.17) except for N = 2. Dicke states may be
represented as vectors pointing to the surface of a so-called Bloch sphere of radius,

∥⟨N,S,M |Ŝ2|N,S,M⟩∥ = S(S + 1) , (23.20)

as illustrated in Fig. 23.1(b).

Example 135 (Schwinger bosonization): The two levels |+⟩ and |−⟩ may be
interpreted as bosonic modes â and b̂ populated with S+M respectively S−M
atoms,

Ŝ+ = â†b̂ , Ŝ− = âb̂† , N̂ = â†â+ b̂†b̂ . (23.21)

Consequently,

Ŝx = 1
2
(â†b̂+ b̂†â) , Ŝy = 1

2ı
(â†b̂− b̂†â) , Ŝz = 1

2
(â†â− b̂†b̂) .

(23.22)

This is the so-called Schwinger bosonization.

4In Sec. 3.4.3 we used for the coupling of two spins the notation |(s1, s2)s,m⟩. For coupling N
spins, we should write in analogy,

|(

N︷ ︸︸ ︷
1
2
, .., 1

2
), S,M⟩ ≡ |N,S,M⟩ .

Mostly, we will however drop the (constant) number N .
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23.1.1.4 Dicke Hamiltonian for 2 atoms from the Tavis-Cummings model

We start from the collective Dicke Hamiltonian (23.4) for two atoms assuming ωa1 =
ωa2 and g1 = g2, that is, both atoms are identical and inside the mode volume
of the field to which they couple with equal strength, and apply the rotating wave
approximation. The Hamiltonian then factorizes into a diagonal matrix of 4 by 4
blocks characterized by a given number of total excitations,

Ĥn =




(n+ 1)ωc − ωa g
√
n g

√
n 0

g
√
n nωc 0 g

√
n

g
√
n 0 nωc g

√
n

0 g
√
n g

√
n (n− 1)ωc + ωa


 . (23.23)

Each block has two degenerate non-shifted eigenvalues and two non-degenerate shifted
eigenvalues,

E = nωc and E = nωc ±ϖn with ϖn ≡
√
(ωc + ωa)2 − 4g2n . (23.24)

The description of the dynamics can be simplified by reducing the order of the matrix
by calculating the average of the lines 2 and 3,

ĤD =



(n+ 1)ωc − ωa g

√
2n 0

g
√
2n nωc g

√
2n

0 g
√
2n (n− 1)ωc + ωa


 , (23.25)

and opting for a new base defined by,

|ψ⟩ =
∑

n



c22 n−1

c12 n
c11 n+1


 |n⟩ , (23.26)

with c12 n = c21 n. The new Hamiltonian (23.25) has exactly the same eigenvalues as
the complete one (23.25), λ = nωc, nωc±ϖn, but without degeneracies. If we assume
furthermore that the excitation is resonant, ωc = ωa, with high intensity, n = |α|2 for
all n, defining the Rabi frequency Ω ≡ 2g

√
n our matrix becomes,

ĤD ≃



|α|ω Ω√

2
0

Ω√
2
|α|ω Ω√

2

0 Ω√
2
|α|ω


 , (23.27)

with the eigenvalue matrix,

En = U†
nĤDUn ≃



|α|ω − Ω

|α|ω
|α|ω +Ω


 , (23.28)

and the eigenvector matrix,

Un ≃ 1
2



−1

√
2 1√

2 0 −
√
2

1 −
√
2 −1


 . (23.29)
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With this we can derive the propagator,

e−ıĤnt = 1
2e

−ıα2ωt




1 + cosαΩt −
√
2ı sinαΩt −1 + cosαΩt

−
√
2ı sinαΩt 2 cosαΩt −

√
2ı sinαΩt

−1 + cosαΩt −
√
2ı sinαΩt 1 + cosαΩt




αΩt=π/2−→ 1
2e

−ıπ/2·αω/Ω




1 −
√
2ı −1

−
√
2ı 0 −

√
2ı

−1 −
√
2ı 1


 .

The generalization to three atoms or N atoms is straightforward and will be left
to Exc. 23.1.9.2.

23.1.2 Coherent spin states

By the fact that the individual spins are additive and the Hamiltonian linear in the
spin operators, Ĥ ∝ Ŝz, we know that the Schrödinger equation will be satisfied by
product states,

|ΨN ⟩ =
N∏

k=1

|ϑk, φk⟩k , (23.30)

where |ϑk, φk⟩k is the state of the k-the atom given by (23.10).
Coherent spin states now consist of N atoms, all being in the same state. In

Exc. 23.1.9.3 we present another equivalent definition. Since the atoms are indistin-
guishable by the radiation field, we may as well drop the labeling index k,

|ΨN ⟩ = |S, ϑ, φ⟩ = |ϑ, φ⟩N =
(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)N

(23.31)

=

N∑

k=0

√(
N

k

)
cosN−k ϑ

2 |+⟩N−k eıkφ sink ϑ2 |−⟩k ,

in agreement with (18.30), or equivalently, using the Dicke state notation (23.18),

|ϑ, φ⟩N =

2S∑

k=0

√(
2S

k

)
cos2S−k ϑ2 e

ıkφ sink ϑ2 |S, S − k⟩ . (23.32)

Hence, similarly to the coherent state of a harmonic oscillator, which consists of a
Poissonian distribution of number states, the coherent spin state consists of a binomial
distribution of N+ atoms in one state and N − N+ in the other. Note also, that
by construction, the coherent spin states are stretched, S = N/2. That is, they
can be represented by a vector of length N equal to the radius of the (generalized)
Bloch sphere 5. In other words, S is a conserved quantum number as already shown
in (23.7), and this feature does not change under the influence of the Hamiltonian
(23.9). These states are called superradiant. Nevertheless, other states |S,M⟩ are
possible with S ≤ N

2 . These are squeezed, subradiant, or entangled states.

5An illustration of the generalized Bloch sphere is attempted in Fig. 24.10.
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In the following we will study some of the properties of the coherent spin states.
For instance, in Exc. 23.1.9.5(a) we calculate the expectation values of coherent spin
states,

⟨ϑ, φ|N Ŝ|ϑ, φ⟩N = S



cosφ sinϑ

sinφ sinϑ

cosϑ


 . (23.33)

Hence, the spin evolves on the surface of a Bloch sphere with radius,

∥⟨ϑ, φ|N Ŝ|ϑ, φ⟩N∥ = S while still ∥⟨ϑ, φ|N Ŝ2|ϑ, φ⟩N∥ = S(S + 1) . (23.34)

For the number of atoms in each state we expect,

⟨N̂+⟩ = N
2 + 1

2 ⟨Ŝz⟩ = N cos2 ϑ2 = Np+ = N(1− p−) = N − ⟨N−⟩ . (23.35)

23.1.3 Rotations, spin excitation and precession

We learn in quantum mechanics how to use Pauli matrices to describe rotations in
the Bloch vector space (see Exc. 1.5.9.5). We will now extend this formalism to
our collective spin space. A useful rule for the subsequent calculations, proved in
Exc. 23.1.9.6, is the following,

eıF (Ŝz)Ŝ+e
−ıF (Ŝz) = Ŝ+e

ı[F (Ŝz+I)−F (Ŝz)] , (23.36)

where F is an arbitrary function. For F (Ŝz) ≡ ϕŜz the unitary transform eıF (Ŝz)

denotes a rotation about the z-axis, which we will study in the example below. For
F (Ŝz) ≡ ζŜ2

z it generates squeezing along the z-axis, which we will study in the next
section. Furthermore, we define the rotation matrices about the Cartesian axis (for
clockwise rotation about the respective axis),

Rx(γ) ≡



1 0 0

0 cos γ − sin γ

0 sin γ cos γ


 , Ry(γ) ≡




cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ


 ,

Rz(γ) ≡



cos γ − sin γ 0

sin γ cos γ 0

0 0 1


 , (23.37)

for which it is possible to show (with α = x, y, z),

Rα(γ)Ŝ = eıγŜα Ŝe−ıγŜα . (23.38)

Example 136 (Rotation about Ŝz): Defining F (Ŝz) ≡ ϕŜz the relationship
(23.36) tells us,

eıϕŜz Ŝ+e
−ıϕŜz = Ŝ+e

ıϕ ,

and consequently,

eıϕŜz Ŝe−ıϕŜz =

 1
2
(eıϕŜ+ + e−ıϕŜ−)

1
2ı
(eıϕŜ+ − e−ıϕŜ−)

Ŝz

 =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 Ŝ ≡ Rz(ϕ)Ŝ .
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Furthermore,

e−ıϕŜz |ϑ, φ⟩N =

2S∑
k=0

√√√√(2S
k

)
cosN−k ϑ

2
eıkφ sink ϑ

2
e−ıϕ(S−k)|S, S − k⟩

= e−ıϕS
(
e−ıϕ cos ϑ

2
|+⟩+ eı(φ+ϕ) sin ϑ

2
|−⟩
)N

= e−ıϕS |ϑ, φ+ ϕ⟩N .

We also find,

⟨ϑ, φ|NRz(ϕ)Ŝ|ϑ, φ⟩N = N
2

cos(φ+ ϕ) sinϑ

sin(φ+ ϕ) sinϑ

cosϑ

 = ⟨ϑ, φ+ ϕ|N Ŝ|ϑ, φ+ ϕ⟩N .

To vary the polar angle ϑ of a coherent spin state |ϑ, φ⟩, we first rotate the
coordinate system about the z-axis until φ = 0, then rotate about the y-axis by
the desired angle θ, and finally rotate back about the z-axis to reach the initial
azimuth φ,

⟨ϑ, φ|NRz(φ)R−1
y (θ)R−1

z (φ)Ŝ|ϑ, φ⟩N = N
2

cosφ sin(θ + ϑ)

sinφ sin(θ + ϑ)

cos(θ + ϑ)

 = ⟨ϑ+θ, φ|N Ŝ|ϑ+θ, φ⟩N .

The rotation about the x-axis is derived in Exc. 23.1.9.7, and in Exc. 23.1.9.8 we

write down the explicit rotation matrix for two atoms.

Rotations such as the ones described by Rα(γ) are generated by the Dicke Hamil-
tonian (23.9), since the solution of the Schrödinger equation is,

|Ψ(t)⟩ = e−ıĤt|Ψ(0)⟩ = e−ıtŜxReΩx−ıtŜyImΩy−ıtŜz∆|Ψ(0)⟩ . (23.39)

That is, the Dicke Hamiltonian generates rotations Rx(ReΩxt), Ry(ImΩyt), and
Rz(∆t). This confirms that rotations do only transform coherent states into each
other. Nevertheless, there are other unitary operations that transform coherent states
into states that cannot be represented by coherent states. One example for this is
squeezing.

23.1.3.1 Rotation algebra

The example 136 shows that rotations from an initial towards an arbitrary coherent
spin states can be parametrized by a pair of Euler angles. Using (1.303) [200],

Urt(ϑ, φ) = eıφŜzeıϑŜy = e−ıϑêφ·Ŝ = e−ıϑ(−Ŝx sinφ+Ŝy cosφ) = e−
ϑ
2 (Ŝ+e

−ıφ−Ŝ−e
ıφ) = e−ıϑŜφ

R(ϑ, φ)Ŝ ≡ U†
rt(ϑ, φ)ŜUrt(ϑ, φ) (23.40)

with êφ = −êx sinφ+ êy cosφ. With this we find,

|ϑ, φ⟩N = Urt(ϑ, φ)|S, S⟩ . (23.41)
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23.1.4 Uncertainties and quantum projection noise

Measuring the population of a coherently excited two-level system by projecting it
onto an energy eigenstate introduces quantum projection noise. Although this inher-
ent noise spoils the determination of the resonance frequency, it can to some extent
be surpassed by spin squeezing [869]. The projection noise limit has been observed
with ions [419, 411] and with atomic clouds [725]. The reduction of the noise by spin
squeezing has been observed with ions [714], micromasers [683], and atomic clouds
[361, 494]. Also, a weakly entangled state of two modes was observed for continuous
spin variables [443]. Very strong squeezing spin can be obtained in a Mott insulator
state, as demonstrated by [337].

First, we want to show that the Heisenberg uncertainty of a coherent spin state is
nothing else than the quantum projection noise studied in Sec. 18.2.2. On one hand,
we have,

⟨ϑ, φ|N (∆Ŝz)
2|ϑ, φ⟩N = ⟨ϑ, φ|N Ŝ2

z |ϑ, φ⟩N − (⟨ϑ, φ|N Ŝz|ϑ, φ⟩N )2 (23.42)

=

N∑

k=0

(
N

k

)
(N2 − k)2pN−k

+ pk− −
(

N∑

k=0

(
N

k

)
(N2 − k)pN−k

+ pk−

)2

=
(
N2

4 −N2p+p− +Np+p−
)
−
(
N
2 (p+ − p−)

)2
= Np+p− .

On the other hand, we have seen in (18.29) that this results corresponds to the
variance of quantum projection noise,

(∆r)2 =

N∑

r=0

(r −Np±)2PN,r,± (23.43)

=

N∑

k=0

(N2 − k + N
2 (p+ − p−))2

(
N

k

)
pN−k
+ pk− = Np+p− .

The Heisenberg uncertainty relation (1.201) applied to angular momentum oper-
ator satisfying [Ŝx, Ŝy] = ıŜz states,

⟨∆Ŝx⟩⟨∆Ŝy⟩ ≥ 1
2 |⟨Ŝz⟩| . (23.44)

Since there are no quantum correlations between the particles, the uncertainty of
coherent spin states is additive (see Exc. 3.3.4.5),

(∆Ŝα)
2 =

N∑

k=0

(∆ŝαk )
2 . (23.45)

For a coherent spin state we can calculate explicitly [see Exc. 23.1.9.5(b)],

⟨ϑ, φ|N


∆Ŝ2

x

∆Ŝ2
y

∆Ŝ2
z


 |ϑ, φ⟩N = N

4



1− sin2 ϑ cos2 φ

1− sin2 ϑ sin2 φ

sin2 ϑ


 . (23.46)
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Figure 23.2: Illustration of the uncertainty of the spin components of a coherent spin state.

Example 137 (Uncertainty of a coherent spin state after a π
2
-pulse): A

π
2
-pulse applied to a cloud in the collective ground state generates the state
|ϑ, φ⟩ = |π

2
, 0⟩. This is somewhat analogous to the beam splitting of a photonic

Fock state discussed in Sec. 14.5. Interestingly, a Fock state seems more natural
for an atomic cloud, while the Glauber state is more natural for a photonic
mode. For example, for the particular state |π

2
, 0⟩ we find from (23.46),

(∆Ŝx)
2 = 0 and (∆Ŝy)

2 = (∆Ŝz)
2 = S

2
.

Note, that spin squeezing along the z-axis could be obtained by quantum non-
demolition measurement of the inversion, that is, by measuring Ŝz without influencing
the populations of the ground and excited state.

23.1.4.1 Projection onto the generalized Bloch sphere

The eigenstates of any convex combination n · Ŝ form a basis with respect to the axis
n, denoted {|S,M ;n⟩}. These basis vectors are called Dicke states and the whole
basis is called a Dicke basis, where the projection eigenvalue M runs from −S to S
in integer steps. In spherical coordinates, the vector,

n =



sinϑ cosφ

sinϑ sinφ

cosϑ


 =

⟨Ŝ⟩
S

(23.47)

points to (ϑ, φ) on the sphere S2; this is the phase space generated by SU(2) symmetry
[200]. It is common to work entirely in the nz Dicke basis, denoted {|S,M⟩}. What
really matters for spin squeezing is not the uncertainty ellipse, but its projection
onto the generalized Bloch sphere. We calculate it via transformation into a local
coordinate frame using spherical coordinates (23.33) ,



Ŝr
Ŝϑ
Ŝφ


 = Rrt(ϑ, φ)



Ŝx
Ŝy
Ŝz


 with Rrt(ϑ, φ) =



sinϑ cosφ sinϑ sinφ cosϑ

cosϑ cosφ cosϑ sinφ − sinϑ

− sinφ cosφ 0


 .

(23.48)
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It is easy to verify,
[Ŝϑ, Ŝφ] = ıŜr . (23.49)

For any collective spin satisfying the SU2 algebra we know,

⟨Ŝ2⟩ = ⟨Ŝ2
x⟩+ ⟨Ŝ2

y⟩+ ⟨Ŝ2
z ⟩ = S(S + 1) . (23.50)

However,

(⟨ϑ, φ|N Ŝx|ϑ, φ⟩N )2 + (⟨ϑ, φ|N Ŝy|ϑ, φ⟩N )2 + (⟨ϑ, φ|N Ŝz|ϑ, φ⟩N )2 = S2 (23.51)

only holds for superradiant states, such as coherent spin states, but not generally,
e.g. not for subradiant states. Let us define other radii via,

S2
r ≡ ⟨Ŝx⟩2 + ⟨Ŝy⟩2 + ⟨Ŝz⟩2 < S2

S2
ϱ ≡ ⟨Ŝx⟩2 + ⟨Ŝy⟩2 < S2

r

(23.52)

allowing us to rewrite the rotation matrix (23.48) as,

Rrt(ϑ, φ) =
1
Sr




⟨Ŝx⟩ ⟨Ŝy⟩ ⟨Ŝz⟩
⟨Ŝx⟩⟨Ŝz⟩/Sϱ ⟨Ŝy⟩⟨Ŝz⟩/Sϱ −Sϱ
−⟨Ŝy⟩Sr/Sϱ ⟨Ŝx⟩Sr/Sϱ 0


 . (23.53)

Using this transformation it is easy to verify,

⟨Ŝr⟩2 + ⟨Ŝϑ⟩2 + ⟨Ŝφ⟩2 = ⟨Ŝx⟩2 + ⟨Ŝy⟩2 + ⟨Ŝz⟩2 = S2
r

⟨Ŝ2
r ⟩+ ⟨Ŝ2

ϑ⟩+ ⟨Ŝ2
φ⟩ = ⟨Ŝ2

x⟩+ ⟨Ŝ2
y⟩+ ⟨Ŝ2

z ⟩ = S(S + 1)
(23.54)

Example 138 (Rotations about the x- and y-axis): For particular azimuthal
angles we find,

Rrt(ϑ, 0) =

sinϑ 0 cosϑ

cosϑ 0 − sinϑ

0 1 0

 = 1
Sr

⟨Ŝx⟩ 0 ⟨Ŝz⟩
⟨Ŝz⟩ 0 −Ŝx
0 Sr 0

 (23.55)

Rrt(ϑ,
π
2
) =

 0 sinϑ cosϑ

0 cosϑ − sinϑ

−1 0 0

 = 1
Sr

 0 ⟨Ŝy⟩ ⟨Ŝz⟩
0 ⟨Ŝz⟩ −⟨Ŝy⟩
−Sr 0 0

 .

Knowing the collective spin state may can now calculate the uncertainty projection
onto the generalized Bloch sphere. For a state represented by an arbitrary density
matrix we get,

⟨∆S2
α⟩ = Tr ρ̂Ŝ2

α − (Tr ρ̂Ŝα)
2 , α = r, ϑ, φ . (23.56)

Example 139 (Uncertainty projections for coherent spin states): Using
the unitary transform (23.40),

|ϑ, φ⟩N = Urt|S, S⟩ where Urt = e−
ϑ
2
(Ŝ+e

−ıφ−Ŝ−e
ıφ) = e−ıϑŜφ , (23.57)



912 CHAPTER 23. DICKE MODEL AND SPIN SQUEEZING

where the angles are given by,

sinϑ =
Sϱ

Sr
, sinφ =

⟨Ŝy⟩
Sρ

, (23.58)

the same transformation into the local coordinate frame can be achieved via,

Ŝϑ = UrtŜxU†
rt

Ŝφ = UrtŜyU†
rt

Ŝr = UrtŜzU†
rt

(23.59)

We can now calculate the uncertainties in the local coordinate frame,

⟨ϑ, φ|N∆Ŝ2
r |ϑ, φ⟩N = ⟨ϑ, φ|N Ŝ2

r |ϑ, φ⟩N − (⟨ϑ, φ|N Ŝr|ϑ, φ⟩N )2 (23.60)

= ⟨ϑ, φ|NUrtŜzU†
rtUrtŜzU†

rt|ϑ, φ⟩N − (⟨ϑ, φ|NUrtŜzU†
rt|ϑ, φ⟩N )2

= ⟨S, S|Ŝ2
z |S, S⟩ − ⟨S, S|Ŝz|S, S⟩2 = ⟨S, S|∆Ŝ2

z |S, S⟩

and analogously for the other spin components. Hence, for a coherent spin
state,

⟨ϑ, φ|N∆Ŝ2
r |ϑ, φ⟩N = 0 (23.61)

⟨ϑ, φ|N∆Ŝ2
φ|ϑ, φ⟩N = S

2
= ⟨ϑ, φ|N∆Ŝ2

φ|ϑ, φ⟩N .

Hence, the local basis the Heisenberg uncertainty is satisfied with two spin
components,

⟨∆S2
ϑ⟩⟨∆S2

φ⟩ > S2

4
, ⟨[Ŝϑ, Ŝφ]⟩ = ıSr . (23.62)

The panels (a-d) in Fig. 23.3 show the uncertainties of the coherent spin state

in the Dicke basis, ∆Ŝx,y,z, as a function of the Euler angles ϑ and φ.

The panels (e-h) in Fig. 23.3 show the uncertainties of the coherent spin state

in the local basis. Noticeably, the uncertainties projected on the superradiant

Bloch sphere are flat. Hence, the Heisenberg relation does not hold [see panel

(j)]. Do the Exc. 23.1.9.9.

Since ⟨ϑ, φ|N∆Ŝ2
r |ϑ, φ⟩N = 0 for all angles, we may as well disregard the radial

component and concentrate on the projection onto the surface of the Bloch sphere.

23.1.4.2 Projection onto the equatorial plane

For future reference it is interesting to define operators only acting in the equatorial
plane, (

Ŝϱ
Ŝφ

)
=

(
cosφ sinφ

− sinφ cosφ

)(
Ŝx
Ŝy

)
. (23.63)

It is easy to verify,
[Ŝφ, Ŝϱ] =

1
2ı [Ŝ−, Ŝ+] = ıŜz . (23.64)

We see that this is consistent with the previous definition Sϱ = ⟨Ŝϱ⟩ and (23.48), such
that, (

Ŝϱ
Ŝφ

)
=

(
⟨Ŝx⟩/Sϱ ⟨Ŝy⟩/Sϱ
−⟨Ŝy⟩/Sϱ ⟨Ŝx⟩/Sϱ

)(
Ŝx
Ŝy

)
. (23.65)
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Figure 23.3: (code) Uncertainty of the spin components of a coherent spin state.

Using this transformation it is easy to see,

⟨Ŝϱ⟩2 + ⟨Ŝφ⟩2 = ⟨Ŝx⟩2 + ⟨Ŝy⟩2 = S2
ϱ

⟨Ŝ2
ϱ⟩+ ⟨Ŝ2

φ⟩ = ⟨Ŝ2
x⟩+ ⟨Ŝ2

y⟩
(23.66)

such that,
⟨Ŝφ⟩ = 0 and ⟨Ŝϱ⟩ = Sϱ . (23.67)

Example 140 (Uncertainty projections for coherent spin states): Let us
now calculate for a coherent spin state,

⟨ϑ, φ|N∆Ŝ2
α|ϑ, φ⟩N = ⟨ϑ, φ|N Ŝ2

α|ϑ, φ⟩N − (⟨ϑ, φ|N Ŝα|ϑ, φ⟩N )2 (23.68)

for α = ϱ, φ. The panels (f,j,k) in Fig. 23.3 show the uncertainties of the coher-

ent spin state projected onto the equatorial plane. Noticeably, the uncertainty

projected on the equatorial plane [panel(i)] is not flat. Hence, the Heisenberg

relation does not hold [see panel (k)]. Do the Exc. 23.1.9.10.

23.1.5 Hamiltonian spin squeezing by one-axis twisting

We have seen in the last section, that rotations influence the distribution of the
uncertainty among the Cartesian coordinates in a specific way. It is, however, possible
to manipulate the uncertainty distribution without rotating the collective spin state.
An example with great practical importance is the concept of spin squeezing. It

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_UncertaintyCoherent.m
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consists in establishing appropriate quantum correlations are between the individual
spins, such as to partly cancel out fluctuations in one direction augmenting them in
the other direction.

Figure 23.4: Illustration of the uncertainty in (a) a coherent state and (b) a spin-squeezed
state.

Squeezing of spin is not as straightforward as squeezing of bosons, since the un-
certainty relations are essentially different [468]. To study spin-squeezing along the
z-axis let as analyze the unitary transformation,

Qz(ζ)Ŝ ≡ eıζŜ
2
z Ŝe−ıζŜ

2
z . (23.69)

Specifying the rule (23.36) for the particular case F (Ŝz) ≡ ζŜ2
z , we get,

eıζŜ
2
z Ŝ+e

−ıζŜ2
z = Ŝ+e

2ıζ(Ŝz+1/2) , (23.70)

and hence,

Qz(ζ)Ŝ = eıζŜ
2
z Ŝe−ıζŜ

2
z =




1
2 (Ŝ+e

2ıζ(Ŝz+1/2) + e−2ıζ(Ŝz+1/2)Ŝ−)
1
2ı (Ŝ+e

2ıζ(Ŝz+1/2) − e−2ıζ(Ŝz+1/2)Ŝ−)
Ŝz


 . (23.71)

Let us now apply the squeezing operator to the state |π2 , 0⟩. In Exc. 23.1.9.11 we
show that,

⟨π2 , 0|NeıζŜ
2
z Ŝe−ıζŜ

2
z |π2 , 0⟩N =



1

0

0


 N

2 cosN−1 ζ (23.72)

⟨π2 , 0|NeıζŜ
2
z



Ŝ2
x

Ŝ2
y

Ŝ2
z


 e−ıζŜ

2
z |π2 , 0⟩N =



N + 1

N + 1

2


 N

8 +




1

−1
0


 N(N−1)

8 cosN−2 2ζ .

The dependencies of the uncertainties as a function of the squeezing parameter are
plotted in Fig. 23.5. We see that the uncertainties never get smaller than the un-

squeezed value. The reason is that, since the unitary transform eıζŜ
2
z commutes with

Ŝz, the prescription (23.69) does not immediately lead to squeezing along the z-axis.

Nevertheless, the prescription does generate quantum correlations in Ŝx and Ŝy,
which can be transformed to squeezing by subsequently rotating the collective spin
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Figure 23.5: (code) (a) Uncertainties calculated in (23.72) as a function of the squeezing

parameter. (b) Uncertainties after application of squeezing operator as a function of the

rotation angle ν about the x-axis.

about the x-axis [468]. As shown in Exc. 23.1.9.12, a rotation by an angle ν does not
modify the x-component,

⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

xe
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N (23.73)

= N(N+1)
8 + N(N−1)

8 cosN−2 2ζ − N2

4 cos2N−2 ζ ,

but it modifies the other ones,

⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

y,ze
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N (23.74)

= N
4 {1 + N−1

4 [A±
√
A2 +B2 cos(2ν + arctan B

A )]} ,

with A ≡ 1 − cosN−2 2ζ and B ≡ 4 sin ζ cosN−2 ζ. We study spin squeezing in
Exc. 23.1.9.13 to 23.1.9.16. In Exc. 23.1.9.17 we investigate, whether double Fock
states can lead to Heisenberg-limited interferometry, and in Exc. 23.1.9.18 we study
entanglement witnesses with coherent spin states.

Obviously, since squeezed states are obtained from coherent states by unitary
transform, they are still normalized,

⟨ϑ, φ|Ne−ıζŜ2
zeıζŜ

2
z |ϑ, φ⟩N = 1 . (23.75)

Example 141 (Conditional spin-squeezing by non-demolition measure-
ment): Technically, spin-squeezed states can be generated in experiments by
quantum non-demolition measurements [95, 183, 718]. Another idea would be
to arrange for totally uniform spin-spin coupling, since this generates terms like,

Ĥss =

N∑
i,j ̸=i

κij ŝ
z
i ŝ
z
j ≃ κ

N∑
i,j ̸=i

ŝzi ŝ
z
j = κŜ2

z . (23.76)

In a cloud this latter idea is not realizable, because the interatomic coupling

strength depends on the distance between the atoms, but if the atoms are cou-

pled via their interaction with a common mode of an optical cavity it should be

feasible.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Squeezing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Squeezing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Squeezing.m
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23.1.6 Bosonic modes: Harmonic oscillators and collective spin
states

Owing to the equidistant spectrum of their excitation levels, harmonic oscillator
modes and collective spin states share many particularities, which will allow us to
transfer various notions from the well-known harmonic oscillator studied in Sec. 2.6
to the spin ensembles. Respectively expanded on Fock states and Dicke states, the
oscillator operators and the spin operators are approximately linked by the Holstein-
Primakoff prescription, which will be worked out below. Also, we appreciated in
Sec. 14.3 the utility of quasi-probability distributions for the estimation of quantum
correlations in light modes, which we will apply to spin systems below. Light fields
and spin systems are examples of what is called a bosonic mode.

23.1.6.1 Construction of coherent states spin

The goal of this example is to demonstrate, in analogy to the construction of opti-
cal coherent states from vacuum using photon creation operators, that the coherent
spin states can be constructed from the ground/inverted state using rising/lowering
operators.

First we calculate the impact of the rising/lowering operator on the ground/in-
verted state,

Ŝk±|S,∓S⟩ =
k−1∏

m=0

√
S(S + 1)− (∓S ±m)(∓S + 1±m)|S,∓S ± k⟩ (23.77)

= k!

√(
N

k

)
|S,∓S ± k⟩ ,

where we made use of the formulas k! = Γ(k+1) and (−1)kΓ(k−N)Γ(N − k+1) =

Γ(−N)Γ(1 +N). Let us now study the impact of the rotation operator eµŜ± ,

eµŜ± |S,∓S⟩ =
n∑

k=0

µk

k!
Ŝk±|S,∓S⟩ =

n∑

k=0

√(
N

k

)
µk|S,∓S ± k⟩ . (23.78)

Setting µ ≡ eıφ tan ϑ
2 we find [676],

1

(1 + |µ|2)S e
µŜ− |S, S⟩ = cos2S ϑ

2

n∑

k=0

√(
N

k

)
eıkφ tank ϑ2 |S, S − k⟩ (23.79)

=

n∑

k=0

√(
N

k

)
cosN−k ϑ

2 e
ıkφ sink ϑ2 |S, S − k⟩ ,

and analogically for Ŝ+. The result is identical to the definition of a coherent spin
state (23.32). Thus, coherent spin states can be constructed from the ground/inverted
state using rising/lowering operator,

|µ⟩ ≡ |ϑ, φ⟩n =
1

(1 + |µ∓1|2)S e
µ∓1Ŝ± |S,∓S⟩ . (23.80)
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They are not orthogonal, since ⟨µ|µ⟩ = ⟨ϑ, φ|nϑ, φ⟩n = 1, but

⟨λ|µ⟩ =
(

(1 + λ∗µ)2

(1 + |λ|2)(1 + |µ|2)

)S
(23.81)

=
(
cos θ2 cos

ϑ
2 + eı(φ−ϕ) sin θ

2 sin
ϑ
2

)2S
= ⟨θ, ϕ|nϑ, φ⟩n .

However, they are complete in the sense,

2S + 1

π

∫ |µ⟩⟨µ|
(1 + |µ|2)2 d

2µ =
2S + 1

π

∫
cos4 ϑ2 |µ⟩⟨µ|d2µ = I . (23.82)

Also,

⟨λ|Ŝ+|µ⟩ = ⟨θ, ϕ|nSeıφ sinϑ|ϑ, φ⟩n =
2S

e−ıφ cot ϑ2 + e−ıϕ tan θ
2

⟨λ|µ⟩

=
2Seıφ tan ϑ

2

1 + e−ıϕ tan θ
2e
ıφ tan ϑ

2

⟨λ|µ⟩ = 2Sµ

1 + λ∗µ
⟨λ|µ⟩

and analogously,

⟨λ|Ŝ−|µ⟩ = ... =
2Sλ∗

1 + λ∗µ
⟨λ|µ⟩ . (23.83)

In particular

⟨µ|Ŝ+|µ⟩ = ⟨µ|Ŝ−|µ⟩∗ =
2Sµ

1 + |µ|2 = Seıφ sinϑ = ⟨ϑ, φ|nŜ+|ϑ, φ⟩n . (23.84)

23.1.6.2 Mapping Fock and Dicke states

The operators â, â† contain all information on a light mode. Similarly, Ŝ+, Ŝ−, Ŝz
contain all information on a collective spin state. In the Heisenberg picture their
unitary evolution under some operation (displacement, rotation, squeezing, etc.) is
obtained from,

â±(t) = U(t)â±(0)U†(t) versus Ŝ(t) = U(t)Ŝ(0)U†(t) . (23.85)

While the state of a light mode is given by an expectation value corresponding to
a point in an infinite two-dimensional quadrature phase space, the state of a spin
ensemble is represented as a vector in a generalized Bloch sphere,

α(t) = ⟨ψ(0)|â±(t)|ψ(0)⟩ versus S(t) = ⟨ΨN (0)|Ŝ(t)|ΨN (0)⟩ . (23.86)

By the fact that the light mode is represented by a 2D complex plane, the commu-
tation rule involves two field operators, while for the Bloch sphere, which is embedded
in 3D space, with respect to a fixed coordinate system the commutation rule involves
three field operators,

[â, â†] = 1 versus [Ŝ+, Ŝ−] = 2Ŝz . (23.87)
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This has consequences for the uncertainty relations,

[x̂, p̂†] ≥ 1
2 versus [Ŝx, Ŝy] ≥ 1

2 |⟨Sz⟩| . (23.88)

On the other hand, as long as we are only interested in coherent evolutions, as
shown in the example 134, the total angular momentum is a constant of motion. This
means that an initially fully stretched collective spin state is restricted to evolve on the
outer (superradiant) shell of the generalized Bloch sphere, which is a two-dimensional
surface,

|α⟩ = |Reα,Imα⟩ versus |ΨN ⟩ = |ϑ, φ⟩N . (23.89)

As shown in Sec. 23.1.3, rotations do not influence any spin correlations. Therefore,
we may as well introduce a local Cartesian coordinate system, rotated such that Ŝz is
diagonal on this basis, and calculate its expectation value ⟨Sz⟩ =M . We immediately
see that the commutation rules (23.87) then become equivalent,

[â, â†] = 1 versus [Ŝ+, Ŝ−] = 2M , (23.90)

as well as the corresponding uncertainty relations. In this basis the correlations can
be expanded on a 2D phase space parametrized by the angles ϑ and φ.

23.1.7 The Holstein-Primakoff prescription

In the limit of large atom numbers the Dicke Hamiltonian can be approximated by
a system of two coupled quantum oscillators. The mapping is done via the so-called
Holstein-Primakoff transformation. The transformation is a mapping of the spin
operators to boson creation and annihilation operators, effectively truncating their
infinite-dimensional Fock space to finite-dimensional subspaces. Let us consider a
spin operator Ŝ defined by its commutation behavior [Ŝx, Ŝy] = ıŜz and characterized
by its eigenvectors |S,M⟩,

Ŝ2|S,M⟩ = S(S + 1)|S,M⟩ , Ŝz|S,M⟩ =M |S,M⟩ , (23.91)

with the projection quantum number M = −S,−S + 1, . . . , S − 1, S. We consider
a single particle of spin S and take the state |S,M = +S⟩ as a vacuum for a set of
boson operators, and each subsequent state with lower projection quantum number
as a boson excitation of the previous one,

|S, S − n⟩ 7→ 1√
n!
(b̂†)n|0⟩ . (23.92)

Each additional boson then corresponds to a decrease of M in the spin projection.
Thus, the spin raising and lowering operators Ŝ± = Ŝx ± ıŜy satisfying so that

[Ŝ+, Ŝ−] = 2Ŝz correspond to bosonic annihilation and creation operators, respec-
tively. The precise relations between the operators must be chosen to ensure the cor-
rect commutation relations for the spin operators. The resulting Holstein-Primakoff
transformation can be written as,

Ŝ+ =
√
2S

√
1− b̂†b̂

2S b̂ , Ŝ− =
√
2S b̂†

√
1− b̂†b̂

2S , Ŝz = S − b̂†b̂ . (23.93)
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Figure 23.6: Illustration of the Holstein-Primakoff transformation.

The transformation is particularly useful in the case where S is large, when the
square roots can be expanded as Taylor series, to give an expansion in decreasing
powers of S [803, 81]. We will verify the commutation relations in Exc. 23.1.9.19.
The Holstein-Primakoff approximation allows us to rewrite the Hamiltonian (23.6)
as,

ĤHoPr = −∆câ
†â−∆aŜz + 2g(â+ â†)Ŝx (23.94)

= −∆câ
†â−∆a(S − b̂†b̂) + 2g(â+ â†)

√
2S

(√
1− b̂†b̂

2S b̂+ b̂†
√
1− b̂†b̂

2S

)

≃ −∆câ
†â− 1

2∆ab̂
†b̂+ 2gN (â+ â†)(b̂+ b̂†) ,

with the collective coupling strength gN ≡ g
√
N . The Hamiltonian (23.94) describes

two coupled quantum oscillators without rotating-wave approximation [273] 6, a sys-
tem which has already been discussed in Sec. 14.5.5 in the context of beam splitters.

Example 142 (Eigenvalue spectrum in the Holstein-Primakoff approxi-
mation): We can rewrite the Dicke Hamiltonian (Eq. (11) in [694]), simplifying
for a linear cavity, neglecting the pumping term, and assuming perfect bunching
as,

Ĥ = −∆câ
†â−∆aŜ+Ŝ− + g(âŜ+ + â†Ŝ−) . (23.95)

For large atom numbers we apply the Holstein-Primakoff prescription (23.93)
[1, 306], yielding,

Ĥ = −∆câ
†â−∆ab̂

†b̂+ g
√
N(âb̂† + â†b̂) . (23.96)

For ∆c = ∆a ≡ ∆ the Hamiltonian (23.96) describes two resonant coupled
harmonic oscillators. It can easily be transformed into a normal-mode basis via,

Â

Â†

B̂

B̂†

 = 1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1



â

â†

b̂

b̂†

 , (23.97)

yielding,
Ĥ = −(∆− g

√
N)Â†Â− (∆ + g

√
N)B̂†B̂ . (23.98)

6The Jaynes-Cummings model describes coupling of an atom to a harmonic oscillator mode [273].
In contrast ().
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With the Holstein-Primakoff bosons satisfying [b̂, b̂†] = 1, the quadratures defined
as

x̂ ≡ 1√
2
(b̂+ b̂†) and p̂ ≡ 1

ı
√
2
(b̂− b̂†) (23.99)

obviously satisfy [x̂, p̂] = ı. This allows us to extend the Holstein-Primakoff prescrip-
tion to Cartesian coordinates. Using the expansion,

√
1− b̂†b̂

2S ≃ 1− b̂†b̂
4S , (23.100)

which holds for large atom numbers, we find the length of the collective spin,

Ŝx = 1
2 (Ŝ− + Ŝ+) ≃ x̂

√
S − b̂†x̂b̂

4
√
S

= x̂
√
S −O(S−1/2)

Ŝy = 1
2ı (Ŝ− − Ŝ+) ≃ −p̂

√
S + b̂†p̂b̂

4
√
S

= −p̂
√
S +O(S−1/2)

Ŝz = 1
2 [Ŝ+, Ŝ−] ≃ S − 3

4 b̂
†b̂+ 4

S b̂
†b̂†b̂b̂ = S +O(S0)

. (23.101)

23.1.7.1 The Holstein-Primakoff prescription on a local coordinate sys-
tem

In the limit of large particle numbers, we may regard the outer shell of the generalized
Bloch as being locally flat. This allows us to map the harmonic oscillator formalism on
a tangent plane touching the Bloch sphere at point Ŝ. Concentrating on the meridian
φ = 0 and defining a local coordinate system [see (23.48)], as illustrated in Fig. 23.7,



Ŝϑ
Ŝy
Ŝρ


 =



cosϑ 0 − sinϑ

0 1 0

sinϑ 0 cosϑ






Ŝx
Ŝy
Ŝz


 ≃



x̂
√
S

−p̂
√
S

S


 , (23.102)

or resolving by the Cartesian spin,



Ŝx
Ŝy
Ŝz


 =




cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ






Ŝϑ
Ŝy
Ŝρ


 . (23.103)

We verify easily,
[Ŝϑ, Ŝy] = ıŜρ ≃ ıS = [x̂

√
S, p̂
√
S] . (23.104)

Solve Excs. 23.1.9.20 and 23.1.9.21. We will use this description in Sec. 23.5.2.

23.1.8 Quasi-probability distributions on the Bloch sphere

The operators contain all information on possible quantum correlations, and it is now
interesting to quantify and illustrate the formation of such correlations under some
manipulation. This is the purpose of the quasi-probability distributions.

The evolution of collective states and operators of a harmonic oscillator (resp. spin
system) under the influence of a Hamiltonian is conveniently calculated by expanding
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Figure 23.7: Scheme of a local coordinate system.

them on a Fock (resp. Dicke) basis and evaluating propagators via unitary transfor-
mations, as in Eq. (23.85). On the other hand, quantum correlations become more
visible on a Glauber (resp. coherent spin state) basis.

Now, the close analogy between harmonic oscillators and spin systems allows us
to apply concepts elaborated for the harmonic oscillator to collective spin states.
One example is the notion of quasi-probability distributions introduced in Sec. 14.3
for Glauber states, which we will apply to collective spin states below. In quantum
optics a frequently used distribution function is the Wigner function Wρ(α, α

∗) char-
acterizing a light mode via an expansion into a coherent states basis |α⟩ spanning
the complex quadrature plane. The purpose of this section is to derive an analogous
function for collective spin states Wρ(ϑ, φ).

We proceed by expanding an arbitrary state of a light mode on the Fock basis
(2.93), which is similar to expanding coherent spin states on the Dicke basis (23.32),

|ψ⟩ =
∞∑

n=0

cn|n⟩ versus |ΨN ⟩ =
∑

M=+S,..,−S
cS,M |S,M⟩ (23.105)

with

cn(t) = ⟨n|e−ıĤtψ(0)⟩ versus cS,M (t) = ⟨n|e−ıĤtΨN (0)⟩ . (23.106)

In particular for coherent states (resp. spin states),

|α⟩ =
∞∑

n=0

e−|α|2/2αn√
n!

|n⟩ (23.107)

versus |ϑ, φ⟩N =
∑

M=+S,..,−S

√(
N

S +M

)
cosS−M ϑ

2 e
ı(S+M)φ sinS+M ϑ

2 |S,M⟩ .

We note that both Fock and Dicke states have no phase in phase space. Phases
are generated by summing Fock (resp. Dicke) states with different dynamical phase
factors corresponding to their energies.

For numerical simulations we also expand operators on the Fock (resp. Dicke)
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basis,

â =

∞∑

n,n′=0

δn′,n−1

√
n|n′⟩⟨n| , â† =

∞∑

n,n′=0

δn′,n+1

√
n+ 1|n′⟩⟨n|

versus Ŝ± =
∑

M,M ′=+S,..,−S
δM ′,M±1

√
S(S + 1)−M(M ± 1)|S,M ′⟩⟨S,M |

Ŝz =
∑

M,M ′=+S,..,−S
δM ′,MM |S,M ′⟩⟨S,M | . (23.108)

In the case of light modes, any point in phase space is reached via a displacement
operator (see Eq. (2.130)). Similarly, any point on the Bloch sphere is reached via
rotations about two axes [472, 200] (see Eq. (23.40)),

|α⟩ = D(α)|0⟩ versus |ϑ, φ⟩N = Urt(ϑ, φ)|S,−S⟩

= eαâ
†−α∗â|0⟩ = e−(ϑ/2)e−ıφŜ++(ϑ/2)eıφŜ− |S,−S⟩ .

(23.109)
The Fock (resp. Dicke) basis may not the best one to reveal the existence of

quantum correlations. The purpose of quasi-probability distributions defined on a
basis of Glauber (resp. coherent spin) states is to provide a better characterization,
in particular, on non-Gaussian collective states.

23.1.8.1 Distributions for Gaussian spin states (coherent and squeezed)

Let us now define proper quasi-probability distributions in analogy to those introduced
for Glauber space in Sec. 14.3 7. In analogy to the example 80 we may, based on

the rotation operator R(ϑ, φ)|S, S⟩ = eıϑ(Ŝx sinφ−Ŝy cosφ)|S, S⟩|ϑ, φ⟩N introduced in
(23.40) and the parity operator for rotations given by [653, 472],

Ms =
1

R

2S∑

ℓ=0

√
2ℓ+ 1

4π
(γℓ)

−sTℓ0 with γℓ =
R
√
4π(2S)!√

(2S + ℓ+ 1)!
√

(2S − ℓ)!
(23.110)

and Tℓm =

√
2ℓ+ 1

2S + 1

S∑

M,M ′=−S

(
S ℓ

M ′ m

∣∣∣∣
S

M

)
|S,M ′⟩⟨S,M |

with R =
√
S/2π define a generalized probability distribution,

Xρ(ϑ, φ, s) = Tr ρ̂Urt(ϑ, φ)MsU†
rt(ϑ, φ) −→ ⟨ΨN |Urt(ϑ, φ)MsU†

rt(ϑ, φ)|ΨN ⟩ ,
(23.111)

where the second expression holds for pure states. The displacement operator from
(14.70) is here replaced by a rotation parametrized by two Euler angles. From (23.111)
the usual probability distributions follow as,

Qρ(ϑ, φ) ≡ Xρ(ϑ, φ,−1) , Wρ(ϑ, φ) ≡ Xρ(ϑ, φ, 0) , Pρ(ϑ, φ) ≡ Xρ(ϑ, φ, 1)
(23.112)

7Compare (14.79) to (2.158).
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The parity operator is expanded on the Dicke basis according to the recipe (23.110).
To visualize a distribution function, we evaluate (23.111) for every point (ϑ, φ) of the
Bloch sphere.

With increasing spin number S, the parity operators Ms converge to the infinite-
dimensional operators Πs of (14.71), while rotations transform into translations along
the tangent of a sphere. For pure states the Wigner function is thus given by a
rotation of the parity operator.

23.1.8.2 Expansion of non-Gaussian spin states

As long as a collective spin state can be expanded on a collective Dicke basis of
superradiant states or reached by coherent evolution from such a state, it remains
pure and can be represented by a probability distribution using the procedure outlined
in (23.112). But non-Gaussian spin states can be represented as well. The Dicke
state |S, 0⟩, the cat state |cat⟩, the coherent state |ϑ, φ⟩N , and a squeezed state are
illustrated in Fig. 23.8,

|W⟩ = |S, S − 1⟩ (23.113)

|GHZ⟩ = 1√
2
(| ↑⟩2S | ↓⟩0 + | ↑⟩0| ↓⟩2S) = 1√

2
(|S, S⟩+ |S,−S⟩)

|N00N⟩ = 1√
2
(| ↑⟩2S | ↓⟩0 + eıNϑ| ↑⟩0| ↓⟩2S) = 1√

2
(|S, S⟩+ eı2Sϑ|S,−S⟩)

|cat⟩ = cos ϑ2 |S, S⟩+ eıφ sin ϑ
2 |S,−S⟩

|squeezed⟩ = eıζŜ
2
y/2|π/2, π/2⟩N .

Note that the Dicke state labeled as |S, 0⟩ in Fig. 23.8 corresponds to a twin Fock
state [653], as it corresponds to exactly half the atoms in the lower and in the upper
state. Rotating this state about the x or the y-axis, we obtain a state with a perfectly
defined phase but completely undefined population.

For pure states the density matrix is readily obtained in the Dicke basis via,

ρ̂|ψ⟩ = |ψ⟩⟨ψ| . (23.114)

For some states it is illustrated in Fig. 23.9

23.1.9 Exercises

23.1.9.1 Ex: Dicke states and Clebsch-Gordan coefficients

Discuss the relationship between coherent Dicke states and Clebsch-Gordan coeffi-
cients at the example of two coupled spins.

23.1.9.2 Ex: Dicke Hamiltonian for 3 atoms

Generalize the Dicke Hamiltonian (23.25) to 3 atoms.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing02.pdf
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Figure 23.8: (code) P , W , and Q-distributions on the Bloch sphere for various states with

N = 50.

23.1.9.3 Ex: Coherent spin states

Show that the coherent spin state is an eigenstate of the operator Ŝϑ,φ ≡ Ŝx sinϑ cosφ+
Ŝy sinϑ sinφ+ Ŝz cosϑ.

23.1.9.4 Ex: Orthogonality and completeness of CSS

Check the orthogonality and completeness of CSS in analogy the Glauber states stud-
ied in Excs. 2.6.6.3 and 2.6.6.5.

23.1.9.5 Ex: Collective spin of a coherent spin state

a. Calculate the expectation values for all spin components of the collective spin Ŝ in
a coherent spin state see also Exc. 3.3.4.8.
b. Calculate the uncertainties for all spin components of the collective spin Ŝ in a
coherent spin state and check the uncertainty relation.

23.1.9.6 Ex: Unitary spin transformations

Prove the relationship eıF (Ŝz)Ŝ+e
−ıF (Ŝz) = Ŝ+e

ı[F (Ŝz+I)−F (Ŝz)].

23.1.9.7 Ex: Rotation about the x-axis

How does the collective spin transform under rotation about the x-axis?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Wigner4SpinStates.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Wigner4SpinStates.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing035.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing06.pdf
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Figure 23.9: (code) Density matrix of several states in the Dicke basis.

23.1.9.8 Ex: Spin operators for two atoms

Calculate explicitly for the case of two atoms the rotation matrices eıγŜα for α =

x, y, z. Check the relationship eıγŜα Ŝe−ıγŜα = Rα(γ)Ŝ by explicit calculation.

23.1.9.9 Ex: Projection of spin operators onto the superradiant Bloch
sphere surface

a.

23.1.9.10 Ex: Projection of spin operators onto the equatorial plane

a. Evaluate ∆Ŝ2
x+∆Ŝ2

y+∆Ŝ2
z for coherent collective spin states. Simplify ∆Ŝ2

+±∆Ŝ2
−

for arbitrary spin states.
b. Calculate for arbitrary collective spin states Ŝρ∓ ıŜφ and [Ŝφ, Ŝρ] and their expec-

tation values, where Ŝρ =
1
2 (Ŝ−eıφ + Ŝ+e

−ıφ) and Ŝφ = 1
2ı (Ŝ−eıφ − Ŝ+e

−ıφ).

c. Evaluate ∆Ŝ2
ρ +∆Ŝ2

φ +∆Ŝ2
z for arbitrary collective spin states.

23.1.9.11 Ex: Spin squeezing

a. Calculate ⟨π2 , 0|NeıζŜ
2
z Ŝe−ıζŜ

2
z |π2 , 0⟩N .

b. Calculate ⟨π2 , 0|NeıζŜ
2
z∆Ŝ2

x,y,ze
−ıζŜ2

z |π2 , 0⟩N .

23.1.9.12 Ex: Rotation of spin squeezed states

Calculate ⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

x,y,ze
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Densitymatrix4SpinStates.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing07b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing07b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing07c.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing09.pdf
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23.1.9.13 Ex: Spin squeezing with two atoms

a. For a system of two atoms, write down the coherent state |ϑ, φ⟩2 = |π2 , 0⟩2 in the
Tavis-Cummings basis and in the Dicke state basis.
b. Derive the matrix representation for the squeezing operator along the z-axis and
apply this operator to the above coherent spin state.
c. Compare spin squeezing with entanglement.

23.1.9.14 Ex: Mølmer-Sørensen gate

Derive the matrix representation for the two-qubit Mølmer-Sørensen gate eıζŜ
2
x .

23.1.9.15 Ex: Spin-squeezing via one-axis twisting

For a Dicke state with N = 8 atoms, program the matrix representations of the op-
erators Ŝ±, Ŝ, Rα(θ), and Qα(ζ) for α = x, y, z defined in the script, as well as the
vector representation of the state |ϑ, φ⟩.
a. Starting from the ground state |ϑ, φ⟩ = |0, 0⟩, simulate the following time evolu-
tion: (i) π

2 -pulse with the Hamiltonian Ĥ = ΩŜx, where Ω is the Rabi frequency,

(ii) interaction-free precession with the Hamiltonian Ĥ = ∆Ŝz where ∆ is the detun-
ing during a time T , (iii) π

2 -pulse with the Hamiltonian Ĥ = ΩŜx, (iv) projection of

the energy axis. Plot the time evolution of the expectation values ⟨Ŝα⟩ and ∆Ŝα.
b. Starting from the ground state |ϑ, φ⟩ = |0, 0⟩, simulate the following time evolu-
tion: (i) π

2 -pulse with the Hamiltonian Ĥ = ΩŜy, where Ω is the Rabi frequency,
(ii) squeezing pulse along the z-axis with the squeezing parameter ζ = 0.6, (iii) π

2 -

pulse with the Hamiltonian Ĥ = ΩŜx. Plot the time evolution of the expectation
values ⟨Ŝα⟩ and ∆Ŝα. Movies can be seen at (watch movie).

23.1.9.16 Ex: Two-axis countertwisting

Study the Hamiltonian,

Ĥ = ζ(Ŝ2
π/2,π/4 − Ŝ2

π/2,−π/4) =
ζ
2ı (Ŝ

2
+ − Ŝ2

−)

with Ŝϑ,φ defined in Exc. 23.1.9.3 in view of its squeezing features of an initial coherent
spin state |0, φ⟩ [468].

23.1.9.17 Ex: Interferometry with double Fock states

Discuss numerically whether, assuming as the initial state a double spin Fock state
of the form |+⟩N1 |−⟩N2 , Heisenberg limited interferometry can be done within the
Dicke model [110, 516].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Entanglement_SpinSqueezing_Movie
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing14.pdf


23.1. THE DICKE MODEL OF COLLECTIVE SPIN STATES 927

23.1.9.18 Ex: Entanglement criteria

A sufficient entanglement criterion for an N -qubit state is, that it violates one of the
following inequalities [826, 827],

⟨∆Ŝ2
z ⟩

⟨Ŝx⟩2 + ⟨Ŝy⟩2
≥ 1

N

⟨Ŝ2
x⟩+ ⟨Ŝ2

y⟩+ ⟨Ŝ2
z ⟩ ≤ N(N+2)

4

⟨∆Ŝ2
x⟩+ ⟨∆Ŝ2

y⟩+ ⟨∆Ŝ2
z ⟩ ≥ N

2

⟨Ŝ2
k⟩+ ⟨Ŝ2

m⟩ − N
2 ≤ (N − 1)⟨∆Ŝ2

n⟩
(N − 1)[⟨∆Ŝ2

k⟩+ ⟨∆Ŝ2
m⟩] ≥ ⟨Ŝ2

k⟩+ N(N−2)
4 ,

for (kmn) = (123). Verify that, according to these criteria, coherent Dicke states are
not entangled.

23.1.9.19 Ex: Consistency of the Holstein-Primakoff transform

Verify that the relations (23.93) satisfy [Ŝ+, Ŝ−] ≃ 2Ŝz and [Ŝx, Ŝy] ≃ ı
2 Ŝz.

23.1.9.20 Ex: Holstein-Primakoff expansion on the Bloch sphere for
coherent spin states

Calculate the uncertainties for coherent spin states |ϑN ⟩ ≡ |ϑ, 0⟩⊗N in the local basis.

23.1.9.21 Ex: Uncertainty relation in different bases

In Exc. 23.1.9.5 the principal axes of the uncertainty ellipsoid of a coherent spin state
have been derived for a fixed Cartesian coordinate system. Now, express the un-
certainty ellipsoid in a local Cartesian basis anchored to spherical coordinates by
ê′x = êr, ê

′
y = êθ, and ê′z = êϕ. Why is the radial projection onto the surface of

the generalized Bloch sphere invariant upon rotation? Interpret the projection of the
uncertainty ellipsoid onto the radial axis and its dependency on rotation.

23.1.9.22 Ex: Dicke model of Bloch oscillations in the two-mode approx-
imation

In the limit where Bloch oscillations can be modeled by a two-level system [722] we
may try a representation within the Dicke model and illustrate the dynamics on a
Bloch sphere [718]. The gravitational acceleration corresponds to a modification of
kinetic energy without modification of the momentum state populations and without
excitation of quantum coherences between them. That is, at any time the system
remains in an eigenstate of the momentum operator. Since the kinetic energy is
represented by the vertical axis of the Bloch sphere, we may visualize acceleration
via a rotation of the Bloch sphere, e.g. about the y-axis. The interpretation of the
rotated Bloch sphere remains the same: the xy-plane shows the coherences and the
z-axis the populations. Once this works, we can treat the thermal atomic cloud as

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing16.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing19.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing19.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing18.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing17.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing17.pdf
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a coherent spin state, e.g. squeeze it [468] or simulate trajectory of individual atoms
inhomogeneously [211] 8,9. A movie can be seen at (watch movie).

23.1.9.23 Ex: Error estimation in Rabi and Ramsey experiments

The precision of the estimation of a parameter ϑ from a measurement of an observ-
able Â which depends on that parameter is obtained from error propagation (see
Secs. 24.4.3) [825],

(∆ϑ)2 =
⟨∆Â⟩2
|∂ϑ⟨Â⟩|2

=
⟨Â2⟩ − ⟨Â⟩2
|∂ϑ⟨Â⟩|2

.

a. Estimate for a coherent collective spin state the uncertainty in determining the
angle ϑ from a measurements of one of the spin components, that is, Â ≡ Ŝx,y,z.
b. Consider a Ramsey experiment where the collective spin state has been rotated
into the equatorial plane by a first π/2 nutation pulse, such that the state becomes
an eigenstate of Ŝx. Now, the spin starts precessing about the z-axis according to

U = eıĤt due to an interaction Ĥ = φŜz. Estimate for a coherent collective spin state
the uncertainty in determining the angle φ from a measurement of Ŝy.

23.2 Super- and subradiance in open systems

The abstract spin formalism developed in the last sections revealed propagators al-
lowing us to rotate and squeeze coherent spin states, but it did not tell us how to
implement them physically. For this, we need to solve equations of motion derived
from Hamiltonians realizable in the laboratory. In the following sections, we will set
up the fundamental equations of motion (master or Heisenberg-Liouville) for open
systems of N atoms subject to spontaneous emission collectively interacting with a
single light mode subject to cavity decay and pumped by an external source.

We will discuss constants of motion of the Dicke and of the Tavis-Cummings model
and phase transitions to superradiant states in the mean-field and in the Holstein-
Primakoff approximation. Finally, we will present recent experimental realizations of
Dicke phase transitions, namely superradiant self-ordering and superradiant lasing.

23.2.1 Models for open systems and phase transitions

We have already seen, that the spin quantum number S is preserved under the effect
of the Dicke Hamiltonian (23.6). The spherical harmonics |S,M⟩ are orthonormal and
the spin operators Ŝ± and Ŝx,y,z or their combinations do not allow for transitions
between states with different S,

[Ĥ, Ŝ2] = 0 with Ŝ2 = 1
2 (Ŝ+Ŝ− + Ŝ−Ŝ+) + Ŝ2

z (23.115)

but [Ĥ, Ŝz] = ı(ImΩ Ŝx −ReΩ Ŝy) ̸= 0 .

Hence, under the effect of the Dicke Hamiltonian an initial state |N,S,M⟩ can only
change its magnetic quantum number |N,S,M⟩ −→ |N,S,M ′⟩, and the manifolds

8Note that, in order to simulate a series of Bloch oscillations, we must change the basis by hand
after each Bragg reflection.

9An interesting question is, whether the Dicke picture can be extended to CARL (see Sec. 25.3.4).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/xCS_Entanglement_SpinBloch_Movie
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DickeSqueezing20.pdf
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with a given S form closed sub-spaces (see Exc. 23.2.4.2). In other words, once we
start in a superradiant state |N,S,M⟩ = |N, N2 ,+N

2 ⟩, spin conservation excludes
subradiant states, which allowed us to restrict to the superradiant Dicke subspace.
Transitions between Dicke subspaces are only possible via physical processes that act
on individual atoms, e.g. decay or phase fluctuation processes, as we will see later
[310, 903].

Figure 23.10: (a) Illustration of the Dicke states for N = 6. Hamiltonian interactions are in
depicted in red. Superradiant decay occurs through a cascade from state M = S to state
M = −S. Spontaneous emission and phase noise leads to transitions along the blue arrows.
The lowest states in each S subspace are dark and can only decay through a (subradiant)
dark states cascade. (b) Scheme of the Dicke model.

23.2.1.1 The generalized open Dicke model

In the presence of spontaneous decay or dephasing, superradiant spin conservation is
no longer guaranteed. Let us have a look at the master equation for a set of N atoms
coupled with the strength g to the mode of a cavity and additionally pumped by a
classical laser field η [78, 466] (see (15.27)). After transformation into the rotating
frame we have,

˙̂ρ = ı[ρ̂, ĤgD] +
∑
γ Lγ,L̂ρ̂ or

˙̂
A = LtotÂ = −ı[Â, ĤgD] +

∑
γ L

†
γ,L̂
Â

ĤgD = −∆câ
†â−∆aŜz + g(âŜ+ + Ŝ−â†) + g′(âŜ− + Ŝ+â

†)− ıη(â− â†)

and Lγ,L̂ρ̂ ≡ γ(2L̂ρ̂L̂† − L̂†L̂ρ̂− ρ̂L̂†L̂)

and L†
γ,L̂
Â ≡ γ(2L̂†ÂL̂− L̂†L̂Â− ÂL̂†L̂)

(23.116)

The different coupling strengths g and g′ allow us to isolate the counter-rotating
terms, in order to discuss their relevance. The usual open Dicke model is obtained
from the generalized Dicke Hamiltonian ĤgD by setting g′ ≡ g, while the rotating
wave approximation is done by setting g′ ≡ 0. The rates γ describe possible decay
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processes to which the degrees of freedom L̂ are subject. The most relevant decay
processes are listed in the following table:

decay rate γ dissipative operator L̂ physical process

κ â cavity decay

ϕ â†â cavity phase jitter

γ = Γ/2 Ŝ− =
∑
j ŝ

−
j collective (superradiant) atomic decay

γ1 = Γ1/2 ŝ−j (transverse) single-atom decay

ξ1 ŝ+j single-atom optical pumping

β1 ŝzj single-atom dephasing

Γ = 2γ is the collective longitudinal atomic decay, κ and ϕ describe collective
decay respectively collective phase noise of the cavity, while Γ1 = 2γ1, ξ1, and β1
stand for spontaneous emission, optical pumping via higher-lying levels, and phase
fluctuation of individual atoms. The latter decay processes are described by sums of
Lindbladians over all atoms. In Exc. 23.2.4.4 we derive the Heisenberg equations for
the relevant degrees of freedom,

⟨ ˙̂A⟩ = ⟨LtotÂ⟩ with (23.117)

Ltotâ = (ı∆c − κ− ϕ)â− ı(gŜ− + g′Ŝ+) + η

LtotŜ− = (ı∆a − γ1 − ξ1 − β1 + ΓŜz)Ŝ− + 2ıŜz(gâ+ g′â†)

LtotŜz = −ıŜ+(gâ+ g′â†) + ı(gâ† + g′â)Ŝ− − ΓŜ+Ŝ− −N(γ1 − ξ1)I− 2(γ1 + ξ1)Ŝz

Ltotŝ
−
j = (ı∆a − γ1 − ξ1 − β1)ŝ−j + 2ı(gâ+ g′â†)ŝzj

Ltotŝ
z
j = −ı(gâ+ g′â†)ŝ+j + ı(gâ† + g′â)ŝ−j − γ1(I− 2ŝzj ) + ξ1(I+ 2ŝzj ) .

In the derivation we make extensive use of commutation relations between operators
Â representing the degrees of freedom and operators L̂ representing dissipation pro-
cesses. However, we have to remember that these commutation relations only hold
for stationary operators Â = Â(0). This forces us to describe the time evolution of
pure or mixed states in the Schrödinger picture [see Eq. (1.275) versus (1.276)] and
to write down the final equations of motion only for expectation values.

In Exc. 23.2.4.5 we verify that these equations of motion do not change the spin
Ŝ. Neglecting all dissipation processes but Γ, the Eqs. (23.117) can be rewritten in
terms of observables as,

LtotŜ =




(g + g′)(â+ â†)
ı(g − g′)(â− â†)

−∆a


× Ŝ+ Γ

2



−Ŝx + {Ŝx, Ŝz}
−Ŝy + {Ŝy, Ŝz}
−2Ŝz − 2Ŝ2

x − 2Ŝ2
y


 . (23.118)

Only the terms Lγ1 , Lξ1 , and Lβ1 can change Ŝ2. The Ŝ2 and Ŝz eigenvalues
determine the coupling strength of the many-atom (Dicke) state to the cavity mode
and the coherent, external drive. This coupling determines the rate of cavity photon
generation as well as the pumping strength. The magnitude of the coupling strength
distinguishes between superradiance and subradiance. For superradiant states the
coupling strength scales superlinear in N , while for subradiant states the scaling is
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sublinear in N , and some subradiant states are dark. Dark means that the collec-
tive coupling to the cavity and the coherent, external drive of these states vanishes,
meaning these states cannot decay via collective interactions e.g. by creating a cavity
photon. However these states still decay into other states via the decay and dephas-
ing processes Lγ1 and Lβ1 acting individually on the emitters, see Fig. 23.10. Hence,
spontaneous decay is an individualization process [310]. Generally, the spin preserving
contributions in the master equation (23.120) generate quantum correlations leading
to collective behavior (both super- and subradiance are collective effects) and the
non-preserving terms destroy correlations leading to individualization (all properties
scale exactly linear in N). However only the spin non-preserving contributions intro-
duce coupling between superradiant and subradiant states, thus in order to prepare
subradiant states an interplay of collectivity and individualization is necessary. Based
on these considerations, we may distinguish between collective versus individual be-
havior and superradiant versus subradiant behavior. The latter are special cases of
collective behavior. This twofold distinction seems crucial when investigating super-
and subradiance in the presence of dephasing and individual decay. In Exc. 23.2.4.6
we study superradiant decay.

23.2.1.2 Symmetries of the Dicke model with/out rotating wave approx-
imation

The total number of excitations,

N̂ex ≡ â†â+ Ŝz (23.119)

is a constant of motion only for the Tavis-Cummings Hamiltonian, i.e. the Dicke
Hamiltonian with RWA, g′ = 0, and in the absence of pumping, η = 0, commutes
with the excitation number,

[ĤgD, N̂ex] = η(â− â†) + 2g′(Ŝ−â− Ŝ+â
†)

η=0−→ 0 . (23.120)

That is, the Dicke Hamiltonian preserves the excitation number, except for the
counter-rotating terms, which can only change the excitation number by ±2.

The Dicke model without RWA, g′ = g, has one global symmetry 10,

(â, σ̂±)
P−→ (−â,−σ̂±) , (23.121)

where the parity operator is,

P = eıπN̂ , [ĤgD,P] = 0 , (23.122)

as shown in Exc. 23.2.4.1. Because P squares to unity, it has two eigenvalues, 1 and
−1. This symmetry is associated with a conserved quantity: the parity of the total
number of excitations, P = (−1)Nex . This parity conservation is a consequence of the
preserved excitation number. A state of the Dicke model is said to be normal when
this symmetry is preserved, and superradiant when this symmetry is spontaneously
broken.

10For a Dicke picture of CARL see Exc. 25.5.7.1.
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Note that, at low coupling strength the two subspaces belonging to different pari-
ties are degenerate, but in the thermodynamic limit N →∞ at high enough coupling
strength they may split upon a Dicke quantum phase transition 11.

model RWA symmetry atom # photon # section

Rabi no P 1 n 16.3

Jaynes-Cummings yes U(1) 1 n 17.2

Dicke no P > 1 n 23.1

Tavis-Cummings yes U(1) > 1 n 23.2.2, 23.4

23.2.2 Superradiant Dicke phase transition

The interesting feature of the set of equations (23.117) is, that the degrees of freedom
are macroscopically populated, yet, they follow the rules of quantum mechanics. For
instance, we may expect them to behave as order parameters for macroscopic phase
transitions. We will study one such example in the following.

23.2.2.1 Equilibrium Dicke phase transition

The Dicke model predicts a phase transition to a superradiant state, when the coupling
strength g exceeds a certain critical value. To see this we simplify the Hamiltonian
(23.6) by the mean-field approximation,

∆câ
†â = ∆cα

2 , (23.123)

where the field amplitude α is a real number, and calculate the free energy as a
function of α,

F (α) ≡ − 1
β ln Ξ(α) with Ξ(α) = Tr e−βĤ (23.124)

and Ĥ = −∆cα
2 +

∑
j
ĥj

and ĥj = −∆aŝ
z
j + 4gαŝxj .

Ξ(α) is the partition function, ĥj the single-atom Hamiltonian, and β ≡ 1/kBT .
Carried out in Exc. 23.2.4.7, the calculation results in,

F (α) = ∆cα
2 − N

β ln(2 coshβE) (23.125)

where ± E ≡ ⟨ĥj⟩ = ±
√(

∆a

2

)2
+ (gα)2

are the single-atom energy eigenvalues. The minimum of the free energy as a function
of the field amplitude, F ′(α) = 0, yields a critical coupling strength gc,

gc
√
N = 1

2

√
∆c∆a coth

β∆a

2 , (23.126)

Below gc the free energy minimizes for α = 0, and beyond gc it minimizes for α > 0,
as seen in Fig. 23.11.

11Other models, such as the Ising model, the Heisenberg model, or the Bose-Hubbard model are
not treated here.
P is the parity operator defined in Eq. (23.121). The unitary group U(1) corresponds to the circle
group consisting of all complex numbers with absolute value 1 under multiplication.
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Figure 23.11: (code) Free energy as a function of coupling strength and photon number.

Beyond the critical coupling strength gc the minimum of the free energy splits opening the

way for two possible equilibrium states of the mean-field phase.

Note that the critical coupling smoothly evolves down to zero temperature (β →
0), where one obtains gc =

√
∆c∆a/2N

12.

23.2.3 Beyond mean-field

We already applied the mean-field approximation in the derivation of the semiclassical
Dicke Hamiltonian (23.9) and the Dicke phase transition (23.123). Some effects,
however, are intrinsically to the existence of interatomic correlations, as for example,
superradiant lasing 13

23.2.3.1 Cumulant expansion

Often we are interested in quantum correlations rather than in the mean-field behavior
of an operator. The cumulant expansion allows to study higher-order correlations
by gradually removing lower-order ones. We introduce the correlation or cumulant
expectation value between operators Â and B̂ [491, 723],

⟨Â⟩ ≡ ⟨Â⟩c (23.127)

⟨ÂB̂⟩ ≡ ⟨Â⟩⟨B̂⟩+ ⟨ÂB̂⟩c
⟨ÂB̂Ĉ⟩ ≡ ⟨Â⟩⟨B̂⟩⟨Ĉ⟩+ ⟨Â⟩⟨B̂Ĉ⟩c + ⟨B̂⟩⟨ÂĈ⟩c + ⟨Ĉ⟩⟨ÂB̂⟩c + ⟨ÂB̂Ĉ⟩c .

The lowest order mean-field approximation consists in neglecting ⟨ÂB̂⟩c ≃ 0.

12Note, that in the thermodynamic limit, N → ∞, the operators can be replaced by [466]:

Ŝx
N→∞−→ 1

2
N̂ cos φ̂ and Ŝy

N→∞−→ 1
2
N̂ sin φ̂ .

In this case, the operators commute [Ŝx, Ŝy ] → 0.
13Interestingly, spin-squeezing, which is also based on interatomic correlations, can be described

within the mean-field approximation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DickeTransition.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DickeTransition.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DickeTransition.m
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Example 143 (Superradiant lasing): In a conventional laser amplification

and optical phase coherence are established by stimulated photon emission from

a population-inverted medium. This results in the Schawlow-Townes spectral

linewidth, proportional to the square of the cavity decay width and inversely

proportional to the photon number in the cavity. As Dicke showed, the coher-

ence can also be stored in the emitters that constitute the gain medium provided

they interact collectively with common radiation field modes [207]. If the sponta-

neous decay rate is much smaller than the cavity decay rate very narrow emission

bandwidths far below the cavity decay width can be achieved. In Exc. 23.2.4.8

we study superradiant lasing in the Dicke model [565]. Cavity-mediated su-

perradiance can also be described within the Tavis-Cummings model [135]. It

represents an extension of the Jaynes-Cummings model for several atoms. We

will discuss such systems in Sec. 24.2.

Figure 23.12: (a) Principle scheme of standard lasing. Here, the coherence is stored in
the cavity field. The gain profile is much larger than the cavity width (good-cavity limit,
κ ≪ 1

2
Γg), as shown in (c). The laser frequency follows any (technical) cavity fluctuation:

ωlas = ωcav + ωg
2κ
Γg

. (b) Superradiant lasing. Here, the coherence is stored in the gain. We

are in the bad-cavity limit, κ≫ Γg, as shown in (d). The laser frequency is robust to cavity

fluctuations: ωlas = ωg + ωcav
Γg

2κ
.

23.2.3.2 Superradiant lasing in the Holstein-Primakoff approximation

The superradiant phase transition was originally predicted by the Dicke model [229,
387]. It occurs when the strength of the interaction between the atoms and the field
is greater than the energy of the non-interacting part of the system 14. The collective
Lamb shift, relating to the system of atoms interacting with the vacuum fluctuations,
becomes comparable to the energies of atoms alone, and the vacuum fluctuations
cause the spontaneous self-excitation of matter.

The transition can be readily understood by the use of the Holstein-Primakoff
transformation applied to an ensemble of two-level atoms, as shown in Sec. 23.1.6, as
a result of which the atoms become harmonic oscillators with frequencies equal to

14This is similar to the case of superconductivity in ferromagnetism, which leads to the dynamic
interaction between ferromagnetic atoms and the spontaneous ordering of excitations below the
critical temperature.
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the difference between the energy levels. If the interaction between the atomic and
the field oscillator is so strong that the system collapses in a ferroelectric-like phase
transition. In Exc. 23.2.4.10 we will derive the Heisenberg equations for the open
Dicke model in the Holstein-Primakoff approximation.

Example 144 (Finding instabilities via retarded Green’s functions): Let
us consider a set of linear Heisenberg equations,

v̇i(t) =Mijvj(t) and v̇†i (t) =M†
ijv

†
j (t) .

The retarded Green’s function is defined by,

Gij(t) ≡ −ı⟨[vi(t), v†j (0)]⟩θ(t) .

Its time derivative is,

Ġij(t) ≡ −ı⟨[vi(t), v†j (0)]⟩δ(t)− ı⟨v̇i(t)v†j (t)⟩θ(t) + ı⟨v†j (t)v̇i(t)⟩θ(t) .

Defining the equal-time correlation function by,

Sij ≡ ⟨[vi(0), v†j (0)]⟩ ,

we get,

Ġij(t) = −ıSijδ(t)− ıMik⟨vk(t)v†j (t)⟩θ(t) + ıMik⟨v†j (t)vk(t)⟩θ(t)
= −ıSijδ(t)− ıMik⟨[vk(t), v†j (t)]⟩θ(t) = −ıSijδ(t) +MikGkj(t) .

With the Fourier transform f(ω) =
∫∞
−∞ dteıωtf(t) we finally get,

G(ω) = (M + ıωI)−1ıS .

For example, we may consider the system of two coupled oscillators studied in
Sec. 14.5.5. In this case,

v ≡


â

â†

b̂

b̂†

 such that S = diag (1,−1, 1,−1) .

In Exc. 14.5.8.8 we have shown that (setting Ω′ ≡ Ω),

M =


−ıω − κa 0 − ıΩ

2
− ıΩ

2

0 ıω − κa
ıΩ
2

ıΩ
2

− ıΩ
2

− ıΩ
2

−ıω − κb 0
ıΩ
2

ıΩ
2

0 ıω − κb

 .

Thus,

GR(ω)−1 = S−1(ωI−ıM) =


ω − ωa + ıκa 0 −Ω

2
−Ω

2

0 −ω − ωa − ıκa −Ω
2

−Ω
2

−Ω
2

−Ω
2

ω − ωb + ıκb 0

−Ω
2

−Ω
2

0 −ω − ωb − ıκb

 .
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The superradiant transition corresponds to the requirement that one of the
eigenvalues of M goes to zero [207, 466], or equivalently,

0 = detGR(ω)−1 = ω2
aω

2
b + ω2

aκ
2
b − ωaΩ

2ωb + κ2
aω

2
b + κ2

aκ
2
b ,

yielding,

Ω =

√
(ω2

a + κ2
a)(ω

2
b + κ2

b)

ωaωb
.

Example 145 (Dicke phase transition with a superfluid gas in an optical

cavity): [60].

23.2.3.3 Zeeman splitting in the Holstein-Primakoff approximation

The Dicke Hamiltonian in the Holstein-Primakoff approximation has been derived in
Eq. (23.94). We now generalize it for the presence of three collective atomic modes

b̂0± accounting for Zeeman splitting [868],

Ĥ ≃−∆câ
†â (23.128)

− 1
2 (∆a +∆zeem)b̂

†
−b̂− − 1

2∆ab̂
†
0b̂0 − 1

2 (∆a −∆zeem)b̂
†
+b̂+

+ 2gN (b̂†−â+ â†b̂−) + 2gN (b̂†0â+ â†b̂0) + 2gN (b̂†+â+ â†b̂+) + η(â− â†) .

From this we derive the equations of motion,

˙̂a = (ı∆c − κ)â− 2ıgN b̂− − 2ıgN b̂0 − 2ıgN b̂+ + ıη

˙̂
bµ = 1

2 (ı∆a − µı∆zeem − Γ)b̂µ − 2ıgN â , (23.129)

with µ = 0,±1. Their solution is shown in Fig. 23.13.

23.2.4 Exercises

23.2.4.1 Ex: Parity considerations

a. Show that the excitation number N̂ = â†â+Ŝz+S is conserved by the Hamiltonian
within rotating wave approximation,

Ĥrw = −∆aŜz −∆câ
†â+ g(â†Ŝ− + âŜ+) .

b. Show that the parity operator defined by P = eıπN̂ is conserved by the Hamiltonian
without rotating wave approximation [265],

Ĥ = −∆aŜz −∆câ
†â+ g(â† + â)(Ŝ+ + Ŝ−) .

23.2.4.2 Ex: Coupling super- and subradiant modes

a. Discuss whether super- and subradiant states can be transformed into each other
via unitary transformations.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance03.pdf
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Figure 23.13: (left) inversion (σ̂z + 1)/2, (right) light transmission κ2|α|2/η2 through the
cavity.

23.2.4.3 Ex: Relationship between super- and subradiance and cooper-
ativity

Seek an interpretation of super- and subradiance as a modification of the structure
factor by cooperativity.

23.2.4.4 Ex: Heisenberg equation for the open Dicke model

Derive the Heisenberg equation for the open Dicke model.

23.2.4.5 Ex: Spin conservation in the open Dicke model

a. Show that the Dicke Hamiltonian (23.116) with g′ = g preserves the spin Ŝ2.
b. Show that the Dicke Hamiltonian (23.116) with g′ = 0 preserves the spin Ŝ2.
c. Verify whether the dissipative terms of the open Dicke model preserve the spin Ŝ2.

23.2.4.6 Ex: Superradiant enhancement

For the open Dicke model consider the Heisenberg equations (23.117) without coherent
mean-field, â = 0, and disregarding single-atom decoherence, γ1 = ξ1 = β1 = 0. Solve
the equation of motion for the collective spin projection Ŝz for an arbitrary coherent
spin state |S,M⟩ and discuss the collective decay rate as a function of the collective
inversion ⟨Ŝz⟩.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance03b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance03b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance055.pdf
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23.2.4.7 Ex: Equilibrium phase transition

a. Calculate the free energy of the Hamiltonian (23.6) in the mean-field approximation.
b. Minimize the free energy as a function of the field amplitude α for various coupling
strengths g. Help: Expand the expression for F ′(α) for small values of α. Derive the
expression for the critical coupling strength.

23.2.4.8 Ex: Superradiant lasing

a. Consider the generalized open Dicke model Hamiltonian (23.116) neglecting counter-
rotating terms, g′ ≡ 0, as well as pumping and phase fluctuations of the cavity modes,
η = ϕ ≡ 0. Derive the Heisenberg equations for the operators â, ŝ−j , ŝ

z
j , â

†ŝ−j , ŝ
+
i ŝ

−
j ,

and â†â.
b. Calculate the expectation values of the equations of motion for all degrees of free-
dom and for the products specified in (a) assuming that all atoms are equal. Now,
assume that the phase-invariance is not broken, ⟨â⟩ = ⟨â†⟩ = ⟨ŝ±1 ⟩ = 0, and apply a
cumulant expansion up to second order.
c. Assuming the system to be in steady state solve the system of equations for the
operators and products specified in (a) analytically. Assume γ1 ≪ g ≪ κ and plot
â†â as a function of the atom number N and the optical pumping rate ξ1.
d. In which parameter regimes do you observe superradiant lasing?
e. Express ⟨Ŝ2⟩ and ⟨Sz⟩ in terms of single particle spin operators.
f. Evaluating ⟨S2⟩ and ⟨Sz⟩ via the solution of the equations of motion, we find the
steady-state quantum numbers always around M ≃ ±S [207]. Explain how this fact
can induce squeezing, once ⟨Sz⟩ > 0.

23.2.4.9 Ex: Superradiant lasing and the Schawlow-Townes limit

Discuss whether superradiant lasing beats the Schawlow-Townes limit.

23.2.4.10 Ex: Heisenberg equation for the open Dicke model in the
Holstein-Primakoff approximation

Derive the Heisenberg equations for the open Dicke model in the Holstein-Primakoff
approximation.

23.2.4.11 Ex: Critical exponent of the phase transitions

Calculate the critial exponent of the superradiant phase transition.

23.2.4.12 Ex: Schrieffer-Wolff transform of the Dicke Hamiltonian

a. Calculate the operator ĤSW = UĤU†, where U ≡ eıη(â
†+â)Ŝy is the called the

Schrieffer-Wolff transform [318].
b. Show that the states,

S(ξ)⟩|n⟩⊗|S,−S⟩ with S(ξ) ≡ e(ξ/2)â†2−(ξ∗/2)â2 and ξ = − 1
4 ln[1− (g/gc)

2]

where gc ≡
√
∆c∆a are eigenstates of the Dicke-Schrieffer-Wolff Hamiltonian provided

g < gc.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_SuperSubradiance10.pdf
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23.3 Atoms interacting in free space

When two atoms excited to an internal level of energy hc/λ are so close together
that the range of their dipole moments overlap without forming a molecular bonding,
aB ≪ R ≪ λ, they may exhibit cooperative relaxation. The atoms are coupled via
the radiation that they are susceptible to emit into the same continuum. The coupled
atomic dipoles oscillate and decay in phase. The decays is accelerated one leads to
an intense burst of coherent and spatially directional radiation. This phenomenon is
termed superradiance [229, 685]. We may view superradiance as destructive interfer-
ence of the dipolar radiation patterns of all atoms in all but one direction of space
triggered by the first spontaneous decay. The superradiant enhancement is largest
when half of the atoms are deexcited. The correlated atoms can be in a Dicke state
(then the total dipole moment is always zero) or in a product state (then the net
dipole moment is non-zero at half-deexcitation). In the second case, we also talk
about superfluorescence. In this case, an excited initially incoherent sample develops
correlations due to the emission process. One can also imagine the case that the
emission patterns pairwise cancel, and the decay is thus inhibited. This is called sub-
radiance. Superradiance has been used in the microwave domain as a spectroscopic
method in the observation of photon echoes.

Correlated quantum jumps are, in a sense, the few-atoms precursors of superra-
diance. Accelerated spontaneous decay has been predicted for atoms whose distance
is shorter than the wavelength of the decaying transition [743, 515]. Super- and
subradiance has been observed in a system of two ion trapped in a Paul trap [227].

23.3.1 Rydberg blockade

Rydberg atoms (i.e. atoms in excited Rydberg states) exhibit huge polarizabilities
inducing large interaction energies even at relatively modest densities. These can
be so strong, that the presence of a single Rydberg-excited atom can drive out of
resonance the frequencies of transitions connected to the Rydberg state for several
neighboring atoms once the exciting laser is sufficiently narrow-band. This effect
called Rydberg blockade can be described by the following interaction Hamiltonian
[702, 784],

ĤRydberg =
∑

i>j

κij
1
2 (σ̂

z
i − 1) 12 (σ̂

z
j − 1) with κij/2π =

C6

r6ij
, (23.130)

where 1
2 (σ̂

z
i − 1) = |e⟩i⟨e| is the probability of finding the i-th atom in an excited

state and C6 interatomic van der Waals interaction coefficient of the transition.

Example 146 (Two interacting Rydberg atoms): In this example we study
Rydberg blockade for two interacting Rydberg atoms. In this case, the Hamil-
tonian can be cast into the matrix form,

Ĥ = −∆aŜz +ΩŜ+ +Ω∗Ŝ− + ĤRydberg =


∆a

1
2
Ω 1

2
Ω∗ 0

1
2
Ω∗ 0 0 1

2
Ω∗

1
2
Ω 0 0 1

2
Ω

0 1
2
Ω 1

2
Ω∗ −∆a + κ12

 .
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The master equation can be numerically solved using the procedure outlined in

example 144. The result of such a simulation is shown in Fig. 23.14. Comparing

0 0.5 1 1.5 2

Ωt/π

0

0.5

1

ρ

(a)

0 0.5 1 1.5 2

Ωt/π

0

0.5

1

ρ

(b)

Figure 23.14: (code) Populations in a system of two two-level atoms interaction via van der

Waals forces. Initially (Ωt < π) only one atom is driven, after that only the other. We

assume Ω ≫ Γ and C6 = 4 · 107. The interatomic distance is (a) kr12 = 0.5, respectively,

(a) kr12 = 5. (blue) ρ11,11, (cyan) ρ12,12, (magenta) ρ21,21, (red) ρ22,22, (black dotted) ρ
(1)
22 ,

and (black) ρ
(2)
22 .

the evolutions calculated in Fig. 23.14 for large and small interatomic distances,

we see that the excitation of the first atom impedes the excitation of the second

one when the interaction is strong.

Note, that an interesting situation occurs when the coupling is completely uniform
(e.g. mediated by a cavity), κij ≃ κ,

ĤRydberg ≃ 1
8κ(Ŝ

2
z − 2Ŝz + 1) , (23.131)

as pointed out in Eq. (23.76). Such Hamiltonians may be interesting for the generation
of spin-squeezing.

23.3.2 Dipole-dipole interactions in the non-linear optics regime

The mean-field Dicke model totally neglects interactions between the atoms due to
the exchange of real or virtual photons, i.e. neither resonant dipole-dipole interactions
nor van der Waals interactions are considered [28, 78, 242, 265, 693, 702, 754]. That
is, interaction terms such as 15,

ĤIsing = −
N∑

i,j ̸=i
∆ij σ̂

+
j σ̂

−
i (23.132)

are absent from the Hamiltonian. Spin-spin interactions are studied in the so-called
Ising model, which is interesting in the context of (anti-)ferromagnetism [298, 299, 311,

15It is impossible to write write the Ising Hamiltonian for a free cloud as a product of collective
spin operators, because of inhomogeneities induced by dipole-dipole interactions ∆ji. Hence, the

total spin Ŝ2 is not conserved.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DipoleRydberg.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DipoleRydberg.m
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466, 905]. The negligence of interaction was, of course, the reason for the simplicity of
the Dicke model and its manageability for large atom numbers. On the other hand,
in Sec. 21.1.2 we have studied dipole-dipole interactions in the linear optics regime
allowing for at most a single photon to interact with the cloud.

In this section, we will consider dipole-dipole interactions in very small dilute
clouds interacting with an arbitrary number of photons. The possibility for the cloud
of storing as many photons as there are atoms is common to the Dicke model. Here,
we will call it the non-linear optics regime, as several photons may team up to excite
higher Dicke excitations states. In particular, we will study two interacting atoms as
done by the milestone experiment of DeVoe and Brewer [227]. Do the Exc. 23.3.4.1.

The starting point is the collective many-atoms Hamiltonian (21.9) of the scalar
coupled dipoles model. After tracing over the vacuum modes, one obtains the master
equation 16 [691],

Ĥ = 1
2

∑

j

[
Ω(rj)σ̂

+
j + h.c.

]
−
∑

i,j

∆jiσ̂
+
j σ̂

−
i

L[ρ̂] = 1
2

∑
i,j Γij

(
2σ̂−

j ρ̂σ̂
+
i − σ̂+

i σ̂
−
j ρ̂− ρ̂σ̂+

i σ̂
−
j

)

L†[Â] = 1
2

∑
i,j Γij

(
2σ̂+

i Âσ̂
−
j − σ̂+

i σ̂
−
j Â− Âσ̂+

i σ̂
−
j

)

∆i̸=j ≡ − 3λΓ
2 ê∗d ReG(ri, rj , ω0) êd and ∆jj ≡ ∆a

Γi̸=j ≡ 3λΓ ê∗d ImG(ri, rj , ω0) êd and Γjj ≡ Γ

(23.133)

The expression for the line shifts ∆ij and the decay rates Γij have been derived
in Sec. 22.2.1 from the bulk Green’s tensor in free space. Assuming ∆ji = 0 = Γji
and Ω(rj) = Ω we recover the mean-field Dicke model, where interaction terms are
completely neglected,

Ĥ = 1
2Ω
∑

j

(σ̂+
j + h.c.)−∆a

∑

j

σ̂+
j σ̂

−
j . (23.134)

With (23.130) we set up either the master or the Heisenberg-Liouville equations,

˙̂ρ = −ı[Ĥ, ρ̂] + L[ρ̂] (23.135)

˙̂
A = −ı[Â, Ĥ] + L†[Â] .

Note that in principle, the collective many-atom system (23.130) can be mapped to
a single-atom multilevel system,

d

dt
ˆ⃗ϱ =Mϱ⃗ , (23.136)

which is more amenable to numeric simulation using the methods presented in Sec. 16.6.
However, analytically this is only simple to do in the case of two atoms, which can be
mapped to a four-level system. This will be shown in Exc. 23.3.4.2.

16In return, the equations of motion (21.26) for the excitation amplitude should follow as the
Heisenberg equation with the above Hamiltonian.
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Example 147 (Diagonalizing collective decay): The Lindbladian describing
collective decay in (23.133) can be recast into a standard form by diagonalizing
the real matrix Γ ≡ (Γij) [691], that is, we define a unitary transformation
T = (T ⊺)−1 ≡ (Tjk),

D = T ⊺ΓT =⇒ Γ̃kδkj =
∑
j

T ⊺
ikΓijTjk

or Γ = T DT ⊺ =⇒ Γij =
∑
k

TjkΓ̃kδkjT
⊺
jk .

Note that all coefficients not ornamented by a ’hat’ can be moved around freely.
Now, substituting the Γij ,

L[ρ̂] = 1
2

∑
k,i,j

[
2σ̂−

i TikΓ̃kδkiT
⊺
jkρ̂σ̂

+
j − σ̂+

i TikΓ̃kδkiT
⊺
jkσ̂

−
j ρ̂− ρ̂σ̂+

i TikΓ̃kδkiT
⊺
jkσ̂

−
j

]
.

Now, defining new composite decay channels,

Π̂−
k =

∑
j

Tkj σ̂
−
j , Π̂+

k =
∑
j

σ̂+
j T

⊺
kj ,

we find,

L[ρ̂] = 1
2

∑
k

Γ̃k[2Π̂
+
k ρ̂Π̂

−
k − Π̂+

k Π̂
−
k ρ̂− ρ̂Π̂+

k Π̂
−
k ] .

Single-atom spontaneous emission simply follows from the assumption that Γij =
Γ1δij ,

L[ρ] = 1
2

∑
j

Γ[2σ̂−
j ρ̂σ̂

+
j − σ̂+

j σ̂
−
j ρ̂− ρ̂σ̂+

j σ̂
−
j ] .

On the other hand, Dicke superradiance follows from the assumption that Γij =
Γ. Introducing the collective spin operator, Ŝ± ≡∑j σ̂

±
j ,

L[ρ] = 1
2

∑
i,j

Γ[2σ̂−
i ρ̂σ̂

+
j − σ̂+

i σ̂
−
j ρ̂− ρ̂σ̂+

i σ̂
−
j ]

= 1
2
Γ[2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂− ρ̂Ŝ+Ŝ−] .

The uniform all-to-all coupling required for Dicke superradiance can be realized,

when the atoms are localized in an area of space smaller than λ3 or in a cavity.

23.3.2.1 Equations of motion in the presence of dipole-dipole coupling

We start from the Hamiltonian and jump operators (23.130) and derive the Heisenberg-
Liouville equation (23.135),

˙̂σ−
k = −ı[σ̂−

k , Ĥ] + L†[σ̂−
k ] (23.137)

= ı
2Ω(rk)σ̂

z
k − ı∆aσ̂

z
kσ̂

−
k − ı

N∑

j̸=k

∆kj σ̂
z
kσ̂

−
j + Γ

2 σ̂
z
kσ̂

−
k +

N∑

j̸=k

Γkj

2 σ̂zkσ̂
−
j .
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Now, we assume low atomic excitation, ⟨σ̂zk⟩ ≃ −1, that is, most atoms are in the
ground state. Then we may neglect correlations and find 17,

˙̂σ−
k ≃

(
ı∆a − Γ

2

)
σ̂−
k − ı

2Ω(rk) +

N∑

j ̸=k

(
ı∆kj − Γkj

2

)
σ̂−
j (23.138)

or taking the expectation values,

β̇k ≃
(
ı∆a − Γ

2

)
βk − ı

2Ω(rk) +

N∑

j ̸=k

(
ı∆kj − Γkj

2

)
βj . (23.139)

These are just the equations of motion of the coupled dipoles model derived in
Sec. 21.1.2. Evaluation of the coeffficients (23.130)(iv-v) yields the exponential kernel
postulated in (21.29).

In Exc. 23.3.4.3 we derive them from the linear optics scalar coupled dipoles model,

∆j ̸=i ≡ −
Γ cos krji
krji

and Γj ̸=i ≡
Γ sin krji
krji

(23.140)

with rji = |rj − ri|. These terms arise from the so-called scalar approximation of
(22.169), where we neglect 1/R2 and 1/R3 terms and set (êd · êR) = 0.

Example 148 (Two atoms with dipole-dipole interactions): For the case
of only two atoms located at rj , using the basis defined in (3.75), we find the
Hamiltonian [154],

Ĥ =


0 1

2
Ω∗(r2)

1
2
Ω∗(r1) 0

1
2
Ω(r2) −∆a

1
2
∆21

1
2
Ω∗(r1)

1
2
Ω(r1)

1
2
∆12 −∆a

1
2
Ω∗(r2)

0 1
2
Ω(r1)

1
2
Ω(r2) −2∆a

 , (23.141)

with Ω(r) = Ω0e
ık·rj . For two atoms the master equations (23.130) can easily

be solved numerically by setting 18,

σ̂±
1 = σ̂± ⊗ I and σ̂±

2 = I⊗ σ̂± , (23.142)

as usual and,
⟨i, j|ρ̂|m,n⟩ = ρij,mn , (23.143)

where the indices i,m = 1, 2 refer to the first atom and the indices j, n = 1, 2
to the second. The populations of the Dicke states |11⟩, |12⟩, |21⟩, and |22⟩

17Note that the same result is obtained from ˙̂σ−
k = −ı[σ̂−

k , Ĥeff ] using the effective Hamiltonian

Ĥeff ≡ Ĥcoh − ıĤdiss with,

Ĥcoh = −∆a

∑
j

σ̂+
j σ̂

−
j + Ω0

2

∑
j

(σ̂−
j e

−ık0·r + σ̂+
j e

ık0·r)

Ĥdiss = Γ
2

∑
j

σ̂+
j σ̂

−
j + 1

2

∑
j ̸=i

(Γji + ı∆ji)σ̂
+
j σ̂

−
i

18Remember, that the formal solution of coherent part of the master equation can be written as

ρ̂(t) = L(t)ρ̂(0) = e−ıĤtρ̂(0)eıĤt.
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are then given by ρij,ij , and the populations of the (anti-)symmetric states
|ψ⟩(s,a) = 1√

2
(|1, 2⟩ ± |2, 1⟩) are calculated via,

⟨ψ|(s,a)ρ̂|ψ⟩(s,a) = 1
2
(ρ12,12 ± ρ12,21 ± ρ21,12 + ρ21,21) . (23.144)

The temporal evolution of the populations in one and two atom systems, initially

driven by a laser field which is then suddenly switched off, is shown in Fig. 23.15.

Note that super and subradiance do occur for ∆12 = 0 = ∆a but necessitate

Γij ̸= 0.

0 5 10

Γt

0

0.5

1

ρ

(a)

0 5 10

Γt

0

0.5

1

ρ

(b)

0 5 10

Γt

0

0.5

1

ρ

sub

super

(c)

Figure 23.15: (code) (a) Response of a single two-level atom driven by a laser light with

Ω = 5Γ, ∆ = −Γ. The curves show (blue) the ground state and (red) the excited state

populations. The light is switched off at Γt = 0.5. (b) Response of two atoms j = 1, 2 located

at kzj = ±5 driven by the same laser light as in (a). (cyan and magenta) populations of

the states |eg⟩ and |ge⟩. The two black lines show the populations of the (anti-)symmetric

states 1√
2
(|eg⟩ ± |ge⟩). (c) Same as (b) but with kzj = ±0.5.

In Excs. 23.3.4.4 to 23.3.4.6 we study the impact of dipole-dipole interactions

on super- and subradiance. In Exc. 23.3.4.7 we study three interacting two-

level atoms. In Exc. 23.3.4.8 we compare Rydberg blockade and dipole-dipole

interaction.

Example 149 (Blackbody radiation-induced superradiance): In Exc. 16.5.6.9
we studied blackbody radiation-induced transitions in a single atom. The pro-
cedure can be generalized to several atoms [854]. For two atoms the Liouvillean
reads,

˙̂ρ = Lbbρ̂

= − 1
2

∑
i,j=1,2

Γij
(
[ρ̂σ̂i, σ̂

†
j ] + [σ̂i, σ̂

†
j ρ̂]
)
− 1

2

∑
i,j=1,2

(Γij + γδij)
(
[ρ̂σ̂†

j , σ̂i] + [σ̂†
j , σ̂iρ̂]

)
,

with Γijδ(t− t′) ∝ ⟨Êi(t)Êj(t′)⟩ containing both the real and the virtual photon

exchange.

23.3.2.2 Van der Waals interactions

The scalar kernel (23.140) for dipole-dipole interactions represents a good approxima-
tion at low densities. At higher density the vectorial kernel must be used. However,
then other interatomic forces come into play, in particular van der Waals interactions.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DipoleInteractions.m
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23.3.3 Interacting atoms in a cooperative environment

The interactions studied so far in this section were described by Hamiltonians only
containing direct interaction terms [see Eqs. (23.141) and (23.141)]. Doing so we
conceal the fact that these interactions are necessarily mediated by electromagnetic
forces. That is, the full Hamiltonian contains terms such as,

âkλσ̂
+
j + σ̂−

j â
†
kλ , (23.145)

which describe the exchange of photons through a local common field mode (kλ).
As these modes rapidly decay, they may be adiabatically eliminated, leaving behind
terms like σ̂+

j σ̂
−
i

19.
Let us now consider several excited atoms labeled by j, located at rj , and de-

scribed by two of their eigenstates, {|gj⟩, |ej⟩}. As usual, |gj⟩ is the eigenstate with
lowest energy (Egj = − 1

2ℏωj) and longer lifetime, i.e. the ground state, whereas |ej⟩
is the eigenstate with highest energy (Eej = + 1

2ℏωj). In presence of an external
electromagnetic field, the Hamiltonian of the two atom-field system in the electric
dipolar approximation is,

Ĥ =
∑

j=1,2

[Ĥ
(j)
atom + Ĥ

(j)
atom:field] + Ĥfield

where Ĥ
(j)
atom ≡ 1

2ωj σ̂
z
j , Ĥ

(j)
atom:field ≡ −d̂j ·

ˆ⃗E(rj) .
(23.146)

The electric dipole moment operator satisfies ⟨ej |d̂j |ej⟩ = 0 = ⟨gj |d̂j |gj⟩ and has
non-vanishing off-diagonal elements, i.e. the eigenstates have no permanent dipole
moment. We define the dipole-moment matrix element as dj ≡ ⟨ej |d̂j |gj⟩. The
description of the field is identical to the case of one atom (22.3).

For weak-coupling between the atoms and the field, the interaction Hamiltonian
becomes [772, 512],

Ĥatom:field = −ı
∑

k,λ

∑

j

(σ̂+
j + σ̂−

j )[gkλ(rj)âkλ − g∗kλ(rj)â†kλ] . (23.147)

By solving the Heisenberg equations of motion for the atomic and field operators
within the Born and Markov approximations, one obtains the spontaneous emission
rate on a transition |ej⟩ → |gj⟩ of frequency ωj , as done in Sec. 22.1.1,

Γj = 2π
∑

k,λ

|gkλ(rj)|2δ(ωk − ωj) =
πωj
ε0ℏ

∑

k,λ

|dj · ukλ(rj)|2δ(ωk − ωj) , (23.148)

which is the same result obtained by the Weisskopf-Wigner theory [583]. In addition,
due to the coupling between the atoms through the vacuum field, one also has the
cross-damping spontaneous emission rate:

Γq(ri, rj) = Γq(rj , ri) =
πω0

ε0ℏ
∑

k,λ

Re
[
di · ukλ(ri)u

∗
kλ(rj) · d∗

j

]
δ(ωk − ωj) , (23.149)

which shows explicitly the cooperative effect of the dipole-dipole interaction in the
spontaneous emission rate.

19The adiabatic elimination procedure for the case of cavity modes will be studied in Sec. 23.4.1
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23.3.4 Exercises

23.3.4.1 Ex: Calculating with collective operators

The collective spin operators for an ensemble of J atoms with M internal levels are
defined as,

Ŝ =

J∑

j=1

σ̂j = σ̂ ⊗ IM ⊗ IM ⊗ ...+ IM ⊗ σ̂ ⊗ IM ⊗+... ,

or more explicitly,

Ŝkl =

J∑

j=1

σ̂klj = |k⟩⟨l| ⊗ IM ⊗ IM ⊗ ...+ IM ⊗ |k⟩⟨l| ⊗ IM ⊗+... ,

with the spin matrices satisfying,

σ̂klj σ̂
mn
j = δlmσ̂

kn
j and [σ̂kli , σ̂

mn
j ] = δij(δlmσ̂

kn
j − δknσ̂mlj )

∑M
m=1 σ̂

mm
j = IM and

∑J
j=1

∑M
m=1 σ̂

mm
j = NIM .

Verify that for the case of atoms subject to spin-spin interaction,

Ĥ ̸=
∑

j,m

σ̂mmj Ĥσ̂mmj .

23.3.4.2 Ex: Liouvillean for two dipole-coupled atoms

a. From the master equation (23.130) set up the Liouvillean M for a system of two

atoms coupled via dipolar radiation allowing to write the master equation as ˙⃗ϱ =Mϱ⃗.
b. Discuss the Lindblad term in the limit, kr12 → 0.
c. We have seen in Exc. 16.5.6.9, how to write down the master equation for a two-level
atom whose levels are coupled by blackbody radiation. Extend the procedure to two
dipole-coupled two-level atoms whose levels are only coupled by blackbody radiation.

23.3.4.3 Ex: Super- and subradiant linewidth and decay rates from the
coupled dipoles model

Calculate super- and subradiance linewidth and lineshifts for two atoms interacting
via dipole-dipole interaction using the linear optics scalar coupled dipoles model cul-
minating in Eq. (21.26) using the exponential kernel (21.29).

23.3.4.4 Ex: Super- and subradiance in a two atom system

Calculate the temporal behavior of the (anti-)symmetric states ρS,A = 1
2 (ρ12,12 +

ρ21,21± ρ12,21± ρ21,12) from the master equation (23.135)(i) or the Liouville equation
(23.135)(ii). Consider in particular the case of absent driving, Ω = 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_InterRadiance01.pdf
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_InterRadiance02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_InterRadiance04.pdf
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23.3.4.5 Ex: Two-atom toy model for super- and subradiance

Calculate the eigenvalues and eigenvectors of the Hamiltonian (23.141) for two two-
level atoms located at rj = ± r122 êz with rji = |rj − ri| ≪ λ [227]. Consider the limits
(a) absent coupling, ∆12 = 0, (b) resonant driving, ∆a = 0, and (c) absent driving,
Ω = 0. (d) Analyze the full Hamiltonian.

23.3.4.6 Ex: Impact of dipole-dipole interactions on super- and subra-
diance

Here, we use the two-atom toy model studied in Fig. 23.15 to demonstrate the emer-
gence of subradiant modes as a consequence of dipole-dipole interaction [227, 154].
Calculate numerically the anti-symmetric state population ρ̂a given in Eq. (23.144)
at very long times as a function of the saturation parameter s and the interatomic
distance krij . Interpret the results. Note that subradiant modes may saturate at
lower intensities than single atoms.

23.3.4.7 Ex: Three interacting atoms

Numerically integrate the master equation (23.130) for three atoms.

23.3.4.8 Ex: Rydberg blockade versus spin-spin interaction

a. Direct interactions (e.g. dipole-dipole coupling or van der Waals interaction) gen-
erate collective energy shifts ∆ij and collective decay Γij (see Sec. 23.3.2 or examples
144 and 145). Discuss why these terms are not observed in Hamiltonians describing
Rydberg blockade.
b. Verify whether the operators ŜzŜz or Ŝ+Ŝ− generate anti-diagonal terms in the
Hamiltonian [623].

23.4 Cavity-mediated spin-exchange interactions

In the preceding sections we got to know two fundamentally different types of inter-
atomic interactions, that is, Rydberg and dipole-dipole type interactions. Both are
generally nearest neighbor interactions and thus inhomogeneous. Let us neverthe-
less make the assumption of uniform coupling to simplify the discussion. Then the
Rydberg blockade term (23.141) reads,

Ĥ = 1
2

∑

i ̸=j
κij σ̂

z
j σ̂

z
i ≃ κŜ2

z , (23.150)

and the Ising interaction term (23.132) becomes,

ĤIsing = −
∑

i̸=j

∆ij σ̂
+
j σ̂

−
i ≃ −∆IsingŜ+Ŝ− . (23.151)

A way of achieving uniform coupling consists in coupling all atoms with the same
strength to the same cavity mode. This is what we will discuss in the next subsection.
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In the full open system Dicke model κ and, Γ1 describe physical processes, namely
cavity decay and atomic spontaneous emission, while Γ is introduced as a mere collec-
tive decay rate, not rooted in a physical process. In reality, collective decay processes
may be caused by interatomic contact interactions, but as we will see in the following,
they can also be induced by coupling of the atoms to a common light mode.

Indeed, in the bad cavity limit, upon adiabatic elimination of the light mode,
the cavity parameters ∆c and κ are replaced by Uc and κc, which take over the
role of a collective shift and decay process. This is seen in the Hamiltonian and the
Lindbladian, after adiabatic elimination of the light mode, by the fact that the terms
depending on κc have exactly the same structure as those for which collective decay
at a rate Γ had been postulated in the full open Dicke model.

The systems do not differ in concept, but only in details: uniform coupling versus
nearest neighbors, inhomogeneities of the light field versus disordered clouds, etc..

23.4.1 Adiabatic elimination of the modes of a bad high-finesse
cavity

The collective Jaynes-Cummings Hamiltonian (23.116) for a linear cavity (see Exc. 22.1.11.5),

ĤJC = −∆câ
†â−ıη(â− â†)+

N∑

i=1

[
−∆a

2 (I2 + σ̂zi ) + g sin kzi(σ̂
+
i â+ â†σ̂−

i )
]
, (23.152)

becomes in the case of perfect bunching, zi = z, using the abbreviation g → g sin kz,

ĤJC = −∆câ
†â− ıη(â− â†)−∆a(

N
2 I+ Ŝz) + g(Ŝ+â+ â†Ŝ−) , (23.153)

where we introduced collective operators, Ŝα ≡ 1
2

∑N
i=1 σ̂

α
i for α = x, y, z. The

Heisenberg equations are those derived in (23.117), but now we consider the rotating
wave approximation, g′ = 0, and disregard optical pumping, ξ1 = 0, and phase
fluctuations, β1 = 0,

⟨ ˙̂a⟩ = ⟨(ı∆c − κ)â− ıgŜ− + η⟩

⟨ ˙̂S−⟩ = ⟨(ı∆a−Γ1
2
+ΓŜz)Ŝ− + 2ıgŜz â⟩

⟨ ˙̂Sz⟩ = ⟨−(Γ1
N
2
I+Γ1Ŝz+ΓŜ+Ŝ−)−ıg(Ŝ+â− â†Ŝ−)⟩

. (23.154)

Γ stands for collective decay and Γ1 for single-atom decay. Using η ≡ ηr + ıηi we can
reshape (23.154) in a real notation,

⟨ ˙̂ar⟩ = ⟨ 1
2
( ˙̂a+ ˙̂a†)⟩ = ⟨−κâr −∆câi − gŜy + ηr⟩

⟨ ˙̂ai⟩ = ⟨ 1
2ı
( ˙̂a− ˙̂a†)⟩ = ⟨−κâi +∆câr − gŜx + ηi⟩

⟨ ˙̂Sx⟩ = ⟨ 1
2
(
˙̂
S− +

˙̂
S+)⟩ = ⟨−(Γ1

2
+Γ

2
)Ŝx +∆aŜy−g{âi, Ŝz}−ıg[âr, Ŝz]+Γ

2
{Ŝx, Ŝz}⟩

⟨ ˙̂Sy⟩ = ⟨ ı
2
(
˙̂
S− − ˙̂

S+)⟩ = ⟨−(Γ1
2
+Γ

2
)Ŝy −∆aŜx−g{âr, Ŝz}+ıg[âi, Ŝz]+Γ

2
{Ŝy, Ŝz}⟩

⟨ ˙̂Sz⟩ = ⟨∂t 12 [Ŝ+, Ŝ−]⟩ = ⟨−(Γ1+Γ)Ŝz + g({âi, Ŝx}+ {âr, Ŝy}+ı[âr, Ŝx]− ı[âi, Ŝy])
−N

2
Γ1I−Γ(Ŝ2

x + Ŝ2
y)⟩

(23.155)

The equations are equivalent to those derived by [523].
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Example 150 (Simplification for uncorrelated â and Ŝ): As long as â
and Ŝ are uncorrelated, we may simply set {â, Ŝ} = 2âŜ and [â, Ŝ] = 0. As-
suming furthermore that [Ŝk, Ŝl] ≃ 0 the equations simplify even more. The
equations (23.155) can then be written in compact matrix notation,

˙̂S = −ı[Ŝ, Ĥ] + LΓ1/2Ŝ =⇒ (23.156)

⟨ ˙̂S⟩ = ⟨

− 1
2
(Γ1 + Γ) ∆a −2gâi
−∆a − 1

2
(Γ1 + Γ) −2gâr

2gâi 2gâr −(Γ1 + Γ)


ŜxŜy
Ŝz

− Γ1

 0

0
N
2
I

− Γ

 −ŜxŜz−ŜyŜz
Ŝ2
x + Ŝ2

y

⟩
= ⟨

 2gâr
−2gâi
−∆a

×
ŜxŜy
Ŝz

− Γ1

 1
2
Ŝx

1
2
Ŝy

N
2
I+ Ŝz

⟩ .

The equations (23.155) are just the Heisenberg-Liouville equations (23.118) de-
rived from the open Dicke model and the open Tavis-Cummings model Hamiltonian,
restricting to many immobile atoms and a single cavity mode. In the bad cavity limit,
κ ≫ g, the cavity field is effectively slaved to the internal atomic dynamics. Hence,
we may assume ˙̂a ≡ 0 and adiabatically eliminate the field. Setting ˙̂ar = 0 = ˙̂ai in
Eq. (23.155)(i-ii) we calculate,

Ω̂r ≡ 2gâr = 2Uc(Ŝx − ηi/g)− 2κc(Ŝy − ηr/g) (23.157)

Ω̂i ≡ 2gâi = −2κc(Ŝx − ηi/g)− 2Uc(Ŝy − ηr/g) ,

where we introduced the abbreviations,

Uκ ≡ Uc − ıκc with Uc ≡
g2∆c

∆2
c + κ2

and κc ≡
g2κ

∆2
c + κ2

. (23.158)

Uc is the cooperative cavity Lamb-shift and κc is the Purcell-enhanced cavity decay
rate. Substituting (23.157) in the Eqs. (23.155)(iii-v) leads to 20,21,

⟨ ˙̂Sx⟩ = ⟨−(Γ1
2
+Γc

2
)Ŝx + (∆a−Uc)Ŝy−2(Ucη̄r + κcη̄i)Ŝz + Uc{Ŝy, Ŝz}+ Γc

2
{Ŝx, Ŝz}⟩

⟨ ˙̂Sy⟩ = ⟨−(Γ1
2
+Γc

2
)Ŝy − (∆a−Uc)Ŝx+2(Ucη̄i − κcη̄r)Ŝz − Uc{Ŝx, Ŝz}+ Γc

2
{Ŝy, Ŝz}⟩

⟨ ˙̂Sz⟩ = ⟨−(Γ1+Γc)Ŝz − N
2
Γ1I+2(Ucη̄r + κcη̄i)Ŝx − 2(Ucη̄i − κcη̄r)Ŝy − Γc(Ŝ

2
x + Ŝ2

y)⟩

,

(23.159)

with the definitions,

η̄ ≡ η/g and Γc ≡ Γ + 2κc and Γtot ≡ Γ1 + Γc . (23.160)

20Equivalently, in complex notation,

∆κâ = gŜ− + ıη

(∂t +
Γ1
2
)Ŝ− = ı∆aŜ− + 2Uκ(ıŜ− − 1

g
η)Ŝz

(∂t + Γ1)Ŝz = −Γ1
N
2
I− κc{Ŝ+, Ŝ−}+ 1

g
ηUκŜ+ + 1

g
η∗U∗

κ Ŝ− .

21According to [773] the adiabatic elimination does only hold for g
√
N ≪ κ. The question is then,

why do our bistability curves agree so well?
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The colored terms correspond to those in Eqs. (23.155). It is interesting to note that,
after adiabatic elimination of the cavity, the cavity decay rate κc appears in the
equations of motion at the same locations as the collective decay rate Γ introduced
ad hoc in the open Dicke model (23.116) via a Liouvillean L†

Γc/2,Ŝ−
.

The number of intracavity photons is found via,

n̂ = 1
2g (Ω̂

2
r + Ω̂2

i ) = 2|Uκ/g|2[(gŜx − ηi)2 + (gŜy − ηr)2] . (23.161)

It is always interesting to consider special cases. In Exc. 23.4.4.1 we show that in for
strong driving the cavity feedback disappears such that we recover the linear collective
Dicke model. And in Exc. 23.4.4.2 we show that for weak driving the detuning-
dependence of ⟨n̂⟩ exhibits standard normal mode splitting.

23.4.1.1 Hamiltonian for the Tavis-Cummings model after adiabatic elim-
ination of the modes

Alternatively, we can try to derive a simplified Hamiltonian from which the Heisenberg-
Liouville equations under adiabatic elimination of the cavity mode can be derived
directly.

We have seen in Sec. 16.4.3, using the effective Hamiltonian approach, that the
Heisenberg equation decomposes in a commutator and an anti-commutator. The
complete Heisenberg-Liouville equation reads,

˙̂S = −ı[Ŝ, Ĥ] + L†
κc,Ŝ−

Ŝ+ L†
Γ/2,Ŝ−

Ŝ+
∑

j

L†
Γ1/2,ŝ

−
j

Ŝ

Ĥad = −2Im (η̄Uκ)Ŝx − 2Re (η̄Uκ)Ŝy −∆aŜz + UcŜ+Ŝ−

. (23.162)

As shown in Exc. 23.4.4.4, we recover exactly the equations of motion (23.159).
The complete absence of the field from the equations of motion shows that, in the bad
cavity limit, any coherence of the coupled atom-cavity system is entirely contained in
the atomic cloud.

Comparing this model to the one of the open system Dicke model (23.116), we
notice that the cavity decay plays an important role not only in collective decay, but
also in the coherent evolution of the system. We can calculate the intracavity field
from (23.157),

â = âr + ıâi =
Uκ

g

(
Ŝx − ıŜy + ıη

g

)
= Uκ

g

(
Ŝ− + ıηg

)
. (23.163)

Example 151 (Alternative notations): The Hamiltonian (23.162) can also
be expressed in complex notation [512],

Ĥad = Ω
2
Ŝ+ + Ω∗

2
Ŝ− −∆aŜz + UcŜ+Ŝ− , (23.164)

with the abbreviation Ω ≡ 2ıη̄Uκ. Particularly interesting is the non-linear
term, which contributes to the equations of motion as,

Ĥad = UcŜ+Ŝ− =⇒ − ı[Ŝ, Ĥad] = −ıUc[Ŝ, Ŝ+Ŝ−] (23.165)

Lκc,Ŝ−
Ŝ = κc(2Ŝ+ŜŜ− − ŜŜ+Ŝ− − Ŝ+Ŝ−Ŝ)
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or using an effective Hamiltonian with Uκ = Uc − ıκc,

Ĥeff = UκŜ+Ŝ− =⇒ − ı[ŜĤeff − Ĥ†
effŜ] = −ıUc[Ŝ, Ŝ+Ŝ−]− κc(ŜŜ+Ŝ− + Ŝ+Ŝ−Ŝ)

Leff
κc,Ŝ−

Ŝ = 2κcŜ+ŜŜ− . (23.166)

That is, two terms of the Liouvillean can be attributed to an effective Hamil-

tonian.

23.4.1.2 Constants of motion

Let us now address the question, under which conditions the equations of motions
(23.159) preserve the total spin. The Heisenberg equation for Ŝ2 is,

d

dt
Ŝ2 = −ı[Ŝ2, Ĥad] + LκcŜ−

Ŝ2 + Γ1

2

∑
j
LΓ1/2,ŝ

−
j
Ŝ2 (23.167)

= −ı[Ŝ2, Ĥad] + κc(Ŝ+[Ŝ
2, Ŝ−] + [Ŝ+, Ŝ

2]Ŝ−) +
Γ1

2

∑

j

(ŝ+j [Ŝ
2, ŝ−j ] + [ŝ+j , Ŝ

2]ŝ−j ) .

Plugging in the Hamiltonian (23.162), because of [S2, Ŝα] = 0 we immediately see
that all commutators involving only collective spins vanish. The spontaneous emission
terms do not vanish, because S2 does not commute with individual spin components,
as shown in Exc. 3.4.5.2,

d

dt
⟨Ŝ2⟩ =

∑

j

LΓ1/2,ŝ
−
j
Ŝ2 ̸= 0 . (23.168)

This result confirms a calculation made for the complete Hamiltonian before adia-
batic elimination done in Exc. 23.2.4.5. Thus, the collective character of the fully
stretched spin expressed by ⟨Ŝ2⟩ remains upon collective decay κc and only decays
via spontaneous emission Γ1 toward subradiant states.

On the other hand, it is interesting to verify the conservation of the length of the
collective spin vector ⟨Ŝ2⟩. We find readily,

d

dt
⟨Ŝ⟩2 = 2⟨Ŝ⟩⟨Ṡ⟩ = 2⟨Ŝ⟩

〈
−ı[Ŝ, Ĥad] + LκcŜ−

Ŝ+ Γ1

2

∑
j
LΓ1/2,ŝ

−
j
Ŝ
〉

(23.169)

= −2ı⟨Ŝ⟩⟨[Ŝ, Ĥ]⟩+ 2κc⟨Ŝ⟩
〈
Ŝ+[Ŝ,Ŝ−] + [Ŝ+, Ŝ]Ŝ−

〉

+ Γ1

∑
j
⟨Ŝ⟩

〈
ŝ+j [Ŝ,ŝ

−
j ] + [ŝ+j , Ŝ]ŝ

−
j

〉
.

The Hamiltonian term again vanishes. For the collective decay term we find,

⟨Ŝ⟩⟨LκcŜ−
Ŝ⟩/κc (23.170)

= −⟨Ŝx⟩2 − ⟨Ŝy⟩2 − 2⟨Ŝz⟩2 + ⟨Ŝx⟩⟨{Ŝx, Ŝz}⟩+ ⟨Ŝy⟩⟨{Ŝy, Ŝz}⟩ − 2⟨Ŝz⟩⟨Ŝ2
x + Ŝ2

y⟩ .
In the mean field approximation, we neglect quantum correlations, which implies

that the anti-commutators in (23.159) can be replaced by simple products, ⟨ŜαŜβ⟩ =
⟨Ŝα⟩⟨Ŝβ⟩, we find,

⟨Ŝ⟩⟨LκcŜ−
Ŝ⟩/κc ≃ −S2

x − S2
y − 2S2

z . (23.171)

Thus, in contrast to ⟨Ŝ2⟩, all terms in (23.159) depending on Γ1 or κc reduce the
length of the collective spin (see Exc. 23.4.4.3).
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23.4.1.3 Stationary mean field equations and saturation-induced non-
linearity

It is interesting to study the stationary behavior of Eqs. (23.154) and (23.159) by
setting ˙̂a = 0 = Ŝ. We must, however, be aware that by this assumption we miss
some important physics, as discussed in Sec. 23.5.

100 105

nη

10−5

100

n
/n

η

(a)

100 105

nη

0

0.5

1
√
〈S

2
〉/
S

(b)

100 105

nη

0

0.1

0.2

0.3

〈S
y
〉/
S

(c)

100 105

nη

-1

-0.5

0

〈S
z
〉/
S

(d)

Figure 23.16: (code) Pump power dependence of (a) the intracavity photon number, (b) the

stationary value of the mean field total atomic spin, and (c,d) its projection onto the y- and

z-axis. The red dotted lines are numerical solutions of the full equations Eqs. (23.155), the

blue solid lines are analytical solutions of the adiabatically simplified Eqs. (23.159) under the

assumption of resonance, ∆c = ∆a = η̄i = 0, and the green dash-dotted lines are analytical

approximations (see Exc. 23.4.4.3 and Ref. [512]). The other parameters are taken from [694].

23.4.2 Spin squeezing in the XX-Heisenberg model

Without pumping and neglecting spontaneous emission, η = Γ1 = 0, we obtain the
simplified Hamiltonian of the Tavis-Cummings model (23.118) with RWA, g′ = 0,

ĤXX = −∆aŜz + UcŜ+Ŝ− , (23.172)

also known as the effective Hamiltonian of the XX-Heisenberg model. For large N ≫ 1
the second term can safely be approximated by 1

2Uc{Ŝ+, Ŝ−} [623], because [Ŝ+, Ŝ−] =

2Ŝz is small compared to terms scaling with Ŝ2
z . The Heisenberg-Liouville equations

can then be written,

⟨ ˙̂S⟩ = ⟨



2UcŜx − 2κcŜy
2UcŜy + 2κcŜx

−∆a


× Ŝ⟩ = ⟨




Ω̂r

−Ω̂i

−∆a


× Ŝ⟩ . (23.173)

Analogously, for the Dicke model (23.118) without RWA, g′ = g, we obtain,

⟨ ˙̂S⟩ = ⟨



4UcŜx − 4κcŜy

0

−∆a


× Ŝ⟩ . (23.174)

The intracavity field (23.157) takes for η = 0 a particularly simple form,

â = Uκ

g Ŝ− . (23.175)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_StationaryPowerEliminated.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_StationaryPowerEliminated.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_StationaryPowerEliminated.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_StationaryPowerEliminated.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_StationaryPowerEliminated.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_StationaryPowerEliminated.m
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Example 152 (One-axis twisting in the XX-Heisenberg model): The cou-
pling strength

√
N+N− ≤ N

2
between the cavity mode and the atoms depends

on the inversion. Hence, this leads to an inversion-dependent frequency shift
known as one-axis twisting 22. In the mean field treatment we simply replace
the operators by their expectation values. Setting ∆a = 0 in the Heisenberg-

Liouville equations (23.173) and neglecting terms
˙̂
Sz ∝ Ŝz, we get,

⟨ ˙̂S⟩ ≃ ⟨

2(κcŜx + UcŜy)Ŝz
2(κcŜy − UcŜx)Ŝz
−2κc(Ŝ

2
x + Ŝ2

y)

⟩ .
Starting from the initial condition, ⟨Ŝ⟩ = (0, 0, N/2), we see that the instanta-
neous collective dipole moment Ŝ2

x + Ŝ2
y determines the decay of the inversion,

while the inversion Ŝz twists the dipole moment [565, 543, 625, 624, 623]. Collec-

tive decay occurs at a rate Ŝ−
√
κc/2. It is easy to see that ∂tŜ

2 = Ŝ· ˙̂S+ ˙̂S·Ŝ = 0.

In the equator plane, where ⟨Ŝz⟩ ≃ 0, the equations of motion simplify to,

˙̂S ≃

 0

0

−2κcS
2

 .

Near the poles, where ⟨Ŝz⟩ ≃ ±N2 ,

⟨ ˙̂S⟩ ≃ ⟨±N

κcŜx + UcŜy
κcŜy − UcŜx

0

⟩ =⇒ ⟨ ˙̂S± ≃ ±N(κc ± ıUc)Ŝ±⟩ .

Hence, near the poles the cavity field will oscillate at a frequency of about

±ı2NUc and decay at a rate κc.

-2
2

0

2

S
z

Sy

0

Sx

2

0
-2 -2

Figure 23.17: (code) One-axis twisting.

Example 153 (Experimental observation of one-axis twisting): In the
experiment [623] the main inhomogeneity arises because they trap the atoms
in a standing wave at 813 nm which is incommensurate with 698 nm (where of
course they cannot trap). They first drive the transition by pumping the cavity,

22This is somewhat analogous to the photon number-dependent phase shift observed in dispersive
interaction in the Jaynes-Cummings model.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_XXOneAxisTwisting.m
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then switch off the cavity and measure the field subsequently emitted from the
cavity by heterodyne beating. In this way they extract the frequency shift and
superradiant decay rate of the cavity,

S(ω) = F⟨â†(t+ τ)â(t)⟩
with ⟨â†(t+ τ)â(t)⟩ = ⟨Ŝ+(t+ τ)Ŝ−(t)⟩ ≃ ⟨Ŝ+(t+ τ)⟩⟨Ŝ−(t)⟩ ,

in the mean-field approximation.

23.4.2.1 Repumping on a narrow transition

Saturation-induced bistability has been observed in the bad cavity limit [694]. Here,
we want to analyze, how incoherent optical pumping at a rate R will affect the normal
mode spectra. The ultimate goal is to prepare studies of superradiant lasing [624, 523].

Figure 23.18: (code) Scheme for optical pumping of a metastable excited state, here for the

case of atomic strontium [694], in order to generate inversion. The cavity drives the narrow

transition.

We consider the situation sketched in Fig. 23.18 and start from the Hamilto-
nian (11) of [694] for the interaction between strontium atoms and the modes of
a ring cavity. We simply add a jump operator for incoherent transfer from the ground
to the excited state. With the definition of L̂†

γ,L̂
Â given in (23.116) the relevant jump

operators are,

L̂†
κ,ââ = −κâ

L̂†
Γ/2,σ̂−

i

σ̂−
j = −δij Γ2 σ̂−

i , L̂†
R/2,σ̂+

i

σ̂−
j = −δij R2 σ̂−

i

L̂†
Γ/2,σ̂−

i

σ̂zj = −δijΓ(I+ σ̂zi ) , L̂†
R/2,σ̂+

i

σ̂zj = δijR(I− σ̂zi )

. (23.176)

Therefore, the generalized Heisenberg-Liouville equations read,

˙̂σ−
i = (ı∆a − Γ

2 − R
2 )σ̂

−
i + ıg(eıkzi â+ + e−ıkzi â−)σ̂

z
i

˙̂σzi = −2ıg(eıkzi â+ + e−ıkzi â−)σ̂
+
i + 2ıg(e−ıkzi â†+ + eıkzi â†−)σ̂

−
i − (Γ−R)I− (Γ +R)σ̂zi

˙̂a± = (ı∆c − κ)â± − ıg
∑

j

σ̂−
j e

∓ıkzj + η± . (23.177)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_RepumpingScheme.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_RepumpingScheme.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_RepumpingScheme.m
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With this and the abbreviations,

Figure 23.19: (left) inversion (σ̂z + 1)/2, (right) light transmission κ2|α|2/η2 through the
cavity. The repumping rate is set to R = 0.5Γ (upper row), R = 2Γ (center row), and
R = 50Γ (lower row). The other parameters are taken from [694].

Γ± ≡ Γ±R and Ũγ ≡
g2(∆a − ıΓ+

2 )

∆2
a +

Γ2
+

4

, (23.178)

the calculation of [694] is straightforward to generalize, yielding,

∑

j

−Γ−
Γ+
Ũγ(α+ + e∓2ıkzjα−)

1 + 2|Ũγ/g|2|eıkzjα+ + e−ıkzjα−|2
= ıη± −∆κα± . (23.179)

That is, all results obtained for R = 0 remain valid, one just has to redefine Ũγ and
rescale η and ∆κ. For one-sided probing and a homogeneous cloud and with this and
the abbreviations η̄± ≡ Γ+

Γ−
η± and ∆̃κ ≡ Γ+

Γ−
∆κ we recover the same Eq. (3) of [694],

α+ =
ıη̄±

∆̃κ − NŨγ

1+2|Ũγ/g|2|α+|2
(23.180)
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and

⟨σ̂zi ⟩ =
−Γ−/Γ+

1 + 2|Ũγ/g|2|α+|2
. (23.181)

The graphs in Fig. 23.19 were obtained for the experimental parameters of [694]
and additional repumping. We find inversion once R > Γ. Close to resonance ∆a = 0
but ∆ca ≃ κ the transmission becomes slightly > 1. The ridges are obtained in the
same way as in [694] by setting Imα+ ≡ 0, yielding,

∆ca = ∆a −
Γ−
Γ+

Ng2∆a

∆2
a +

Γ2
+

4 + 2g2n
. (23.182)

23.4.3 Cumulant expansion of the open Dicke model

In the Heisenberg-Liouville equations applied to the Dicke Hamiltonian for a laser-
pumped linear cavity are,

[∂t − ı∆c + κ]â = −ıg∑j σ̂
−
j sin kzj + η (23.183)

[∂t − ı∆a +
Γ
2 ]σ̂

−
i = −ıgâσ̂zi sin kzi

[∂t − Γ]σ̂zi = 2ıg sin kzi(âσ̂
+
i − â†σ̂−

i )− Γσ̂zi .

Note that the presence of pumping represents a serious complication with respect to
superradiant lasing models [565, 135, 661], since phase-dependent terms such as ⟨â⟩
and ⟨σ̂−⟩ only vanish if η ̸= 0. Products of operators are differentiated like,

d

dt
(ÂB̂) = Â

dB̂

dt
+
dÂ

dt
B̂ . (23.184)

Hence,

[∂t + 2κ]â†â = ıg
∑
j

(
âσ̂+

j − â†σ̂−
j

)
sin kzj + η(â† + â) (23.185)

[∂t − ı∆a + ı∆c +
Γ
2
+ κ]â†σ̂−

i = −ıgâ†âσ̂zi sin kzi + ıg
∑
j σ̂

+
j σ̂

−
i sin kzj + ησ̂−

i

[∂t + ı∆c + κ− Γ]â†σ̂zi = 2ıg sin kzi(â
†âσ̂+

i − â†â†σ̂−
i ) + Γâ† + ıg

∑
j σ̂

+
j σ̂

z
i sin kzj + ησ̂zi

[∂t + Γ]σ̂+
i σ̂

−
j = ıg(â†σ̂zi σ̂

−
j sin kzi − âσ̂+

i σ̂
z
j sin kzj) .

For perfect bunching,
∑
j g sin kz −→ Ng, and using σ̂±σ̂z = ±σ̂± and σ̂zσ̂± = ∓σ̂±,

[∂t − ı∆c + κ]â = −ıNgσ̂−
j + η (23.186)

[∂t − ı∆a +
Γ
2
)]σ̂−

i = −ıgâσ̂zi
[∂t − Γ]σ̂zi = 2ıg(âσ̂+

i − â†σ̂−
i )− Γσ̂zi

[∂t + 2κ]â†â = ıNg(âσ̂+
j − â†σ̂−

j ) + η(â† + â)

[∂t − ı∆a + ı∆c +
Γ
2
+ κ]â†σ̂−

i = −ıgâ†âσ̂zi + ıg[σ̂+
i σ̂

−
i + (N − 1)σ̂+

j ̸=iσ̂
−
i ] + ησ̂−

i

[∂t + ı∆c + κ− Γ]â†σ̂zi = 2ıg(â†âσ̂+
i − â†â†σ̂−

i ) + Γâ† + ıg[σ̂+
i + (N − 1)σ̂+

j ̸=σ̂
z
i ] + ησ̂zi

[∂t + Γ]σ̂+
i σ̂

−
j = ıg(â†σ̂zi σ̂

−
j − âσ̂+

i σ̂
z
j ) .
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For a single atom,

[∂t − ı∆c + κ]â = −ıNgσ̂− + η (23.187)

[∂t − ı∆a +
Γ
2
)]σ̂− = −ıgâσ̂z

[∂t − Γ]σ̂z = 2ıg(âσ̂+ − â†σ̂−)− Γσ̂z

[∂t + 2κ]â†â = ıNg(âσ̂+ − â†σ̂−) + η(â† + â)

[∂t − ı∆a + ı∆c +
Γ
2
+ κ]â†σ̂−

i = −ıgâ†âσ̂zi + ıgσ̂+
j σ̂

−
i + ησ̂−

i

[∂tâ
†σ̂zi ) = 2ıg(â†âσ̂+ − â†â†σ̂−) + Γâ† + ıNgσ̂+ + ησ̂z

[∂tσ̂
+
i σ̂

−
j ) = ıg(â†σ̂− − âσ̂+) .

We now take the expectation values of these equations performing the cumulant
expansion,

⟨ÂB̂Ĉ⟩ = ⟨ÂB̂⟩⟨Ĉ⟩+ ⟨ÂĈ⟩⟨B̂⟩+ ⟨B̂Ĉ⟩⟨Â⟩ − 2⟨Â⟩⟨B̂⟩⟨Ĉ⟩ . (23.188)

Assuming steady-state for ⟨â⟩ and ⟨σ̂−⟩, ⟨σ̂z⟩, we obtain a linear set of differential
equations,

d

dt



⟨â⟩
⟨â†⟩
⟨σ̂−

i ⟩
⟨σ̂+

i ⟩⟨σ̂z
i ⟩

⟨â†â⟩
⟨âσ̂+

i ⟩
⟨â†σ̂−

i ⟩
⟨âσ̂z

i ⟩
⟨â†σ̂z

i ⟩
⟨σ̂+

i σ̂
−
i ⟩


= M



⟨â⟩
⟨â†⟩
⟨σ̂−

i ⟩
⟨σ̂+

i ⟩
⟨σ̂z

i ⟩
⟨â†â⟩
⟨âσ̂+

i ⟩
⟨â†σ̂−

i ⟩
⟨âσ̂z

i ⟩
⟨â†σ̂z

i ⟩
⟨σ̂+

i σ̂
−
i ⟩



+



η

η

0

0

Γ

0

0

0

0

0

⟨â†∞⟩⟨â∞⟩⟨σ̂z
∞⟩


. (23.189)

with

M = (23.190)

ı∆c − κ 0 −ıNg 0 0 0 0 0 0 0 0

0 −ı∆c − κ 0 ıNg 0 0 0 0 0 0 0

0 0 ı∆a − Γ
2 0 0 0 0 0 −ıg 0 0

0 0 0 −ı∆a − Γ
2 0 0 0 0 0 ıg 0

0 0 0 0 Γ 0 2ıg −2ıg 0 0 0

η η 0 0 0 −2κ ıNg −ıNg 0 0 0

0 0 0 η 0 ıNg⟨σ̂z
∞⟩ 0 0 0 0 ıNg

0 0 η 0 0 −ıNg⟨σ̂z
∞⟩ 0 0 0 0 ıNg

Γ 0 −ıNg η ⟨σ̂−⟩ 0 0 0 0 0 0

0 Γ 0 ıNg η ⟨σ̂+⟩ 0 0 0 0 0

0 0 0 0 0 0 −ıg ıg 0 0 0



23.4.3.1 Correlation functions

Often it is interesting to analyze two-times correlation functions of the types g(1)(τ) =
⟨Â†(t+ τ)Â(t)⟩ or g(2)(τ) = ⟨Â†(t)Â†(t+ τ)Â(t+ τ)Â(t)⟩. As long as we are able to
solve the Heisenberg-Liouville equation for the whole operator,

d

dt
Â = L[Â, B̂, Ĉ] =⇒ Â(t+ τ) = Â(t) + τ L[Â, B̂, Ĉ] (23.191)
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this task is easy. In particular, for the case of unitary evolutions,

Â(t+τ) = e−ıĤτ Â(t)eıĤτ =⇒ ⟨Â†(t+τ)Â(t)⟩ = ⟨e−ıĤτ Â(t)eıĤτ Â(t)⟩ . (23.192)

Often, however, we just know the expectation values of equal time correlations,
because they follow from a cumulant expansion of the Heisenberg-Liouville equations
for all possible combinations, e.g. ⟨Â(t)B̂(t)⟩. This is when we can use the quantum
regression theorem,

⟨Â(t+ τ)⟩ = α(τ)⟨Â(t)⟩+ β(τ)⟨B̂(t)⟩ (23.193)

=⇒ ⟨Â(t+ τ)X̂(t)⟩ = α(τ)⟨Â(t)X̂(t)⟩+ β(τ)⟨B(t)X̂(t)⟩ .

Applied to the Heisenberg-Liouville equations,

Â(t+ τ) = Â(t) + τ L[Â, B̂, Ĉ] (23.194)

=⇒ ⟨Â†(t+ τ)Â(t)⟩ = ⟨Â(t)†Â(t)⟩+ τ ⟨L[Â, B̂, Ĉ]†Â(t)⟩ ,

which only holds for very short times τ .

23.4.4 Exercises

23.4.4.1 Ex: No feedback in the strong driving limit

For strong driving, Ŝx,y ≪ η, the evolution of coupled atom-cavity system is externally
controlled by the pump, which impedes a self-determined dynamics, i.e. a dynamics
ruled by cavity feedback. Show that in this limit, which is obtained from (23.156) via
decorrelation of the atomic spins, we recover the linear collective Dicke model.

23.4.4.2 Ex: Linearization for weak driving

For weak driving we may assume Ŝz ≃ −N2 I. This approximation underlies the
coupled dipoles model and leads to a linearization of the equations of motion also
known as linear optics regime.
a. Derive the stationary solution.
b. Setting ∆a = ∆c, show that ⟨n̂⟩ exhibits the standard normal mode spectrum.

23.4.4.3 Ex: Solution of the mean field equations after adiabatic elimi-
nation of the cavity

a. Do the mean field approximation of the adiabatically simplified Eqs. (23.159) and
assume ∆c = ∆a = η̄r = 0.
b. Show that the total spin S2 is NOT a constant of motion, unless Γ1 = 0 = Γtot

with Γtot = Γ1 + 2κc even though κc ̸= 0 [512]. Interpret the result.
c. Derive the steady state solution of the equations obtained in (a).
d. Approximate the cubic equation by a quadratic one assuming 2κc ≪ Γ1 ≪ 2κcSz.
e. Compare with the stationary solution of (23.154) assuming ∆a = ∆c = Γ = 0.
f. Perform a stability analysis of the equations derived under (a).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_CavityRadiance05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_CavityRadiance04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_CavityRadiance01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_CavityRadiance01.pdf
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23.4.4.4 Ex: Adiabatic elimination of the cavity mode, general case

Derive the equations of motion (23.159) for a system consisting of many atoms in-
teracting with a single cavity mode after adiabatic elimination of the cavity mode.

23.4.4.5 Ex: Comparison of collective Hamiltonians

Compile a list of all collective Hamiltonians studied so far, compare and discuss them.

23.5 Driven-dissipative Dicke model

Until now we mostly considered stationary or coherently evolving systems. We will
now study driven-dissipative atom-cavity systems that may or may not reach equilib-
rium and exhibit phenomena such as cooperative resonance fluorescence (CRF) [248,
139]. The bistable behavior of the atom-cavity system in Sec. 23.4.1 and Exc. 23.4.4.3
was calculated in the mean field approximation and assuming complete stationarity,
˙̂a = 0 = Ŝ. The bistability curves of Fig. 23.16 then represent the full mathematically
exact solution. We show them again in Fig. 23.20 with a different scaling. Panel (b)
emphasizes the eminent role played by the collective cooperativity in the bistability,

ΥN =
4Ng2

Γ1κ
=

4Nκc
Γ1

. (23.195)

Apparently, it rules the relation between collective and individual decay processes.
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Figure 23.20: (code) The solid lines indicate bistability curves calculated under steady state

conditions for various collective cooperativities using full or adiabatically simplified Heisen-

berg equations. (a) Intracavity photon number. (b) Collective atomic inversion. The dash-

dotted lines indicate mean field values of the collective atomic inversion evaluated after long

evolution times without steady state assumption. The black dotted line is an analytical solu-

tion [Eq. (23.210)] without mean field approximation but also without spontaneous emission

for 30 atoms.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_CavityRadiance02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_CavityRadiance03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_BistableRegime.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_BistableRegime.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_BistableRegime.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_BistableRegime.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_BistableRegime.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_BistableRegime.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_BistableRegime.m
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The stationarity assumption is, however, not always realistic. Let us think, for
example, of the case of a single driven two-level atom whose dynamics is described
by Bloch equations (see Sec. 16.4.1). Subject to strong driving the atom will undergo
Rabi oscillations, and reach a steady state only after the oscillations are damped out
due to spontaneous emission. If we want to observe such behavior in the collective
Dicke model, we need to give up the stationarity condition [694].

Indeed, the equations of motion can have other solutions, which may not neces-
sarily be stationary. In the following, we will study how the interplay between driving
force (at a rate η), collective decay (at a rate κc), and individual decay (at a rate Γ1)
rules the collective dynamics in the bistable region [512, 773].

23.5.1 Cooperative resonance fluorescence in mean field ap-
proximation

The major problem is however that, near phase transitions quantum fluctuations may
overwhelm decay terms. In that case, we do not expect the mean field approximation
to be good. In order to still get meaningful approximate results, and we shall rather
neglect decay term at the profit of correlation terms.

23.5.1.1 Critical Rabi frequency

For the following we use the definition of the Rabi frequency proposed in Eqs. (23.157),

Ω̂ = Ω̂r+ ıΩ̂i = 2Uc(Ŝx− ηi
g )−2κc(Ŝy− ηr

g ) = U∗
κ(Ŝ−+ ıηg )+Uκ(Ŝ+− ıη

∗

g ) . (23.196)

We evaluate this definition on resonance,

Ω̂
∆c=0−→ 2κc(Ŝy +

ηr
g ) = ıκcŜ− − ıκcŜ+ + 2κc

ηr
g ≡ 1

2 (Ω̂− + Ω̂+) + Ωη . (23.197)

In the last expression we defined superradiant Rabi frequency operators

Ω̂∓ ≡ ±2ıκcŜ∓ (23.198)

and a pump Rabi frequency [that is, the maximum Rabi frequency in a resonant
empty cavity,

Ωη ≡ 2ıηgUκ = 2g
η

κ
= 2κc

η

g
. (23.199)

Now, the superradiant Rabi frequency is maximum at the equator, since

⟨Ŝ−⟩ ≃
√
S(S + 1)−M(M ± 1) ≲ N

2 . (23.200)

We call the upper limit the critical Rabi frequency,

Ωc ≡ Nκc ≥ 2κc⟨Ŝ−⟩ = −ı⟨Ω̂−⟩ . (23.201)

It can be used to normalize the pump Rabi frequency,

Ω̃η ≡
Ωη
Ωc

=
2η

Ng
. (23.202)

We will see in the following, that for Ωη < Ωc, drive and dissipative superradiance
counter-balance until the system reaches a steady-state. For Ωη > Ωc, the drive
enforces Rabi flopping and no steady-state is reached (see Fig. 23.21).
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Figure 23.21: Illustration of the equilibrium between drive and superradiance. (a) In the
absence of spontaneous emission the collective spin vector (green arrow) remains on the
outer shell with its position determined by an equilibrium between superradiant decay Ω−
and the drive assumed to be weak, Ωη < Ωc (blue and red solid arrows). If Ωη > Ωc,
the overwhelming drive induced Rabi oscillations (dotted arrow). (b) In the presence of
spontaneous emission the collective spin vector evolves into inner shells.

23.5.1.2 Time-dependent mean field solution of the Heisenberg equations
without adiabatic elimination

We start from the full equations (23.154) evaluated on resonance and neglecting col-
lective decay Γ (other than the one induced by the cavity),

˙̂a = −κâ− ıgŜ− + η (23.203)

˙̂
S− = −Γ1

2 Ŝ− + 2ıgŜzâ

˙̂
Sz = −Γ1(

N
2 + Ŝz)− ıg(Ŝ+â− â†Ŝ−) .

Disregarding for a while spontaneous decay Γ1 and exploiting the above definitions,

˙̂a = −κâ+ κ
2g (Ωη − Ω̂−) (23.204)

˙̂
S− = 2ıgŜzâ

˙̂
Sz = −ıg(Ŝ+â− â†Ŝ−) .

From the second equation we see that steady-state requires â = 0. Hence,

ıŜ− = η
g i.e. Ω̂− = Ωη . (23.205)

That is, the superradiant Rabi frequency self-adjusts until it compensates the pump
field. This, however, is only possible until the superradiant Rabi frequency reaches
its maximum allowed value, that we will call the critical Rabi frequency [773].

Figs. 23.22 show the mean field behavior of the cavity field and the collective
spin simulated from Eqs. (23.204). We see that, below the critical pumping strength
Ωη < Ωc (red curves), the cavity field quickly vanishes and the collective spin tends
toward a stationary value. Above the critical pumping strength Ωη > Ωc (blue curves)
the cavity field and the collective spin both start to oscillate, such that no steady state
is reached, unless we allow for single atom spontaneous decay. Then, a mean field
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simulation of Eqs. (23.204) (dashed curves) shows relaxation toward finite stationary
values for the cavity field the collective spin.
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Figure 23.22: (code) Mean field values of cavity field and collective spin calculated from

Eqs. (23.203) for various strength η of the drive and two different values of Γ1 = (2π) 10 kHz

(solid lines) and 100 kHz (dashed lines). The other parameters are κ = (2π) 3MHz,

g = (2π) 10 kHz, and N = 10000. Note that simulations of the adiabatically simplified

Eqs.(23.215) yield exactly the same curves. The dash-dotted black lines are obtained from

an analytical solution derived in example 156.

Example 154 (Continuous superradiant transition): In the mean field
approximation,

α̇ = −κα− ıg⟨Ŝ−⟩+ η (23.206)

⟨Ṡ−⟩ = −Γ1
2
⟨Ŝ−⟩+ 2ıgα⟨Ŝz⟩

⟨Ṡz⟩ = −Γ1(
N
2
+ ⟨Ŝz⟩)− ıg(⟨Ŝ+⟩α− α∗⟨Ŝ−⟩) .

For Γ1 = 0 assuming φ = 0, we expect,

⟨Ŝ−⟩ = N
2
sinϑ and ⟨Ŝz⟩ = N

2
cosϑ , (23.207)

so that,

α̇ = −κα− ıgN
2
sinϑ+ η (23.208)

ϑ̇ = 2ıgα = ıg(α− α∗) .

For steady state α̇ = 0 = ϑ̇ we get,

sinϑ = − 2ıη

Ng
, (23.209)

and consequently,

⟨Ŝz⟩ = N

2
cosϑ =

N

2

√
1−

(
2ıη

Ng

)2

. (23.210)

The solution is shown as black solid line in Fig. 23.20. It describes a continuous

second-order phase transition, in contrast to the colored solid lines in this figure,

which describe an abrupt first-order phase transition. Analytical solutions for

this phase transition were derived in Exc. 23.4.4.3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DrivenDissipative.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DrivenDissipative.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DrivenDissipative.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DrivenDissipative.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DrivenDissipative.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_DrivenDissipative.m
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23.5.1.3 Time-dependent mean field solution of the Heisenberg equations
after adiabatic elimination of the cavity field

Let us now repeat the calculation using the adiabatically simplified Heisenberg-Liouville
equations (23.159) for the resonant case, ∆a = 0 = ∆c, imaginary pump correspond-
ing to a rotation about the y-axis, η̄r = 0, and no collective decay apart from the
cavity, Γ = 0,

˙̂S = −ı[Ŝ, Ĥ] + L†
κc,Ŝ−

Ŝ+
∑

j

L†
Γ1/2,ŝ

−
j

Ŝ with Ĥ = 2η̄iκcŜy , (23.211)

or in the effective Hamiltonian notation,

Ṡ = −ı[Ŝ, Ĥeff] + 2κcŜ+ŜŜ− + Γ1

∑

j

(2ŝ+j Ŝŝ
−
j − ŝ+j ŝ−j Ŝ− Ŝŝ+j ŝ

−
j )

Ĥeff = 2η̄iκcŜy − ıκcŜ+Ŝ− (23.212)

We see that after adiabatic elimination of a bad cavity, one part of the cavity decay
κc enters the Hamiltonian, another the Lindbladian. The corresponding equations of
motion are,

˙̂
Sx = −κc(Ŝx − {Ŝx, Ŝz})− 2η̄iκcŜz − Γ1

2

∑
j(ŝ

x
j − {ŝxj , ŝzj})

˙̂
Sy = −κc(Ŝy − {Ŝy, Ŝz})− Γ1

2

∑
j(ŝ

y
j − {ŝyj , ŝzj})

˙̂
Sz = −2κc(Ŝz + Ŝ2

x + Ŝ2
y) + 2η̄iκcŜx − Γ1

∑
j(ŝ

z
j + ŝx2j + ŝy2j )

. (23.213)

Example 155 (Evaluation of individual spins): For the products of indi-
vidual and collective spins we find [139],∑

j

ŝαj ŝ
β
j = ŜαŜβ −

∑
j

ŝαj
∑
i̸=j

ŝβi = ŜαŜβ −N(N − 1)ŝα1 ŝ
β
1 . (23.214)

With this the Eqs. (23.213) can be rewritten as [512],

˙̂
Sx = −(κc +

Γ1
2
)(Ŝx − {Ŝx, Ŝz})− 2η̄iκcŜz +

Γ1
2
N(N − 1){ŝx1 , ŝz1} (23.215)

˙̂
Sy = −(κc +

Γ1
2
)(Ŝy − {Ŝy, Ŝz}) + Γ1

2
N(N − 1){ŝy1 , ŝz1}

˙̂
Sz = −(2κc + Γ1)(Ŝz + Ŝ2

x + Ŝ2
y) + 2η̄iκcŜx − Γ1N(N − 1)(ŝx21 + ŝy21 ) .

Neglecting the quadratic terms of individual spins,

˙̂
Sx = −κc(Ŝx − 2ŜxŜz + 2η̄iŜz)− Γ1

2 Ŝx (23.216)

˙̂
Sy = −κc(Ŝy − 2ŜyŜz)− Γ1

2 Ŝy

˙̂
Sz = −2κc(Ŝz + Ŝ2

x + Ŝ2
y − η̄iŜx)− Γ1(

N
2 + Ŝz) .

The mean field solution of these equations yield exactly the same curves as shown in
Fig. 23.22.
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Example 156 (Continuous superradiant transition): We start from (23.216)
doing the mean field approximation, Sα = ⟨Ŝα⟩, and setting Γ1 = 0 and κc = 0
only in linear terms,

Ṡx = 2κcSxSz − 2κcη̄iŜz (23.217)

Ṡy = 2κcSySz

Ṡz = −2κc(S
2
x + S2

y) + 2κcη̄iŜx .

Under such circumstances and doing the mean field approximation, as shown

in Exc. 23.4.4.3, the total spin S2 = N2

4
is conserved. Hence, we may set,

Sx = N
2
sinϑ and Sz = N

2
cosϑ , (23.218)

and find from either the first or third equation,

sinϑ =
2η̄i
N

(23.219)

and consequently,

Sz =
N

2

√
1−

(
2ηi
Ng

)2

. (23.220)

The differential equations can be analytically solved for the initial condition
S =

(
0, 0,−N

2

)
. We find,

Ṡx = 2κcSxSz − 2κcη̄iSz (23.221)

Ṡz = −2κcS
2
x + 2κcη̄iSx .

Substituting (23.218), the initial condition becomes ϑ = π and the differential
equations simplify to,

ϑ̇ = κc(N sinϑ− 2η̄i) . (23.222)

Let us have a look at the red curves in Figs. 23.22, which are obtained for low
driving (Ωη < Ωc), and at the dash-dotted lines in Fig. 23.20. We see that higher

spontaneous emission rate increases ⟨Ŝz⟩. This is because (slow) individual decay
spoils (fast) superradiant decay. This is illustrated in Fig. 23.21.

23.5.2 Driven-dissipative spin squeezing beyond mean field

In Sec. 23.4.2 we have seen that the XX-Heisenberg model predicts spin squeezing
when the cavity is detuned from the resonance, Uc ̸= 0, which is immediately clear
by the presence of a non-linear term (such as S2

z ) in the Hamiltonian (23.162), Ĥ ∼
UcŜ+Ŝ−. As in the XX-Heisenberg model no equilibrium is reached, specific Gaussian
spin states (coherent or squeezed) must be generated by pulsed application of a (linear
or non-linear) Hamiltonian interaction, which rotates or squeezes an initial ground
state into any point of the superradiant Bloch sphere, where it stays forever as long
as no dissipation nor driving occurs.

On resonance, Uc = 0, and the above non-linear term vanishes. However, the
non-linearity survives in the dissipative part of the effective Hamiltonian (23.212),
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Ĥeff ∼ −ıκcŜ+Ŝ−. In the following we will show that, induced by dissipation, spin
squeezing may also occur on resonance and that, pumped on the mean field, squeezed
states even represent the steady state of the system in certain parameter regimes.

A necessary condition for spin squeezing is however, as we have seen in the pre-
vious section, that (i) the drive is weak enough not to overrule the self-determined
dynamics resulting from an equilibrium between drive and superradiance and (ii) that
this equilibrium is not spoiled by spontaneous emission. In the following we will con-
centrate on studying this equilibrium neglecting single atom decay.

In order to obtain bistability indicating a first order phase transition, we previously
had to accept the mean field approximation and the steady-state assumption. In the
following we will see that these assumptions are wrong and that, at least on resonance,
there is no phase transition. Indeed, solving the stationary master equation neglecting
for a while spontaneous emission, but seeking an exact solution, we find that the
bistability totally disappears. On the other hand, we see spin squeezing, which was
beyond the mean field model. We conclude that collective effects spoil bistability.

Now, reincluding single-atom spontaneous emission, we find that this spoils collec-
tive effects and thus (partially) reintroduces bistability. This is somewhat surprising,
as we didn’t need spontaneous emission to observe bistability in the mean field ap-
proximation.

23.5.2.1 Steady-state solution of the master equation without adiabatic
elimination of the cavity field

Setting ∆c = ∆a = Γ1 = 0, the full master equation (23.116) for the atom-cavity
system becomes,

˙̂ρ = ı[ρ̂, Ĥ] + Lκ,âρ̂ (23.223)

= ıg[ρ̂, Ŝ+â+ â†Ŝ−] + η[ρ̂, â− â†] + κ(2âρ̂â† − â†âρ̂− ρ̂â†â) .

We now express the spin operators in a local reference frame anchored to the mean
field spin vector on the meridian at φ = 0, as shown in Eq. (23.102),

Ŝ− = Ŝx − ıŜy = Ŝϑ cosϑ+ Ŝρ sinϑ− ıŜy ≃
√
S(x̂ cosϑ+ ıp̂) + S sinϑ . (23.224)

In the last step, we approximated the local spin operators by Holstein-Primakoff
bosons, which holds for large enough atom numbers N → ∞. With this we obtain
for the first term,

ıg[ρ̂, Ŝ+â+ â†Ŝ−] (23.225)

≃ ıg
√
S
(
[ρ̂, (x̂ cosϑ− ıp̂+

√
S sinϑ)â] + [ρ̂, â†(x̂ cosϑ+ ıp̂+

√
S sinϑ)]

)

≃ ıg
√
S
(
[ρ̂, (x̂ cosϑ− ıp̂)â] + [ρ̂, â†(x̂ cosϑ+ ıp̂)]

)
.

In steady state ˙̂ρ = 0, below the critical pump rate, the system evolves towards a pure
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state that we will call ρ̂ = |S, α⟩⟨S, α|,

0 = ıg
√
S|S, α⟩⟨S, α|(x̂ cosϑ− ıp̂)â− ıg

√
S(x̂ cosϑ− ıp̂)â|S, α⟩⟨S, α| (23.226)

+ |S, α⟩⟨S, α|â†(x̂ cosϑ+ ıp̂)− |S, α⟩⟨S, α|â†(x̂ cosϑ+ ıp̂)

+ 2κâ|S, α⟩⟨S, α|â† − κâ†â|S, α⟩⟨S, α| − κ|S, α⟩⟨S, α|â†â .

provided that

â|S, α⟩ = (x̂ cosϑ+ ıp̂)|S, α⟩ = 0 . (23.227)

This means, that the light field is then a vacuum state. With this, we obtain from
Eq. (23.224),

Ŝ−|S, α⟩ = S sinϑ|S, α⟩ , (23.228)

which means that the states |S, α⟩ are eigenstates of the spin-down operator Ŝ−.
Furthermore, from the calculation

0 = ⟨S, α|(x̂ cosϑ− ıp̂)(x̂ cosϑ+ ıp̂)|S, α⟩ (23.229)

= ⟨S, α|x̂2 cos2 ϑ+ p̂2 + ı[x̂, p̂] cosϑ|S, α⟩ = ⟨S, α|2p̂2 − cosϑ|S, α⟩ ,

we derive,

⟨S, α|Ŝ2
y |S, α⟩ ≃ Sp̂2 = S

2 cosϑ , (23.230)

which means that the collective spin state is squeezed as compared to the coherent
spin state (CSS) for which we derived in Excs. 23.1.9.5 and 23.1.9.20,

⟨ϑ, 0|N Ŝ2
y |ϑ, 0⟩N = S

2 . (23.231)

23.5.2.2 Steady-state solution of the master equation after adiabatic elim-
ination of the cavity field

Let us again repeat the calculation of the previous section using the adiabatically
simplified master equation based on the Hamiltonian (23.164), neglecting single atom
spontaneous emission, LΓ1/2,ŝ

−
j
→ 0, and only retaining collective decay, Lκc,Ŝ−

.

Defining,

S̃± ≡ Ŝ± ∓
ıΩ

4κc
I = Ŝ± ∓

ıη

2g
I (23.232)

and using the Hamiltonian (23.162) the master equation can be rewritten as,

˙̂ρ = ı[ρ̂, Ĥad] + Lκc,Ŝ−
ρ̂ where Ĥad = ηκc

g Ŝx (23.233)

= ıΩ2 [ρ̂, Ŝ+ + Ŝ−] + κc(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂− ρ̂Ŝ+Ŝ−)

= κc(2S̃−ρ̂S̃+ − S̃+S̃−ρ̂− ρ̂S̃+S̃−) .

The steady state solution is simply,

ρ̂ds = C−1S̃−1
− S̃−1

+ , (23.234)
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where C is a constant chosen to satisfy the normalization condition Tr ρ̂ds = 1. From
now on the subscript ’ds’ will denote the steady state of the driven dissipative spin
system. Scaling the collective spin as,

Ŝ± ≡
η

2g
S̄± , (23.235)

the steady state solution can also be written,

ρ̂ds = C−1S̄−1
− S̄−1

+ =
(S̄− + ıI)−1(S̄+ − ıI)−1

Tr (S̄− + ıI)−1(S̄+ − ıI)−1
. (23.236)

We see that all results obtained within this model only depend on two experimental
parameters: the ratio η/2g determining the scaling of Ŝ± and the total spin S deter-
mining the dimension of the matrices Ŝ±, which can be expanded on the Dicke basis
as,

Ŝ− =

S∑

M=−S

√
S(S + 1)−M(M − 1)|S,M⟩⟨S,M + 1| . (23.237)

Note that the steady state does not depend on the cavity decay rate κ, which only
rules how long it takes to reach the steady state.

Example 157 (Analytical steady state solution): The steady state solution
(23.232) can be solved numerically with current software. On the other hand,
it is enlightening to derive analytical solutions. To do so, we expand [676, 139]

S̃−1
± =

N∑
n=0

(
∓ ıΩ

4κc

)N−n

Ŝn± . (23.238)

The normalization condition Tr ρ̂ = 1 requests,

C =

N∑
n=0

N∑
m=0

(N − n+m)!n!

(n−m)!(N − n)!

(
Ω

4κc

)2(N−m)

, (23.239)

so that we can write the steady state solution as,

ρ̂ds =
1
C

N∑
n,m=0

ın−m
(

Ω

4κc

)2N−n−m

Ŝn−Ŝ
m
+ . (23.240)

With this the steady state collective spin can be derived from,

⟨Ŝ(∞)⟩ = Tr ρ̂dsŜz =

S∑
M=−S

⟨S,M |ρ̂dsŜ|S,M⟩ (23.241)

= 1
C

S∑
M=−S

N∑
n,m=0

(−ı)n−m
(

Ω

4κc

)2N−n−m

⟨S,M |Ŝn−Ŝm+ Ŝ|S,M⟩ .

In particular we find,

⟨Ŝnz (∞)⟩ = Tr Ŝnz (∞)ρ̂ds (23.242)

=
1

C

2S∑
p=0

p∑
k=0

(S −m)n
(2S − p+ k)!p!

(2S − p)!(p− k)!

(
Ω

4κc

)2(2S−k)

.
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Substituting Ŝ± → ⟨Ŝ±⟩ = Seıφ cosϑ we find,

ρ̂ds → 1∣∣∣Seıφ sinϑ+ ıΩ
4κc

∣∣∣2 . (23.243)

A direct comparison between analytical and numerical solutions in Fig. 23.25

yields identical results.

Comparison to coherent spin states.– In Sec. 15.2.3 we showed that a laser-
pumped cavity evolves toward a coherent state. Let us now study what happens
when we introduce some non-linearity into the cavity, e.g. saturable atoms. We note
that earlier studies [121] have shown that Kerr type non-linearities can induce non-
classical correlations in cavities.

Figs. 23.23(a-d) show the absolute value of the density matrix ρ̂ds at different
pump rates. Below threshold it is close to that of a coherent state. Above threshold
it converges toward that of an incoherent mixture containing only diagonal elements.
Figs. 23.23(e-h) show the density matrix ρ̂cs of a coherent spin state rotated from
the ground Dicke state |S,−S⟩ to the same Euler angles as the steady state density
matrix,

ρ̂coh = U†
rt |S,−S⟩⟨S,−S| Urt with Urt = e−

1
2ϑ(Ŝ+e

ıφ−Ŝ−e
−ıφ) . (23.244)

Figure 23.23: (code) (a-d) Absolute value of the steady state density matrix ρ̂ds at different

pump rates. (e-h) Density matrix ρ̂cs of a corresponding coherent spin state.

Does Tr ρ2ds < 1 above threshold imply a loss of coherence allowing us to go into
the mean field approximation?

Comparison to coherent spin states.– The time evolution can be followed by
numerical simulations,

ρ̂(t+ dt) = ρ̂(t) + ı[ρ̂, Ĥ] + Lκ,âρ̂ . (23.245)

Fig. 23.24 shows such a simulation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_SteadyCRFrho.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_SteadyCRFrho.m
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Figure 23.24: (code) (a) Steady state density matrix. (b) Density matrix after a long time

evolution. (c) Expectation values of the spin components.

23.5.2.3 Expectation values and uncertainties of the spin components

The steady state density matrix can be used to numerically evaluate steady state
values of the spin operator,

⟨Ŝ(∞)⟩ds = Tr ρ̂dsŜ =

S∑

M=−S
⟨S,M |ρ̂dsŜ|S,M⟩ , (23.246)

as well as of its uncertainties,

⟨∆Ŝ2
x,y,z⟩ds = Tr ρ̂dsŜ

2
x,y,z − (Tr ρ̂dsŜx,y,z)

2 . (23.247)

The expectation values and uncertainties of the spin components are plotted in
Figs. 23.25(b,c). Panel (b) of Fig. 23.25 shows the expectation values of the collective
spin for various atom numbers. Below the critical pump rate the inversion depends
quadratically on the collective excitation rate. Panel (c) shows the collective spin
represented on the generalized Bloch sphere. The color coding is the same as for
panel (b), except for the black solid line following the meridian given by ⟨Ŝy⟩ = 0,
which is obtained by artificially converting the collective state into a coherent spin
state, ρ̂ds → ρ̂cs, as explained above. Panel (e) shows the uncertainty of collective
spin component ⟨Ŝz⟩. Same color coding as for panels (b-d), the solid lines now being
calculated with the steady state density matrix and the dash-dotted lines with the
coherent spin state density matrix ρcs.

Reduced length of Bloch vector.– In the absence of spontaneous emission the
spheres with different S are orthogonal. That is, if we start with a fully stretched
state, S = N/2, we stick to it forever. In Exc. 23.5.3.1(a) we show that d

dt ⟨Ŝ2⟩ = 0, and

in Fig. 23.25(d) we numerically verify that for arbitrary spin states ⟨Ŝ2⟩ = S(S + 1)
at all pump rates η.

On the other hand, the spin ⟨Ŝ⟩2 only sticks to the outer shell when the evolution
is coherent, as we will verify in Exc. 23.5.3.1(b). In the presence of collective decay it
moves to the interior of the Bloch sphere (analogous to the single atom Bloch vector
upon spontaneous emission). In Fig. 23.25(d) we numerically verify that ⟨Ŝ⟩2 < S2

at sufficiently high pump rates η.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_TimeCRF.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_TimeCRF.m


970 CHAPTER 23. DICKE MODEL AND SPIN SQUEEZING

0 0.5 1

(η/κ)2/ncut off

0

0.5

1
〈n
〉/
n
cu
t
off

(a)
ncut off = 1

10
50

400

0 1 2

(Ω/Nκc)
2

0

0.5

1

1 2
(〈 Ŝ
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Figure 23.25: (code) See text for explanation.

Decoupling of subradiant states.– Above the critical pump rate, the steady
state collective spin turns into a mixture. The atomic spins seem to dephase, so
that their sum is not coherent any more and averages to zero. The reason might
be that, above the critical pump rate, the steady state will be reached only after a
number of collective Rabi oscillations during which the atoms have time to dephase
(see Fig.23.22). In other words, the stationarity assumption underlying the solution
is becoming increasingly distant.

The collective spin master equation holds for any super- and subradiant Bloch
sphere with 0 < S < N/2. It is, however, important to emphasize that, as long as no
spontaneous emission is considered, there is no individualization, meaning that the
collective spin description does not break down! I.e. the collectively reduced Bloch
vector does not couple to a subradiant Bloch vector of the same length.

Spontaneous emission and saturation.– Spontaneous emission couples all sub-
radiant spaces. In the absence of spontaneous emission individual atoms are always

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_SteadyCRF.m
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saturated. Saturation of the collective spin may be defined analogously,

s ≡ 8g2

Γ2
versus scoll ≡

Ω2

N2κ2c
=

η2

S2g2
. (23.248)

Example 158 (Comparison to bosonic field results): The master equation
(15.67) describing a light mode in a cavity as a harmonic oscillator and the mas-
ter equation (23.233) describing a collective spin system are formally identical.
The master equation for the light mode has been solved in Sec. 15.2.3, one of the
findings being that, over time, any non-classical state evolves toward a Glauber
state. Furthermore, the Holstein-Primakoff prescription allows to approximate
the collective spin system as a harmonic oscillator [512]. The question thus
arises, whether non-coherent collective spin states possible at all.
Fig. 23.25 presents a comparison of the steady state behavior of both systems.
Panel (a) shows the mean photon number in a decaying cavity as a function
of the pump strength for various cut-off photon numbers. Panel (b) shows
the collective spin inversion calculated for various atom numbers N = 2S with
the steady state density matrix obtained from the exact formulas (23.232) or
(23.241) without mean field approximation, but also without spontaneous emis-

sion. The black solid line is obtained from Ŝz = S −
√
N2 − ( Ω

κc
)2.

We see that, indeed, the systems behave quite similar (for comparison see also
Fig. 15.6). At weak driving both, the mean photon number and the spin inver-
sion tend toward the pump rate,

⟨n̂⟩ η≪κ→ η2

κ2
while ⟨Ŝz/N⟩+ 1

2

Ω≪κc→ Ω2

N2κ2
c

. (23.249)

At strong driving both, the mean photon number and the spin inversion saturate;

the intracavity photon number to the cut-off and the spin system to ⟨Ŝz⟩ = 0.

At intermediate driving both systems seem to feature a phase transition, which

however, for the photon system is not real because the cut-off photon is artificial,

while the total spin is limited by the available number of atoms.

Comparing the real photon number dependence [dotted black line in panel (a)]

with the spin system, we notice very different behaviors: The spin system reveals

much richer features, than the bosonic mode, which implies that the Holstein-

Primakoff approximation fails at intermediate or strong driving. Apparently, the

different commutation relations holding for photonic operators and for collective

spin operators induce different solutions for identical master equations.

23.5.2.4 Expectation values and uncertainties in the local coordinate frame

In the example 138 we argued that the uncertainties are better characterized in the
local coordinate frame. To do so, we calculate the local spin operators from their
definition (23.48) of (23.53), and subsequently the uncertainties via,

∆S2
α = Tr ρ̂Ŝ2

α − (Tr ρ̂Ŝα)
2 , α = r, ϑ, φ . (23.250)

Panel (f) of Fig. 23.25 shows the uncertainties of the collective spin components pro-
jected onto the superradiant Bloch sphere. In all plots we compare driven-dissipative
steady spin states (DSS) with coherent spin states (CSS).

Fig. 23.25 reveals a number of other interesting results, which we will discuss in
the following.
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Reduction of coherence by collective decay.– Approaching saturation the DSS
collective spin ceases to be superradiant, that is, the length of the collective spin
vector S2

r = ⟨Ŝx⟩2ds+ ⟨Ŝy⟩2ds+ ⟨Ŝz⟩2ds < S2 shrinks, which is obviously not the case for

the CSS. For any state ⟨Ŝ2⟩ = ⟨Ŝ2
x⟩+ ⟨Ŝ2

y⟩+ ⟨Ŝ2
z ⟩ = S(S + 1) must obviously always

be satisfied.

Loss of purity.– Panel (d) of Fig. 23.25 shows the purity of a DSS as a function
of the driving strength with the same color coding as for panel (c). Approaching
collective saturation the purity of the collective spin state gets spoiled. Above thresh-
old it tends to 0. This indicates that, at low saturation the collective state is nearly
coherent, and at higher saturation turns more and more into a mixture. In contrast
the purity of CSSs is always 1.

Spin squeezing below threshold.– Below collective saturation the projection of
the uncertainties of the DSS onto the superradiant Bloch sphere exhibits squeezing.
The uncertainty ∆dsŜ

2
φ is reduced, while ∆dsŜ

2
ϑ is increased. The uncertainty product

respects the Heisenberg limit,

√
∆dsŜ2

φ∆dsŜ2
ϑ ≃ S

2 . (23.251)

In comparison, in uncertainty projection of a CSS shows no squeezing (compare to
Exc. 23.1.9.5) but is bounded by the standard quantum limit,

∆csŜ
2
ϑ,φ = S

2 . (23.252)

The Heisenberg limit is expected at,

∆csŜ
2
ϑ,φ = 1

4S . (23.253)

Decorrelation of Dicke states above threshold.– Above saturation the uncer-
tainties of both quadratures explode and converge toward,

∆dsŜ
2
ϑ,φ

Ω≫κc→ S2

√
8
≫ 1 . (23.254)

The explosion of noise above threshold may have to do with decorrelation.

Unlike spontaneous emission collective decay cannot cause ’individualization’ of
atoms. Rather Fig. 23.23(d) suggests that one gets an incoherent superposition of
(highly non-classical) Dicke states. Indeed, if everyone of the N collective Dicke
states |S,N⟩ evolves at its own pace, this may lead to decorrelation.

23.5.2.5 Expectation values and uncertainties of the cavity light field

For the adiabatic elimination of the cavity field we set in (23.154) ˙̂a = 0, yielding,

â = ĉ− ı g
κ
Ŝ− with ĉ =

η

κ
I . (23.255)
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Hence, we may calculate â from the known spin operator Ŝ−. Using the definitions
and the results of (a), we get,

âφ ≡ ı
2 (âe

ıφ − â†e−ıφ) = ı
2 (ĉe

ıφ − ĉ†e−ıφ) + g
2κ (Ŝ−e

ıφ + Ŝ+e
−ıφ) = ĉφ + g

κ Ŝϱ

âϱ ≡ 1
2 (âe

ıφ + â†e−ıφ) = 1
2 (ĉe

ıφ + ĉ†e−ıφ) + g
2ıκ (Ŝ−e

ıφ − Ŝ+e
−ıφ) = ĉϱ +

g
κ Ŝφ .
(23.256)

Inserting the results of (a), we calculate the uncertainties,

∆â2φ = ⟨â2φ⟩ − ⟨âφ⟩2 = ⟨(ĉφ + g
κ Ŝϱ)

2⟩ − ⟨ĉφ + g
κ Ŝϱ⟩2 (23.257)

= ∆ĉ2φ + g2

κ2∆Ŝ
2
ϱ +

g
κ ⟨ĉφŜϱ + Ŝϱĉφ⟩ − 2g

κ ⟨ĉφ⟩⟨Ŝϱ⟩
∆â2ϱ = ⟨â2ϱ⟩ − ⟨âϱ⟩2 = ⟨(ĉϱ + g

κ Ŝφ)
2⟩ − ⟨ĉϱ + g

κ Ŝφ⟩2

= ∆ĉ2ϱ +
g2

κ2∆Ŝ
2
φ + g

κ ⟨ĉϱŜφ + Ŝφĉϱ⟩ − 2g
κ ⟨ĉϱ⟩⟨Ŝφ⟩ .

Assuming the cavity field |α⟩ as coherent and uncorrelated it is easy to see,

∆ĉ2ϱ = ⟨α|ĉ2ϱ|α⟩ − ⟨α|ĉϱ|α⟩2 = 1
4 = ∆ĉ2φ

∆(ĉφŜϱ) = ⟨ĉφŜϱ⟩ − ⟨ĉφ⟩⟨Ŝϱ⟩ = g
4κ ⟨Ŝz⟩ = ∆(ĉϱŜφ)

. (23.258)

We finally get,

∆â2φ − 1
4 = g2

κ2 (∆Ŝ
2
ϱ +

1
2 ⟨Ŝz⟩) (23.259)

∆â2ϱ − 1
4 = g2

κ2 (∆Ŝ
2
φ + 1

2 ⟨Ŝz⟩) .

In Fig. 23.25(g) we plot the projected uncertainties ∆Ŝ2
x and ∆Ŝ2

y , in panel (h) the
observables âρ and âφ, and in panel (i) their uncertainties. Radial DSS components
are denoted by dotted lines, azimuthal components by solid lines, radial CSS compo-
nents by dash-dotted lines, and azimuthal components by dashed lines. A number of
interesting observations are exposed in the following.

Spin projection on equatorial plane.– For CSS, ∆csŜ
2
φ = 1/2 ≫ ∆csŜ

2
ϱ at all

pump rates. For DSS, ∆dsŜ
2
φ ≃ 1/2 ≫ ∆csŜ

2
ϱ , meaning that the projection onto the

equator plane is spherical, like for a Glauber state. At low pump rates, ∆dsŜφ,ϱ ≲ 1/2,

while at high pump rates, ∆dsŜ
2
φ,ϱ ≫ 1/2, that is, above the phase transition the spin

uncertainty explodes toward
√
N .

Impact of normal mode splitting and saturation.– The radial quadrature
component of the cavity field vanishes for CSS at well as for DSS at all pump rates,

⟨âϱ⟩css,dss = 0. The azimuthal component tends at low pump rates to ⟨âφ⟩css,dss η→0−→
1/2, particularly for large atom numbers. At large pump rates ⟨âφ⟩css,dss η→∞−→ 1, but
for DSS the convergence is much faster.

The dependence on atom number reveals the role of normal mode splitting and
(collective) saturation. We observe that in the presence of large atom numbers higher
pump rates are required to inject light into the cavity. This can be explained by normal
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mode splitting scaling with
√
N . The normal mode splitting is only overruled by

saturation which becomes more and more collective as the atom number is increased.
It is also interesting to note that collective saturation is twice as fast for DSS as for
CSS 23.

Spin squeezing of CSS.– The uncertainties of the are very different for CSS and
DSS states. Below threshold for DSS states the uncertainties are coherent state-like,
∆dsâ

2
φ,ϱ = 1/4, while for CSS we observe squeezing, ∆csâ

2
φ > 1/4 > ∆csâ

2
ϱ. Above

threshold the squeezing of CSS states is lost and we have even excess noise in the
radial component 24. For DSS states both, the radial and the azimuthal components,
exhibit huge noise.

Bistability in the presence of correlations.– In the mean field approximation
we find bistability [694]. Correlations beyond the mean field approximation spoil
bistability. On the other hand, spontaneous emission spoils correlations, so that we
may expect to partially recover bistability.

23.5.2.6 Solution using effective Hamiltonian

For an arbitrary Hamiltonian and Lindbladian we write the master equation,

˙̂ρ = ı[ρ̂, Ĥad] + Lκc,Ŝ−
ρ̂ (23.260)

= ı[ρ̂, Ĥad] + κc(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂− ρ̂Ŝ+Ŝ−)

= ı(ρ̂Ĥ†
eff − Ĥeffρ̂) + 2κcŜ−ρ̂Ŝ+

= ı(|S, α⟩⟨S, α|Ĥ†
eff − Ĥeff|S, α⟩⟨S, α|) + 2κcŜ−|S, α⟩⟨S, α|Ŝ+ .

where we introduced the effective Hamiltonian Ĥeff ≡ Ĥad − ıκcŜ+Ŝ− and expressed
the density operator as a pure state ρ̂ ≡ |S, α⟩⟨S, α|. Now, if and only if Ŝ− and Ĥeff

have common eigenstates such that,

Ŝ−|S, α⟩ = α|S, α⟩ and Ĥeff|S, α⟩ = heff|S, α⟩ (23.261)

with heff = ⟨Had⟩− ıκc|α|2, the density operator remains steady in a pure state [889],

˙̂ρ = [ı(h∗eff − heff) + 2κc|α|2]ρ̂ = 0 . (23.262)

For the spin operator we then find,

⟨S, α|Ŝx|S, α⟩ = 1
2 (α+ α∗) (23.263)

⟨S, α|Ŝy|S, α⟩ = ı
2 (α− α∗)

⟨S, α|Ŝz|S, α⟩ = 0

⟨S, α|Ŝ+Ŝ−|S, α⟩ = |α|2 .
23It is essential to be aware that spontaneous emission is disregarded; hence, there is no absorption,

no amplification, but reflection. At low pump rates normal mode splitting impedes photons to enter
the cavity −→ reduced transmission (αout <

η
κ
).

24Note that, according to [853], the photon uncertainty should be reduced (see Sec. 24.4.5).
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Hence, the uncertainty of the spin-down operator in the state |S, α⟩ is,

⟨S, α|∆Ŝ2
−|S, α⟩ = 0 , (23.264)

while for a coherent spin state (CSS) we calculated in Exc. 23.1.9.5 25,

⟨ϑ, φ|N∆Ŝ2
±|ϑ, φ⟩N = −N4 e±2ıφ sin2 ϑ . (23.265)

Collective radiation Ŝ− is stimulated by the cavity, unlike spontaneous emission
ŝ−j . In the presence of spontaneous emission the theorem (23.261) looses its validity,
which means that the state generated will not be the perfect CRSS any more [512].

Let us now consider the Hamiltonian (23.162) which with the abbreviation (23.199)
delivers the effective Hamiltonian,

Ĥeff = Ĥad − ıκcŜ+Ŝ− = −2Im (η̄Uκ)Ŝx − 2Re (η̄Uκ)Ŝy −∆aŜz + UκŜ+Ŝ−

= Ω
2 Ŝ+ + Ω∗

2 Ŝ− −∆aŜz + UκŜ+Ŝ− , (23.266)

Its expectation value becomes,

heff = ⟨S, α|Ĥeff|S, α⟩ = −Im (η̄Uκ)(α+ α∗)−Re (η̄Uκ)ı(α− α∗) + Uκ|α|2

= Ω
2 α

∗ + Ω∗

2 α+ Uκ|α|2 . (23.267)

Since Ŝ− is a constant of motion of the effective Hamiltonian Ĥeff,

0 = [Ŝ−, Ĥeff] =
Ω
2 [Ŝ−, Ŝ+]−∆a[Ŝ−, Ŝz] + Uκ[Ŝ−, Ŝ+]Ŝ− (23.268)

= −ΩŜz −∆aŜ− − 2UκŜzŜ− .

On resonance, ∆a = 0, we find,

α = ⟨S, α|Ŝ−|S, α⟩ = −
Ω

2Uκ
= ıη̄ . (23.269)

We thus found a new class of spin states apparently sharing features with Glauber
states of light, as they can be represented in a two-dimensional plane. We will call
them coherently radiating spin states (CRSS) [853, 772, 512]. The analogy between
spin states and the harmonic oscillator has been worked out in Sec. 23.1.8. In partic-
ular, the action of the lowering operator on a number state is given by,

â|n⟩ = √n|n− 1⟩ versus Ŝ±|S,M⟩ =
√
S(S + 1)−M(M ± 1)|S,M − 1⟩ .

(23.270)
The states |n⟩ are highly non-classical, similarly to |S,M⟩. Furthermore,

â|α⟩ = α|α⟩ versus Ŝ±|S, ϑ, φ⟩ = Se±ıφ sinϑ|S, ϑ, φ⟩ . (23.271)

These are not really eigenvalue equations, since α, respectively, e±ıφ sinϑ are complex
numbers.

25Note that ⟨S, α|Ŝ−|S, α⟩ = α does not necessarily imply Ŝ−|S, α⟩ = α|S, α⟩, since the error made
on writing down this latter equation can be compensated by the projection on ⟨S, α|.
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Figure 23.26: (code) (a) Driven-dissipative cavity. (b) Construction of a CRSS state
with N = 40 atoms.

23.5.2.7 Construction of coherently radiating spin states

The problem with CRSSs is, however, more profound and related to the finiteness
of the system. While Glauber states can be expanded into Poissonian distributions
of Fock states to perfect approximation, there is no exact analytical expression for
CRSSs.

Example 159 (Eigenvalue of spin-down operator): To see this, let us first

have a quick look at Glauber states, |α⟩ = e−|α|2/2∑∞
k=0

αn
√
n!
|n⟩, for which the

expression â|α⟩ = α|α⟩ is a very good approximation to an eigenvalue equation,
but this is only because ∞ is big,

â|α⟩ ≃ α|α⟩ =⇒
∞−1∑
n=0

αn+1

√
n!
|n⟩ ≃

∞∑
n=0

αn+1

√
n!
|n⟩ . (23.272)

We may expect a similar behavior for spin states, provided the atom number N

is large enough.

Let us suppose there is a state |S, α⟩ satisfying the eigenvalue equations (23.261)
and expand it onto the Dicke state basis

|S, α⟩ =
S∑

M=−S
aM |S,M⟩ , (23.273)

yielding,

Ŝ−|S, α⟩ ≃ α|S, α⟩ (23.274)

=⇒
S−1∑

M=−S
aM+1

√
S(S + 1)−M(M + 1)|S,M⟩ ≃

S∑

M=−S
αaM |S,M⟩ .

This formula is analogous to (23.272) with the difference that S <∞. Consequently,
we may expect the eigenvalue equation to be a good approximation only if the atom
number is very large.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_CRSSConstruction.m
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From (23.274) we obtain the recursion formula [772],

αaM = 0 for M = S

αaM = aM+1

√
S(S + 1)−M(M + 1) for M = −S, ..., S − 1

(23.275)

Hence, if α > 0, then aS = 0 and all other coefficients are aM = 0 as well. In the
non-trivial case aM ̸= 0 the operators Ŝ± have only one eigenstate with eigenvalue
α = 0. The state obtained is a coherent spin ground state.

Now, let us postulate the existence of an approximate eigenstate |S, α⟩ of the
operator Ŝ− with eigenvalue α > 0. One approach is the following. Guided by the
observation that the highest and lowest states on the Dicke ladder are eigenstates,
Ŝ±|S,±S⟩ = 0, we write approximately,

Ŝ−|S,M+ + 1⟩ =
√
S(S + 1)−M+(M+ + 1)|S,M+⟩ (23.276)

≃
√
S(S + 1)−M+(M+ + 1)|S,M+ + 1⟩ = α|S,M+ + 1⟩ ,

yielding,

M± = ±
√
S(S + 1)− α2 + 1

4 − 1
2 for M = S

αaM = aM+1

√
S(S + 1)−M(M + 1) for M = −S, ..., S − 1

(23.277)

The other states follow from the same recursion formula as in (23.274)(ii). Thus, the
CRSS state obeys,

|S, α⟩ =
M+∑

M=−S
aM |S,M⟩ . (23.278)

An intuitive justification for the truncation of the Dicke state expansion (23.278)
might be that, differently from rotations, decay processes break the symmetry between
Ŝ±, because only energetically lower states can be reached via superradiant emission.
In Exc. 23.5.3.2 we will derive from the recursion formula (23.277) an approximate
analytical expression for the coefficients aM [772].

23.5.2.8 Characterization of coherently radiating spin states

The truncated Dicke state expansion (23.278) together with the recursion formulas
(23.277) and the normalization condition allows us to discover some properties of
CRSSs.

In Fig. 23.27(left) we plot the amplitudes aM of the Dicke states for CSSs and
CRSSs as well as their approximations by Gaussian formulas. Figs. 23.27(center and
right) show the quasi-probability distributions P , W , and Q calculated for the same
states. Clearly visible in Wigner distribution (middle row) is spin squeezing for the
CRSS state |S, α⟩, but not for the CSS state |ϑ, φ⟩N . For the projection onto the
equatorial plane it is just the opposite: The projection of the CSS is squeezed, but
not of the CRSS 26.

26The projection of the observable Ŝx = 1
2
(Ŝ− + Ŝ+) onto a non-compatible basis represented by

the operator Ŝ− necessarily introduces projection noise, which overrules spin squeezing.
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Figure 23.27: (code) (left) Excitation amplitudes for a CSS (green dots), for a CRSS (red

dots), and for CRSS in the Gaussian approximation. (center) Quasi-probability distributions

for a CSS and for a CRSS on the Bloch sphere. (right) Projections of the distributions onto

the equator plane.

To calculate the squeezing parameter we just need to evaluate the definition,

ξ2 ≡ 2S

|⟨Ŝ⟩|2
minφ∆Ŝ

2
⊥(φ) , (23.279)

where

∆Ŝ2
⊥(φ) = ⟨S, α|Ŝ⊥(φ)

2|S, α⟩ − ⟨S, α|Ŝ⊥(φ)|S, α⟩2Ŝ⊥(φ) = 1
2 (e

ıφŜ− + e−ıφŜ+)

⟨Ŝ⟩ =
√
⟨Ŝx⟩2 + ⟨Ŝy⟩2 + ⟨Ŝz⟩2 .

Fig. 23.28 demonstrates how spin-squeezing increases parameter with r = S sinϑ
[772].

0 0.5 1

r

0

0.5

1

ξ
2

(a)

√
1− r2

CRSS
CRSS recursion
analytic
CSS
Gaussian

100 101 102 103 104 105

S

10−2

10−1

100

ξ
2

(b)

Figure 23.28: (code) Squeezing parameter as a function of (a) r and (b) S.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_CRSSWigner.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_CRSSWigner.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_CRSSWigner.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_CRSSWigner.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_CRSSqueezing.m
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23.5.2.9 Light as spin squeezing witness

The cloud-cavity interaction is ruled by terms like Ĥ = g(â†Ŝ− + Ŝ+â). The field
emitted â(t) = â0(t) + GŜ−(t) is continuously measured, i.e. we constantly force it
into an eigenstate. We may thus assume that the system is pumped into |S, α⟩ with
[772],

Ŝ−(0)|S, α(t)⟩ = α(t)|S, α(t)⟩ . (23.280)

The evolution e−ıĤt is the displacement operator of the field, generating a coherent
light state out of an initial vacuum state,

U(t) = e−ıĤt = e−ıg(Ŝ+â+â
†Ŝ−)t = e−ıg(α

∗â+αâ†)t , (23.281)

so that

â(t) = U†(t)â(0)U(t) = â(0)− ıgαt , (23.282)

This coherent light state is an eigenstate of the operator Ŝ− represented in the Glauber
xy-plane,

â−|S, α⟩ = α|S, α⟩ with α = Sre−ıφ where r < 1 , (23.283)

which by construction is a coherent state of light if â(0)|ψ(0)⟩ = 0 is initially the
vacuum state 27. See also Exc. 23.5.3.3.

Figure 23.29: Illustration of the quadratures of a coherent state of light (CLS), and of a
CRSS and a CSS on the generalized Bloch sphere.

Interesting signal are delivered by the photon emission rate [275],

γ(t) = ⟨Ŝ+Ŝ−⟩ = Tr [Ŝ+Ŝ−ρ̂(t)] (23.284)

and the correlation function,

g
(2)
N (t, t) =

⟨Ŝ+Ŝ+Ŝ−Ŝ−⟩t
⟨Ŝ+Ŝ−⟩2t

=
Tr [Ŝ+Ŝ+Ŝ−Ŝ−ρ̂(t)]

Tr [Ŝ+Ŝ−ρ̂(t)]2
. (23.285)

27Even if one manages to generate intracavity squeezed light, it is necessary to verify that the light
transmitted through a cavity mirror is still squeezed and not spoiled by vacuum fluctuations. Then
one might try to homodyne it with a local oscillator [534, 535, 567, 706].
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Example 160 (Equal-time correlation for CSS and CRSS): Let us first
calculate the correlation functions for a CRSS (see (23.263)),

⟨S, α|Ŝ+Ŝ−|S, α⟩ ≃ |α|2 = S2 sin2 ϑ (23.286)

⟨S, α|Ŝ+Ŝ+Ŝ−Ŝ−|S, α⟩ ≃ |α|4 .

Hence, g(1) = 1 = g(2).
For the CSS, we found in Exc. 23.1.9.5,

⟨ϑ, φ|N Ŝ+Ŝ−|ϑ, φ⟩N = Np2+ +N2p+p− (23.287)

= N cos4 ϑ
2
+N2 sin2 ϑ

2
cos2 ϑ

2
= N

4
(cosϑ+ 1)2 + N2

4
sin2 ϑ .

Also,

⟨ϑ, φ|N Ŝ+Ŝ+Ŝ−Ŝ−|ϑ, φ⟩N (23.288)

= N4p2+p
2
− + 2N3p2+(3p+ − 1)p− +N2p2+(11p

2
+ − 10p+ + 1)− 2Np3+(3p+ − 2) .
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Figure 23.30: (code) (a) Correlation functions as a function of p+ = Sr = S sin θ for N = 10

atoms. (b) Second order coherence g(2)(0).

The time-dependent correlation functions can be evaluated using the quantum
regression theorem exposed in (23.194).

Example 161 (Equal-time correlation for the cavity field): From (23.154)
at resonance,

˙̂a = −κâ− ıgŜ− + η .

In steady state,

Ŝ− = ıη̃ + ı
κ

g
â .

Hence, the second order-correlation depends on

⟨Ŝ+Ŝ+Ŝ−Ŝ−⟩

= 1
g4

(
κ4⟨â†â†ââ⟩ − 2ıηκ3⟨â†ââ− â†â†â⟩ − η2κ2⟨â†â† − 4â†â+ ââ⟩+ 2ıη3κ⟨â† − â⟩+ η4

)
= 1

g4

(
η2 + 2ηκImα+ κ2|α|2

)2
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_CSSCorrelations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_CSSCorrelations.m
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We will see in the following, how the interplay between coherent pumping η and
collective decay κc leads to spin squeezing [512]. In Exc. 23.4.4.3 we study the mean
field approximation of the equations (23.213) and derive analytical formulas for the
steady state. The solutions, which will be discussed in the following, are exhibited in
Figs. 23.20.

The stable branches are those with positive slope, leaving two accessible branches
a lower and an upper one. The lower branch corresponds to weak intracavity power
and hence small inversion. Here, the normal mode splitting is so large that it inhibits
the penetration of pump light into the cavity. The upper branch is characterized by
high intracavity power and hence strong saturation generating an inversion approach-
ing 50%. According to [512] states located in the upper branch of the bistable regime
are CRSSs, states located in the lower branch are CSSs. This can be understood in
the light of Fig. 23.26: The state close to 50% inversion is exposed to strong superra-
diant decay, in contrast to the state close to 0% inversion dominated by spontaneous
emission.

23.5.3 Exercises

23.5.3.1 Ex: Norm of Bloch vector under coherent and dissipative evo-
lution

Verify that for any Hamiltonian being a function of collective spin components, Ĥ =
Ĥ(Ŝα),
a. in the absence of spontaneous emission d

dt ⟨S2⟩ = 0;

b. in the absence of any dissipation d
dt ⟨S⟩2 = 0.

See also Eq. (??) and Excs. 23.2.4.5 and 23.4.4.3!

23.5.3.2 Ex: Coherently radiating spin states (CRSS)

a. Search for general states satisfying,

Ŝ−|S, α⟩ = α|S, α⟩ with α ≡ Se−ıφ sinϑ .

Proceed by inserting the ansatz

|S, α⟩ans =
M+∑

M=−S
aM |S,M⟩ .

b. Compare with the CSS obtained by letting M+ → S.
c. Calculate the uncertainties for a CSS.
d. Calculate the uncertainties for a CRSS.

23.5.3.3 Ex: Light and spin squeezing in the CSS and the CRSS

a. Derive the Heisenberg uncertainty relations for the electric field operators ĉφ and

ĉϱ = ĉφ−π/2 defined in Eq. (2.201) and for the collective spin operators Ŝφ and Ŝϱ =

Ŝφ−π/2 defined in Eq. (23.40).
b. Upon adiabatic elimination of the cavity field we end up with the expression,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DrivenRadiance01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DrivenRadiance01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DrivenRadiance02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Spinsqueezing_DrivenRadiance03.pdf
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â = ĉ − ı gκ Ŝ−, where ĉ = η
κ I is the cavity field generated by direct pumping of the

cavity. Based on this connection between field and collective spin operators, derive
the condition for ⟨Ŝz⟩ to obtain light squeezing.

23.6 Three-level atoms in a cavity

Inclusion of a third atomic level considerably enriches the possibilities of controlling
the collective interaction of atoms and cavities, in particular, when the collective
synchronization of atomic dipole moments is done on a different transition as the
clock/interferometry transition. In this section, we study a collection of three-level
atoms |1⟩-|2⟩-|3⟩ in cascade configuration, as illustrated in Fig. 23.31(a). The atoms
interact with a linear cavity tuned quasi-resonant to the upper |2⟩-|3⟩ transition. In
certain regimes controlled by parameters of the upper transitions, we observe excita-
tion blockade on the lower transition, similar to what is observed in dense clouds of
Rydberg atoms. With respect to Rydberg blockade systems this has the advantage
of generating uniform coupling between all atoms located in the mode volume of the
cavity [887, 319, 591, 774, 407]. In other parameter regimes the dispersive interaction
of the cavity field with the |2⟩-|3⟩ transition can induce quantum correlations such as
spin-squeezing on the |1⟩-|2⟩ transition.

Based on the open Tavis-Cummings model for N three-level atoms, we set up in
Sec. 23.6.1 the full master equation expanding the transition operators on the product
state basis |ψ⟩ = ⊗N

j=1 (aj |1⟩j + bj |2⟩j + cj |3⟩j). In particular, we will numerically
study a simple toy model with two atoms interacting via a cavity field, which predicts
cavity-mediated blockade effects. Then we gradually simplify the model in order to
obtain numerically tractable formulas. In Sec. 23.6.2 we adiabatically eliminate the
excited state |3⟩ and rewrite the equations of motion in a two-level spin notation. At
the hand of the toy model, we will compare numerical simulations within the simplified
and the full model. In Sec. 23.6.3, supposing uniform coupling of the atoms to the
light, we once more rewrite the equations of motion in a collective spin formalism
suited for representing the coupled atom-cavity system expanding the spin operators
on the Dicke state basis, |ψ⟩ = |S,M⟩, which suits well for larger ensembles of up to
50 atoms. In particular, within the Dicke model we will discuss the occurrence of spin-
squeezing. In Sec. 23.6.4 we adiabatically eliminate the cavity field and linearize the
Heisenberg equations for small collective coupling. Finally, in Sec. 23.6.5 we neglect
higher-order correlations for the case of many atoms to study one-axis twisting and
the emergence of phases and instabilities using the mean-field approximation and
calculating second-order moments [565, 207].

23.6.1 Open Tavis-Cummings model for the three-level system

The basic idea consists in a sequence of pulse radiation fields to the three-level system
exhibited in Fig. 23.31(a) 28. The lower transition |1⟩-|2⟩, assumed to be forbidden,
is driven by π/2 classical light pulses. The upper transition |2⟩-|3⟩ is driven far from
resonance by the light field stored in a laser-pumped optical cavity operated in the

28Alternatively, we may consider a V -shaped level configuration with two narrow transitions and
|2⟩ ≡ 1S0, |1⟩ ≡ (5s5p)3P0, and |3⟩ ≡ (5s5p)3P1. Since Γ12 ≃ 0 the energetic order of levels |1⟩ and
|2⟩ doesn’t matter.
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bad-cavity limit. As illustrated in Fig. 23.31(b), the pump laser frequency is tuned
to the edge of the cavity’s transmission profile. Now, only atoms which are excited
from the ground state the state |2⟩ will interact with the cavity, thus modifying its
resonance frequency, and changing the effective pump rate. This in turn modifies the
light shift of level |2⟩ induced by the intra-cavity light and the effective Rabi frequency
at which other atoms can be excited from the ground state. See Exc. 23.6.6.1.

In the following, we will show how this cavity-mediated feedback may lead to
non-linear dynamics reminiscent to Rydberg blockade and to spin-squeezing.

Figure 23.31: (a) Level scheme and driven transitions. For the sake of concreteness, one
might consider the strontium level scheme |1⟩ ≡ 1S0, |2⟩ ≡ (5s5p)3P1, and |3⟩ ≡ (5s6s)3S1

with the respective transition wavelength λ12 = 689 nm and λ23 = 688 nm and the decay
widths Γ12/2π = 7.6 kHz and Γ23/2π = 4MHz. (b) Stationary cavity field intensity as a
function of the population

∑
j Tr ρ̂σ

22
j of level |2⟩.

The light field driving the lower transition is treated classically, i.e. [â, ρ̂] = 0,
while the cavity mode â is treated either as classical or quantum. The atoms are
denoted by lower indices, their internal excitations by upper indices,

σ̂mn1 ≡ |m⟩⟨n| ⊗ I3 ⊗ I3 ⊗ ... , (23.289)

σ̂mn2 ≡ I3 ⊗ |m⟩⟨n| ⊗ I3 ⊗ ... ,

etc.. Assuming a sufficiently dilute sample we may disregard dipole-dipole interac-
tions. The Hamiltonian is then (ℏ = 1),

Ĥ = Ĥcav +
∑N
j=1 Ĥj with

Ĥcav = −ıη(â− â†)−∆câ
†â

Ĥj = −∆bσ̂
22
j + Ωb

2 (σ̂12
j + σ̂21

j ) + g(zj)(â
†σ̂23
j + σ̂32

j â)−∆aσ̂
33
j

(23.290)

where Ωb is the Rabi frequency on the lower transition |1⟩-|2⟩ and ∆b the detuning
from resonance of the laser driving this transition, ∆a is the detuning of the laser
driving the upper transition |2⟩-|3⟩, ∆c the detuning of the latter laser from the
resonance frequency of the cavity, η the pump rate of the cavity, and g(rj) = g cos kzj
(assuming for one-dimensionality for simplicity) the atom-cavity coupling strength or
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single-photon Rabi frequency generated on the upper transition, which depends on
the atomic positions.

As indicated in (23.116), the time evolution is governed by a master equation for
the density operator ρ̂, or by Heisenberg equations for particular degrees of freedom Â,
or by combinations of both. Incoherent processes are described by jump operators L̂
and their corresponding rates γ. In our simulations we consider spontaneous emission
occurring via the processes L̂ = σ̂12 and L̂ = σ̂23 with the respective decay rates
γ = 1

2Γ12 and γ = 1
2Γ23. Assuming Γ23 ≫ Γ12 ≫ Γ13 ≃ 0, we may disregard the

decay rate Γ13. Incoherent optical pumping from lower to higher levels, for instance
the one described by L̂ = σ̂31 occurring at a rate γ = ξ31, may also be included.
Finally, the cavity field decays as L̂ = â at a rate γ = κ. On the other hand, we
disregard phase fluctuations of the cavity field and of the atomic dipole moments.

The dynamics ruled by the Hamiltonian (23.290) and the decay terms compiled
using the expressions (23.116) is conveniently simulated using the QuantumOptics.jl
framework for the JULIA language. To do so, we construct the density operator
for the atoms only using the tensor products (23.289), which evolves according to a
master equation, and derive a separate Heisenberg equation for the light field [466],

d

dt
â = ı[Ĥ, â] + L†

κâ = (ı∆c − κ)â+ η − ı
N∑

j=1

g(zj)σ̂
23
j

d

dt
ρ̂ = ı[ρ̂, Ĥ] + LΓ12/2ρ̂+ LΓ23/2ρ̂+ Lξ12 ρ̂+ Lξ23 ρ̂

. (23.291)

ρ̂ is the density operator for the internal atomic states and represented by a 3N ×3N
matrix,

ρ̂ =
∑

m,n

|m⟩⟨n| ⊗
∑

m,n

|m⟩⟨n| =
∑

m,n

σ̂mn1

∑

m,n

σ̂mn2 . (23.292)

23.6.1.1 Mean-field approximation

To simplify the code for the three-level equations of motion (23.291) when using
the MATLAB software, we treat the light field as classical. That is, we take the
expectation value of Eq. (23.291)(i),

d

dt
α = (ı∆c − κ)α+ η − ı

N∑

j=1

g(zj)Tr ρ̂σ̂
23
j (23.293)

d

dt
ρ̂ =

N∑

j=1

ı∆b[σ̂
22
j , ρ̂]− ı

2Ωb[σ̂
12
j + σ̂21

j , ρ̂] + ı∆a[σ̂
33
j , ρ̂]− ıg(zj)[α∗σ̂23

j + ασ̂32
j , ρ̂]

+ LΓ12/2ρ̂+ LΓ23/2ρ̂ ,

where we now disregard optical pumping terms Lξ12 ρ̂ and Lξ23 ρ̂. Initially, we may
assume that both atoms are in their ground states, i.e.,

ρ̂(0) = |1⟩⟨1| ⊗ |1⟩⟨1| =
(
1 0

0 0

)
⊗
(
1 0

0 0

)
, (23.294)
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and that the cavity field is that of a resonantly pumped empty cavity,

α(0) =
η

κ
. (23.295)

The populations of the atomic excitation states are extracted from ρ̂(t) via,

ρnnj (t) = Tr ρ̂(t)σ̂nnj , (23.296)

using the operators defined in (23.289).

23.6.2 Adiabatic elimination of excited state

As already mentioned, we assume that the upper transition is driven far from reso-
nance. This allows us to adiabatically eliminate the excited state from the description,
which considerably simplifies the model,

|∆a| ≫ Γ23, |α|g . (23.297)

We also disregard optical pumping, ξmn = 0. Then, ρ33 ≃ 0, and we may adiabatically
eliminate state |3⟩. To this end, we derive the Heisenberg equation for σ̂23

j from the
Hamiltonian (23.290) and set,

0 ≃ d

dt
σ̂23
j = ı[Ĥ, σ̂23

j ] + LΓ23/2,σ̂23
j
σ̂23
j (23.298)

= (ı∆a − ı∆b − Γ23

2 )σ̂23
j + ıΩb

2 σ̂13
j + ıg(σ̂33

j − σ̂22
j )â

≃ (ı∆a − ı∆b − Γ23

2 )σ̂23
j − ıgσ̂22

j â ,

where in the last step we neglected σ̂13
j = 0 = σ̂33

j . Hence,

σ̂23
j = σ̂22

j

gâ

∆a −∆b + ı
2Γ23

. (23.299)

Inserting this in the Hamiltonian (23.290) we get,

Ĥ = Ĥcav +

N∑

j=1

[Ωb

2 (σ̂12
j + σ̂21

j ) + 2Uaâ
†σ̂22
j â−∆bσ̂

22
j ] (23.300)

with the abbreviation,

Ua ≡
g2(∆a −∆b)

(∆a −∆b)2 +
1
4Γ

2
23

≃ g2

∆a
, (23.301)

where we assume |∆a| ≫ |∆b|. As the excited state |3⟩ does not appear in the
Hamiltonian any more, we may as well use the spin notation,

Ĥ = Ĥcav +

N∑

j=1

[
Ωb

2 (ŝ−j + ŝ+j ) + 2Ua(zj)â
†(ŝzj +

1
2 I)â−∆b(ŝ

z
j +

1
2 I)
]
. (23.302)
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From this Hamiltonian we can derive new approximate equations of motion for an
effective two-level system,

d

dt
â = ı[Ĥ, â]− κâ = (ı∆c − κ)â+ η − 2ı

N∑

j=1

Ua(zj)(ŝ
z
j +

1
2 I)â

d

dt
ρ̂ = ı[ρ̂, Ĥ] + LΓ12/2ρ̂

. (23.303)

The density operator ρ̂ for the internal atomic states is now represented by a 2N×2N
matrix.

23.6.2.1 Mean-field approximation

In analogy to the three-level case, to simplify the code for the two-level equations
of motion (23.303) when using the MATLAB software, we treat the light field as
classical. That is, we take the expectation value of Eq. (23.303)(i), and obtain,

d

dt
α = (ı∆c − κ)α+ η − 2ı

N∑

j=1

Ua(zj)α(Tr ρ̂ŝ
z
j +

1
2 ) (23.304)

d

dt
ρ̂ =

N∑

j=1

− ı
2Ωb[ŝ

−
j + ŝ+j , ρ̂][ı∆b − 2ı|α|2Ua(zj)][ŝ

z
j , ρ̂] + LΓ12/2ρ̂ .

Again, the populations of the atomic excitation states are extracted from ρ̂(t) as
shown in Eq. (23.296).

23.6.2.2 Cavity at steady-state

The elimination of the dynamic variable â allows to convert the master equation
(23.304)(ii) into a Liouville equation, which is much easier to solve. If κ dominates
all time scales, α̇ ≃ 0 and,

α =
η

ı∆c − κ+ η − 2ı
∑N
j=1 Ua(zj)α(Tr ρ̂ŝzj +

1
2 )

. (23.305)

Example 162 (Two-atoms toy model, cavity blockade and anti-blockade): We
consider a toy model consisting of only two three-level atoms coupled to a single
classical light mode, â→ α. We perform numerical simulations with the Quan-
tumOptics.jl framework for the JULIA language or with the MATLAB software
for (i) the full model (23.293) an compare the results with approximations con-
sisting in (ii) the adiabatic elimination of the excited state [see (23.304)], and
(iii) the adiabatic elimination of the cavity field [see (23.305)].
We choose a good parameter regime according to the following criteria. For the
system illustrated in Fig. 23.31,

1. we choose Ωb ≫ Γ12, in order not to be affected by spontaneous emission
on the |1⟩-|2⟩ transition;

2. the cavity should adiabatically follow the internal dynamics, κ≫ Ωb;
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3. we avoid population of level |3⟩ by choosing large detuning |∆a| ≫ Γ12,Γ23,Ωb;

4. to reach small signal behavior, we set the laser driving the cavity to the
halfwidth of the cavity resonance ∆c = ±κ;

5. we aim at a reasonably but not too strong light shift due to the presence
of a single atom, i.e.,

|α| |Ua|
κ

= |α|2 g2

|∆a|κ
≲ 1 ,

which, together with the condition (2) implies, g ≫ κ; and

6. in order to satisfy the last condition, we then need,

|α|2 ≲
|∆a|κ
g2

,

which we can achieve with η = κ;

7. the only free parameter left is the detuning of the laser on the lower tran-
sition, which we want to set to resonance to the Stark-shifted transition,
such that the Rabi oscillations reach maximum amplitude, but without
the light shift from the cavity,

∆b =
η2Ua

2κ2
=

η2g2

2κ2|∆a|
=

25κ

72
.

With these settings, we compare time evolutions simulated via (i) the set of
equations (23.307) based on the full three-level Hamiltonian (23.290), (ii) the
reduced Hamiltonian (23.301), and (iii) the Hamiltonian (23.311) where the
cavity field has been eliminated. The operators appearing in the respective
equations are generated by the prescriptions (23.289). For the chosen param-
eters all simulations are in perfect agreement, as seen in Fig. 23.32. Fig. 23.32
shows an interesting behavior. Apparently, the excitation of a first atom to
level |2⟩ is able to influence the subsequent excitation of a second one, since the
maximum inversion reached for the second atom is lower than 1. This behavior
is reminiscent to the phenomenon of spin-blockade mostly studied in ensembles
of Rydberg atoms. For much larger coupling strengths g the blockade becomes
dramatic, as demonstrated in Fig. 23.32. However, the approximations start to
fail, so that in Fig. 23.32 we only show a simulation based on the full equations
(23.307).
Interestingly, a blockade may be observed even in the limit that the light field
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Figure 23.32: (code) Cavity blockade in a two-atom toy model. Panel (a) shows the popula-

tions of the first atom, panel (b) of the second atom and panel (c) of the cavity mode. Blue

curves denote the population of level |1⟩, red curves of level |2⟩, and green curves of level |3⟩.
At time Ωbt = π atom 1 is excited to level |2⟩ via a π-pulse, and from time Ωbt = 3π on,

atom 2 is continuously excited. The parameters are scaled to Γ12 and ζ = 0.5. Dash-dotted

lines denote simulations based on Eqs. (23.293). Solid lines are obtained using Eqs. (23.304).

Dashed lines are obtained using Eqs. (23.304), but with the cavity field assumed in steady-

state according to Eq. (23.305). Dotted lines are obtained using Heisenberg equation derived

from the Hamiltonian for (23.302) for α and ρmn = ⟨σ̂mn⟩.

is treated as classical 29.

Γ12 = (2π) 7.5 kHz Ua = g2/∆a = 1.7κ

Γ23 = 50Γ12 Ωa = 22.5Γ23

κ = 750Γ12 ζ0 = 2η2Ua/κ
2 = 0.21κ

η = 0.25κ ζ1 = 4η2U3
a /κ

3 = 0.72κ

∆c = 0 Υ = 4g2/κΓ12

∆b = Uaη
2/κ2 = 1.7κ

∆a = 15κ

g = 5κ

Ωb = 200Γ12

.

23.6.3 Open Dicke model for the two-level system

For very few atoms the equations of motion derived for the open Tavis-Cummings
model [811] Eqs. (23.291) or (23.303) can be solved numerically. However, for the
simulation of more (several tens of) atoms, the model becomes increasingly imprac-
ticable, as the dimension of the Hilbert space scales with 3N for a three-level system
and 2N for a two-level system. In this case, the Dicke model is useful as the Hilbert
space only scales as N+1. The expression in terms of collective operators Ŝmn allows

29Note that the parameters are not realistic, since,

g =

√
6Γ23δfsr

k2w2
= 5κ =⇒ δfsr = 825THz .

On the other hand, with 105 atoms, δfsr = 8.25GHz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_ToymodelBlocking.m
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us to use the usual Dicke state formalism [229]. We just need to represent them in a
Dicke basis. The downside of the Dicke model is, that the atoms loose their individu-
ality with respect to the driving light field, i.e. they cannot be addressed one by one
any more.

Neglecting σ̂33
j = 0 and assuming uniform coupling, g(zj) = g, we may introduce

collective spin operators,

Ŝm ̸=n =
∑

j

σ̂m ̸=n
j , Ŝnn = 1

2

∑

j

σ̂nnj (23.306)

Ŝz ≡ Ŝ22 − Ŝ11 , N
2 = Ŝ22 + Ŝ11 , Ŝ− = Ŝ12 ,

helping us to simplify the Hamiltonian (23.302),

Ĥ = Ĥcav +ΩbŜx + 2Uaâ
†(Ŝz + N

2 I)â−∆b(Ŝz +
N
2 I) . (23.307)

From this Hamiltonian we can derive Heisenberg equations [466],

d

dt
Â = −ı[Â, Ĥ] + L†

κ,âÂ+ L†
Γ12/2,σ̂12

j
Â+ L†

Γ23/2,σ̂23
j
Â , (23.308)

for all observables Â ≡ â and Ŝx,y,z,

(
d

dt
+ κ

)
â = ı(∆c − 2UaŜz −NUa)â+ η

(
d

dt
+ 1

2Γ12

)
Ŝx = ∆bŜy − 2Uaâ

†Ŝyâ

(
d

dt
+ 1

2Γ12

)
Ŝy = −∆bŜx + 2Uaâ

†Ŝxâ− ΩbŜz

N
2 Γ12 +

(
d

dt
+ Γ12

)
Ŝz = ΩbŜy

. (23.309)

The quantity (N + 2Ŝz)Ua represents the frequency shift of the cavity resonance due
to the refractive index change generated by presence in the mode volume of atoms in
their internal state |2⟩.

23.6.4 Cavity at steady-state and small signal approximation

Now, assuming that the cavity field quickly adjusts to the atomic dynamics we may
eliminate the cavity field from the equations of motion. Assuming the cavity in
steady-state ˙̂a = 0, we get from (23.309)(i),

â = (κ− ı∆c + ıNUa + 2ıUaŜz)
−1η . (23.310)
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The equations (23.309)(i,iii) include non-linear terms â†Ŝx,yâ. Now, let us assume

⟨Ŝz⟩ ≃ 0 and expand the field operator (23.310) for small deviations,

â ≃ 1

κ+ ıNUa − ı∆c
+

2Ua

(κ+ ıNUa − ı∆c)2
Ŝz + ... = α+ δâ . (23.311)

With this we find up to first order,

â†Ŝx,yâ = η2
(
κ− ıNUa + ı∆c − 2ıUaŜz

)−1

Ŝx,y
(
κ+ ıNUa − ı∆c + 2ıUaŜz

)−1

(23.312)

≃ η2Ŝx,y
κ2 + (NUa −∆c)2

+
2η2Ua

κ2 + (NUa −∆c)2

(
ŜzŜx,y

κ− ıNUa + ı∆c
+

Ŝx,yŜz
κ+ ıNUa − ı∆c

)
.

Setting the cavity on the light-shifted resonance, ∆c = NUa, we find,

2Uaâ
†Ŝx,yâ ≃ ζ0Ŝx,y + ζ1{Ŝx,y, Ŝz} , (23.313)

defining

ζ0 ≡
2η2Ua

κ2
and ζ1 =

4η2U2
a

κ3
, (23.314)

where ζ1 is called the squeezing parameter. Terms like (23.313) can be derived from
a Hamiltonian, Ĥζ = ζ0Ŝz + ζ1Ŝ

2
z . That is, the Hamiltonian where the cavity field is

adiabatically eliminated is approximated by,

Ĥ = ΩbŜx + (ζ0 −∆b)Ŝz + ζ1Ŝ
2
z for ∆c = NUa . (23.315)

with the corresponding equations of motion,

(
d

dt
+

Γ12

2

)
Ŝx = (∆b − ζ0)Ŝy − ζ1{Ŝy, Ŝz}

(
d

dt
+

Γ12

2

)
Ŝy = −(∆b − ζ0)Ŝx + ζ1{Ŝx, Ŝz} − ΩbŜz

N
2 Γ12 +

(
d

dt
+ Γ12

)
Ŝz = ΩbŜy

. (23.316)

The quadratic term in the Hamiltonian (23.315) has been shown in Sec. 23.1.5 and
Exc. 23.1.9.15 to induce one-axis twisting and spin-squeezing. It is also reminiscent
to the Rydberg interaction Hamiltonian (23.150) [702, 784]. We may hence expect
similar phenomena, such as the emergence of an excitation blockade.

Another interesting regime might be ∆c−NUa = ±κ. We derive the corresponding
Hamiltonian in Exc. 23.6.6.2.

23.6.4.1 Mean-field approximation

Note, that if the light field were classical, the non-linear term |α|2Ŝx,y would not lead
to quantum correlations, because the equations of motion could then be derived from
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a Hamiltonian, which is linear in the collective spin components. From (23.307) we
get, ∑

j

Ĥj = ΩbŜx + (2Ua|α|2 −∆b)(Ŝz +
N
2 ) . (23.317)

In analogy,

d

dt
α = (ı∆c − κ)α+ η − ıNUa − 2ıUaαTr ρ̂Ŝz (23.318)

d

dt
Ŝx = (∆b − 2ı|α|2Ua)Ŝy − Γ12

2 Ŝx

d

dt
Ŝy = −(∆b − 2ı|α|2Ua)Ŝx − ΩbŜz − Γ12

2 Ŝy

d

dt
Ŝz = ΩbŜy − Γ12Ŝz − N

2 Γ12Ŝz .
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Figure 23.33: (code) Time evolution of the Tóth inequalities calculated from Heisenberg

equations directly derived from the Hamiltonian Eq.(23.315).

Hence, for the adiabatically approximated two-level system, treating the light
classically, we may set α̇ = 0 in Eq. (23.309)(i) and obtain,

α =
η

κ− ı∆c + ıNUa + 2ıUaTr ρ̂Ŝz
. (23.319)

This expression can replace Eq. (23.318)(i) in numerical simulations. For small devi-
ations around ∆c = ±κ, we may linearize the steady-state solution by expanding |α|2
in UaTr ρ̂Ŝ22,

|α|2 =
η2

κ2 + (∆c − UaTr ρ̂Ŝ22)2
≃ η2

κ2 +∆2
c

+
2η2∆c

(κ2 +∆2
c)

2
UaTr ρ̂Ŝ22 , (23.320)

and on resonance,

|α|2 =
η2

2κ2
± η2

2κ3
UaTr ρ̂Ŝ22 =

η0
4
± η1

8
UaTr ρ̂Ŝ22 . (23.321)

With this the Hamiltonian (23.317) reads,
∑

j

Ĥj = ΩbŜx +
(
η2Ua

2κ2 −∆b

)
Ŝ22 ± η

2 Ŝ22Tr ρ̂Ŝ22 . (23.322)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Spinsqueezing_Blockade_SpinSqueezing.m
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23.6.5 Cumulant expansion for many atoms, the role of coop-
erativity

To handle the case of many atoms (we have in mind N = 10000) under the premises
of uniform coupling [g(zj) = g] we derive the equations of motion for the light field
and all populations and coherences of the three-level system and treat them as c-
numbers, which obviously discards the possibility of individual manipulations of the
atoms. From the collective Hamiltonian for three levels,

Ĥ = ıη(â− â†)−∆câ
†â+ Ωb

2 (Ŝ12 + Ŝ21)−∆bŜ22

+g(â†Ŝ23 + Ŝ32â)−∆aŜ33

, (23.323)

as shown in Exc. 23.6.6.3, we derive the equations of motion from the Heisenberg
equation,

d

dt
â = ı[Ĥ, â] + L†

κâ

d

dt
Ŝmn = ı[Ĥ, Ŝmn] + L†

ΓŜmn + L†
γ σ̂

mn
j

. (23.324)

The collective decay terms, if they existed would be given by,

L†
ΓŜmn =

∑

Γ

Γ
(
L̂†
Γ[Ŝmn, L̂Γ] + [L̂†

Γ, Ŝmn]L̂Γ

)
, (23.325)

where Γ are possible collective decay channels and L̂Γ the operators describing the
decay. For example, the operator L̂Γ12

≡ Ŝ12 describes collective spontaneous emission
from |2⟩ to |1⟩. However, in the absence interatomic interaction, we do not expect
collective spontaneous emission, so that we may set Γmn = 0. On the other hand,
spontaneous emission leads to decay of individual atoms, here denoted by γmn. That
is, we assume the decay rates are the same for all atoms and there is no interatomic
correlation (that is, no super- or subradiance). The Lindblad expression for the decay
terms is,

L†
γ σ̂

mn
j =

∑

γ

γ
(
L̂†
γ [σ̂

mn
j , L̂γ ] + [L̂†

γ , σ̂
mn
j ]L̂γ

)
. (23.326)

23.6.5.1 Mean-field approximation

In lowest order we neglect all correlations and obtain for the expectation values,

d

dt
α = (ı∆c − κ)α− ıgTr ρ̂Ŝ23 − η (23.327)

d

dt
ρ⃗ =Mρ⃗ ,

where ρ⃗ is Bloch vector of the three-level system and M the Liouvillean explicitly
derived in Exc. 23.6.6.3.

Fig. 23.34 illustrates the spin blockade effect. When the atom number in linearly
increased, under the influence of a constant excitation of the lower transition, the
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fraction of excited atoms first increases linearly, as well. But beyond a critical popu-
lation of the level |22⟩, the excitation remains constant. (Well, this is what I hoped
to see, but it seems not that simple.)
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Figure 23.34: (code) Spin blockade in a large ensemble of three-level atoms. To illustrate

the effect, the atom number is linearly increased from N = 0 to 10000. Panel (a) shows

the time evolution of the populations ⟨S11⟩ (blue), ⟨S22⟩ (red) , and ⟨S33⟩ (green) and panel

(b) of the cavity field |α|2. Panel (c) visualizes the Bloch vector of the lower transition,(
Re Ŝ12 , Im Ŝ12 , Ŝ22 − Ŝ11

)
, in configuration space. Solid lines refer to full simulation

of Eqs. (23.325), for the dotted lines the light field was assumed in steady state. Same

parameters as in Fig. 23.32 except for Ωb/2π = 1MHz, g = 0.5κ, η = 70κ, and ∆c = 5κ.

23.6.5.2 One-axis twisting

Far from resonance, |∆a| ≫ Ua, the spin-spin interaction strength of (23.311) is
approximated by,

ζ

κ
=
η2

κ4
g4∆2

a

(∆2
a + γ223)

2
≃ η2

κ4
g4∆2

a

(∆2
a + γ223)

2
(23.328)

<
η2

κ4
g4

4γ223
=
|α∞|2
4

Υ2 .

Requesting that the cooperative cavity Lamb shift,

Uc ≡
g2∆c

∆2
c + κ2

, (23.329)

be larger than the decay rate γ23 of the driven atomic transition implies,

1 <
NUc

γ23
=

1

γ23

Ng2∆c

∆2
c + κ2

<
Ng2

2κγ23
=
NΥ

2
. (23.330)

That is, for this condition to be fulfilled is is sufficient to have strong ’collective’
cooperativity,

ΥN ≡ NΥ . (23.331)
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Let us now consider N = 104, which is the number of atoms we typically load into
our ring cavity [694]. We call,

γc ≡
g2κ

∆2
c + κ2

(23.332)

the Purcell-enhanced atomic decay rate [376, 378].
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Figure 23.35: (code) One-axis twisting (inversion-dependent frequency shift) according to

Eq. (??) with N = 10000 atoms and Ωb/2π = 1MHz and ∆b = 0. The squeezing parameter

is (a) Nζ = 0, (b) Nζ = 2Ωb, and (c) Nζ = 4Ωb.

23.6.6 Exercises

23.6.6.1 Ex: Two non-interacting three-level atoms in free space

Extend the two two-level atoms toy model of example 145 to two non-interacting
three level atoms |1⟩-|2⟩-|3⟩ in cascade configuration.
a. Write down the total Hamiltonian and its matrix representation chosing an appro-
priate basis.
b. Write down the Lindbladian and numerically solve the master equation.

23.6.6.2 Ex: Spin-squeezing Hamiltonian

Simplifying the expression (23.312) for ∆c −NUa = ±κ derive the Hamiltonian and,
if necessary the Lindbladian, generating the equations of motion (23.309).

23.6.6.3 Ex: Collective spin description for three levels

Derive a collective spin description for the three-level system interacting with a cavity.

23.7 Further reading

23.7.1 on collective spin states

R.H. Dicke, Coherence in Spontaneous Radiation Processes [DOI]
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Chapter 24

Quantum information science

24.1 Quantum correlations and entanglement

The concept of entanglement arose in quantum mechanics by Einstein, Podolski and
Rosen’s famous Gedankenexperiment, today called the EPR paradox [260]. In his
Gedankenexperiment, Einstein tried to prove the necessity of hidden variables for
quantum mechanics to be a complete theory. Consequently, we begin this chapter by
introducing the notion of entangled particles and recapitulating the discussion of the
EPR paradox.

Since Feynman discovered the utility of entangled states for quantum computation
[646, 158], this area of research exploded with thousands of theoretical researchers, but
few experiments, due to the enormous technical difficulties of creating and controlling
these states. On the other side, states of entangled photons already play an important
role in quantum cryptography [69]. And in the context of metrology, spin-squeezed
correlated quantum states offer the possibility of quantum noise reduction in frequency
standards [869].

Among the various systems proposed for the realization of entangled states and
quantum computing gates we will only discuss one idea, which is based on the mutual
coupling of atoms through a Jaynes-Cummings-like interaction mediated by an optical
mode.

24.1.1 The EPR paradox and GHZ states

Let us imagine two maximally correlated particles produced by a suitable source,
which fly freely without interaction in opposite directions along the y-axis toward two
detectors a and b. The particles have an internal degree of freedom (spin) |±⟩a,b,
which can be measured in various directions, for example, z or x by operators σ̂a,bz
or σ̂a,bx . Since the particles are completely entangled, the result of a measurement
on the first particle σ̂az allows the prediction of the result of another measurement σ̂bz
performed on the second particle, and similarly for σ̂ax and σ̂bx. Why is that?

The theory of hidden variables proposed by Einstein, Podolsky and Rosen [260]
postulates, that the total state describing the two particles contains all information
about the way, how the particles should behave at the detectors. The information
was imprinted on each one of the two particle’s when they were created in the source,

999



1000 CHAPTER 24. QUANTUM INFORMATION SCIENCE

i.e. the total state must be of the type,

|ψ⟩ =
(±az ±bz
±ax ±bx

)
, (24.1)

where the notation should be read as a decision table.

Figure 24.1: (a) Generation of entangled photon via parametric down-conversion. (b) Energy
conservation upon parametric down-conversion. (c) Illustration of the EPR paradox.

On the other hand, quantum mechanics postulates that the reduction of the
wavepacket describing the particle at detector a decides spontaneously on the re-
sult of the measurement at detector b. This decision has no physical cause. If the
particles move with the speed of light, this decision is not restricted by local causality
[379]. The state, also called Bell state, can be given in the form,

|ψ⟩ = |+a +b⟩+ | −a −b⟩ . (24.2)

In Exc. 24.1.3.1 we check that this state cannot be expressed as a product state. Let
us have a closer look at the EPR state (24.2) and imagine that particle ’a’ (the one
that will later be analyzed by detector a) is embarked with Alice on a starship, while
particle ’b’ flies with Bob in opposite direction.

We introduce a basis choosing z as the quantization axis, that is, the basis vectors

|+⟩z =
(
1

0

)
, |−⟩z =

(
0

1

)
(24.3)

are eigenvectors of the Pauli matrix σ̂z. On the other hand,

|+⟩x = 1√
2

(
1

1

)
, |−⟩x = 1√

2

(
1

−1

)
(24.4)

are eigenvectors of the Pauli matrix σ̂x. Quantum mechanics now tells us that, before
any measurement, the wavefunction is in a superposition of states |+⟩ and |−⟩. That
is, in the z-basis, using the tensor notation, we may write the entangled state (24.2)
as,

|ψ⟩ = 1√
2
(|+⟩z ⊗ |+⟩z + |−⟩z ⊗ |−⟩z) . (24.5)
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But we can also express it in the x-basis,

|ψ⟩ = 1√
2

(
|+⟩x+|−⟩x√

2
⊗ |+⟩x+|−⟩x√

2
+ |+⟩x−|−⟩x√

2
⊗ |+⟩x−|−⟩x√

2

)
(24.6)

= 1
2
√
2

( |+⟩x ⊗ |+⟩x + |+⟩x ⊗ |−⟩x + |−⟩x ⊗ |+⟩x + |−⟩x ⊗ |−⟩x
+|+⟩x ⊗ |+⟩x − |+⟩x ⊗ |−⟩x − |−⟩x ⊗ |+⟩x + |−⟩x ⊗ |−⟩x

)

= 1√
2
(|+⟩x ⊗ |+⟩x + |−⟩x ⊗ |−⟩x) .

A generalization of this calculation to arbitrary rotations of the detector will be
studied in Exc. 24.1.3.2.

After some time, Alice measures her spin in z-direction, i.e. performs a measure-
ment of σ̂z. Her measurement not only collapses the wavefunction of Alice’s spin a in
either one of the states |±⟩z, but it instantaneously also collapses the wavefunction
of Bob’s spin along the z-direction,

|ψ⟩↷
{
|+⟩z ⊗ |+⟩z = |+⟩z ⊗ |+⟩x+|−⟩x√

2

|−⟩z ⊗ |−⟩z = |+⟩z ⊗ |+⟩x−|−⟩x√
2

(24.7)

Hence, if Bob measures along the z-axis, his measurement will be predefined by Alice’s
measurement. On the other hand, if tries to measure along the x-axis, he will find a
random result with a probability of 1

2 for each outcome 1. That is, the direction of
measurement in Alice’s experiment fixes the quantization axis for Bob’s experiment.

Two hypotheses have been put forward: The first one is that Alice’s experiment
sends information to Bob’s experiment. Alice’s particle told Bob’s particle which spin
state he should be in. But this hypothesis violates the locality requirement of special
relativity claiming that information cannot travel faster than light. Einstein called
it ’spooky action at a distance’. The second hypothesis is to assume that quantum
mechanics does not violate locality, but that the particles carry with them ’local
hidden variables’ 2 (like a proper DNA) whose values would be set right from the
moment of the separation of the particles and which would determine the outcomes
of any future spin measurement. Then, quantum mechanics would not be a complete
theory, because it has nothing to say about these hidden variables.

24.1.1.1 Bell’s inequality

In 1964 John S. Bell suggested an experimental test for the EPR paradox [65]. He
proposed a theorem formulated as an inequality, the famous Bell’s inequality, stating
that if the local hidden variables hypothesis proposed by Einstein is correct, then the
inequality must be satisfied by experiment.

There are many versions of Bell’s inequality, all of them are equivalent. Let us
follow Bell’s argumentation and assume Alice and Bob to use Stern-Gerlach magnets

1Due to Bob’s measurement along the x-axis Alice’s wavefunction should collapse along the x-axis,
as well. But according to quantum mechanics, Alice should be unable to know the spin value in x-
direction, since she already knows the spin the z-direction, which is not allowed by the commutation
rules,

[σ̂az , σ̂
a
x] = ıℏσ̂ay , [σ̂bz , σ̂

b
x] = ıℏσ̂by .

2Note the difference to non-local hidden variables assumed by de Broglie and David Bohm in
their formulation of quantum mechanics.
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oriented in arbitrary directions a ≡ êϑ,φ, respectively, b ≡ êϑ′,φ′ to measure the
expectation values,

⟨ψ|ˆ⃗σ · a⊗ I|ψ⟩ and ⟨ψ|I⊗ ˆ⃗σ · b|ψ⟩ (24.8)

respectively, on an anti-symmetric entangled two-spin state 3,

|ψ⟩ = 1√
2
(|+⟩z ⊗ |−⟩z − |+⟩z ⊗ |−⟩z) . (24.9)

Let us first do the quantum calculation. Using the rules for Pauli matrices and
the anti-symmetry of the entangled state,

σ̂x|±⟩z = |∓⟩z , σ̂y|±⟩z = ±ı|∓⟩z , σ̂z|±⟩z = ±|±⟩z , (24.10)

we derive in Excs. 24.1.3.3 and 24.1.3.4 the general relationship,

⟨ψ|ˆ⃗σ · a⊗ ˆ⃗σ · b|ψ⟩ = −a · b , (24.11)

which is the quantum mechanical correlation function for a joined measurement of
Alice and Bob.

On the other hand, if local hidden variables exist, Alice’s measurement is deter-
mined by the orientation a of her magnets and a (set of) hidden variable(s) λ, which
are also available to Bob, whose measurement is determined by the orientation b of
his magnets,

A(a, λ) ≡ ⟨ψ|ˆ⃗σ · a⊗ I|ψ⟩ = ±1 and B(b, λ) ≡ ⟨ψ|I⊗ ˆ⃗σ · b|ψ⟩ = ±1 , (24.12)

with the crucial assumption that A does not depend on b and B not a. Let us assume a
probability distribution ρ(λ) for the hidden variable satisfying

∫
ρ(λ)dλ = 1. Then the

joint probability distribution P (a,b) should coincide with the quantum mechanical
correlation function,

P (a,b) =

∫
A(a, λ)B(b, λ)ρ(λ)dλ = ⟨ψ|ˆ⃗σ · a⊗ ˆ⃗σ · b|ψ⟩ ≥ −1 . (24.13)

For example, let the hidden variable now be unit vector λ⃗ with uniform probability
distribution over all directions, such that,

A(a, λ) = sign(a · λ⃗) and B(b, λ) = −sign(b · λ⃗) . (24.14)

Then,

P (a,b) = −
∫

sign(cosϑaλ)sign(cosϑbλ)ρ(ϑλ)dϑλ (24.15)

= −
∫ ϑb

ϑa

sign(cosϑλ)dϑλ = −1 + 2
π∠(a,b) .

This probability distribution clearly deviates from the quantum prediction, in par-
ticular at angles ∠(a,b) = π

2 , as seen in Fig. 24.2(a).

3The anti-symmetric state is chosen here for symmetry reasons facilitating the quantum calcula-
tion, but the arguments hold for any entangled state.
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Figure 24.2: (code) (a) Joint probability distribution P (a,b) in local hidden variables theory

(red) and correlation function ⟨ψ|σ⃗ ·a⊗σ⃗ ·b|ψ⟩ in quantum mechanics (blue). (b) Verification

of Bell’s inequality.

Let us finally derive Bell’s inequality. Because of (24.12) for the anti-symmetric
state we have the relation B(b, λ) = −A(b, λ) and A(a, λ) = A(a, λ)−1 allowing us
to derive,

P (a,b)− P (a, c) = −
∫

[A(a, λ)A(b, λ)−A(a, λ)A(c, λ)] ρ(λ)dλ (24.16)

=

∫
A(a, λ)A(b, λ) [A(b, λ)A(c, λ)− 1] ρ(λ)dλ ,

and

|P (a,b)− P (a, c)| ≤
∫
|A(a, λ)A(b, λ) [A(b, λ)A(c, λ)− 1] |ρ(λ)dλ (24.17)

≤
∫
[1−A(b, λ)A(c, λ)]ρ(λ)dλ

=

∫
ρ(λ)dλ+

∫
A(b, λ)B(c, λ)ρ(λ)dλ = 1 + P (b, c) .

This inequality derived from the local hidden variables assumption is violated by
quantum mechanics, since,

|⟨ˆ⃗σ · a⊗ ˆ̃σ · b⟩ − ⟨ˆ⃗σ · a⊗ ˆ̃σ · c⟩| = | − a · b+ a · c| (24.18)

≤ 1− b · c = 1 + ⟨ˆ⃗σ · b⊗ ˆ⃗σ · c⟩

is not satisfied for arbitrary choices of a, b, and c. To see this we plot in Fig. 24.2(b),

1− cos∠(b, c)− | cos∠(a,b)− cos∠(a, c)| , (24.19)

finding that this quantity becomes negative for some choices of the projection vectors.

Example 163 (EPR paradox using GHZ states): Here, we show a modified
version of the EPR experiment proposed by Greenberger, Horne and Zeilinger
(GHZ) based on the GHZ state [336]. They imagined a source creating three
correlated non-interacting spin 1

2
particles labeled a, b, and c flying toward

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Bell.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Bell.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Bell.m
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three Stern-Gerlach type magnetic detectors, which measure the spins in x or
in y-direction. The correct state is either quantum,

|ψ⟩ = |+a +b +c⟩z − | −a −b −c⟩z , (24.20)

or

|ψ⟩ = |+⟩z ⊗ |+⟩z ⊗ |+⟩z − |−⟩z ⊗ |−⟩z ⊗ |−⟩z , (24.21)

in tensor notation, or it contains hidden variables, that is, instructions telling
the detectors which measurement result to exhibit upon arrival of a particle,

|ψ⟩ =
(
±ax ±bx ±cx
±ay ±by ±cy

)
. (24.22)

Now, using the quantum mechanical rules (24.10), we obtain,

σ̂x ⊗ σ̂x ⊗ σ̂x|ψ⟩ ≡ σ̂axσ̂bxσ̂cx|ψ⟩ = −|ψ⟩ , (24.23)

but also,

σ̂axσ̂
b
yσ̂

c
y|ψ⟩ = σ̂ay σ̂

b
xσ̂

c
y|ψ⟩ = σ̂ay σ̂

b
yσ̂

c
x|ψ⟩ = |ψ⟩ . (24.24)

Hidden variables in a state |ψ⟩ that is not a coherent superposition should at

Figure 24.3: Scheme of the EPR experiment proposed by Greenberger, Horne and Zeilinger.

least be able to predict how each particle will behave in its respective detector,
when we measure each one of the two spin components. From all possible
combination only eight combinations can satisfy the requirement (24.24) written
as,

⟨σ̂ax⟩⟨σ̂by⟩⟨σ̂cy⟩ = ⟨σ̂ay⟩⟨σ̂bx⟩⟨σ̂cy⟩ = ⟨σ̂ay⟩⟨σ̂by⟩⟨σ̂cx⟩ = 1 . (24.25)

These are,(
⟨σax⟩ ⟨σbx⟩ ⟨σcx⟩
⟨σay⟩ ⟨σby⟩ ⟨σcy⟩

)
= (24.26)(

+++

+++

)(
+−−
+−−

)(
−+−
−+−

)(
−−+

−−+

)(
+++

−−−

)(
+−−
−++

)(
−+−
+−+

)

but none of them satisfies (24.23) written as,

⟨σ̂ax⟩⟨σ̂bx⟩⟨σ̂cx⟩ = −1 . (24.27)
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Therefore, the local hidden variables assumption is incompatible with quantum

mechanics, and the EPR critique of quantum mechanics regarding its incom-

pleteness must be refuted 4.

Which one of the two pictures is correct, the local hidden variables assumption or
quantum mechanics, can actually be tested by Wheeler’s delayed choice experiment.
It consists of using pairs of correlated photons emitted in different directions, where
they are expected by photodetectors. Polarizers located in front of the detectors fix
the quantization axis to êx or êy, but the choice of the axis is made only after the
photons were created by the source, in order to avoid possible backactions of the
polarizers on the source 5. Bell’s inequality condition [65] predicts a statistics for the
results of repeated measurements where the orientation of the polarizers is randomly
varied. The experiment run by Aspect [32, 31] showed that the assumption of local
hidden variables violates local realism and thus confirmed quantum mechanics as being
a complete theory.

24.1.2 Information entropy

According to von Neumann, we can define the von Neumann entropy, also called
quantum information entropy as,

S ≡ −⟨log2 ρ̂⟩ = Tr (ρ̂ log2 ρ̂) = −
∑

n

ρ̂n log2 ρ̂n , (24.28)

where ρn ≡ ⟨n|ρ̂|n⟩. For statistically independent systems the density operator is
ρ̂ = ρ̂1 ⊗ ρ̂2 and the entropy is additive S = S1 + S2. The entropy is observable, that
is, independent of the basis and invariant with respect to unitary transformations.
Therefore, ρ̂ can be diagonalized and can be assumed diagonal in the following ex-
amples. For N independent qubits the density operator ρ̂(N) and the entropy S(N)

are:

ρ̂(0) = |+⟩⟨+| , S(0) = 0 bit

(24.29)

ρ̂(1) = 1
2
(|+⟩⟨+|+ |−⟩⟨−|) , S(1) = 1 bits

ρ̂(2) = 1
4
(|++⟩⟨++ |+ |+−⟩⟨+− |+ | −+⟩⟨−+ |+ | − −⟩⟨− − |) , S(2) = 2 bits

ρ̂(N) = 1
2N

(|++...⟩⟨++ ...|+ ...) , S(N) = N bits .

The set is canonical and the entropy maximal. On the other hand, if the states are
entangled, the entropy is always less than S(N) = N bits. For the state of maximally
entangled spins, we have,

ρ(N)
corr =

1
2N

(|++...+⟩⟨++ ...+ |+ | − −...−⟩⟨− − ...− |) , S(N)
corr = 1 bit . (24.30)

4Note that the coupling of different degrees of freedom is not an entanglement, but it is the
condition for being able to generate entanglement.

5We note that first attempts to demonstrate wave-particle duality with single photons in dilute
laser beams are not really conclusive, because the attenuation of a coherent state does NOT result
in a single photon states (non-classical Fock state). Even if on average only less than one photon is
in the interferometer, this may still be a Glauber state. Nonetheless, real single photon experiments
involving the deexcitation of individual atoms by emission of two photons, produced the same result.
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Entropy is a measure for the degree of entanglement of a system. For a Dicke state
|J,M⟩ the entropy is,

SJM = − log2

(
2J

J +M

)
. (24.31)

For beam splitters, the information entropy is calculated as follows: A Fock state
|N⟩ = |+⟩N divided by a beam splitter is described by,

2−N/2(|+⟩+ |−⟩)N = 1
2N/2

N∑

n=0

(
N

n

)
|+⟩N−n|−⟩n (24.32)

ρ
(N)
split =

1
2N

N∑

n,m=0

(
N

n

)(
N

m

)
|+⟩N−n|−⟩n⟨+|N−m⟨−|m

ρ
(N)
split =

1
2N

N∑

n=0

(
N

n

)(
N

n

)
|+⟩N−n|−⟩n⟨+|N−n⟨−|n .

For the information entropy, we obtain,

S
(N)
split = N + 1

2N

N∑

n=0

(
N

n

)
log2

(
N

n

)
. (24.33)

The division of a beam is an incoherent process in the sense that it increases the
entropy. The process is irreversible. The divided beams can not be recombined by
a coherent process. For example, an interferometer always has two output ports.
However, the phase is preserved.

The quantum information content is defined by the deviation from maximum en-
tropy,

Q = Smx − Sactual . (24.34)

If the system is in a mixed state, the entropy measures deviations from a pure state
behavior [57].

24.1.2.1 Separability and entanglement

Separable states are defined by,

ρ̂sep =
∑

m

ρ̂(1)m ⊗ ...⊗ ρ̂(N)
m , (24.35)

where ρ̂
(n)
m are single-particle pure states. Separable states are essentially states that

can be created without an inter-particle interaction, just by mixing product states
[825]. States that are not separable are called entangled.

24.1.3 Exercises

24.1.3.1 Ex: Bell states

Show that the Bell states cannot be written as products of two states.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell01.pdf
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24.1.3.2 Ex: Behavior of entanglement upon rotation of the quantization
axis

Show that the anti-symmetric entangle Bell state remains entangled upon rotation of
the quantization axis, that is,

|+⟩ϑ,φ ⊗ |−⟩ϑ,φ − |−⟩ϑ,φ ⊗ |+⟩ϑ,φ ∝ |+⟩z ⊗ |−⟩z − |−⟩z ⊗ |+⟩z ,

where |±⟩ϑ,φ are the eigenstates of the Pauli spin operator ˆ⃗σ.

24.1.3.3 Ex: Rotations with Pauli matrices

a. Verify,

e−ı(π/4)σ̂k σ̂me
ı(π/4)σ̂k = ϵkmnσ̂n + δkmσ̂k with (kmn) = (xyz) .

b. Prove,

|ϑ, φ⟩ = e−ıφ(σ̂z−I)/2e−ıϑσ̂y/2|0, 0⟩ = eıφ/2e−ıφσ̂z/2e−ıϑσ̂y/2|+⟩ .
c. Solve the eigenvalue equations,

ˆ⃗σ · êz|ϑ, φ⟩ = m|ϑ, φ⟩ and ˆ⃗σ · êρ|ϑ, φ⟩ = m|ϑ, φ⟩ ,
with êρ ≡ êx cosϕ+ êy sinϕ.

24.1.3.4 Ex: Projections of single-atom spins and their correlations

a. Calculate explicitly ⟨ϑ, φ|ˆ⃗σ|ϑ, φ⟩ and ⟨ϑ′, φ′|ˆ⃗σ · êϑ,φ|ϑ′, φ′⟩, where |ϑ, φ⟩ are the
states defined in (23.10), using the basis z⟨+| = (1 0) and z⟨−| = (0 1).
b. For the anti-symmetric entangled two-atom spin state defined in (24.9) calculate

the spin projection correlations ⟨ψ|ˆ⃗σ · êϑ,φ ⊗ ˆ⃗σ · ê′ϑ,φ|ψ⟩.

24.1.3.5 Ex: No cloning theorem

Based upon the superposition principle of quantum mechanics, prove the no-cloning
theorem which states that a quantum state |ψ⟩ cannot evolve into two separable (non-
entangled) copies described by the tensor product state |ψ⟩|ψ⟩.

Figure 24.4: Illustration of the ’no-cloning theorem’. The transformation must be reversible,
but from the state |q1, q0⟩ we cannot infer the state |p1, p0⟩.

24.1.3.6 Ex: Entanglement

Upon detecting the polarization of one photon in an entangled photon pair the po-
larization of the other photon gets determined. Does this lead to a faster than light
communication? Justify your answer. How would you demonstrate the no-cloning
theorem from the assumption that relativistic causality should prevail.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell045.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell05.pdf
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24.1.3.7 Ex: Entanglement

Three photon are prepared in the GHZ state defined as,

|ψ⟩ = 1√
3
(|h⟩1|h⟩2|h⟩3 + |v⟩1|v⟩2|v⟩3) .

Show that, when the components of polarization are measured along the axes that
have an angle of 45◦ with respect to the original axes, corresponding to the states,

|h′⟩ = 1√
2
(|h⟩+ |v⟩) and |v′⟩ = 1√

2
(|h⟩ − |v⟩) ,

one gets necessarily an even number of photons with vertical polarization v′.

24.1.3.8 Ex: NOON state

A NOON state is a quantum-mechanical many-body entangled state:

|ψNOON⟩ =
|N⟩a|0⟩b + eıNθ|0⟩a|N⟩b√

2
, (24.36)

which represents a superposition of N particles in mode a with zero particles in mode
b, and vice versa. Usually, the particles are photons, but in principle any bosonic field
can support NOON states.
Two-photon NOON states, where N = 2, can be created deterministically from two
identical photons and a 50:50 beam splitter. This is called the Hong-Ou-Mandel effect
in quantum optics. Three- and four-photon NOON states cannot be created deter-
ministically from single-photon states, but they have been created probabilistically
via post-selection using spontaneous parametric down-conversion.

24.2 Creating quantum correlations

Since the experimental verification of Bell’s inequality [33] numerous ideas were pro-
posed for the creation and application of correlated states in distant particles. Real-
istic proposals on how to create such states are often based on a Jaynes-Cummings
type coupling between states of atomic excitation and the degrees of freedom of a
harmonic oscillator. The Jaynes-Cummings dynamics has been extensively studied
in micromasers, where the non-resonant interaction of an atomic transition with the
TEM00 mode of a stored radiation field generates quantum coherences. In very high
finesse cavities, light field states with sub-Poissonian photon statistics can be gener-
ated and stored for macroscopic times, and schemes for the creation of Fock states
and Schrödinger cat states were proposed and tested. Furthermore, the electronic ex-
citation states of atoms successively traversing a micromaser can be correlated under
suitable conditions. The availability of fundamental techniques motivated proposals
for the investigation of phenomena such as EPR correlations, quantum teleportation,
and quantum switching [241]. On the other hand, quantum coherences are very fragile
to dissipation and rapidly decay when exposed to perturbations.

Jaynes-Cummings type dynamics can also be realized with a single ion stored in a
Paul trap, where the interaction of its mechanical motion with an electronic transition
[93] can induce very stable quantum coherences in the vibrational degrees of freedom.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell07.pdf
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Schrödinger cat states have already been demonstrated in this system [563], as well
as fundamental parts of a quantum computer, the quantum controlled not gate [563]
and the quantum phase gate [832]. In Sec. 24.2.1 we present a possible extension of
these ideas to several atoms in a collective Jaynes-Cummings type interaction (also
called Tavis-Cummings model) with a single harmonic oscillator mode.

In order to correlate particles, they must be able to exchange information, that is,
they must interact in some way. One method uses ions trapped in a linear Paul trap,
where they form a straight chain, individually driven by laser beams and coupled to
each other via their vibrational degrees of freedom mediated through Coulomb repul-
sion [158]. We present this idea in Sec. 24.2.2. Such scenarios have been implemented
to create the first quantum computers. Another way consists in trapping neutral
atoms in a dual optical lattice and let them undergo controlled collisions [426], as will
be discussed in Sec. 24.2.3.

Alternative approaches to realizing quantum gates use dipole-dipole interactions
[118], conditional Raman adiabatic passages by laser-induced excitation of interatomic
dipole-dipole interactions [536], or interactions between permanent dipoles of atoms
in Rydberg states [427] 6

24.2.1 Correlating atoms in the Jaynes-Cummings model

In Sec. 17.2 we showed already that the Jaynes-Cummings model is able to perform
coherent operations on a two-level system –which from now on we will call qubit–,
such as the population inversion (NOT-gate) and the controlled dephasing of an ex-
cited dipole moment (phase gate). These operations are fundamental for applications
in quantum information, however, we still lack essential ingredients allowing us to
entangle states of two, three or more qubits in order to perform a quantum register of
qubits. Once these register are realized, we must define coherent quantum operations
called quantum gates.

24.2.1.1 Tavis-Cummings model for 2 atoms

In Sec. 17.2 we showed, how a Jaynes-Cummings interaction between an atom and a
radiation field can exchange quantum correlations. It is reasonable to expect that,
when we have two (or more) atoms interacting with the same radiation field, we can
exchange correlations between atoms via the field. This would allow the implemen-
tation of entanglement protocols and quantum gates. We will disregard spontaneous
processes, such that all couplings are then coherent and the processes reversible.

In Sec. 1.5.8 we learned, how to span a Hilbert space of various particles. We will
now apply these notions in the scope of generalizing the Jaynes-Cummings model
to two atoms interacting with the same optical mode, without spontaneous decay
processes considered. The system is often referred to as the Tavis-Cummings model.
The Hamiltonian of the system, which consists of two non-interacting atoms, both
coupled in the same optical mode, is,

Ĥ = ωâ†â+
∑

i=1,2

ωai(σ̂
+
i σ̂

−
i − 1

2 ) +
∑

i=1,2

1
2gi(t)(âσ̂

+
i + â+σ̂−

i ) . (24.37)

6A system to create quantum correlations is the optical parametric oscillator (OPO).
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The suffix denotes the individual atoms. Note that the coupling constant gi(t) can
be considered as time dependent, which may be useful for modeling radiation pulse
envelopes. In matrix representation the Hamiltonian acting on the subspace of n
photons is,

|ψ⟩ =
∑

n




c11 n+1

c12 n
c21 n
c22 n−1


 |n⟩ where cij ≡1 ⟨j|2⟨i|⟨n|ψ⟩ (24.38)

for example, ⟨n| ⊗ ⟨1| ⊗ ⟨1| = ⟨n|(1 0 0 0), ⟨n| ⊗ ⟨2| ⊗ ⟨1| = ⟨n|(0 1 0 0), and so on.
The atomic transition operators are generalized to,

σ̂−
1 =

∑

n

|n⟩σ̂− ⊗ I⟨n| =
∑

n

|n⟩




1

1

0

0


 ⟨n| (24.39)

σ̂−
2 =

∑

n

|n⟩I⊗ σ̂−⟨n| =
∑

n

|n⟩




1

0

1

0


 ⟨n| , etc. .

The Hamiltonian is, on this basis,

Ĥ =
∑
n

|n⟩


nω − ωa1

2
− ωa2

2

nω − ωa1
2

+ ωa2
2

nω + ωa1
2
− ωa2

2

nω + ωa1
2

+ ωa2
2

 ⟨n|

+
∑
n

|n− 1⟩√n


0

g2
g1
0 g1 g2 0

 ⟨n|+∑
n

|n+ 1⟩
√
n+ 1


0 g2 g1 0

g1
g2
0

 ⟨n| .
(24.40)

Now, we can rearrange the subspaces and finally get,

Ĥ =
∑
n

|n⟩


(n+ 1)ω − ωa1

2
− ωa2

2
g1
√
n g2

√
n

g1
√
n nω + ωa1

2
− ωa2

2
g2
√
n+ 1

g2
√
n nω − ωa1

2
+ ωa2

2
g1
√
n+ 1

g2
√
n+ 1 g1

√
n+ 1 (n− 1)ω + ωa1

2
+ ωa2

2

 ⟨n| .
(24.41)

The density operator for the subspace is,

ρ̂ =




|n+ 1⟩|1⟩1|1⟩2 1⟨1|2⟨1|⟨n+ 1| |n+ 1⟩|1⟩1|1⟩2 1⟨1|2⟨2|⟨n| ...

|n⟩|1⟩2|1⟩2 1⟨1|2⟨1|⟨n+ 1| ...

|n⟩|2⟩1|2⟩2 1⟨1|2⟨1|⟨n+ 1| ...

|n− 1⟩|2⟩1|2⟩2 1⟨1|2⟨1|⟨n+ 1| ...


 , (24.42)

if the basis is again defined by equation (24.39).
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24.2.1.2 Resonant excitation

To discuss the case of resonant excitation, ∆1 = ∆2 = 0, let us assume identical
atoms, ωa1 = ωa2 ≡ ω0, and equal Rabi frequencies, g1 = g2 ≡ g. Assuming dipolarly
forbidden strongly saturated transition, n = α2 for all n, the Hamiltonian simplifies
considerably,

Ĥn =




nω g
√
n g

√
n

g
√
n nω g

√
n

g
√
n nω g

√
n

g
√
n g

√
n nω


 ,

the eigenvalues can be calculated and the time evolution matrix becomes, using the
abbreviation φ ≡ gt√n,

e−ıĤnt = e−ıĤ
A1
n te−ıĤ

A2
n t =




cos2 φ ı sinφ cosφ ı sinφ cosφ − sin2 φ

ı sinφ cosφ cos2 φ − sin2 φ ı sinφ cosφ

ı sinφ cosφ − sin2 φ cos2 φ ı sinφ cosφ

− sin2 φ ı sinφ cosφ ı sinφ cosφ cos2 φ


 .

(24.43)
For a π-pulse, we get,

e−ıĤnt π/2−→ 1
2




1 ı ı −1
ı 1 −1 ı

ı −1 1 ı

−1 ı ı 1


 . (24.44)

It is interesting to note that some superposition states completely separate from
the optical mode,

e−ıĤnt




0

1

−1
0


 =




0

1

−1
0


 and e−ıĤnt




1

0

0

−1


 =




1

0

0

−1


 . (24.45)

24.2.1.3 Dispersive excitation

In the dispersive limit, ∆i ≫ n1/2gi, the dynamic evolution can be evaluated from a
first order perturbative approach, analogous to the one already made for the standard
JCM model. In this approach, the off-diagonal matrix elements (24.41) generate a
light-shift of the energy levels appearing on the diagonal of the approximated matrix.

Using the abbreviation Λi ≡ g2i /∆i, the temporal evolution matrix e−ıĤnt can now
be evaluated from,

Ĥn = −∆1 +∆2

2
I4 (24.46)

+


nΛ1 + nΛ2

−nΛ1 + (n+ 1)Λ2

(n+ 1)Λ1 − nΛ2

−(n+ 1)Λ1 − (n+ 1)Λ2

 .
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We now assume that the light field only interacts with the upper level, as in the case
of the dual resonance configuration studied in Exc. 17.2.5.4. This can be taken into
account, neglecting those terms in the matrix (24.45) rotating with a positive Rabi
frequency. Letting, moreover, ∆1 = ∆2 and Ω1 = Ω2, we obtain,

Ĥ(1)
n =




0

−nΛ
−nΛ

−2(n+ 1)Λ


 . (24.47)

Thus, the temporal evolution is,

e−ıĤnt =




1

e−nΛ

e−nΛ

e−2(n+1)Λ


 . (24.48)

For Λ = π,

e−ıĤnt π−→




1

−1
−1

1


 . (24.49)

24.2.1.4 Bloch vector and the Q-function in the JC model with 2 atoms

Despite the more complex structure of the Hilbert space, the Bloch vectors of the
individual atoms and the Q-function can be evaluated in analogy to Sec. 17.2.2. The
Bloch vector is,

ρ⃗A1 = 1√
2



√
2 Re ρ12(A1)√
2 Im ρ12(A1)

ρ22(A1) − ρ11(A1)


 where ρij(A1) = Tr |i⟩1⟨j|ψ⟩⟨ψ| . (24.50)

In particular we have,

ρ22(A1) =
∑

i,j,n

2⟨j|1⟨i|⟨n|1⟩1⟨2|ψ⟩⟨ψ|n⟩|i⟩1|j⟩2 (24.51)

=
∑

j,n

2⟨j|1⟨2|⟨n|ψ⟩⟨ψ|n⟩|1⟩1|j⟩2

=
∑

n,m,m′

⟨n|
(
c2,1,m|m⟩⟨m′ + 1|c∗1,1,m′+1 + c2,2,m|m′ − 1⟩⟨m′|c∗1,2,m′⟩

)
|n⟩

=
∑

n

(c∗1,1,nc2,1,n + c∗1,2,nc2,2,n) .

Summarizing,

ρ12(Ai̸=Aj) =
∑
n(c

∗
1,1,ncj,i,n + c∗i,j,nc2,2,n)

ρ11(Ai̸=Aj) =
∑
n(|c1,1,n|2 + |ci,j,n|2)

ρ22(Ai̸=Aj) =
∑
n(|cj,i,n|2 + |c2,2,n|2)

. (24.52)
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The function Q(α) for the JC dynamics of 2 atoms is,

Q(α) = 1
π
⟨α|ρ̂field|α⟩ = 1

π
⟨α|
∑
i,j

2⟨j|1⟨i|ψ⟩⟨ψ|i⟩1|j⟩2|α⟩ (24.53)

= 1
π
⟨α|
∑
m,n

(c∗2,2,m−1c2,2,n−1|n− 1⟩⟨m− 1|+ c∗1,2,mc1,2,n|n⟩⟨m|

+ c∗2,1,mc2,1,n|n⟩⟨m|+ c∗1,1,m+1c1,1,n+1|n+ 1⟩⟨m+ 1|⟩)|n⟩|α⟩

= e−|α|2
[∣∣∣∣∣∑

n

c2,2,n−1
αn√
n!

∣∣∣∣∣
2

+

∣∣∣∣∣∑
n

c1,2,n
αn√
n!

∣∣∣∣∣
2

+

∣∣∣∣∣∑
n

c2,1,n
αn√
n!

∣∣∣∣∣
2

+

∣∣∣∣∣∑
n

c2,2,n+1
αn√
n!

∣∣∣∣∣
2]

.

24.2.1.5 Correlating 2 atoms in the JC model

The investigations of the last section can be applied to describe the transfer of quan-
tum coherence from one atom to another. The size of our system is now increased
by the additional degrees of freedom, provided by internal states of the second atom.
A suitable basis was defined in equation (1.223). Now, we imagine the following
Gedankenexperiment: Starting from the initial condition that two adjacent atoms
are in their respective electronic ground states, we assume a microwave π/2-pulse to
create simultaneously, but independently on both atoms, a superposition of the HFS
levels. Then, a non-resonant optical π-pulse interacts with the upper HFS level of
the first atom |1⟩A1, and afterward the second atom |2⟩A2. Instead of reducing the
atomic states and preparing a Schrödinger cat state in the optical field, (as we did
in Sec. 17.2), we now project the field state onto the coherent state |β⟩ and leave
the atoms in a correlated state. The total procedure can be resumed by tracing the
evolution of the whole state in the following suggestive way [38, 319]:




|β⟩
0

0

0




π/2 microwave
↷ 1

4




1

ı

ı

−1


 |β⟩

π opt+atom1
↷ 1

4




|β⟩
−ı| − β⟩
ı|β⟩
| − β⟩




π opt+atom2
↷ 1

4




|β⟩
−ı| − β⟩
−ı| − β⟩
−|β⟩




π/2 microwave
↷ 1

4




1

0

0

1


 |β⟩+

1

4




1

0

0

−1


 | − β⟩

reduction↷ 1
2




1

0

0

−1


 |β⟩ . (24.54)

If this procedure is extended to an arbitrary number of atoms, obviously all atoms
being excited by the same optical mode before its projection in a coherent state |β⟩
are included in the entangled state,

|ψ⟩ = 1
4



1

:

1


 |β⟩+ 1

4




1

:

−1


 | − β⟩ . (24.55)

Finally, the correlation of the spin orientation of the atoms must be probed with
additional laser light fields, which are selectively irradiated onto the atoms and res-
onantly tuned to a rapidly decaying optical transition. The states correlated in this
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Figure 24.5: (code) Evolution of the state during a Jaynes-Cummings interaction with 2

atoms: (a) Bloch vector for the two atoms, (b) time evolution of the coherence ρ12 showing

the phenomenon of collapse and revival, (c) distribution of photons, and (d) Q(α)-function.

way show a relatively low order entanglement, the von Neumann information entropy
only being S′ = −⟨log2 ρ⟩ = N − 1.

In a matricial notation the entangling gate can be expressed defining the state,

⟨ψ| =
(
c+β11 c+β12 c+β21 c+β22 c−β11 c−β12 c−β21 c−β22

)
(24.56)

= ⟨β| ⊗ ⟨atom1| ⊗ ⟨atom2| .

In this basis, the dispersive π-pulse is represented by,

Udisp ≡



1

−1
−1

1

1

−1
−1

1


. (24.57)

A resonant π/2-pulse acting on the both atoms simultaneously does,

Ureson ≡ I⊗ U (2)

π/2 ⊗ I = 1√
2



1 ı ı −1
ı 1 −1 ı

ı −1 1 ı

−1 ı ı 1

1 ı ı −1
ı 1 −1 ı

ı −1 1 ı

−1 ı ı 1


. (24.58)

Now, concatenating and projecting on the Glauber state |β⟩ we obtain, a posteriori,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Optibits.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Optibits.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Optibits.m
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a unitary entangling gate,

Uentangl ≡ Trβ |β⟩⟨β|UresonUdispUreson|β⟩⟨β| = 1√
2




1 0 0 −1
0 −1 −1 0

0 −1 −1 0

−1 0 0 1


 (24.59)

such that




1

0

0

−1


 = Uentangl




1

0

0

0


 .

24.2.2 Phononic quantum gate

The normal mode coupling can be used to create quantum entanglement. A suggested
procedure to correlate two atoms ’1’ and ’2’ is shown in Fig. 24.6 [159, 383]. The atoms
are regarded as qubits with the possible states of excitation |g⟩ and |e⟩. Additionally,
the atoms are trapped (either they are ions in a linear ion trap or atoms in standing
light wave sustained by a ring cavity). The are assumed to be cooled to the vibrational
ground state |0⟩, from which they can be coherently excited to the second collective
vibrational mode |1⟩ by means of a Raman transition, as illustrated in Fig. 24.6.

Figure 24.6: Scheme for an XOR-gate in an ion trap or a ring-cavity (see text for expla-
nation). The four possible initial collective states respond differently to a predefined laser
pulse sequence. Possible transitions are represented by solid lines, impossible transitions by
dashed lines. |a⟩ is an auxiliary excited level.

The sequence reads,

|g1⟩|g2⟩|0⟩
|g1⟩|e2⟩|0⟩
|e1⟩|g2⟩|0⟩
|e1⟩|e2⟩|0⟩

step 1
↷

|g1⟩|g2⟩|0⟩
|g1⟩|e2⟩|0⟩

−ı|g1⟩|g2⟩|1⟩
−ı|g1⟩|e2⟩|1⟩

step 2
↷

|g1⟩|g2⟩|0⟩
|g1⟩|e2⟩|0⟩

+ı|g1⟩|g2⟩|1⟩
−ı|g1⟩|e2⟩|1⟩

step 3
↷

|g1⟩|g2⟩|0⟩
|g1⟩|e2⟩|0⟩
|e1⟩|g2⟩|0⟩
−|e1⟩|e2⟩|0⟩

. (24.60)

Using the tensor notation |ψ⟩ ⊗ |ψ⟩ ≡ |ψ1⟩|ψ2⟩ and introducing a matrix notation by
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defining a basis as,

|g⟩ ⊗ |g⟩ =




1

0

0

0


 , |g⟩ ⊗ |e⟩ =




0

1

0

0


 , |e⟩ ⊗ |g⟩ =




0

0

1

0


 , |e⟩ ⊗ |e⟩ =




0

0

0

1


 , (24.61)

we can set up the truth table for this gate, also known as Cirac-Zoller gate, as,

|ψ⟩ |ψ⟩ |ψ⟩ ⊗ |ψ⟩
|g⟩ |g⟩ |g⟩ ⊗ |g⟩ 1

|g⟩ |e⟩ |g⟩ ⊗ |e⟩ 1

|e⟩ |g⟩ |e⟩ ⊗ |g⟩ 1

|e⟩ |e⟩ −|e⟩ ⊗ |e⟩ −1

=⇒ UCiZo =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 . (24.62)

We now define a new basis for the second atom only via |a2⟩ = 1√
2
(|g2⟩ + |e2⟩)

and |b2⟩ = 1√
2
(|g2⟩ − |e2⟩). The basis transform corresponds to,




|g⟩ ⊗ |a⟩
|g⟩ ⊗ |b⟩
|g⟩ ⊗ |a⟩
|g⟩ ⊗ |b⟩


 = 1√

2
I⊗H




|g⟩ ⊗ |g⟩
|g⟩ ⊗ |e⟩
|g⟩ ⊗ |g⟩
|g⟩ ⊗ |e⟩


 where I⊗H = 1√

2




1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


 (24.63)

is the Hadamard gate applied to the second qubit. Finally, we obtain the controlled
NOT gate,

UXOR = (I⊗H)UCiZo(I⊗H)−1 =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 . (24.64)

In particular, if |ψ1⟩ is initially in a superposition state, the states |ψ1⟩ and |ψ2⟩ end
up entangled,

UXOR(|g⟩+ |e⟩)⊗ I = 1√
2
(|g⟩ ⊗ |g⟩+ |e⟩ ⊗ |e⟩) . (24.65)

24.2.3 Quantum gates via controlled collisions

The proposed conditional quantum operation is based on a conditional collisional
phase shift, the condition being that the atoms are in a particular state of excitation.
In a suggestive notation for the Bloch vector of a particle subject to a resonant
radiation pulse, the interaction is described by,

| ↓⟩ π/2−→ | ↓⟩+ ı| ↑⟩ π/2−→ | ↑⟩ π/2−→ | ↓⟩ − ı| ↑⟩ π/2−→ | ↓⟩ . (24.66)

Jaksch demonstrated the following phase gate,

↓↓
↑↓
↓↑
↑↑

−→

↓↓
− ↓↑
↑↓
↑↑

. (24.67)
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This gate is equivalent to the XOR port for the qubits defined by ↓ and ↓ ± ↑, since,

↓ (↓ ± ↑)
↑ (↓ ± ↑) −→

↓ (↓ ∓ ↑)
↑ (↓ ± ↑) . (24.68)

24.2.4 Exercises

24.2.4.1 Ex: Generating a Bell state

Show that the operation
c

X01(H ⊗ I), where H is the Hadamard gate acting on the

first qu-bit and
c

X01 the controlled NOT acting on the second qubit, applied to the
2-qubit ground state generates Bell type entanglement.

Figure 24.7: Quantum circuit generating Bell type entanglement.

24.3 Quantum gates

In quantum information we use the notions introduced in the preceding sections and
formalize the calculation. In this section, we present a brief formal introduction to
the field of quantum computation with qubit matrices. The formalism is abstract, but
we may keep in mind a chain of entangled ions confined in a linear Paul trap. We will
show how the electronic states of the ions are correlated to form a single collective
state, and how quantum gates can be realized on such correlated particles. With three
ions, an arbitrary quantum gate can be implemented, which includes and generalizes
the three-bit Toffoli gate.

To construct a quantum gate, we need at least two qubits spanning a 4-dimensional
Hilbert space, since H2 ⊗H2 and H1 ⊗H4 are isomorph, that is,

|ε⟩0|µ⟩1 = (|0⟩0 + ı|1⟩0)(|0⟩1 + ı|1⟩1) =




|0⟩0|0⟩1
ı|0⟩0|1⟩1
ı|1⟩0|0⟩1
−|1⟩0|1⟩1




≜ |0⟩0|εµ⟩1 = |00⟩1 + ı|01⟩1 + ı|10⟩1 − |11⟩1 =




|00⟩1
ı|01⟩1
ı|10⟩1
−|11⟩1


 .

(24.69)

A presentation on the subject is available at (watch talk). See also the websites IBM
Circuit Composer, Qiskit, Cirq, and Pennylane.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_MakeEntangle01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumGates
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://qiskit.org/
https://quantumai.google/cirq
https://pennylane.ai/
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24.3.1 The qubit

The general state of a qubit is a quantum superposition in the Hilbert space H2,

|ε⟩ = α|0⟩+ ıβ|1⟩ =
(
α

ıβ

)
. (24.70)

and can be represented by a point on the Bloch sphere.
The possible outcomes of a measurement of its state are represented by a classical

truth table,

|q0⟩
|0⟩
|1⟩

, for example |1⟩ =
(
0

1

)
. (24.71)

While the possible values of a measurement are restricted to the binaries 0 or 1,
but the probability with which one of the two results is encountered depends on the
position of the Bloch vector at the time the measurement was performed.

As we have seen earlier, the two principle ways a light mode acts on a two-level
system are the resonant interaction and the dispersive interaction. From the Jaynes-
Cummings model (17.35) and (17.42),

R(τ) ≡
(
cos π2 τ ı sin π

2 τ

ı sin π
2 τ cos π2 τ

)
τ→1−→

(
ı

ı

)
,

D(τ) ≡
(
eıπτ 0

0 1

)
τ→1−→

(−1
1

)
.

(24.72)

Both interactions lead to unitary evolutions of the qubit’s state.
The two gates (24.72) are particular cases of the most fundamental single qubit

quantum gate, which can be written as,

U3(ϑ, φ, λ) =
(

cos ϑ2 −eıλ sin ϑ
2

eıφ sin ϑ
2 eıλ+ıφ cos ϑ2

)
, (24.73)

which is a unitary operation since detU3(ϑ, φ, λ) = eı(λ+φ). Special cases are the
Hadamard gate,

H ≡ U3(π2 , 0, π) = 1√
2

(
1 1

1 −1

)
, (24.74)

and the phase gate,

U1(φ) ≡ U3(0, φ, 0) =
(
1 0

0 eıφ

)
. (24.75)

Phase rotations about particular angles receive specific names. For example,

Z ≡ −σ̂z = U1(π) = | − q0⟩⟨q0| , (24.76)
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is simply the negative Pauli z-matrix defined in (1.154). The negation in the Hilbert
space H2,

X ≡ σ̂x = U3(π, 0, π) = |q̄0⟩⟨q0| , (24.77)

is simply the Pauli x-matrix.

Analogously to classical logic circuits, which can be represented by concatenated
symbols, quantum circuits can be composed by concatenations of unitary operations.
Fig. 24.8(b) lists fundamental quantum logic gates together with their classical coun-
terparts shown in Fig. 24.8(a).

Figure 24.8: (a) Common symbols for fundamental classical gates, (b) for single qubit quan-
tum gates, and (c) for three qubit quantum gates.

24.3.2 Quantum gates of 2 qubits

We can generalize the single-qubit algebra to arbitrary registers using the direct sum
and the external product defined in (1.223) and (1.225),

|q1, q0⟩
|0, 0⟩
|0, 1⟩
|1, 0⟩
|1, 1⟩

, for example |0, 1⟩ =




0

1

0

0


 . (24.78)
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24.3.2.1 Single qubit gates in H4

Single qubit gates can be embedded in multi-qubit registers. For example, the negation
of ’NOT’ gate in H4 can be applied either to the first or the second qubit 7,

X0 =̂ I⊗ X̂ = |q1, q̄0⟩⟨q1, q0|
X1 =̂ X̂ ⊗ I = |q̄1, q0⟩⟨q1, q0|

. (24.79)

Example 164 (Negation gates): The classical truth table for the negation of
qubit q1 reads,

|q1, q0⟩ ↷ |q̄1, q0⟩
|0, 0⟩ |0, 1⟩
|0, 1⟩ |0, 0⟩
|1, 0⟩ |1, 1⟩
|1, 1⟩ |1, 0⟩

(24.80)

In the quantum language the relations (24.79) are executed by multiplying the
unitary transform describing the negation gate with the truth table representa-
tion (24.78) of the input state |q1, q0⟩,

X ⊗ I|q1, q0⟩ =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



0 0

0 1

1 0

1 1

 = |q̄1, q0⟩ . (24.81)

Analogously, Hadamard and other rotation gates U are applied to specific qubits
of a register via I⊗ ...⊗ U ⊗ ...⊗ I.

24.3.2.2 Parallel and serial operations

In order to execute unitary operations Uk on different qubits qk of a quantum register
in parallel, the complete Hilbert space must be spanned first before the individual
operation can be described by matrix multiplication,

U = U1 ⊗ U0 = (U1 ⊗ I) (I⊗ U0) . (24.82)

Consecutive operations U, V on the quantum register can be concatenated, U V .

24.3.2.3 The controlled NOT gate

The most interesting two-qubit quantum gate is the ’controlled NOT’ gate or antiva-
lence, which we will now discuss in detail. This gate is originally defined on H2⊗H2.
The quantum operation is implemented by first going to the Hilbert space H1 ⊗H4,
applying the unitary transform,

I�X =

(
I2

X

)
, (24.83)

7Note that we call ’first’ the rightmost qubit.
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where X has been defined in Eq. (24.77), and finally returning to H2 ⊗H2:

|ε⟩0|µ⟩1 ≜ |0⟩0|εµ⟩1 N̂−→ δε=0|ε⟩0|µ⟩1 + δε=1|ε⟩1
(
1 ı

ı 1

)2

|µ⟩1 ≜ |ε⟩0|ε µ⟩1
|0⟩0|0⟩1
ı|0⟩0|1⟩1
ı|1⟩0|0⟩1
−|1⟩0|1⟩1

 ≜


|00⟩1
ı|01⟩1
ı|10⟩1
−|11⟩1

 N̂−→


|00⟩1
ı|01⟩1
ı|11⟩1
−|10⟩1

 ≜


|0⟩0|0⟩1
ı|0⟩0|1⟩1
ı|1⟩0|1⟩1
−|1⟩0|0⟩1

 .

(24.84)

The short-hand notation of the ’controlled NOT’ operation on H4 can be written as,

c

X10 =̂ I�X = |q1, q1 q0⟩⟨q1, q0|
c

X01 =̂ X � I = S(I�X)S = |q0 q1, q0⟩⟨q1, q0|
. (24.85)

where the ’SWAP’ operator S has been defined in (1.229). When the qubits addressed
by a gate are not identified from their position in the tensor product, an index at the
gate symbol indicates which qubits are involved. For example, X0 inverts the first

qubit q0, and
c

X0→1 =
c

X01 controls the state of the second qubit q1 by the first one.

Example 165 (Controlled NOT gates): We can easily verify,

c

X10 = |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗X (24.86)

=

(
1 0

0 0

)
⊗
(
1 0

0 1

)
+

(
0 0

0 1

)
⊗
(
0 1

1 0

)
=

(
I 0

0 X

)
,

and

c

X01 = I| ⊗ |0⟩⟨0|+X ⊗ |1⟩⟨1| (24.87)

=

(
1 0

0 1

)
⊗
(
1 0

0 0

)
+

(
0 1

1 0

)
⊗
(
0 0

0 1

)
= S

c

X10S .

The SWAP gate itself can be generated from cNOT gates, as will be shown in
Exc. 24.3.7.1. Do the Excs. 24.3.7.2 to 24.3.7.3.

24.3.3 Boolean versus linear algebra

It is now time to work out the fundamental difference between classical and quan-
tum computing. The mathematical formalism underlying classical computing is the
Boolean algebra, while the formalism underlying quantum computing is the linear
algebra.

Example 166 (Controlled NOT gates): We illustrate the difference between
classical and quantum computing at the example of the XOR gate represented by
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the classical truth table,

|q1, q0⟩ ↷ |q1, q1 q0⟩
|0, 0⟩ |0, 0⟩
|0, 1⟩ |0, 1⟩
|1, 0⟩ |1, 1⟩
|1, 1⟩ |1, 0⟩

(24.88)

The operation can be realized via unitary transform,

I�X|q1, q0⟩ = XOR1|q1, q0⟩ =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



0 0

0 1

1 0

1 1

 =


0 0

0 1

1 1

1 0

 = |q1, q1 q0⟩ .

(24.89)

The unitary transform allows not only to propagate specific states |q1, q0⟩ of the
basis through the circuit, but also linear combinations, such as for example the

state |0, 0⟩+ |1, 0⟩.

Quantum superpositions are not permitted in classical computing, which is to
say that the only permitted input states are the eigenstates of the product basis.
Consequently, gate operations inducing superpositions, such as the Hadamard gate are
not allowed. Only gate operations transforming an eigenstate into another eigenstate
are possible, such as the NOT or the NAND gate.

It is important to stress that everything you can do on a classical computer, you
can do on a quantum computer, and vice versa. The question is simply whether you
can do it in due time. The first part of the statement is obvious by the fact that
quantum computing is described by unitary transformations on a large but discrete
and finite Hilbert space. The transformations are represented by matrices, which
can be processed on a classical computer. The second part of the statement is a bit
more tricky, because the fundamental gates of classical computing are AND and OR

operations, which are not unitary. So see this, we set up the classical truth table for
the AND gate,

|q1, q0⟩ ↷ |q1, q1 ∧ q0⟩
|0, 0⟩ |0, 0⟩
|0, 1⟩ |0, 0⟩
|1, 0⟩ |1, 0⟩
|1, 1⟩ |1, 1⟩

(24.90)

and the corresponding transform,

AND1|q1, q0⟩ =




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1







0 0

0 1

1 0

1 1


 =




0 0

0 0

1 0

1 1


 = |q1, q1 ∧ q0⟩ . (24.91)

Hence, the fundamental gates of classical computing cannot be constructed only from
unitary XOR and NOT gates. Another way to see this is by noticing that the result
|0, 0⟩ of the truth table (24.90) can be obtained from two different input states, which
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Figure 24.9: Quantum circuit realizing logical gates. While the NOT and XOR gates can be
made reversible, the AND and OR gates require projection of some qubits.

means that the classical operation is not reversible. Do the Excs. 24.3.7.4 to 24.3.7.5.

In Exc. 24.3.7.10 we will show how to embed AND and OR into more general three-bit
quantum gates, which then can be projected into non-unitary AND and OR gates.

24.3.4 Fundamental and universal quantum gates of 3 qubits
and more

We now consider three qubits in H8 ≡ H2 ⊗H2 ⊗H2. The truth table has the shape,

|q2, q1, q0⟩
|0, 0, 0⟩
|0, 0, 1⟩
|0, 1, 0⟩
|0, 1, 1⟩
|1, 0, 0⟩
|1, 0, 1⟩
|1, 1, 0⟩
|1, 1, 1⟩

, for example |0, 1, 0⟩ =



0

0

1

0

0

0

0

0


. (24.92)

We choose I8 as the basis of H8. We assume that the number represented by the
state |q2, q1, q0⟩ is [q2q1q0]binary = [22q2 + 21q1 + 20q0]decimal.

The unitary transform implemented by a quantum gate can be understood as a
permutation of the basis vectors in the truth table. We can generalize the permutation
rules (1.229) to 3D Hilbert spaces H2 ⊗H2 ⊗H2, where M ⊗N ⊗R = S01(N ⊗M ⊗
R)S01 = S12(M⊗R⊗N)S12 = S01(R⊗N⊗M)S02, with the transformation matrices,

S01 = I⊗ S , S12 = S⊗ I , S02 = S01S12S01 , (24.93)

where the operator S has again been taken from (1.229). In Exc. 24.3.7.7 we derive
the explicit matricial forms of Sij .

Examples of fundamental three-qubits gates are, in short notation, the negation
in H8,

X0 =̂ I⊗ I⊗X = |q2, q1, q̄0⟩⟨q2, q1, q0| (24.94)

X1 =̂ I⊗X ⊗ I = |q2, q̄1, q0⟩⟨q2, q1, q0|
X2 =̂ X ⊗ I⊗ I = |q̄2, q1, q0⟩⟨q2, q1, q0| ,
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the antivalence,

c

X10 ≡ I⊗ (I�X) = |q2, q1, q1 q0⟩⟨q2, q1, q0|
c

X01 ≡ S01
c

X10S01 = |q2, q0 q1, q0⟩⟨q2, q1, q0|
c

X02 ≡ S12
c

X01S12 = |q0 q2, q1, q0⟩⟨q2, q1, q0|
c

X20 ≡ S02
c

X02S02 = |q2, q1, q2 q0⟩⟨q2, q1, q0|
c

X21 ≡ S02
c

X01S02 = |q2, q2 q1, q0⟩⟨q2, q1, q0|
c

X12 ≡ S12
c

X21S12 = |q1 q2, q1, q0⟩⟨q2, q1, q0| ,

(24.95)

from which we get explicitly, as verified in Exc. 24.3.7.8,

c

X10 =


I

X

I
X

 ,
c

X20 =


I

I
X

X

 ,
c

X21 =

I
I

X ⊗ I

 .

(24.96)

It is possible to show that all quantum logic gates can be reduced to a universal
so-called Toffoli gate [55],

H8 U−→ H8

|q2, q1, q0⟩ U−→ |q2, q1, (q2 ∧ q1) q0⟩
I8

U−→ U ,
(24.97)

or in short-hand notation,

cc

X210 = I� I�X = |q2, q1, (q2 ∧ q1) q0⟩⟨q2, q1, q0| =
(
I6

σ̂x

)
, (24.98)

as will be shown in Exc. 24.3.7.9 and 24.3.7.10.
Obviously, to perform quantum calculations, we need at least two qubits and op-

erations acting simultaneous on both. Do the Excs. 24.3.7.11 to 24.3.7.12.

The extension of the formalism to more than three qubits is straightforward, and
the implementation of a quantum algorithm on a classical computer is quite simple,
the difficulty mainly being the size of the Hilbert space, which rapidly explodes with
increasing numbers of qubits.

In practice, the task often consists in breaking down a problem into a sequence
of operations on a binary quantum register. As we have shown in Sec. 24.3.3 every
irreversible classical algorithm can be mapped to a corresponding reversible quantum
algorithm. This brute force ’quantization’ is, however, very inefficient since it uses as
many (and even more) qubits than the classical algorithm.

Until now, we restricted to pure states |ψf ⟩ =
⊗

k[αk|0⟩k+βk|1⟩k] generated from
an initial eigenstate |ψi⟩ =

⊗
k |0⟩k by reversible quantum computing. The density
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Table 24.1: Symbols and definitions of common quantum gates.

gate symbol matrix

identity I U3(0, 0, 0)
inversion X = NOT σ̂x = U3(π, 0, π)
Pauli Y Y σ̂y = U3(π, π2 , π2 )
Pauli Z Z σ̂z = U1(π)
S gate S σ̂z = U1(π2 )
T gate T σ̂z = U1(π4 )
Hadamard gate H U3(π2 , 0, π)

swap gate S = SWAP




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




controlled X
c

X = cX I� σ̂x =


I2 0

0 σ̂x




controlled Z
c

Z = cZ I� σ̂z =

I2 0

0 σ̂z




controlled H
c

H = cH I�H =


I2 0

0 H




Toffoli
cc

X = ccX I� I� σ̂x =


I6

σ̂x




operator can then be written,

ρ̂ = |ψf ⟩⟨ψf | = U|ψi⟩⟨ψi|U† . (24.99)

In the next section, following up on Sec. 14.2.3, we will discuss how projective mea-
surements introduce irreversibility into the evolution of the density operator.

24.3.5 State propagation and projective measurements

The measurement of a qubit projects the Hilbert space on its two possible outcomes.
For example, measuring the first out of three qubits means,

H⊗H⊗H measure−→
{
|0⟩ ⊗H⊗H
|1⟩ ⊗H⊗H

. (24.100)
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Figure 24.10: Illustration of the possible states of a 5-qubit system.

We consider a density matrix ρ̂ operating on the entire Hilbert space and define
projectors,

P̂
(n)
j = I⊗ ...⊗ |n⟩j⟨n| ⊗ ...⊗ I with n = 0, 1 . (24.101)

that, applied to a specific qubit qj , project its state onto the eigenstate |0⟩ or |1⟩,
respectively. A projective measurement of the j-th qubit with two possible outcomes

|qj⟩ = |0⟩, |1⟩ with the respective probabilities p
(0)
j , p

(1)
j , generates the mixed states

reduced density operator,

ρ̂redj =
∑

n=0,1

p
(n)
j

P̂
(n)
j ρ̂P̂

(n)
j

Tr ρ̂P̂
(n)
j

. (24.102)

Note that, a priori, ρ̂redj has the same rank as ρ̂, but a more diagonal structure, since
some coherences have been traced out.

24.3.5.1 Quantum state tomography

Any density operator of a pure or mixed state of an individual qubit can be expanded
as,

ρ̂j =
1
2

(
I+ aj σ̂

x
j + bj σ̂

y
j + cj σ̂

z
j

)
= 1

2

(
1 + cj aj − ıbj
aj + ıbj 1− cj

)
, (24.103)

where,

σ̂kj = I⊗ ...⊗ σ̂k ⊗ ...⊗ I , (24.104)

and σ̂k are the Pauli matrices. The parameters aj , bj , and cj can be determined by
measurements,

⟨ˆ⃗σj⟩ = Tr ρ̂ˆ⃗σj =



aj
bj
cj


 , (24.105)

where ρ̂ is the density matrix of the whole system.
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24.3.5.2 Measurements on a single qubit

A single qubit |ψ⟩ = α|0⟩ + β|1⟩, normalized as |α|2 + |β|2 = 1, is described by the
density operator,

ρ̂ =

(
ρ00 ρ01
ρ10 ρ11

)
= |ψ⟩⟨ψ| =

(|α|2 αβ∗

α∗β |β|2
)
. (24.106)

A projective measurement of the qubit with two possible outcomes, |q⟩ = |0⟩, |1⟩ with
the respective probabilities p(0) = |α|2 and p(1) = |β|2, generates the mixed states
reduced density operator,

ρ̂red = p(0)
|0⟩⟨0|ρ̂|0⟩⟨0|
Tr ρ̂|0⟩⟨0| + p(1)

|1⟩⟨1|ρ̂|1⟩⟨1|
Tr ρ̂|1⟩⟨1| = |α|2|0⟩⟨0|+ |β|2|1⟩⟨1| . (24.107)

Some physical processes may not only project the density operator onto a specific
basis, but onto a particular eigenstate,

ρ̂ −→ ρ̂prj = |0⟩⟨0|ρ̂|0⟩⟨0| . (24.108)

Example 167 (Quantum Zeno effect on a single qubit): As an example, let
us express the quantum Zeno effect in quantum computing language. Starting
from a two-level system in its ground state,

ρ̂in =

(
1 0

0 0

)
, U3(ϑ, 0, 0) =

(
cosϑ − sinϑ

sinϑ cosϑ

)
,

we perform small rotations,

ρ̂rot = U3(ϑ, 0, 0)ρ̂inU3(ϑ, 0, 0)† =

(
cos2 ϑ cosϑ sinϑ

cosϑ sinϑ sin2 ϑ

)(
1 0

0 0

)
,

before measuring the system,

ρ̂red = cos2 ϑ
|0⟩⟨0|ρ̂rot|0⟩⟨0|
Tr ρ̂rot|0⟩⟨0| + sin2 ϑ

|1⟩⟨1|ρ̂rot|1⟩⟨1|
Tr ρ̂rot|1⟩⟨1| =

(
cos2 ϑ 0

0 sin2 ϑ

)
.

Discarding the possibility that the system be excited, we project it system onto
the ground state,

ρ̂fin = |0⟩⟨0|ρ̂red|0⟩⟨0| = |0⟩⟨0|U3(ϑ, 0, 0)ρ̂inU3(ϑ, 0, 0)†|0⟩⟨0| =
(
cos2 ϑ 0

0 0

)
.

On the other hand, repeating the procedure n times with ϑ = π
2n

and n → ∞,
we find,

ρ̂fin = lim
n→∞

(
|0⟩⟨0|U3( π2n , 0, 0)ρ̂

inU3( π2n , 0, 0)
†|0⟩⟨0|

)n
=

(
limn→∞ cos2n π

2n
0

0 0

)
= ρ̂in .

That is, the evolution of the system is frozen by too many measurements.
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Figure 24.11: Quantum Zeno effect on a single qubit.

24.3.5.3 Measurements in two qubit systems

Let us now consider a two-qubit system q1⊗q0 described by the initial density matrix,

ρ̂ = ρ̂1 ⊗ ρ̂0 =

(|α1|2 α1β
∗
1

α∗
1β1 |β1|2

)
⊗
(|α0|2 α0β

∗
0

α∗
0β0 |β0|2

)
(24.109)

=

(
(ρ1)00 (ρ1)01
(ρ1)10 (ρ1)1

)
⊗
(
(ρ0)00 (ρ0)01
(ρ0)10 (ρ0)1

)
=




ρ00⊗00 ρ00⊗01 ρ10⊗00 ρ01⊗01

ρ00⊗10 ρ00⊗11 ρ01⊗10 ρ01⊗11

ρ10⊗00 ρ10⊗01 ρ11⊗00 ρ11⊗01

ρ10⊗10 ρ10⊗11 ρ11⊗10 ρ11⊗11


 ,

where we defined ρkl⊗mn ≡ (ρ1)kl(ρ0)mn. Projective measurements of qubit q1 with
two possible outcomes, |q1⟩ = |0⟩, |1⟩, with the respective probabilities p(0) = |α1|2
and p(1) = |β1|2, yields the reduced density operator,

ρ̂red1 = p(0)
[|0⟩⟨0| ⊗ I]ρ̂[|0⟩⟨0| ⊗ I]

Tr ρ̂[|0⟩⟨0| ⊗ I]
+ p(1)

[|1⟩⟨1| ⊗ I]ρ̂[|1⟩⟨1| ⊗ I]
Tr ρ̂[|1⟩⟨1| ⊗ I]

(24.110)

=
|α1|2

ρ00⊗00 + ρ01⊗01




ρ00⊗00 ρ00⊗01 0 0

ρ01⊗00 ρ01⊗01 0 0

0 0 0 0

0 0 0 0


+

|β1|2
ρ10,10 + ρ11,11




0 0 0 0

0 0 0 0

0 0 ρ10⊗10 ρ10⊗11

0 0 ρ11⊗10 ρ11⊗11


 .

The inversion of qubit q1 is,

⟨σ̂z1⟩ = Tr ρ̂ [σ̂z ⊗ I] = ρ00,00 + ρ01,01 − ρ10,10 − ρ11,11 . (24.111)

Figure 24.12: Projective measurement. After an operation U , two qubits remain in an
entangled state ρ̂. Measurement of qubit q1 reduces the state to ρ̂red, while transferring the
information to a classical channel c.

Example 168 (Measurements on disentangled qubits): As a particular
case, let us first consider two disentangled qubits |ψ⟩ = |q1⟩ ⊗ |q0⟩ = [α1|0⟩ +
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β1|1⟩]⊗ [α0|0⟩+ β0|1⟩], such that,

ρ̂ =


α1α0

α1β0
β1α0

β1β0

(α∗
1α

∗
0 α∗

1β
∗
0 β∗

1α
∗
0 β∗

1β
∗
0

)
(24.112)

=


|α1|2|α0|2 |α1|α∗

0β
∗
0 α1β

∗
1 |α0|2 α1β

∗
1α0β

∗
0

|α1|2α∗
0β0 |α1|2|β0|2 α1β

∗
1α

∗
0β0 α1β

∗
1 |β0|2

α∗
1β1|α0|2 β1α

∗
1α0β

∗
0 |β1|2|α0|2 |β1|2α0β

∗
0

α∗
1β1α

∗
0β0 α∗

1β1|β0|2 |β1|2α∗
0β0 |β1|2|β0|2

 .

A projective measurements of qubit q1 with two possible outcomes, |q1⟩ =
|0⟩1, |1⟩1 with the respective probabilities p0 = |α1|2 and p1 = |β1|2, yields the
reduced density operator,

ρ̂red1 = p(0)
[|0⟩⟨0| ⊗ I]ρ̂[|0⟩⟨0| ⊗ I]

Tr ρ̂[|0⟩⟨0| ⊗ I]
+ p(1)

[|1⟩⟨1| ⊗ I]ρ̂[|1⟩⟨1| ⊗ I]
Tr ρ̂[|1⟩⟨1| ⊗ I]

(24.113)

= |α1|2


|α0|2 α0β

∗
0 0 0

α∗
0β0 |β0|2 0 0

0 0 0 0

0 0 0 0

+ |β1|2


0 0 0 0

0 0 0 0

0 0 |α0|2 α0β
∗
0

0 0 α∗
0β0 |β0|2


= [|α1|2|0⟩⟨0|+ |β1|2|1⟩⟨1|]⊗ ρ̂0 .

The inversion of qubit q1 is,

⟨σ̂z1⟩ = |α1|2 − |β1|2 . (24.114)

That is, we are left with a mixture of two product states, |0⟩⊗ [α0|0⟩+β0|1⟩] or
|1⟩⊗ [α0|0⟩+ β0|1⟩]. Analogically, a projective measurements of qubit q0 yields,

ρ̂red0 = |α0|2ρ̂1 ⊗ |0⟩⟨0|+ |β0|2ρ̂1 ⊗ |1⟩⟨1| (24.115)

and ⟨σ̂z0⟩ = |α0|2 − |β0|2 .

Example 169 (Measurements on entangled qubits): Now, we consider two
entangled qubits |ψ⟩ = α[|0⟩⊗ |0⟩] + β[|1⟩⊗ |1⟩], with |α|2 + |β|2 = 1, such that,

ρ̂ =


α

0

0

β

(α∗ 0 0 β∗
)
=


|α|2 0 0 αβ∗

0 0 0 0

0 0 0 0

α∗β 0 0 |β|2

 . (24.116)

Projective measurements of qubit q1 with two possible outcomes yields in both
of the two cases, |q1⟩ = |0⟩, |1⟩, the reduced density operator,

ρ̂red1 = p(0)
[|0⟩⟨0| ⊗ I] ρ̂[|0⟩⟨0| ⊗ I]

Tr ρ̂[|0⟩⟨0| ⊗ I]
+ p1

[|1⟩⟨1| ⊗ I]ρ̂[|1⟩⟨1| ⊗ I]
Tr ρ̂[|1⟩⟨1| ⊗ I]

(24.117)

=


|α|2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 |β|2

 = |α|2[|0⟩⟨0| ⊗ |0⟩⟨0|] + |β|2[|1⟩⟨1| ⊗ |1⟩⟨1|] .

A projective measurements of qubit q1 would yield exactly the same result.
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24.3.6 The field of quantum information

The possibility to experimentally control, manipulate and read out individual qubits
gave birth to a new field of physics in the past two decades now called quantum in-
formation. This fields includes the more specific areas of quantum processing (which
itself splits into the subareas of quantum computing and quantum simulation), quan-
tum communication, and quantum sensing (see Sec. 24.4).

Figure 24.13: Key technologies of the second quantum revolution.

The fundamental epitomic systems on which the quantum information technologies
are based are listed in the table below. Although the correspondence is oversimplified,
it gives a coarse idea of the involved areas of quantum mechanics. Technological rev-
olutions have often been triggered by paradigmatic ’paradoxes’ which, in fact, were
mostly dramatized juxtapositions of classical and innovative concepts and stop being
paradoxical, once they have been resolved by a more complete theory. The table also
lists the cornerstone paradoxes of quantum information technologies.

area quantum computing communication sensing

system two-level atom / spin harmonic oscillator propagation of free atom

device qubit photon interferometer

phenomenon quantum entanglement superposition & measurement

paradox EPR paradox Schrödinger cat

24.3.6.1 Physical implementation of quantum computers

Quantum entanglement and information processing protocols for quantum computing
have been implemented with various technologies (see table below for a non-exhaustive
list), some of them pursued by private companies. Every approach has its advantages
and disadvantages, the main figures of merit being the qubit number, the qubit connec-
tivity, and the gate fidelity. Other important factors are scalability, qubit homogeneity,
and ease of fabrication and use.
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physical system description companies publications

ions trapped ion array IonQ, AQT [596, 546]

neutral atoms optical lattice - [17]

transmons superconducting JJ arrays IBM, Google, ... [27]

molecules NMR on bonds in molecules - [885]

NV centers color centers in diamond - [652]

quantum dots quantum dots arrays diraq [529]

photons polarization or timing - [797]

Example 170 (Quantum volume of perfect processor): The quantum vol-
ume of an N -qubit quantum processor is a metric invented by IBM that char-
acterizes the largest random quantum circuit that the device can efficiently
simulate. The formula for quantum volume is given by:

quantum volume = N2 ×maximal depth . (24.118)

In the case of a perfect N -qubit processor, the maximal depth is equal to

N since each gate can be applied in parallel on all qubits, and there are N

such layers. Therefore, the quantum volume of a perfect N -qubit processor is

quantum volume = N3. This means that a perfect N -qubit quantum processor

can efficiently simulate random quantum circuits of up to N3 gates. However,

in reality, quantum processors suffer from errors due to various sources such

as decoherence and imperfect gate operations, and as a result, their quantum

volume is typically much lower than this theoretical limit.

24.3.6.2 Quantum sensing 2.0

Many sensors are based on interferometry, as explained in Sec. 24.4.2. The circuit
exhibited in Fig. 24.14 visualizes the basic principle of an interferometer. The two
Hadamard gates correspond to Ramsey pulses, and the controlled U gate realizes the
interaction, which transfers information from the U gate to the sensing qubit.

Figure 24.14: Quantum interferometry.

As mentioned in Sec. 18.2.2 and in Sec. 23.1.5, the sensitivity of interferometers
can be enhanced when correlated particles are used. In Exc. 24.3.7.16 we show how
the interferometer of Fig. 24.14 can be modified in order to benefit from correlated
particles.

24.3.6.3 Continuous variable quantum information

Continuous variable quantum information is the area of quantum information science
that makes use of physical observables with continuous spectra, like the strength of
an electromagnetic field. Continuous-variable quantum computation is performed on
infinite-dimensional Hilbert spaces and may be called ’analog’, while qubit quantum
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computation is performed on finite-dimensional Hilbert spaces (2N withN the number
of qubits) and may be called ’digital’.

Bosonic modes are examples of systems being studied for the implementation of
continuous-variable quantum information. By modeling each mode of the electro-
magnetic field as a quantum harmonic oscillator with its associated field operators,
one defines a canonically conjugate pair of variables for each mode, the so-called
quadratures, which span a phase space on which Wigner quasi-probability distribu-
tions can be defined. Quantum measurements on such a system can be performed
using homodyne and heterodyne detectors. Interestingly, qubits can be encoded into
a continuous variable [332]. The procedure is easily understood at the example of a
two-level atom dispersively interacting with a cavity mode studied within the Jaynes-
Cummings model in Sec. 17.2.2 and in the Exc. 17.2.5.6. See also Sec. 24.2.1.

In all approaches to quantum computing, it is important to know whether a task
under consideration can be carried out efficiently by a classical computer. An algo-
rithm might be described in the language of quantum mechanics, but upon closer
analysis, reveals to be implementable using only classical resources [331], even if
making use of quantum entanglement. When the Wigner quasi-probability represen-
tations of all the quantities (states, time evolutions and measurements) involved in
a computation are non-negative, then they can be interpreted as ordinary probabil-
ity distributions, indicating that the computation can be modeled as an essentially
classical one [570].

24.3.6.4 Quantum Fourier transform

The quantum Fourier transform (QFT) is a linear transformation on qubits and the
quantum analogue of the inverse discrete Fourier transform. The quantum Fourier
transform is a part of many quantum algorithms, notably Shor’s algorithm for factor-
ing and computing the discrete logarithm or the quantum phase estimation algorithm
for estimating the eigenvalues of a unitary operator.

The quantum Fourier transform can be performed efficiently on a quantum com-
puter, with a particular decomposition into a product of simpler unitary matrices.
Using a simple decomposition, the discrete Fourier transform on 2n amplitudes can
be implemented as a quantum circuit consisting of only O(n2) Hadamard gates and
controlled phase shift gates, where n is the number of qubits. This can be compared
with the classical discrete Fourier transform, which takes O(2n) gates, which is ex-
ponentially more than in the classical case. However, the quantum Fourier transform
acts on a quantum state, whereas the classical Fourier transform acts on a vector, so
not every task that uses the classical Fourier transform can take advantage of this
exponential speedup.

The quantum Fourier transform is the classical discrete Fourier transform applied
to the vector of amplitudes of a quantum state, where we usually consider vectors of
length N = 2n. The classical Fourier transform acts on a vector (x0, x1, . . . , xN−1) ∈
CN and maps it to the vector (y0, y1, . . . , yN−1) ∈ CN according to the formula:

yk =
1√
N

N−1∑

n=0

xnω
∓kn
N , (24.119)
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where k = 0, 1, . . . , N−1 and ωN = e2πı/N and ωnN is an N th root of unity. The lower
sign holds for the inverse FT.

Similarly, the quantum Fourier transform acts on a quantum state |x⟩ =∑N−1
i=0 xi|i⟩

and maps it to a quantum state
∑N−1
i=0 yi|i⟩ according to the same formula (24.119).

In case that |x⟩ is a basis state, the quantum Fourier Transform can also be expressed
as the map,

|x⟩ 7→ 1√
N

N−1∑

k=0

ωxkn |k⟩ . (24.120)

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or
a quantum gate, similar to a Boolean logic gate for classical computers) acting on
quantum state vectors, where the unitary matrix is given by,

FN =
1√
N




1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)




(24.121)

where ω = ωN . Do the Excs. 24.3.7.13 and 24.3.7.14.
The QFT is unitary,

FF † = I , (24.122)

and can be efficiently performed on a quantum computer. The quantum gates used
in the circuit are the Hadamard gate and the controlled phase gate Rm,

H = 1√
2

(
1 1

1 −1

)
and Rm =

(
1 0

0 e2πı/2
m

)
, (24.123)

with e2πı/2
m

= ω(2m) the primitive 2m-th root of unity. The circuit is composed of H
gates and the controlled version of Rm.

Figure 24.15: Quantum circuit for QFT with n qubits (without rearranging the order of
output states).
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All quantum operations must be linear, so it suffices to describe the function on
each one of the basis states and let the mixed states be defined by linearity. This is
in contrast to how Fourier transforms are usually described. We normally describe
Fourier transforms in terms of how the components of the results are calculated on
an arbitrary input. This is how you would calculate the path integral or show BQP is
in PP. But it is much simpler here (and in many cases) to just explain what happens
to a specific arbitrary basis state, and the total result can be found by linearity.

The quantum Fourier transform can be approximately implemented for any N ;
however, the implementation for the case where N is a power of 2 is much simpler.
As already stated, we assume N = 2n. We have the orthonormal basis consisting of
the vectors |0⟩, . . . , |2n − 1⟩. The basis states enumerate all the possible states of the
qubits, |x⟩ = |x1x2 . . . xn⟩ = |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩, where |xj⟩ indicates that qubit
j is in state xj , with xj either 0 or 1. By convention, the basis state index x orders
the possible states of the qubits lexicographically, i.e. by converting from binary to
decimal in this way:

x = x12
n−1 + x22

n−2 + · · ·+ xn2
0 . (24.124)

It is also useful to borrow fractional binary notation:

[0.x1 . . . xm] =

m∑

k=1

xk2
−k . (24.125)

For instance, [0.x1] =
x1

2 and [0.x1x2] =
x1

2 + x2

22 . With this notation, the action of
the quantum Fourier transform can be expressed in a compact manner:

QFT(|x1x2 . . . xn⟩) =
1√
N

(
|0⟩+ e2πı [0.xn]|1⟩

)
⊗
(
|0⟩+ e2πı [0.xn−1xn]|1⟩

)
⊗ · · ·

⊗
(
|0⟩+ e2πı [0.x1x2...xn]|1⟩

)
, (24.126)

where we have used [0.x1x2...xm] = [x1x2...xn]/2
m. This can be seen by rewriting

the formula for the Fourier transform in the binary expansion:

QFT(|x⟩) = 1√
N

2n−1∑

k=0

ωxkn |k⟩ = ... =
1√
N

n⊗

j=1

(
|0⟩+ ωx2

n−j

n |1⟩
)
. (24.127)

Now, we have ωx2
n−j

n = e
2πı
2n x2

n−j

= e2πı(x2
−j). Let,

f(j) = x2−j = 2−j
n∑

r=1

xr2
n−r =

n∑

r=1

xr2
n−j−r (24.128)

=

n−j∑

r=1

xr2
n−j−r +

n∑

r=n−j+1

xr2
n−j−r = a(j) + b(j) .

then a(j) ∈ N0, because 2
n−j−r ≥ 0, for n−j−r ≥ 0, and b(j) = 0.xn−j+1xn−j+2 . . . xn,

thus the (2) becomes:

e2πıf(j) = e2πı(a(j)+b(j)) = e2πıa(j) · e2πıb(j) = e2πı[0.xn−j+1xn−j+2···xn] , (24.129)
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since e2πıa(j) = 1 for all j. Then we can write:

QFT(|x1x2 . . . xn⟩) =
1√
N

n⊗

j=1

(
|0⟩+ ωx2

n−j

n |1⟩
)

(24.130)

=
1√
N

n⊗

j=1

(
|0⟩+ e2πı[0.xn−j+1xn−j+2...xn]|1⟩

)

=
1√
N

(
|0⟩+ e2πı[0.xn]|1⟩

)
⊗
(
|0⟩+ e2πı[0.xn−1xn]|1⟩

)
⊗ · · · ⊗

(
|0⟩+ e2πı[0.x1x2...xn]|1⟩

)
.

To obtain this state from the circuit depicted above, a swap operations of the
qubits must be performed to reverse their order. After the reversal, the n-th output
qubit will be in a superposition state of |0⟩ and e2πı [0.x1...xn]|1⟩, and similarly the
other qubits before that (take a second look at the sketch of the circuit above).

In other words, the discrete Fourier transform, an operation on n qubits, can be
factored into the tensor product of n single-qubit operations, suggesting it is easily
represented as a quantum circuit (up to an order reversal of the output). In fact, each
of those single-qubit operations can be implemented efficiently using a Hadamard
gate and controlled phase gates. The first term requires one Hadamard gate and
(n − 1) controlled phase gates, the next one requires a Hadamard gate and (n − 2)
controlled phase gate, and each following term requires one fewer controlled phase
gate. Summing up the number of gates, excluding the ones needed for the output
reversal, gives n + (n − 1) + · · · + 1 = n(n + 1)/2 = O(n2) gates, which is quadratic
polynomial in the number of qubits.

The QFT is useful in the simulation of Hamiltonian evolution governed by conju-
gate variables,

e−Ĥt/ℏ where Ĥ =
p̂

2m
+
m

2
ω2x̂2 , (24.131)

where, similar to the time-splitting spectral algorithm, we may replace differential
operators,

p̂ = F−1 x̂ F . (24.132)

24.3.7 Exercises

24.3.7.1 Ex: Two-bit SWAP gate

Represent the two-qubit SWAP gate by a succession of three CNOT gates.

24.3.7.2 Ex: Quantum computing code for spin-squeezing

Express spin-squeezing of 2, respectively, 3 qubits by a quantum circuit. See also
Exc. 23.1.9.13!

24.3.7.3 Ex: Controlled Z-gate

Check that the Cirac-Zoller cZ gate is invariant under spin exchange. This fact justifies
the symmetry of the symbol with respect to the two coupled qubits.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumCompute01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumCompute02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumCompute03.pdf
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24.3.7.4 Ex: Boolean logic

Write an algorithm encoding a decimal integer A0 into a binary,

D =

kmax∑

k=0

2kak .

24.3.7.5 Ex: Boolean logic

a. Design a classical logic circuit only based on NAND gates for the increment by 1 of
a number encoded in a n-bit register.
b. Design a classical logic circuit only based on NAND gates for the addition of two
numbers.

24.3.7.6 Ex: Fredkin cSWAP gate

a. Write down the truth table for the Fredkin gate defined by the protocol that the
qubits q1 and q0 are swapped only if the state of qubit q2 is 1.
b. Write down the matrix realizing the Fredkin gate.
c. Check that the quantum circuit sketched in Fig. 24.16, which only envolves two-
qubit quantum gates, realizes a Fredkin gate.

Figure 24.16: Quantum circuit realizing a Fredkin gate
cc

X012.

24.3.7.7 Ex: Three-bit SWAP gate

a. Convince yourself that the SWAP gates defined by (24.93) have the explicit matrix
form,

Sij(k, kij) ≡ 1 where





k = [0, ..., 7]

k12 = [0, 1, 4, 5, 2, 3, 6, 7]

k01 = [0, 2, 1, 3, 4, 6, 5, 7]

k02 = [0, 4, 2, 6, 1, 5, 3, 7]

,

the index k indicating the column and kij the row where the matrix has an entry.
b. Verify,

S−1 = S , S−1
ij = Sij .

24.3.7.8 Ex: Quantum gates

Verify the formulae (24.95).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumCompute04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumCompute05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing02.pdf
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24.3.7.9 Ex: Toffoli gate

a. Write down the truth table for the Toffoli gate.
b. Write down the matrix realizing the Toffoli gate.
c. Check that the quantum circuit sketched in Fig. 24.17, which only envolves two-
qubit quantum gates realizes a Toffoli gate.

Figure 24.17: Quantum circuit realizing a Toffoli gate
cc

X012.

24.3.7.10 Ex: Classical and quantum logic

a. Verify ¬(A ∨B) = ¬A ∧ ¬B and A B = (¬A ∧B) ∨ (A ∧ ¬B).
b. How would you realize the classical logical operations AND, OR, and XOR on a quan-
tum computer?

24.3.7.11 Ex: Quantum composer

Show that the following diagrams describe identical unitary operations:

Figure 24.18: Quantum composer.

24.3.7.12 Ex: Classical addition of two qubits

Design a quantum algorithm for the classical addition of up to 8 qubits.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing06.pdf
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24.3.7.13 Ex: CARL simulation on a quantum computer

Try to recast the so-called CARL Hamiltonian,

Ĥ = U0(â
†
+â−e

−ıkr̂ + â+â
†
−e

ıkr̂)

such that it can be simulated by a sequence of quantum gates.

24.3.7.14 Ex: Quantum Fourier transform on a quantum computer

Write down the QF transformation matrix for the case of N = 4 = 22 and phase
ω = ı.

24.3.7.15 Ex: Three entangled qubits

a. Imagine a three-qubit quantum gate or a sequence of gates generating from the
ground state the three partite states [253]:

|GHZ⟩ ≡ 1√
2
(|000⟩+ |111⟩ and |W⟩ ≡ 1√

3
(|001⟩+ |010⟩+ |100⟩) .

b. Show how the procedure for the generation of the |GHZ⟩ state can be easily ex-
tended to N entangled particles.

24.3.7.16 Ex: Scattering circuit

a. Consider the controlled U gate given by,
c

U10 = |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗ U ,
where U is an arbitrary unitary operation, and the quantum circuit given by,

M = [H ⊗ I]
c

U10[H ⊗ I]

and depicted in Fig. 24.14. Starting from an initial state |0⟩⟨0| ⊗ ρ̂0, show, that a
measurement of the first qubit |q1⟩ of the final state,

ρ̂f =M [|0⟩⟨0| ⊗ ρ̂0]M†

yields,
⟨σ̂z1⟩ = Re [Tr0 ρ̂0U ] and ⟨σ̂y1 ⟩ = Im [Tr0 ρ̂0U ] .

b. Calculate ⟨⃗̂σ1⟩ for the case that U is a one-qubit phase gate given by (24.75).

c. Calculate ⟨⃗̂σ1⟩ for the case that U = X is a one-qubit NOT gate given by (24.77).

24.3.7.17 Ex: Heisenberg-limited quantum sensing

This exercise aims at showing that entangled qubits allow for phase measurements
beyond the standard quantum limit. Proceed as follows:
a. Express standard Ramsey interferometry for a single qubit as a sequence of quantum
gates and calculate the uncertainty of the final Bloch vector component ∆Ŝz/||Ŝz||.
b. Repeat (a) with a product state of two qubits.
c. Plot the relative uncertainty of the inversion (∆Ŝ2

z/⟨Ŝ2
z ⟩)1/2 after the Ramsey cycle

as a function of the precession phase for the cases (a) and (b), as well as the spin
squeezing parameter

√
N⟨∆Ŝy⟩/|⟨Ŝz⟩| [869, 209].

d. Repeat (b) with two entangled qubits and interpret your observations.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing11.pdf
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Figure 24.19: Scheme for Heisenberg-limited quantum sensing.

24.4 Metrology and quantum sensing

We have seen at the end of the last section how to perform projective measurements
in entangled systems. In the following we will now show that such systems have the
potential of improving the sensitivity of measurements. The field of research dealing
with this, called quantum sensing, represents an extension of the field of metrology
into the quantum regime. Before discussing the stakes of quantum information science
in metrology, let us review in a comprehensible way what metrology and sensing is
about.

24.4.1 Atomic clocks

Metrology is the art of sensing, and sensing is simply the activity of measuring a phys-
ical quantity as accurately as possible. The most fundamental quantities to measure
are time and space. However, absolute space and time do not exist. According to the
restricted and the general theory of relativity they are interconnected by velocity and
additionally depend on the presence of masses exerting gravitational forces.

Hence, before talking about clocks, we need to spend a few words on the physical
quantity they are supposed to measure: time. In the same way as it is meaningless
to talk about space with nothing in it, time is only there, because things are happen-
ing. Space is the distance between things and time is nothing else than the distance
between events.

Figure 24.20: (left) ’Time persistence’ by Salvatore Dali. (center) Recurrent events. (right)
Periodic astronomical cycles.

In our current physical understanding of the universe the most elementary events
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are collisions between (real or virtual) particles. Obviously, our universe is full of
time. In order to bring any succession of such events into a logical and causal order,
a reference time line is needed. It allows for historical book keeping of sequences of
events, that we may call histories. And in order to facilitate a comparison between
different histories, this reference time line should follow a simple deterministic rule,
e.g. be periodic or exponentially decaying. In fact, both types of processes are cur-
rently used for time measurements. E.g. exponential processes, such as radioactive
decay is commonly used in radioactive dating.

The most common practical approach to the measurement of time, however, is
based on the observation of recurrent phenomena that we think of being periodic,
such as a day on Earth, the dripping of a water pipe, or the oscillation of a pendulum
or of an atomic excitation. Assuming the time intervals separating the recurrent
phenomena as being all the same, we build a ruler for time which we call clock.

But now comes a tricky question: How do we know whether a clock is really
periodic? In fact, we never know for sure whether the time intervals are really all
the same. We only know that some clocks deserve a greater degree of confidence
based on the fact that more care has been taken in their design and construction, or
based on the observation that clocks built in a certain manner tend to deviate less
from each other than clocks built in a different manner. The other approach would
be to compare several totally independent clocks and to give preference to those who
deviate less from each other.

An important criterion for a useful clock concerns its duty cycle. The shorter the
cycling time, the faster we can extract information from the clock, and the higher
is the accuracy we can reach in a given integration time. Ancient time standards
had been link to the periodic motion of celestial bodies, e.g. the revolution time
of the Earth around the sun. Therefore, clocks with smaller duty cycles have been
engineered, such as the clepsydra or the hour glass. But their calibration to periodical
astronomical cycles remained tedious and slow. Historically, the development of ever
precise clocks has been motivated by navigation. Indeed, 1 minute of inaccuracy in
the clock generates an uncertainty of 28 km in global positioning. And this motivation
still prevails nowadays, although, meanwhile, atomic clocks are reaching uncertainties
of below 10−18 and extremely short duty cycles on the order of femto-seconds.

The left part of Fig. 24.21 shows the basic idea of any human-made clock, which
consists in locking an oscillating mechanism, whose time constant can be manipulated,
for instance a pendulum or a laser, by a very precise periodic process, that we call
resonance. This resonance can be an astronomic period or the transition of an atomic
between two states of excitation. Expressing the stability of a clock that can be
obtained in a given integration time as,

σ =
Γnat + Γpert

ω

1

S/Nnoise
, (24.133)

we see that we better look for oscillators and resonances operating at high frequencies
ω, having very narrow widths Γnat, being subject to very weak perturbations and
line broadenings Γpert, and delivering a good signal-to-noise ratio. The right part of
Fig. 24.21 shows the concept of a cesium beam atomic clock. A microwave oscillator
operating at ω/2π = 9.1GHz excites cesium atoms passing through a microwave
cavity thus generating in a detector a frequency-dependent error signal which can be
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Figure 24.21: (left) Principle of any clock and possible perturbations. (right) Cesium beam
atomic clock and Ramsey interference fringes.

used to correct the oscillator frequency.

24.4.1.1 Gravitational red-shift

Clocks and gravimeters are intrinsically related the gravitational redshift. The gravi-
tational red-shift is that phenomenon in which electromagnetic waves or photons trav-
eling out of a gravitational well (seem to) lose energy. This loss of energy corresponds
to a decrease in the wave frequency and increase in the wavelength. Gravitational
redshift can be interpreted (i) as a consequence of the equivalence principle stating
that gravity and acceleration are equivalent and the redshift is caused by the Doppler
effect. It can also be understood (ii) as a consequence of the mass-energy equiva-
lence stating that ’falling’ photons gain energy (though there are numerous subtleties
that complicate a rigorous derivation). Finally, it can be understood (iii) in terms
of gravitational time dilation at the source of the radiation: an oscillator (produc-
ing electromagnetic radiation) will seem to ’tick’ faster when exposed to a stronger
gravitational potential.

Figure 24.22: Gravitational redshift is due to the dilation of time near heavy masses.

To first approximation, the gravitational redshift is proportional to the difference
in gravitational potential. In a homogeneous field,

∆ν

ν
=

∆λ

λ
≃ g∆z

c2
, (24.134)
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where ∆z is the change in height. Accounting for the accompanying gravitational time
dilation affecting the atomic clock in the satellite is crucially important for accurate
navigation. For this reason, metrology of time and gravimetry are closely interrelated.
Do the Exc. 24.4.6.1.

Example 171 (Prediction by the equivalence principle and general rela-

tivity for a uniform gravitational field or acceleration): Einstein’s theory

of general relativity incorporates the equivalence principle, which can be stated

in various different ways. One such statement is that gravitational effects are

locally undetectable for a free-falling observer. Therefore, in a laboratory exper-

iment at the surface of the earth, all gravitational effects should be equivalent to

the effects that would have been observed if the laboratory had been accelerating

through outer space at g. One consequence is a gravitational Doppler effect. If

a light pulse is emitted at the floor of the laboratory, then a free-falling observer

says that by the time it reaches the ceiling, the ceiling has accelerated away

from it, and therefore when observed by a detector fixed to the ceiling, it will

be observed to have been Doppler shifted toward the red end of the spectrum.

This shift, which the free-falling observer considers to be a kinematic Doppler

shift, is thought of by the laboratory observer as a gravitational redshift. Such

an effect was verified in the 1959 Pound-Rebka experiment. Since this predic-

tion arises directly from the equivalence principle, it does not require any of

the mathematical apparatus of general relativity, and its verification does not

specifically support general relativity over any other theory that incorporates

the equivalence principle.

24.4.2 Quantum sensing

Let us first define what we mean by a sensor in general before discussing what quan-
tum mechanics has to do with it. A sensor is a device, module, machine, or subsystem
whose purpose is to detect events or changes in its environment and send the informa-
tion to other electronics, frequently a computer processor. Progress in engineering,
science, medicine, and other disciplines is unavoidably conditioned to sensing: What
you cannot measure, you cannot improve! In many areas of applications, however,
conventional sensing techniques have met fundamental limitations, and novel disrup-
tive approaches are required in order to reach higher sensitivity and precision.

In many cases, limitations are imposed by the macroscopic, i.e. classical, nature
of the sensor, and much can be gained by using microscopic sensors. These how-
ever, follow different rules of physics given by quantum mechanics. Nuclear magnetic
resonance spectroscopy (NMR), magnetic resonance imaging, and the development
of transistors, LEDs, solar panels, and lasers are examples of technologies developed
during the first so-called quantum revolution in the 20th century, which was based on
the exploitation of the particle-wave duality. However, the full potential of quantum
mechanics goes much further. Today quantum sensing is, together with quantum com-
putation and quantum communication (see Sec. 24.3.6), one of the key technologies
anticipated to drive the quantum revolution 2.0. However, unlike quantum sensing
with light, which is on the verge of turning into mature 2.0 technologies, with ap-
plications e.g. in quantum imaging, quantum sensing applications with matter waves
are nowadays exclusively on the 1.0 level.
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Let us discuss the disruptive role of quantum mechanics at the example of an
atom, which is a paradigmatic example for a sensor subject to quantum laws. The
reasons for this are numerous: (i) Because all atoms of a given species are strictly
identical (that is, indistinguishable in the quantum statistical sense) they can be
used in different sensing devices, places and countries. We do not need to duplicate
reference standards, such as the Original Meter or the Original Kilogram safely kept in
Paris. We simply recommend to people wishing to construct their own clock standard
to gather cesium atoms (wherever you can find them) and try to excite the 9.1GHz
hyperfine transition (with whatever technique you prefer). In the end, you just need
to prove that your clock is sufficiently good. (ii) Some atomic species have ultra-
narrow transitions outperforming any imaginable artificial device by many orders of
magnitude, which makes them ideal candidates for clock resonances. (iii) Atoms can
easily be moved in space with extremely high precision, which makes them suitable
for matter wave interferometers, which are useful for the measurement of distances
and the sensing of forces.

The main reason, however, for the superiority of atoms (and other quantum de-
vices, such as SQUIDs, quantum dots or nitrogen-vacancy (NV) centers in diamond)
with respect to classical objects in sensing applications is, that they can exist in
superposition states (of their internal excitation or of their center-of-mass motion)
whose evolution delicately depends on external parameters, such as forces. We can
now define a quantum sensor as a measurement device exploiting quantum correla-
tions in order to enhance sensitivity and resolution, f.ex. quantum superpositions or
entanglement [209]. Typically its core is a single atomic two-level system (or any
other kind of qubit), whose superposition states (i) are sensitive to some environment
parameter, (ii) can be manipulated in a controlled way, and (iii) can be read out.

Figure 24.23: (left) Single qu-bit. (center) Larger signals can be observed using ensemble of
qu-bits. (right) Collective manipulations on entangled qu-bits allow precisions beyond the
standard quantum limit.

In fact, quantum sensors already exist since the invention of atomic clocks and
matter wave interferometers, which build on the control and detection of quantum
states in individual qubits, even though in practice, most of these device are operated
with large incoherent ensembles of qubits. Even if perturbations related to uncon-
trolled inter-qubit interactions (collisions, thermal excitations, etc.) can be avoided,
the sensitivity that can be reached with such ensembles is bound to the standard
quantum limit imposed by quantum projection noise (see Secs. 18.2.2 and 23.1.5).
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Novel approaches investigate the possibilities of overcoming these limits via the cre-
ation of strong interparticle correlations via entanglement, spin-squeezing [869], or
superradiant lasing [644]. Such correlations have been created with atoms, which
therefore qualify as building blocks of quantum computers or sensing devices capable
of overruling the standard quantum limit.

Example 172 (’Quantumness’ of atomic quantum sensors): The question

we want to address here is: What is actually ’quantum’ in an atomic quantum

sensors?

A possible answer could be: Not much!

OK, atoms have discrete energy levels. But a coin also does and shows the same

projection noise features as atoms!

Then, one can point out the role of coherence: Atoms can be in a superposition

of two states. But Ramsey fringes can be obtained with classical light beams.

The fact that Ramsey fringes can be observed with atoms is simply due to the

fact that electrons behave like waves (matter) waves, which is indeed a quantum

1.0 feature. On the other hand, an atom can be described as a classical spinning

top and its interaction with light as a torque exerted on the rotor.

The good news is that you do things with atoms that are difficult to do with

coins. Atoms are strictly identical and can be sensitive to electric or magnetic

fields and gravity in a very reproducible way. Another very important feature

is that atoms can be entangled, which you can’t do with atoms. But here we

are going beyond 1.0 technology.

Important for gravimeter: use neutral particle matter waves, e.g. atoms, not

electronic excitation states!

24.4.2.1 Working principle of a quantum sensor

As mentioned above, in order to measure a weak force it is not sufficient to sense
it, one also has to read the result. In the field of atom optics, this can conveniently
be done with light fields taking the information from an atom isolated in a vacuum
chamber to the macroscopic world. In order not to loose information already at the
level of the light-atom interaction, one generally tries to avoid dissipation and keep
the interaction coherent 8.

Figure 24.24: Taking information from the sensor to the detector.

A typical quantum sensor can be described by the generic Hamiltonian [209],

Ĥ(t) = Ĥqbit + Ĥcntrl(t) + Ĥint(t) , (24.135)

8E.g. by using two-level systems not subject to motion, collisions, spontaneous emission, etc..
Sometimes spontaneous emission can be controlled by confining both, the atom and the interrogating
light field, in a cavity.
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composed of a (known) internal Hamiltonian Ĥqbit, a control Hamiltonian Ĥcntrl

allowing to manipulate or tune the sensor, and a signal Hamiltonian Ĥint allowing to
pass information about the state of the system to the outside world.

Typically, the internal Hamiltonian is static and defines the energy eigenstates |0⟩
and |1⟩,

Ĥqbit = E0|0⟩⟨0|+ E1|1⟩⟨1| . (24.136)

The qubit internal Hamiltonian may contain additional interactions, such as cou-
plings to other qubits or time-dependent stochastic terms due to interactions with an
environment.

Many quantum sensing protocols require to manipulate the qubit either before,
during, or after the sensing process. This is achieved via a control Hamiltonian,
which allows implementing a sequence of appropriate quantum gates, such as the
Hadamard gate or Pauli X and Y gates. These gates are nothing else than what,
in the language of atom interferometry is known as π/2 or π-pulses around different
axes. Advanced sensing schemes employing more than one sensor qubit may further
require conditional gates, especially controlled-NOT gates to generate entanglement,
swap gates to exploit memory qubits, and controlled phase shifts in quantum phase
estimation (see Sec. 24.3). Finally, the control Hamiltonian can include control fields
for systematically tuning the transition frequency ℏω0 = E1 − E2.

Finally, the signal Hamiltonian represents the coupling between the sensor qubit
and a signal V (t) to be measured. When the signal is weak (which is assumed here)
Ĥint adds a small perturbation to the internal Hamiltonian. The signal Hamiltonian
can then be separated into two qualitatively different contributions,

Ĥint = Ĥint,∥ + Ĥint,⊥ , (24.137)

where Ĥint,∥ is the parallel (commuting) and Ĥint,⊥ the transverse (non-commuting)
components, respectively. The two components can quite generally be captured by,

Ĥint,∥ = γ
2V∥(t)[|1⟩⟨1| − |0⟩⟨0|] (24.138)

Ĥint,⊥ = γ
2 [V⊥(t)|1⟩⟨0|+ V †

⊥(t)|0⟩⟨1|] ,

where γ is the coupling or transduction parameter of the qubit to the signal V (t).
We verify,

[Ĥqbit, Ĥint,∥] = 0 (24.139)

[Ĥqbit, Ĥint,⊥] =
γ
2V⊥(E0 − E1)(|0⟩⟨1| − |1⟩⟨0) .

Examples of coupling parameters include the Zeeman shift parameter or the Stark
shift parameter of electric dipoles in an electric field. The parallel and transverse
components of a signal have distinctly different effects on the quantum sensor. A
commuting perturbation Ĥint,∥ leads to shifts of the energy levels and an associated

change of the transition frequency ω0. A non-commuting perturbation Ĥint,⊥, by
contrast, can induce transitions between levels, manifesting through an increased
transition rate. Most often, this requires the signal to be time-dependent (resonant
with the transition) in order to have an appreciable effect on the quantum sensor.
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An important class of signals are vector signal V(t), in particular, those provided
by electric or magnetic fields. The interaction between a vector signal and a qubit
can be described by the signal Hamiltonian,

Ĥint = γV(t) · ˆ⃗σ , (24.140)

where ˆ⃗σ is the vector of Pauli matrices (1.153). For a vector signal, the two signal
functions V∥(t) and V⊥(t) are,

V∥(t) = Vz(t) (24.141)

V⊥(t) = Vx(t) + ıVy(t) ,

where the z-direction is defined by the qubit’s quantization axis. The corresponding
signal Hamiltonian,

ĤV (t) = γσ̂xReV⊥(t) + γσ̂yImV⊥(t) + γσ̂zV∥(t) , (24.142)

is just the one of the Rabi model extensively discussed in Sec. 16.3.

24.4.2.2 Sensing forces by matter wave interferometry

Matter wave interferometry is ideal for sensing weak forces or sensing strong forces
with high precision. Many interferometers employ the Ramsey scheme, which con-
sists in sandwiching the sensing Hamiltonian between two π/2-control Hamiltonian
pulses Ĥcntrl preparing and reading out the atomic coherence. Between the pulses
(or interaction zones), the atomic coherence is influenced by the parallel part of the
sensing Hamiltonian Ĥint,∥.

The basic idea is the following: One takes a matter wave and lets it fall in the
Earth’s gravitational field. But before that, apply a laser pulse separating the mat-
ter wave into two parts taking different paths. Thus, the Broglie waves of the two
parts will accumulate different phases, which results in an interference pattern when
the waves are superimposed again. As illustrated in Fig. 24.25, the matter wave in-
terferometry works similarly to the Ramsey method used in atomic clocks with the
difference that in the former the trajectories of the atomic center-of-mass motion
must be separated in real space as much as possible (see Sec. 16.3.6 on Ramsey pulses
and NMR, Sec. 2.1.3 on gravity with Excs. 1.7.6.2 and 1.7.6.3, Sec. 29.2.2 on Bragg
interferometry and photon echos with Excs. 29.2.4.1) 9.

A particularly smart way to do matter wave interferometry is via the observation
of Bloch oscillations of matter waves in a periodic lattice (see Sec. 4.2.2). The Bloch
oscillations can be understood in the following picture: A resting atom has infinite de
Broglie wavelength. Being constantly accelerated by gravity, the matter wave reduces
its de Broglie wavelength from ∞ to a value, where it becomes commensurate with
the periodicity of the standing light wave potential. At this moment Bragg scattering
comes into play, reflecting the atomic motion back into upward direction, and the
process starts over again. The atoms evolve like jumping on a trampoline with a
frequency given,

νblo =
mg

2ℏklat
. (24.143)

9See also Sec. 32.5 and 33.5 on interferometric and spectroscopic techniques.
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Figure 24.25: Difference between clocks and interferometers. (left) Ramsey-type clock.
(right) Ramsey-Bordé interferometer. A movie can be seen at (watch movie).

Figure 24.26: Working principle and pictures of the Sr Bloch oscillation interferometer con-
structed at the IFSC, USP.

24.4.3 Parameter estimation from measurements

The purpose of metrology is the design of technical devices capable of measuring
physical quantities with high precision. This obviously necessitates a high degree of
correlation between the physical parameter on which we want to obtain information
and the observable that is really measured by the device. This is not always easy
to achieve and depends on the engineer’s skills and inventiveness. A paradigmatic
example is Ramsey’s idea to sense phase shifts in atom interferometers by measuring
atomic internal state populations.

Finding the most likely value for a parameter by measurement is relatively straight-
forward. It is, however, as important to evaluate the precision of a measurement, and
this can be much more complicated. Technically, we may get an idea of the precision
by comparing measurements produced by different devices. But it is also interesting
to be able to evaluate the precision upfront, before the device has been constructed,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Entanglement_SpinRamsey_Movie
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as this may serve as a guidance for the design of the best possible device, at least for
idealized conditions.

In practice, the experimentalist will design an apparatus aiming at measuring the
dependence (or independence) on a particular observable, say M̂ , from a parameter,
say θ 10. To increase the confidence in the measurement outcome, the experimentalist
will repeat the measurement many times. As any measurement is subject to tech-
nical (classical) noise and intrinsic (quantum) noise, the repetitions will generate a
distribution of results, which are commonly represented as a histogram. The relevant
question in any such measurement is now, how much the outcome probability distri-
bution P (θ) depends on the experimental parameter θ. We purpose of this section is
to introduce quantities, such as the fidelity and the Fisher information, quantifying
this dependency. The greater these figures of merit are, the greater the dependency
of P (θ) on θ and the higher the sensitivity of the measurement apparatus.

24.4.3.1 Repeated measurements

Let us call p(µ|θ) the conditional probability of measuring a result µ given that
the experimental control parameter is θ. The combined probability to observe the
sequence of results µ⃗ = {µ1, .., µN} in N independent measurements is then,

P (µ⃗|θ) =
N∏

i=1

p(µi|θ) . (24.144)

The statistical mean value and variance are,

1 =
∑

µ⃗

P (µ⃗|θ) , θ̄ =
∑

µ⃗

P (µ⃗|θ)θ , (∆θ)2 =
∑

µ⃗

P (µ⃗|θ)(θ − θ̄)2 (24.145)

the sum extending over all possible sequences of N measurement results.

Example 173 (Bernoulli trial): As a first simple example, let us consider
the experiment of tossing a coin (also called Bernoulli trial) with faces called ±.
At the end of the flight we grab the coin, read the upper face, and acknowledge
one of two possible results, µ = ±. The experimental control parameter θ could
be related to the symmetry of the coin: If it is evenly distributed, the coin will
be unbiased, and we expect the probability of finding the +-side to be

p(µ|θ) = p(+|θ) = 1
2
. (24.146)

When we repeat the experiment N times, there are 2N possible combinations
µ⃗, such that,

p(µi|θ) = p(±|θ) = 1
2

⇒ P (µ⃗|θ) = 1
2N

⇒
∑
µ⃗

P (µ⃗|θ) = 1 . (24.147)

Solve Exc. 24.4.6.2.

10Sometimes we will be interested in the dependence of several observables Â from a set of various
parameters θ⃗.
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Example 174 (Ramsey interferometer): Another example where the value
of the control parameter influences the result of the measurement is the Ramsey
experiment with a two-level system (see Excs. 16.3.7.6 and 16.3.7.7). Reading
out the population of the upper state µ = + we find,

p(+|θ) = cos2 θ
2
= 1

2
+ 1

2
cos∆τ and p(−|θ) = sin2 θ

2
. (24.148)

The precision of the estimation of a parameter ϑ from a measurement of an ob-
servable Â which depends on that parameter is obtained from error propagation [825],

(∆ϑ)2 =
⟨∆Â⟩2
|∂ϑ⟨Â⟩|2

=
⟨Â2⟩ − ⟨Â⟩2
|∂ϑ⟨Â⟩|2

. (24.149)

At the example of the Rabi experiment illustrated in Fig. 24.27, it simply means
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Figure 24.27: (code) (a) Simulation of a Rabi experiment where the pulse area is varied. At

each value of the pulse area N = 30 excitation trials are done and the ratio of successful trials

p+/N is plotted. Obviously, the precision with which a specific pulse area can be measured

increases with the number of trials. (b) Histogram of measurement results obtained for three

different pulse areas. The question here is, given an excitation is observed, how likely is it

due to the parameter being tuned to exactly the right position.

that an experimental parameter (here, the pulse area) can be determined with lower
imprecision ∆ϑ when the slope of the error signal |∂ϑ⟨Â⟩| is steep (here, at mid height
of the Rabi fringe). Additionally, the noise of the measured variable ∆Â should be
small (here, at the top and bottom of the Rabi fringe). Interestingly, in Exc. 23.1.9.23

we show that ∆ϑ2z =
⟨∆Ŝz⟩2

|∂ϑ⟨Ŝz⟩|2
= 1

N does not dependent on the parameter.

24.4.3.2 Classical Fisher information

Let us assume two distributions P (µ⃗|θ) and P (µ⃗|θ′) differing from each other by the
fact that they belong to slightly different parameters θ and θ′ = θ + ϑ. The fidelity
between two distributions can be defined as [524],

df(θ, θ
′) =


∑

µ⃗

√
P (µ⃗|θ)P (µ⃗|θ′)




2

θ=θ′−→ 1 . (24.150)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_RabiProjection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_RabiProjection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_RabiProjection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_RabiProjection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_RabiProjection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_RabiProjection.m
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With the boundary conditions,

1 =
∑

µ⃗′

P (µ⃗′|θ + ϑ) and therefore 0 =
∑

µ⃗

∂ϑP (µ⃗|θ + ϑ) , (24.151)

we may derive the Fisher information [115, 270],

Fc(θ) = −4 ∂
2df(θ, θ + ϑ)

∂ϑ2

∣∣∣∣
ϑ=0

(24.152)

= −4 ∂

∂ϑ

∑
µ⃗′

√
P (µ⃗′|θ)P (µ⃗′|θ + ϑ)

∑
µ⃗

√
P (µ⃗|θ)

2
√
P (µ⃗|θ + ϑ)

∂P (µ⃗|θ + ϑ)

∂ϑ

∣∣∣∣∣∣
ϑ=0

= −4
∑
µ⃗′

∂
√
P (µ⃗′|θ)P (µ⃗′|θ + ϑ)

∂ϑ

0∑
µ⃗

√
P (µ⃗|θ)

2
√
P (µ⃗|θ + ϑ)

∂P (µ⃗|θ + ϑ)

∂ϑ

0

−

−4∑µ⃗′

√
P (µ⃗′|θ)P (µ⃗′|θ + ϑ)

1∑
µ⃗

∂

∂ϑ

( √
P (µ⃗|θ)

2
√
P (µ⃗|θ + ϑ)

∂P (µ⃗|θ + ϑ)

∂ϑ

)∣∣∣∣∣∣
ϑ=0

= −4
∑
µ⃗

∂P (µ⃗|θ + ϑ)

∂ϑ

∂

∂ϑ

√
P (µ⃗|θ)

2
√
P (µ⃗|θ + ϑ)

=
∑
µ⃗

1

P (µ⃗|θ)

(
∂P (µ⃗|θ)
∂ϑ

)2

.

Hence, the (classical) Fisher information can be calculated from,

Fc(θ) =
∑

µ⃗

1

P (µ⃗|θ)

(
∂P (µ⃗|θ)
∂θ

)2

=
∑

µ⃗

P (µ⃗|θ)
(
∂ lnP (µ⃗|θ)

∂θ

)2

. (24.153)

The Cramér-Rao bound gives a lower bound for the variance,

∆θ ≥ ∆θCR ≡
1√
F (θ)

. (24.154)

Example 175 (Meaning of the Fisher information): The formulation of
the Fisher information in terms of the second derivative of the fidelity lends
itself to an intuitive graphical interpretation. The Fisher information measures
how fast a probability or quasi-probability distribution changes towards a rec-
ognizably different distribution when a particular parameter is modified. Let
us for example consider a harmonic oscillator in a coherent state |β⟩ = |reıφ⟩
represented by the Husimi distribution Q|β⟩(α), as plotted in Fig. 14.2. The
question is, how much do we have to change the amplitude r, or the phase φ, or
a quadrature component r cosφ or r sinφ in order to get a noticeably different
Husimi distribution, and how does this change depend on the photon number
n = |α|? This change is what is called Fisher information.
The width of the Husimi distribution of a coherent in the Glauber plane is in-
dependent on its amplitude, that is, the states |r1eıφ1⟩ and |r2eıφ2⟩ both have
the same width [see Fig. 2.14 or 24.28(a)], since,

∆x̂ = ⟨(â+ â†)2⟩ − ⟨â+ â†⟩2 = 1 (24.155)

∆p̂ = ⟨(ıâ− ıâ†)2⟩ − ⟨ıâ− ıâ†⟩2 = 1 . (24.156)
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Now, assuming r1 = r2 ≡ r, the distance of the two states is approximately
the arc between them, a = r(φ2 − φ1). Hence, the phase difference is inversely
proportional to the amplitude r = |α| = √n,

∆φ ∝ 1√
n
. (24.157)

While the Husimi distribution works well for coherent states, it fails to rep-

resent non-classical features, such as quantum interferences. These are better

viewed in the Wigner distribution, where they appear as very narrow structures,

whose widths rapidly decrease with the amplitude of the harmonic oscillation.

Obviously, quantum interferences are extremely sensitive to parameter changes,

provided the change occurs in a direction perpendicular to the fringes. Fig. 24.28

illustrates this at the example of a Schrödinger cat state. The distribution obvi-

ously changes much faster upon shifts along the pα than along the α direction.

Figure 24.28: (code) (a) Wigner distribution of two coherent states separated by a small

angle φ. (b) Wigner distribution of a cat state exhibiting quantum interferences.

24.4.4 Quantum Fisher information

The previously introduced quantifiers for parameter estimation can be extended to
quantum mechanics with the definition of a quantum Fisher information and a quan-
tum Cramér-Rao bound. Quantum parameter estimation aims at measuring the value
of a continuous parameter θ that is encoded in the state of a quantum system char-
acterized by the density operator ρ̂θ, via its interaction with the external force that
we want to characterize. The estimation process consists of two steps: in the first
step, the state of the system (i.e. the measurement apparatus) ρ̂θ is measured; in
the second step, the estimate of θ is determined by data processing the measurement
outcomes.

In quantum mechanics µ⃗ is just the eigenvalue spectrum. The big advantage in
using quantum systems is, that the exigency that the measurements be independent
can be overcome, via the use of entangled atoms. In the best case this can lead to a
more favorable scaling of the Cramér-Rao bound like 1/N , leading to a considerable
metrological gain. The following sections are devoted to developing the notions of
quantum parameter estimation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_InterpreteFisher.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_InterpreteFisher.m


1052 CHAPTER 24. QUANTUM INFORMATION SCIENCE

The quantum Fisher information can be regarded as a generalization of the vari-
ance concept. Via the Cramér-Rao bound, it gives similar information but it can be
extended to several parameters, in which case it corresponds to the covariance matrix,
and to mixed states.

24.4.4.1 Quantum Fisher information for a pure state depending on a
single parameter

As a first example, we will study the sensitivity of a pure state on changes of a single
parameter. Let us consider a small deviation of a parameter θ by ϑ and expand the
wavefunction [574],

|ψ(θ + ϑ)⟩ = |ψ(θ)⟩+ ϑ ∂
∂ϑ |ψ(θ)⟩ ≡ |ψ⟩+ ϑ∂ϑ|ψ⟩ , (24.158)

where in the last expression we drop the argument θ for readability. The fidelity is
given by,

|⟨ψ(θ)|ψ(θ + ϑ)⟩|2 = |1 + ϑ⟨ψ|∂ϑψ⟩|2 (24.159)

= 1 + ϑ⟨ψ|∂ϑψ⟩+ ϑ⟨∂ϑψ|ψ⟩+ ϑ2⟨∂ϑψ|ψ⟩⟨ψ|∂ϑψ⟩ .

On the other hand,

1 = ⟨ψ(θ + ϑ)|ψ(θ + ϑ)⟩ (24.160)

= 1 + ϑ⟨ψ|∂ϑψ⟩+ ϑ⟨∂ϑψ|ψ⟩+ ϑ2⟨∂ϑψ|∂ϑψ⟩ .

Substituting this result into the fidelity, we get,

|⟨ψ(θ)|ψ(θ + ϑ)⟩|2 = 1− ϑ2⟨∂ϑψ|∂ϑψ⟩+ ϑ2⟨∂ϑψ|ψ⟩⟨ψ|∂ϑψ⟩ . (24.161)

The so called Bures distance is defined as,

df(θ, θ
′) ≡ 2− 2|⟨ψ(θ)|ψ(θ′)⟩|2 , (24.162)

where the factor 2 is just convention and serves to meet the classical formulas. Hence,

df(θ, θ + ϑ) ≡ 2− 2|⟨ψ(θ)|ψ(θ + ϑ)⟩|2 (24.163)

= 2ϑ2⟨∂ϑψ|∂ϑψ⟩ − 2ϑ2⟨∂ϑψ|ψ⟩⟨ψ|∂ϑψ⟩ .

The Fisher information is defined as,

Fq(θ) ≡
∂2

∂ϑ2
df(θ, θ + ϑ)

∣∣∣∣
ϑ=0

, (24.164)

so that we finally get,

Fq(θ) = 4 (⟨∂ϑψ|∂ϑψ⟩ − ⟨∂ϑψ|ψ⟩⟨ψ|∂ϑψ⟩) . (24.165)

In Exc. 24.4.6.5 we derive the quantum Fisher information for separable states.
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Example 176 (Generalization to multi-parameter metrology): The quan-
tum Fisher information can be generalized to several parameters. Let us consider
a small deviation of a set of parameters θ⃗ by ϑ⃗ and expand the wavefunction
[574],

|ψ(θ⃗+ ϑ⃗)⟩ = |ψ(θ⃗)⟩+
∑
α

∂
∂ϑα

ψ(θ⃗ + ϑ⃗)⟩
∣∣∣
ϑ⃗=0

ϑα ≡ |ψ⟩+
∑
α

ϑα|∂αψ⟩ , (24.166)

where in the last expression we drop the argument θ⃗ for readability. The fidelity
is given by,

|⟨ψ(θ⃗)|ψ(θ⃗ + ϑ⃗)⟩|2 = |1 +
∑
α

ϑα⟨ψ|∂αψ⟩|2 (24.167)

= 1 +
∑
α

ϑα⟨ψ|∂αψ⟩+
∑
β

ϑβ⟨∂βψ|ψ⟩+
∑
µ,ν

ϑαϑβ⟨∂αψ|ψ⟩⟨ψ|∂βψ⟩ .

On the other hand,

1 = ⟨ψ(θ⃗ + ϑ⃗)|ψ(θ⃗ + ϑ⃗)⟩ =
(
⟨ψ|+

∑
α

ϑα⟨∂αψ|
)(
|ψ⟩+

∑
α

ϑα|∂αψ⟩
)

(24.168)

= 1 +
∑
α

ϑα⟨ψ|∂αψ⟩+
∑
α

ϑα⟨∂αψ|ψ⟩+
∑
α,β

ϑαϑβ⟨∂αψ|∂βψ⟩ .

Substituting this result into the fidelity, we get,

|⟨ψ(θ⃗)|ψ(θ⃗ + ϑ⃗)⟩|2 = 1−
∑
α,β

ϑαϑβ⟨∂αψ|∂βψ⟩+
∑
i,j

ϑαϑβ⟨∂αψ|ψ⟩⟨ψ|∂βψ⟩ .

(24.169)
The so called Bures distance is defined as,

df(θ⃗, θ⃗
′) ≡ 2− 2|⟨ψ(θ⃗)|ψ(θ⃗′)⟩|2 . (24.170)

Hence,

df(θ⃗, θ⃗ + ϑ⃗) = 2− 2|⟨ψ(θ⃗)|ψ(θ⃗ + ϑ⃗)⟩|2 (24.171)

= 2
∑
α,β

ϑαϑβ⟨∂αψ|∂βψ⟩ − 2
∑
α,β

ϑαϑβ⟨∂αψ|ψ⟩⟨ψ|∂βψ⟩ .

The Fisher information is now a matrix,

F (µν)
q (θ⃗) =

∂2

∂ϑµ∂ϑν
df(θ⃗, θ⃗ + ϑ⃗)

∣∣∣∣
ϑ⃗=0

(24.172)

= 2
∂

∂ϑµ

∑
α,β

∂ϑαϑβ
∂ϑν

(⟨∂αψ|∂βψ⟩ − ⟨∂αψ|ψ⟩⟨ψ|∂βψ⟩)

= 2
∂

∂ϑµ

∑
α

(ϑα⟨∂αψ|∂νψ⟩ − ⟨∂αψ|ψ⟩⟨ψ|∂νψ⟩+ ϑα⟨∂νψ|∂αψ⟩ − ⟨∂νψ|ψ⟩⟨ψ|∂αψ⟩)

= 2 (⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩+ ⟨∂νψ|∂µψ⟩ − ⟨∂νψ|ψ⟩⟨ψ|∂µψ⟩) .
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We finally get 11,

F (µν)
q (θ⃗) = 4Re (⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩) . (24.173)

24.4.4.2 Quantum Fisher information via generators

In Eq. (24.165) we calculated the Fisher information from derivatives of wavefunctions.
The derivatives represent operations, for instance angular momentum, Ĝφ ≡ Ŝz ∝ ∂φ,
called generators. With these operations the dependence of pure states on parameters
can be formulated as Heisenberg-type equations,

∂ρ̂θ
∂θ
≡ ı(ρ̂θĜθ − Ĝθρ̂θ) with the solution ρ̂θ = e−ıθĜθ ρ̂0e

ıθĜθ . (24.174)

Interestingly, those equations can always be rewritten as,

∂ρ̂θ
∂θ
≡ 1

2 (L̂θρ̂θ + ρ̂θL̂θ) , (24.175)

where we defined the symmetric logarithmic derivative,

L̂θ = 2ı(ρ̂θĜθ − Ĝθρ̂θ) . (24.176)

The equivalence of (24.174) and (24.175) is easy to check substituting L̂θ and using
the pure state condition, ρ̂2θ = ρ̂θ = |ψθ⟩⟨ψθ|. The advantage of expression (24.187)
is that, without using the pure state condition, the quantum Fisher information can
now we written as,

Fq(θ) = Tr ρ̂θL̂
2
θ = 4Tr ρ̂θ(Ĝ

2
θ − Ĝθρ̂θĜθ)

= ⟨ψθ|L̂2
θ|ψθ⟩ = 4(⟨Ĝθψθ|Ĝθψθ⟩ − ⟨Ĝθψθ|ψθ⟩⟨ψθ|Ĝθψθ⟩)

(24.177)

which coincides with (24.165) when we set the generator Ĝθ ≡ ∂θ.

24.4.4.3 Quantum Fisher information for pure light states

Common systems for quantum sensing are light fields or ensembles of atoms on which
we will focus in the following. The procedure will be (i) to identify the parameters θ for
which we want to calculate the Fisher information, (ii) to formulate the corresponding
generators Ĝθ and the symmetric logarithmic derivatives, and (iii) evaluate the Fisher
information by tracing in the Fock or Dicke basis.

11Note that for pure states, the quantum Fisher information is deeply connected to the symmetric
covariance matrix, which for a set of operators Ĝµ is defined as,

C = cov[Ĝµ, Ĝν ] = ⟨(Ĝµ − ⟨Ĝµ⟩)(Ĝν − ⟨Ĝν⟩)⟩ = 1
2
⟨ĜµĜν + ĜνĜµ⟩ − ⟨Ĝµ⟩⟨Ĝν⟩ .
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The most basic operations we may perform with states of light are displacements
and rotations in the Glauber plane applying the unitary transformations for harmonic
oscillator states (2.120), respectively, (2.130), which we may write as,

D(r) = eır(ıe
−ıφâ−ıeıφâ†) and R(φ) = eıφâ

†â . (24.178)

Indeed, fixing the angle φ, the free parameter will be θ ≡ r, and the operator D(r)
describes radial displacement by an amount r,

|α⟩ ≡ |α0 + β⟩ = D(r)|α0⟩ = eβâ
†−β∗â|α0⟩ (24.179)

where we have set β ≡ reıφ. We may now write the density operator for Glauber
states,

ρ̂r = |α⟩⟨α| = D(β)|α0⟩⟨α0|D†(β) = e−ırĜr |α0⟩⟨α0|eırĜr , (24.180)

introducing the displacement generating operator,

Ĝr ≡ ıeıφâ† − ıe−ıφâ . (24.181)

Hence, the radial quantum Fisher information (24.177) is equal to the variance of the
rotated quadrature field components, Fq(r) = 4⟨n̂2⟩ − 4⟨n̂⟩2.

On the other hand, fixing the radius r, the free parameter will be θ ≡ φ, and the
operator R describes rotation by an amount φ,

|α⟩ ≡ |eıφα0⟩ = R(φ)|α0⟩ = eıφâ
†â|α0⟩ . (24.182)

We may now write the density operator for Glauber states,

ρ̂φ = |α⟩⟨α| = R(φ)|α0⟩⟨α0|R†(φ) = e−ıφĜφ |α0⟩⟨α0|eıφĜφ , (24.183)

introducing the rotation (or phase shift) generating operator,

Ĝφ ≡ −â†â . (24.184)

Hence, the azimuthal quantum Fisher information is equal to the photon number
variance, Fq(φ) = 4⟨n̂2⟩ − 4⟨n̂⟩2.

The expectation values of these generating operators ⟨ψθ|Ĝθ|ψθ⟩ and ⟨ψθ|Ĝ2
θ|ψθ⟩

with θ ≡ r, φ permit us now calculate the quantum Fisher information for specific pure
states of light |ψθ⟩. In Exc. 24.4.6.6 we calculate the quantum Fisher information for
some paradigmatic single mode light fields. The results are summarized in Tab. 24.2.

It is interesting to discuss the results in the light of Figs. 14.2. The quantum
Fisher information is always largest along the degree of freedom, at which the Wigner
function exhibits the finest structure. For example, it is large for coherent states
for rotations in the Glauber plane, for Fock states for radial displacements, and for
squeezed states along the quadratures.

It seems that, while some of the considered states may have quantum Fisher
information exceeding the classical shot noise limit, none of them exhibits Heisenberg
scaling. Of course the hottest candidate, which would be the squeezed coherent state,
was not considered, yet.
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Table 24.2: Quantum Fisher information for various light states.

state basis Fisher information Fisher information

Glauber |α⟩ F
(φ)
q = 4|α|2 F

(r)
q = 4

Fock |n⟩ F
(φ)
q = 0 F

(r)
q = 4 + 8n

squeezed vacuum |0, ξ⟩ F
(φ)
q = 2 sinh2 2|ξ|2 F

(r)
q = 0

cat |α⟩+ | − α⟩ F
(x)
q = 4(1 + e−2|α|2) F

(y)
q = 4(1 + 4α2)(1 + e−2|α|2)

thermal
∑
n

n̄n|n⟩⟨n|
(1+n̄)1+n F

(φ)
q = 0 F

(r)
q =

∑
k,m

2(λk−λm)2

λk+λm
|⟨k|Ĝr|m⟩|2

24.4.4.4 Quantum Fisher information for pure collective spin states

The most basic operations we may perform with collective atomic spin states are
rotations about different axis on the Bloch sphere. We consider two cases, rotations
about the y-axis by an angle ϑ and rotations about the z-axis by an φ described by
the expression (23.38),

Ry(ϑ)Ŝ = eıϑŜy Ŝe−ıϑŜy and Rz(φ)Ŝ = eıφŜz Ŝe−ıφŜz . (24.185)

The collective spin states transform like,

|ψ⟩ = e−ıϑŜy |ψ0⟩ and |ψ⟩ = e−ıφŜz |ψ0⟩ . (24.186)

We may now write the density operators,

ρ̂ϑ = |ψ⟩⟨ψ| = e−ıϑŜy |ψ0⟩⟨ψ0|eıϑŜy and ρ̂φ = |ψ⟩⟨ψ| = e−ıφŜz |ψ0⟩⟨ψ0|eıφŜz ,
(24.187)

introducing the generating operations

Ĝϑ = Ŝy = 1
2ı (Ŝ− − Ŝ+) and Ĝφ = Ŝz . (24.188)

Again, the expectation values of these generating operators ⟨ψθ|Ĝθ|ψθ⟩ and ⟨ψθ|Ĝ2
θ|ψθ⟩

with θ ≡ ϑ, φ permit us now calculate the quantum Fisher information for specific
pure collective spin |ψθ⟩. In Exc. 24.4.6.7 we calculate the quantum Fisher informa-
tion for some paradigmatic collective spin states introduced in Sec. 23.1. The results
are summarized in Tab. 24.3.

It is interesting to discuss the results in the light of Figs. 23.8. Apparently, coherent
spin states are bounded by the standard quantum limit. The sensitivity is highest for
rotations along great circles around the Bloch sphere.

Any Fock spin state is azimuthally symmetric, which explains Fq(φ) = 0. We also
note,

Fq,|S,0⟩(ϑ) =
N2

2 +N and Fq,|S,±S⟩(ϑ) = N , (24.189)

which means, that Fock states are sensitive to rotations within sagittal planes. While
near the poles the quantum Fisher information scales linearly with the particle num-
ber, close to the equatorial plane it approaches the Heisenberg limit [110].
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Table 24.3: Quantum Fisher information for various collective spin states.

state basis Fisher information Fisher information

coherent |ϑ, φ⟩⊗N F
(ϑ)
q = N sinϑ F

(φ)
q = N

Fock |S,M⟩ F
(ϑ)
q = N2

2
+N − 2M2 F

(φ)
q = 0

W |S, S − 1⟩ F
(ϑ)
q = 3N − 2 F

(φ)
q = 0

cat cos ϑ
2
|S, S⟩+ eıφ sin ϑ

2
|S,−S⟩ F

(ϑ)
q = N F

(φ)
q = N2(1− cosϑ)

GHZ 1√
2
(|S, S⟩+ |S,−S⟩) F

(ϑ)
q = N F

(φ)
q = N2

NOON 1√
2
(|S, S⟩+ eı2Sϑ|S,−S⟩) F

(ϑ)
q = N F

(φ)
q = N2

squeezed e−ıζŜ
2
z/2|π

2
, 0⟩N ≃ N2

2
(1− 2 cos2N−2 ζ + ...)

In contrast, cat states allow for Heisenberg-scaling only for rotations in the equato-
rial plane. For rotations within sagittal planes the quantum Fisher information scales
linearly with N . Hence, differently from Fock states, cat states permit azimuthal
sensing without Ramsey sequence. Particular cat states are the NOON and the GHZ
states.

Cat states are extremely difficult to generate and to preserve from decoherence.
They cannot be generated from Glauber states via unitary transforms. Spin-squeezed
states are much more robust and better suited for Heisenberg-limited sensing.

Fig. 23.8 illustrates that the uncertainty distribution depends on the type of col-
lective states. This is obviously interesting for metrological applications based on
interferometric phase measurements, as discussed in Sec. 18.2.2. A metrological gain
in the signal-to-noise ratio beyond the standard quantum limit depends on the type
of entanglement generated.

24.4.4.5 Quantum Fisher information for mixed states

The advantage of the symmetric logarithmic derivative formulation is, that it can be
generalized to mixed states. We express the density matrix expanded in an eigenstate
basis as [825],

ρ̂θ =
∑

k

λk|k⟩⟨k| with I =
∑

k

|k⟩⟨k| . (24.190)

In this case, a comparison between the expressions (24.174) and (24.175) yields,

L̂θ
∑

k

λk|k⟩⟨k|+
∑

k

λk|k⟩⟨k|L̂θ = 2ı
∑

k

λk|k⟩⟨k|Ĝθ − 2ıĜθ
∑

k

λk|k⟩⟨k|

(24.191)

⇔
∑

k,m

(λk + λm)|k⟩⟨k|L̂θ|m⟩⟨m| = 2ı
∑

k,m

(λk − λm)|k⟩⟨k|Ĝθ|m⟩⟨m|

⇔ (λk + λm)⟨k|L̂θ|m⟩ = 2ı(λk − λm)⟨k|Ĝθ|m⟩ ∀k,m .

Hence,

L̂θ = 2ı
∑

k,m

λk − λm
λk + λm

|k⟩⟨k|Ĝθ|m⟩⟨m| . (24.192)



1058 CHAPTER 24. QUANTUM INFORMATION SCIENCE

Note that the pure state symmetric logarithmic derivative [Eq. (24.187) with ρ̂θ =
|ψ⟩⟨ψ| = |k⟩⟨k|] is recovered by setting λk = δk,ψ and λm = δm,ψ.

The quantum Fisher information is now,

Fq(θ) = Tr (ρ̂θL̂
2
θ) =

∑

n

⟨n|ρ̂θL̂2
θ|n⟩ . (24.193)

Inserting the expressions (24.190) and (24.192), we get,

Fq(θ) =
∑
n

⟨n|
(∑

n′

λn′ |n′⟩⟨n′|
)2ı

∑
k,m

λk − λm
λk + λm

|k⟩⟨k|Ĝθ|m⟩⟨m|

×
×

2ı
∑
k′,m′

λk′ − λm′

λk′ + λm′
|k′⟩⟨k′|Ĝθ|m′⟩⟨m′|

 |n⟩
= 4

∑
k,m

(λk − λm)2

λk + λm

λk
λm + λk

|⟨k|Ĝθ|m⟩|2 . (24.194)

Hence,

Fq(θ) = 2
∑

k,m

(λk − λm)2

λk + λm
|⟨k|Ĝθ|m⟩|2 . (24.195)

An alternative expression for the quantum Fisher information can be derived as
follows,

Fq(θ) = 2
∑

k,m

(λk − λm)2

λk + λm
|⟨k|Ĝθ|m⟩|2 = 2

∑

k,m

(λk + λm)2 − 4λkλm
λk + λm

|⟨k|Ĝθ|m⟩|2

(24.196)

= 4
∑

k,m

λk|⟨k|Ĝθ|m⟩|2 −
∑

k,m

8λkλm
λk + λm

|⟨k|Ĝθ|m⟩|2

= 4
∑

k,m

λk⟨k|Ĝθ|m⟩⟨m|Ĝθ|k⟩ −
∑

k,m

8λkλm
λk + λm

|⟨k|Ĝθ|m⟩|2

= 4Tr ρ̂Ĝ2
θ −

∑

k,m

8λkλm
λk + λm

|⟨k|Ĝθ|m⟩|2 .

In Exc. 24.4.6.6(e) we calculate the quantum Fisher information for a thermal state
of light.

The Cramér-Rao bound defines the achievable largest precision of parameter es-
timation, however, it is not clear what has to be measured to reach this precision
bound. An optimal measurement can be carried out if we measure in the eigenbasis
of the L̂θ [115, 116]. This operator is defined such that it can be used to describe the
quantum dynamics of the system with the equation [825].
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24.4.4.6 Quantum Fisher information for multi-parameter metrology

For a mixed state
ρ̂θ =

∑

i

λi|λi⟩⟨λi| (24.197)

the quantum Fisher information becomes [524, 525],

F (µν)
q (θ⃗) =

∑
i,j

λi ̸=−λj

Re (⟨λi|∂µρ̂θ|λj⟩⟨λj |∂ν ρ̂θ|λi⟩)
λi + λj

(24.198)

=
∑
i

λi ̸=0

(∂µλi)(∂νλi)

λi
+ 4λiRe ⟨∂µ|λi|∂νλi⟩ −

∑
i,j

λi ̸=−λj

8λiλj
λi + λj

Re (⟨∂µλi|λj⟩⟨λj |∂νλi⟩) .

Using the symmetric logarithmic derivative (24.174) the Fisher information can also
be written [689],

F (µν)
q (θ⃗) =

∑

i,j
λi ̸=−λj

2Re (⟨λi|[Ĝµ, ρ̂θ]|λj⟩⟨λj |[ρ̂θ, Ĝν ]|λi⟩)
λi + λj

. (24.199)

Example 177 (Fisher information on the Bloch sphere): As an example
we may consider the Fisher information matrix whose components are calculated
with the collective spin components Ŝx,y,z as generators,

F (µν)
q (θ⃗) =

∑
i,j

λi ̸=−λj

2Re (⟨λi|[Ŝµ, ρ̂θ]|λj⟩⟨λj |[ρ̂θ, Ŝν ]|λi⟩)
λi + λj

. (24.200)

Its eigenvalues are nothing else than the quantum Fisher informations with

respect to particular generators already calculated in Tab. 24.3. Setting up

the complete matrix facilitates the identification of optimal squeezing protocols

[689].

24.4.5 Quantum Fisher information for coupled systems

We have seen that it is quite straightforward to calculate the quantum Fisher infor-
mation for single mode systems in pure states. In quantum systems where different
degrees of freedom are coupled a measurement is generally performed only one of
them. As shown in the context of the Jaynes-Cummings model in Sec. 17.2.3, the
partial measurement leaves the system in a mixed states, which makes the calculation
of the quantum Fisher information more involved. In the following, we will calculate
for the Jaynes-Cummings model the evolution of the quantum Fisher information
during quantum collapse and revival and for the Dicke model the dependence of the
quantum Fisher information on the atom-field coupling strength [853].

24.4.5.1 Quantum Fisher information in the Jaynes-Cummings model

In the Jaynes-Cummings model the quantum Fisher information can be calculated
analytically. As we are interested not only in quantum superpositions of the atomic
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excitation state, but also in quantum correlations (such as squeezing) in the light
mode, we need to expand the field mode in a Fock basis,

ρ̂ =
∑

n,j

|n⟩⟨n| ⊗ |j⟩⟨j| , (24.201)

which considerably increases the dimension of the Hilbert space. The time dependence
of the system is obtained from the propagator (17.30), leading to (17.46),

|ψ(t)⟩ = e−ıĤnt|ψ(0)⟩ =
∑

n

(c1,n|1, n⟩+ c2,n−1|2, n− 1⟩) . (24.202)

Starting from the total density matrix ρ̂(t) = |ψ⟩⟨ψ|, tracing over the field mode as
done in (17.55) allows us to calculate the Fisher information for the atomic degrees
of freedom,

ρ̂at = Trli ρ̂ =
∑

j=1,2

⟨j|ρ̂|j⟩ =
∑

n

(c1,n|1⟩+ c2,n|2⟩)(c∗1,n⟨1|+ c∗2,n⟨2|)

Fq,at(θ) = 4Tr ρ̂at(Ĝ
2
θ,at − Ĝθ,atρ̂atĜθ,at) , (24.203)

where

Ĝy,at =
1
2 σ̂y and Ĝz,at =

1
2 σ̂z . (24.204)

are the relevant generators (24.181) and (24.184) for the light field. Tracing over
the atomic degrees of freedom as done in (17.54) allows us to calculate the Fisher
information for the field mode,

ρ̂li = Trat ρ̂ =

∞∑

n=0

⟨n|ρ̂|n⟩ =
∑

n,m

(c∗1,mc1,n|n⟩⟨m|+ c∗2,m−1c2,n−1|n− 1⟩⟨m− 1|)

(24.205)

Fq,li(θ) = 4Tr ρ̂li(Ĝ
2
θ,li − Ĝθ,liρ̂liĜθ,li) ,

where

Ĝφ,li = −â†â and Ĝr,li = ı(eıφâ† − e−ıφâ) (24.206)

are the relevant generators (24.188) for the atom.
The time evolution of the quantum Fisher information, calculated in Exc. 24.4.6.9

and plotted in Fig. 24.29, has a simple interpretation. The atomic Fisher informa-
tions stay below the classical limit of 1, because there is only a single atom. The
nutational information Fq,at(y) depends on the orientation of the atomic coherence
while it rotates in the equatorial plane, and it vanishes during the quantum collapse
period. The precessional information Fq,at(z) drops to 0 only during the Ramsey
pulses at the beginning and end of the evolution. In contrast, the light field Fisher
informations can exceed the classical limit of 1. The azimuthal information Fq,at(φ)
is largest during quantum collapse, when the coherence is stored in the light fields,
which is due to the fact that the light field is then in a Schrödinger cat state. The
radial information Fq,at(r) oscillates with the relative phase shift between the two
coherent states composing the Schrödinger cat.
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Figure 24.29: (code) (a) Evolution of the atomic state represented on the Bloch sphere.

Evolutions of (b) the atomic coherence, (c) the quantum Fisher informations for the atom

(red) Fq,at(y) and (blue) Fq,at(z), and (d) for the field mode (cyan) Fq,at(φ) and (magenta)

Fq,at(r).

24.4.5.2 Scaling with particle number

The Jaynes-Cummings model discussed above considers an arbitrary number of pho-
tons, but only a single atom, which limited the Fisher information to below 1.

We found that in the ’classical’ cases the quantum Fisher information is bounded
by the numbers of (quasi-)particles, Fq,|α⟩ ≤ 4n, respectively, Fq,|ϑ,φ⟩⊗N ≤ N . For
other ’non-classical’ states, however, this limitation can be surpassed. Quantum ad-
vantage is reached when N2 > Fq/N > 1, that is, the Cramér-Rao bound scales with

1/N called Heisenberg limit rather than 1/
√
N called shot-noise limit.

The quantum Fisher information is always larger than the classical Fisher infor-
mation,

Fc(θ) ≤ Fq(θ) . (24.207)

If Fc(θ) = Fq(θ) locally optimal at θ,

Var[θ̂] ≥ 1

NFc(θ)
≥ 1

NFq(θ)
. (24.208)

Let us now turn our attention to the case of several atoms.

24.4.5.3 Quantum Fisher information in the Dicke model

The calculation of the quantum Fisher information for a single mode light field cou-
pling to several atoms is even more complicated, as the dimension of the Hilbert space
increases with the number of atoms. Nevertheless, it remains feasible within the Dicke
model [853] treating the atomic cloud as a collective spin state, while the field mode
is still expanded in a Fock basis,

ρ̂ =
∑

n,M

|n⟩⟨n| ⊗ |S,M⟩⟨S,M | , (24.209)

with the Hamiltonian,

Ĥ = ∆câ
†â+∆aŜz + (â† + â)(Ŝ+ + Ŝ−) . (24.210)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_OpticatsFisher.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_OpticatsFisher.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_OpticatsFisher.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_OpticatsFisher.m
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Apart from the different basis used to describe the atomic state, the procedure is the
same as for the Jaynes-Cummings model. Again, the system is described by a density
operator ρ̂ = ρ̂at ⊗ ρ̂li, such that the density operators of the subsystems ρ̂at = Trliρ̂
and ρ̂li = Tratρ̂ are necessarily mixed,

ρ̂li = Trat ρ̂ =

S∑

M=−S
⟨S,M |ρ̂|S,M⟩ , ρ̂at = Trli ρ̂ =

∞∑

n=0

⟨n|ρ̂|n⟩ , (24.211)

and the relevant generators for the atomic cloud must now be formulated with the
collective spin operators,

Ĝy,at = Ŝy and Ĝz,at = Ŝz . (24.212)

The Fisher informations are again calculated from the formulas (24.204) and (24.205),
respectively.

Here, we are particularly interested in analyzing beyond mean field solutions in
steady state [853].

24.4.5.4 Saturability of the quantum Cramér-Rao bound in multi-parameter
systems

The saturability of the quantum Cramér-Rao bound in collective measurements, i.e.
joint measurements over many copies of the quantum state, can be measured via
strong commutativity [Li, Lj ] = 0 or weak commutativity ⟨[Li, Lj ]⟩ = 0 [626].

24.4.6 Exercises

24.4.6.1 Ex: Red-shift of sun light and on Earth

a. Calculate the gravitational redshift of light escaping from the sun.
b. Calculate the blue-shift of navigational signals from GPS satellites orbiting at
20000 km altitude with respect to the surface of Earth. Compare it to the Doppler
shift resulting from their orbital velocity.
c. In astronomy, the magnitude of a gravitational redshift is often expressed as the
velocity that would create an equivalent shift through the relativistic Doppler effect.
Calculate the sunlight redshift and the GPS signal blue-shift in terms of this velocity.

24.4.6.2 Ex: Scaling with the number of measurements

Imagine you have a coin which you suspect to be manipulated so that, when tossed,
it doesn’t provide a 50% chance to show the face side. Assuming that all flip trials
are independent, how many trials are necessary to prove that the probability for ’face’
is 60%? How many for 51%? What would be necessary to obtain a more favorable
scaling with the number of trials?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_ForceSensing01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_NoiseProjection01.pdf
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24.4.6.3 Ex: Fisher information and Cramér-Rao bound for a Gaussian
distribution

Calculate the Fisher information and Cramér-Rao bound for a Gaussian distribution
in a Ramsey experiment.

24.4.6.4 Ex: Superresolution for two incoherent light sources

In this exercise we review the classical and quantum theory of superresolution for
incoherent point sources of light [831, 830]. The goal is to determine from the intensity
distribution in the image plane Λ(x) the unknown positions Xs with s = 1, 2 of the
point sources in the object plane.
a. Express Λ(x) assuming Gaussian or pinhole point-spread functions ⟨x|ψs⟩ = ⟨x −
Xs|ψ⟩.
b. Generalize the classical Fisher information for continuous variables and multi-
parameter systems and express it for the intensity distribution Λ(x) choosing the
parameters,

θµ = 1
2 (X1 +X2) and θν = X2 −X1 . (24.213)

24.4.6.5 Ex: Quantum Fisher information for separable states

Show that for a pure separable N -particle state depending on a single parameter the
quantum Fisher information (24.165) scales as Fq ∝ N .

24.4.6.6 Ex: Fisher information for common light states

a. Using the expression (24.173) calculate the quantum Fisher information for a
Glauber state.
b. Now, use the expression (24.177) to calculate the quantum Fisher information for
a Glauber state,
c. a Fock state,
d. a squeezed state, and
e. a cat state.
f. Using the expression (24.195) calculate the quantum Fisher information for a ther-
mal state of light with respect to amplitude and phase [853].

24.4.6.7 Ex: Fisher information for common collective spin states

a. Using the expression (24.173) calculate the quantum Fisher information for coher-
ent spin states with respect to variations of the polar and azimuthal angles ϑ and φ.
b. Calculate the logarithmic derivatives for a coherent spin state with respect to vari-
ations of the polar and azimuthal angles and use the expression (24.188) to calculate
the quantum Fisher information.
c. Calculate the quantum Fisher information for the collective spin states |Fock⟩ and
|W⟩, as well as for
d. the states |cat⟩, |GHZ⟩, and |NOON⟩, and finally for
e. a spin-squeezed state |squeezed⟩.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_NoiseProjection02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_NoiseProjection02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_NoiseProjection08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_NoiseProjection03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_NoiseProjection04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_NoiseProjection05.pdf
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24.4.6.8 Ex: Symmetric logarithmic derivative in a Ramsey experiment

a. For a single two-level atom initially in its ground state ρ̂0 = |0⟩⟨0| determine the
state ρ̂1 reached by a rotation by 90◦ about the y-axis [522, 825].
b. Show that for this state holds, ı(ρ̂1σ̂z − σ̂z ρ̂1) = ρ̂1σ̂y + σ̂yρ̂1.
c. Generalize to collective spin states for many atoms.
d. Expand ρ̂1 for small precessions.
e. Determine the logarithmic derivative and the quantum Fisher information for the
precession.

24.4.6.9 Ex: Quantum Fisher information in the Jaynes-Cummings
model

Calculate for the Jaynes-Cummings model the quantum Fisher information for the
atomic and light degrees of freedom with respect to the relevant generators.

24.4.6.10 Ex: Transmission estimation

A common task in quantum sensing is the estimation of the intensity transmission of
light through a lossy device (absorber or beam splitter) [876]. Here, we estimate the
quantum Cramér-Rao bound for such a measurement for different (quantum) states
of light.
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Chapter 25

Atomic motion in optical
cavities

In the preceding chapter we concentrated on the dynamics of the field modes of
laser-pumped cavities. We devoted a particular attention to the role of scatterers,
e.g. atoms, located in the mode volume and coupling the dynamics of counterprop-
agating modes. We assumed the atoms to be fixed in space, or at most subject to
an external force constraining their motion. We have also seen that the coupling of
counterpropagating modes critically depends on the position of the atom. Now, the
cavity fields are expected to exert light forces on the atoms eventually leading to their
displacement. As we will see in the following, this fact can have enormous impact on
the coupling dynamics and even induce macroscopic instabilities.

We devote Sec. 25.1 to the derivation of the complete equations of motion for the
case of a single atom, allowing for all degrees of freedom to be treated as quantized:
the atomic excitation, the motion of its center of mass, and the radiation field in
the cavity. We will provide a simple recipe for finding the suitable equations of
motion depending on which degree of freedom s to be treated as quantized and which
dissipation process to be taken into account. We will also show how and under which
circumstances the atomic excitation may be adiabatically eliminated.

In Sec. 25.2 we generalize the equations of motion of many atoms, but treating all
degrees of freedom as classical. This leads us to the paradigmatic Collective Atomic
Recoil Laser (CARL), a self-organization phenomenon whose relationship to other
such instabilities will be discussed in Sec. 25.3.

Finally, in Secs. 25.4 and 25.5 we will treat the light field, respectively, the atomic
motion quantum mechanically and show in which sense the obtained dynamics are
different.

25.1 Cavity interacting with a single atom

Here, we consider atoms interacting with the modes of an optical cavity pumped by
lasers. As we saw in the previous chapter, the density of the modes in a cavity is
concentrated around the optical axis, such that a scatterer located within the mode
emits preferentially within the cavity, where the light is recycled. Therefore, we can
in many situations treat the system as one-dimensional.

In free space, as discussed in Chp. 20, the force of light has two components: the
radiation pressure, which scatters photons isotropically into space, and the dipole
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Figure 25.1: Hamiltonian in quantum optics.

force, which can be interpreted in terms of a redistribution of photons between light
modes. In cavities, where the isotropic scattering is much reduced, radiative pressure
can often be neglected. In contrast, if light is tuned away from atomic resonances, the
atom will feel a dipole force originating from the backscattering of photons between
counterpropagating modes.

25.1.1 Linear and ring cavities

We must distinguish two types of cavities with very different behaviors: The linear
cavity or (Fabry-Pérot etalon), where counterpropagating modes form a single mode,
and the ring cavity, where counterpropagating modes have independent photon bud-
gets.

For a linear cavity, boundary conditions imposed by the surfaces of the cavity
mirrors determine the possible spatial mode functions, which are necessarily standing
waves. The amplitudes of the electric field are in second quantization (14.8),

Ê(z, t) = Ê+(z, t)e−ıωt + Ê−(z, t)eıωt (25.1)

with Ê+(z, t) = Ê1â(t)eıkz = (Ê−(z, t))† .

with [â, â†] = 1. With this we obtain, for a single atom coupled to the mode of
the cavity pumped by a laser, within the dipolar approximation and the RWA 1, the
following relevant contributions to the Hamiltonian (ℏ = 1),

Ĥatom = −∆aσ̂
+σ̂− + p̂2

2m (25.2)

Ĥcav = −∆câ
†â

Ĥatom:cav = gâ†σ̂−e−ıkẑ + h.c.

Ĥlaser:cav = ıηâ† + h.c. ,

neglecting the dynamics of the pump field, which is supposed to be classical, η =

δfsr⟨â†in⟩. Note that the propagator e−ıĤlaser:cavt corresponds to a coherent state

1For the transformation into the rotating frame see the derivation of Sec. 16.3.1.
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displacement operator. ∆a is the detuning between the light and the atomic resonance,
∆c between the light and cavity resonance and g is the light-atom coupling force, also
called the single-photon Rabi frequency. Neglecting the kinetic energy term p̂2/2m,
the photonic recoil e−ıkvẑ, and the pumping η we recover the Jaynes-Cummings model.
Do the Excs. 25.1.7.1 and 25.1.7.2.

For a ring cavity, we must distinguish the counterpropagating modes â±,

Ê+(z, t) = Ê1â+(t)eıkz + Ê1â−(t)e−ıkz = (Ê−(z, t))† . (25.3)

such that the total Hamiltonian Ĥ consists of the following parts 2,

Ĥatom = Ĥelectron + Ĥmotion = −∆aσ̂
+σ̂− +

p̂2

2m

Ĥcav = −∆câ
†
+â+ −∆câ

†
−â−

Ĥatom:cav = gâ†+σ̂
−e−ıkẑ + h.c.+ gâ†−σ̂

−eıkẑ + h.c.

Ĥlaser:cav = −ıη+(â+ − â†+)− ıη−(â− − â†−)

. (25.4)

We identify the degrees of freedom of the system through the quantum observables
appearing in the Hamiltonian: the counterpropagating modes of light with the am-
plitudes (â±), the internal degrees of freedom (σ̂z, σ̂±), and the spatial coordinates of
the atom (ẑ, p̂).

In contrast to linear cavities, ring cavities have the following particularities: 1. The
phase of the standing wave is free to move; 2. the counterpropagating modes of the
cavity have independent photon budgets, each backscattering event conserves mo-
mentum; 3. the backscattering acts on the phase of the standing wave. Atoms can
be trapped by the dipole force within the cavity mode volume. The dipole force
corresponds to a backscattering of photons between modes.

Figure 25.2: Scheme of an atom interacting with a ring cavity showing the relevant degrees
of freedom (x̂, p̂, â±) and the possible decay processes (κ, Γ) for the derivation of the field
equations.

2Throughout this chapter we will sometimes emphasize the motional degree of freedom in green
color, photonic states in blue, electronic excitation states in pink.
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25.1.2 Eliminating spontaneous emission and cavity decay

In fact, there are more degrees of freedom involved in the dynamics of atoms moving in
a laser-pumped ring cavity, because of the atoms may scatter light into directions other
than the cavity modes by spontaneous emission, and the cavity modes may decay by
transmission through the mirrors. Therefore, we need to treat the respective vacuum
field modes receiving the photons, âk and âω, quantum mechanically and include the
respective Hamiltonians,

Ĥatom:vacuum =
∑

k

gatom:vacuumâ
†
kσ̂

−e−ık·r̂ + h.c. (25.5)

Ĥcav:bath =
∑

ω

gcav:bathâ
†
ωâ+ + gcav:bathâ

†
ωâ− + h.c. ,

in the description of the coupled dynamics. Here, gatom:vacuum denotes the vacuum
Rabi frequency, that is, the coupling strength between the atomic dipole and the
electromagnetic vacuum into which spontaneously emitted photons may escape. On
the other hand, gcav:bath denotes the coupling strength between the cavity mode and
the spectrum of electromagnetic modes into which cavity photons can escape and
which we will from now on call heat bath to facilitate its semantic distinction from the
spontaneous vacuum. The total density operator, the Hamiltonian and the equation
of motion are, consequently,

ρ̄ = ρ̂atom ⊗ ρ̂electron ⊗ ρ̂cav ⊗ ρ̂vacuum ⊗ ρ̂bath (25.6)

H̄ = Ĥmotion + Ĥelectron + Ĥcav + Ĥatom:cav + Ĥlaser:cav + Ĥatom:vacuum + Ĥcav:bath

˙̄ρ = −ı[H̄, ρ̄] .

With the inclusion of the vacuum field modes âω and âk the number of degrees of
freedom to be treated literally explodes, and we have to find a way to eliminate them
from the equation of motion. We do this by partially tracing the density operator
over the vacuum field modes using the Weisskopf-Wigner theory,

ρ̃ ≡ Trvacuum Tr bath ρ̄ = ρ̂atom ⊗ ρ̂electron ⊗ ρ̂cav . (25.7)

This allows us to reduce the Hamiltonian Ĥ = H̄ − Ĥatom:vacuum − Ĥcav:bath. The
price to pay is, that the equation of motion for this receives dissipative terms: The
Liouville equation turns into a master equation with the following form,

˙̂ρ = −ı[Ĥ, ρ̂] + Latom:vacuum + Lcav:vacuum,+ + Lcav:vacuum,-

Latom:vacuumρ̂(t) = −γ{σ̂+σ̂−ρ̂(t)− 2σ̂−ρ̂(t)σ̂+ + ρ̂(t)σ̂+σ̂−}

Lcav:bath,±ρ̂(t) = −κ{â†±â±ρ̂(t)− 2â±ρ̂(t)â
†
± + ρ̂(t)â†±â±}

, (25.8)

where Ĥ is the Hamiltonian from (25.4). We see that each degree of freedom has its
own loss mechanism. κ for the finite transmission of the resonator mirrors [169, 304] 3,
Γ for the spontaneous emission, and γfrc, when we exert a frictional force on the atoms.

3Here, we only consider cavity decay into a zero temperature reservoir without quantum phase
fluctuations.
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25.1.2.1 The problem with spontaneous emission in cavities

The above treatment still is incomplete, if we regard ρ̂ as the atomic Bloch vector. The
reason is that we know what the dissipative Lindblad terms Lvacuumρ̃ generated by
spontaneous emission look like for the atomic excitation ρ̂atom, but the Hamiltonian
Ĥatom:vacuum also contains the motional degree of freedom e−ık·r̂, which is intrinsically
three-dimensional. That is, the dissipative terms also need to describe, how the
motion diffuses in momentum space.

The inclusion of dissipative terms, however, is difficult, because unavoidable pho-
tonic recoil violates the supposed one-dimensionality of the atomic motion along the
optical axis. Omnidirectional photonic recoil is also incompatible with the assumption
that the momentum is quantized in multiples of 2ℏk in the direction of the optical axis.
And finally, if we consider degenerate matter waves, photonic recoil will eject atoms
from a BEC. Even if, neglecting the emission process, we only consider absorption,
we would need a quantization in multiples of 1ℏk instead of 2ℏk. In the following, in
order to keep the problem 1D, we will neglect momentum diffusion, i.e. we consider
the simplified Hamiltonian H̃ and discard motional terms from the term Lvacuumρ̂.

25.1.2.2 Quantum derivation of the CARL equations

To obtain the equations of motion we insert the Hamiltonian (25.4) into the equations

for the field operators, for which the following commutation rules hold, [â±, â
†
±] = 1

and [â±, â
†
∓] = 0 = [â±, â±],

˙̂a+ = ı[Ĥ, â+]− κâ+ (25.9)

= −ı∆c[â
†
+â+, â+] + ıge−ıkẑσ̂−[â†+, â+] + ıgeıkẑσ̂+[â+, â+] + η+[â+ − â†+, â+]− κâ+

= (−κ+ ı∆c)â+ − ıgσ̂−e−ıkx + η+ ,

and similarly for â−. For the Pauli deexcitation matrix, using the usual commutation
rules for the Pauli spin matrices (1.154), that is [σ̂+, σ̂−] = σ̂z, σ̂zσ̂

± = ±σ̂±, and
[σ̂−, σ̂−] = 0, we calculate,

˙̂σ− = ı[Ĥ, σ̂−]− γσ̂− (25.10)

= −ı∆a[σ̂
+σ̂−, σ̂−] + ıgeıkẑâ+[σ̂

+, σ−] + ıge−ıkẑâ−[σ̂
+, σ−]− γσ̂−

= (−γ + ı∆a)σ̂
− + ıgeıkẑâ+σ̂z + ıge−ıkẑâ−σ̂z .

For the Pauli inversion matrix, using the following commutation rules, [σ̂z, σ̂
+σ̂+] = 0

and [σ̂z, σ̂
±] = ±2σ̂±, we calculate,

˙̂σz = ı[Ĥ, σ̂z]− 2γ − 2γσ̂z (25.11)

= ıge−ıkẑâ†+[σ̂
−, σ̂z] + ıgeıkẑâ†−[σ̂

−, σ̂z] + ıgeıkẑâ+[σ̂
+, σ̂z] + ıge−ıkẑâ−[σ̂

+, σ̂z]− 2γσ̂z

= −2γ − 2γσ̂z + 2ıge−ıkẑâ†+σ̂
− + 2ıgeıkẑâ†−σ̂

− − 2ıgeıkẑâ+σ̂
+ − 2ıge−ıkẑâ−σ̂

+ .

Finally, we need to derive the equations governing the motion of atoms. For the
position we obtain,

˙̂z = ı[Ĥ, ẑ] = ı[ p̂
2

2m , ẑ] =
1
m p̂ . (25.12)
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In order to calculate the momentum, we need to do a small auxiliary calculation.
With the commutator [ẑ, p̂] = ı we derive,

[ẑn, p̂] = ı
δẑn

δẑ
= ınẑn−1 (25.13)

[eıkẑ, p̂] =

∞∑

n=0

(ık)n

n!
[ẑn, p̂] = −k

∞∑

n=0

(ık)n−1

(n− 1)!
ẑn−1 = −keıkẑ ,

and with this result,

˙̂p = ı[Ĥ, p̂] (25.14)

= ıgâ†+σ̂
−[e−ıkẑ, p̂] + c.c.+ ıgâ†−σ̂

−[eıkẑ, p̂] + c.c.

= −ıgkâ†+σ̂−e−ıkẑ + c.c.+ ıgkâ†−σ̂
−eıkẑ + c.c. .

The quantum Langevin equations [169] describing the dynamics of the internal and
external degrees of freedom of the atom and the field are coupled,

˙̂a± = (−κ+ ı∆c)â± − ıgσ̂−e∓ıkẑ + η±
˙̂σ− = (−γ + ı∆a)σ̂

− + ıg(eıkẑâ+ + e−ıkzâ−)σ̂z
˙̂σz = −2γσ̂z + 2ıg(e−ıkẑâ†+ + eıkẑâ†−)σ̂

− − 2ıg(eıkẑâ+ + e−ıkẑâ−)σ̂+

˙̂z = p̂/m

˙̂p = ıgℏkσ̂−(â†+e
−ıkẑ − â†−eıkẑ) + c.c.

.

(25.15)
We may also verify,

˙̂n+ = ı[Ĥ, n̂+] (25.16)

= ı[−∆câ
†
+â+ + gâ†+σ̂

−e−ıkẑ + gâ+σ̂
+eıkẑ − ıη+(â+ − â†+), â†+â+]

= (η+ − ıge−ıkẑσ̂−)â†+ + (η+ + ıgσ̂+eıkẑ)â+ ,

and hence conservation of momentum,

[Ĥ, ℏk(n̂+ − n̂−)− p̂] = ℏkη+(â†+ + â+)− ℏkη−(â†− + â−) , (25.17)

in the absence of pumping, η+ = 0 = η−.

25.1.3 Adiabatic elimination of the excited state

Under certain conditions, however, the internal and external dynamics occur at very
different time scales, which allows a decoupling of the differential equations 4. When
the light fields are very detuned from atomic resonances, ∆a ≫ Γ, the internal dy-
namics of the atoms is very fast, that is, the internal state adapts very rapidly to
the boundary conditions defined by the external state and the state of the light field.

4In good cavity the limit the degrees of freedom of atomic excitation σ̂± drop out of the dynamics,
in the bad cavity limit, the fields â± drop out of the dynamics.
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Therefore, the internal state has no separate dynamics of its own, and we can adia-
batically eliminate the internal degrees of freedom. Thus, we can neglect correlations
between degrees of freedom, ⟨â±σ̂±⟩ = ⟨â±⟩⟨σ̂±⟩ etc. [648, 300]. The adiabatic elim-
ination of the excited state comes down to treating the atom as a classical antenna.

We obtain the stationary solutions for t → ∞ in the same way as for the optical
Bloch equations [see Eq. (16.151)], assuming in Eq. (25.15),

˙̂σ− = 0 = ˙̂σz (25.18)

where ⟨σ̂−⟩ = ρ21. Introducing the position-dependent Rabi frequency of the atom
in the standing wave 5,

Ω̂(z) = 2g(eıkẑâ+ + e−ıkẑâ−) , (25.19)

we write,

0 = (−γ + ı∆a)σ̂
− + 1

2 ıΩ̂σ̂z (25.20)

0 = −2γ − 2γσ̂z + ıΩ̂†σ̂− − ıΩ̂σ̂+ .

These equations are solved by,

σ̂z(∞) =
−2(γ2 +∆2

a)

2(γ2 +∆2
a) + Ω̂†Ω̂

(25.21)

and σ̂−(∞) =
−ı(γ + ı∆a)Ω̂

2(γ2 +∆2
a) + Ω̂†Ω̂

≃ −ı(γ + ı∆a)

2∆2
a

Ω̂ .

Inserting the approximated expression for σ̂−(∞) into the equation of motion (25.15)
for the light modes,

˙̂a± = (−κ+ ı∆c)â± − ıgσ̂−(∞)e∓ıkẑ + η± (25.22)

=

(
−κ+ ı∆c −

g2γ

∆2
a

− ıg2

∆a

)
â± −

(
g2γ

∆2
a

+
ıg2

∆a

)
e∓2ıkẑâ∓ + η± ,

and for the atomic momentum,

˙̂p = ıgℏkσ̂−(∞)(â†+e
−ıkẑ − â†−eıkẑ)− ıgℏkσ̂+(∞)(â+e

ıkẑ − â−e−ıkẑ) (25.23)

=
2ℏkγg2

∆2
a

(â†+â+ − â†−â−)−
2ıℏkg2

∆a
(e2ıkẑâ+â

†
− − e−2ıkẑâ†+â−) .

Defining the light-shift U0 caused by only one photon and the scattering rate γ0 by,

U0 ≡
g2

∆a
and γ0 ≡

Γg2

∆2
a

, (25.24)

with Γ = 2γ, we finally get a set of equations, where the internal degree of freedom
of the atom has been eliminated,

˙̂a± = (−κ− γ0 + ı∆c − ıU0)â± − (γ0 + ıU0)e
∓2ıkẑâ∓ + η±

˙̂p = 2ℏkγ0(â†+â+ − â†−â−) + 2ıℏkU0(e
−2ıkẑâ†+â− − e2ıkẑâ+â†−)

. (25.25)

5Note that the factor of 2 ensure consistency with previous definitions of the Rabi frequency, such
as in (17.21). Note also, that [Ω̂, Ω̂†] = 8g2 ̸= 0, but this is negligible when the fields are large enough
to be considered as classical. On the other hand the quadratic terms Ω†Ω are negligible when they
are small compared to γ2 or ∆2

a.
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25.1.3.1 Radiation pressure and the adiabatically approximated Hamil-
tonian

The impact of radiation pressure should be considered when the pumping laser is
close to a resonance. Then γ0 ≪ U0 is no longer satisfied [300], and we get one more
term from the equation for the atomic force: ∝ ℏγ0(|α+|2 − |α−|2).

For the adiabatically approximated Hamiltonian we get immediately from (25.4)
[567],

Ĥ =
p̂2

2m
+

∑

±
(U0 −∆c)â

†
±â±

+ U0(e
−2ıkẑâ†+â− + e2ıkẑâ+â

†
−)− ı

∑

±
η±(â± − â†±)

, (25.26)

as shown in Exc. 25.1.7.3. Note that dissipative terms are (naturally) absent from this
Hamiltonian, so that it shall not be used for the description of radiation pressure. On
the other hand, all coherent terms of the equations of motion can be derived from this
Hamiltonian (25.26), and we can verify momentum conservation (25.17) and deduce
transformation properties. Solve the Exc. 25.1.7.4.

These equations, which we will call CARL equations for reasons that we will be-
come clear in Sec. 25.2, describe the coupled dynamics of atoms being accelerated by
the kick eıkẑ imparted by the photonic recoil received upon scattering a photon from
one mode into the counterpropagating one. In the same time, the backscattering an-
nihilates a photon â± in one mode and creates a photon â†∓ in the counterpropagating
mode. From now on we will exclusively use the CARL equations.

Finally, let us summarize, how the operators act on states and observables of the
coupled system, noting that the same transformation rules as for free and trapped
atoms (2.143) also hold for the optical lattice,

eıkẑ|z⟩ = |z⟩ , e−ıkẑ ẑeıkẑ = ẑ

eıkẑ|p⟩ = |p+ ℏk⟩ , e−ıkẑ p̂eıkẑ = p̂+ ℏk
â±|n⟩ =

√
n|n− 1⟩ , e−ıkẑĤ(ẑ, p̂)eıkẑ = Ĥ(ẑ, p̂− ℏk)

â†±|n⟩ =
√
n+ 1|n+ 1⟩ , eıap̂/ℏĤ(ẑ, p̂)e−ıap̂/ℏ = Ĥ(ẑ − a, p̂)

.

(25.27)
For ka = π the phase shift vanishes: [eıπp̂/ℏk, Ĥ(ẑ, p̂)] = 0.

The dynamics is given by the time evolutions,

e−(ı/ℏ)Ĥtẑ(0)e(ı/ℏ)Ĥt , e−(ı/ℏ)Ĥtp̂(0)e(ı/ℏ)Ĥt , e−(ı/ℏ)Ĥtn̂(0)e(ı/ℏ)Ĥt . (25.28)

In Exc. 25.1.7.5 we calculate the photon number superposition state resulting from a
kick eıkkck ẑ.

25.1.4 Adiabatic elimination of the cavity modes

We have seen in Sec. 25.1.3 how to eliminate the internal atomic degrees of freedom,
once the condition |∆a| ≫ Γ is satisfied. We may try an analogous treatment ac-
counting for the limit |∆c| ≫ κ. In this case, the cavity fields evolve on a fast time
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scale, adiabatically following the evolution of the other degrees of freedom. Hence,
we set,

˙̂a± = 0 , (25.29)

and obtain from the first Heisenberg equation (25.15),

â±(∞) =
ıgσ̂−e∓ıkẑ − η±
−κ+ ı∆c

. (25.30)

Defining,

Uc ≡
g2∆c

κ2 +∆2
c

and κc ≡
g2κ

κ2 +∆2
c

, (25.31)

we can write the position-dependent Rabi frequency (25.19) as,

Ω(z) = 2g(eıkẑâ+ + e−ıkẑâ−) = 2(κc + ıUc)

(
η+e

ıkẑ + η−e−ıkẑ

g
− 2ıσ̂−

)
(25.32)

η±=0−→ −4ı(κc + ıUc)σ̂
− ,

in the limit of no pumping η± = 0. Inserting this into the other Heisenberg equations
(25.15), we immediately get,

˙̂σ− = (−γ + ı∆a)σ̂
− + ı

2Ω(z)σ̂z
η±=0−→ (−γ + ı∆a)σ̂

− + 2(κc + ıUc)σ̂
−σ̂z , (25.33)

and
˙̂σz = −2γσ̂z + ıΩ†(z)σ̂− − ıσ̂+Ω(z)

η±=0−→ −2γσ̂z − 4κcÎ , (25.34)

as well as, ˙̂z = p̂/m and

˙̂p = ıgℏkσ̂−(e−ıkẑâ†+ − eıkẑâ†−)− ıgℏkσ̂+(eıkẑâ+ − e−ıkẑâ−)
η±=0−→ 0 . (25.35)

That is, in summary,

˙̂σ− = (−γ − 2κc + ı∆a − 2ıUc)σ̂
−

˙̂σz = −2γσ̂z − 4κcÎ
˙̂p = 0

. (25.36)

Alternatively, the coherent part of these equations can be derived by insert â±(∞)
directly in the Hamiltonian (25.4). This will be done in Exc. 25.1.7.6. The equations
(25.36) tell us that, in the absence of cavity decay and spontaneous emission, the
atomic population will not undergo nutation, but the dipole moment will rotate with
a velocity which depends on the inversion. The dynamics becomes interesting in the
presence of several atoms, as studied in 23.4.2.

25.1.5 General rules for deriving equations of motion

We have, in the previous sections, derived Heisenberg equations (25.15), respectively
(25.25) which, together with the Schrödinger equation for the system’s state |ψ(t)⟩
or the master equation for the density operator ρ̂(t) form an over-complete set. This
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section aims at providing a general recipe for choosing the right set of equations
depending on two basic criteria for the nature of the degrees of freedom involved in
the dynamics: (i) Do judge it necessary to treat the degree of freedom as quantum or
may a classical description be sufficient; and (ii) Is the degree of freedom subject to
dissipation (e.g. spontaneous emission of the electronic excitation, cavity decay of the
field mode, or collisions messing up the center-of-mass motion), or not. The procedure,
which will be applied throughout the remaining part of this chapter, leads to very
different descriptions of the system depending on the specific parameter regime.

1. The procedure is generally applicable to coupled systems: We first need to
identify all relevant degrees of freedom and set up the Hamiltonian, possibly
eliminating irrelevant degrees of freedom, e.g. via adiabatic elimination or by
tracing over them, if they contribute to dissipation. In the context of atoms
coupled to a ring cavity, we assume our system to be in some state 6,

|ψ(t)⟩ = |r⟩ ⊗ |α+⟩ ⊗ |α−⟩ ⊗ |i⟩ , (25.37)

coupling the atomic motion, the light fields and the electronic excitation, al-
though the electronic excitation |i⟩ is often eliminated adiabatically. The dis-
sipative degrees of freedom related to vacuum modes leading to spontaneous
emission and cavity decay, as well as collisions between moving atoms are traced
away, but may be considered in the master equation for the density operator
and in the Heisenberg equations, where the corresponding decay rates are added
phenomenologically.

This first item has already been solved in the previous sections and led us to
the Hamiltonian (25.4) and the corresponding Heisenberg equations (25.15),
or the adiabatically approximated Hamiltonian (25.26) and the corresponding
Heisenberg equations (25.25).

2. Now, we must decide which degrees of freedom B can be treated as classical.
Typically, those are highly excited degrees of freedom (e.g. fast velocities of
many photons in a mode). The corresponding operators can be substituted by
their expectation value. Purely classical energy terms in the Hamiltonian can
be ignored and removed. For the degrees of freedom Â we want to treat as
quantum, we chose an appropriate common basis, which can be discrete {|m⟩}
where m is a complete set of quantum numbers. It can also be continuous {|r⟩}
or a combination of both {|r,m⟩}. Now, we need to expand all operators on the
chosen basis.

3. For the quantized degrees of freedom must now decide, whether they all evolve
coherently or whether they are subject to dissipation. In the first case, perform
steps A4 to A7, in the second case, perform steps B4 to B7.

A4. In the case of coherent dynamics, we expand the state of the system |ψ(t)⟩ on
the whole basis. For example, expanded on a partially continuous basis, the

6Throughout this chapter we will denote momentum states by the Greek letters |µ⟩ or ν⟩. Photonic
states will be labeled by the Latin letters |n⟩ or |m⟩. Electronic excitation states will be labeled by
the Latin letters |i⟩ or |j⟩. Finally, expansion coefficients cν,i,n+,n− of the state or of the density
matrix elements will sometimes be emphasized in red.
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coupled atom-ring cavity state may read,

|ψ(t)⟩ =
∑

n+,n−,i

∫
d3r cn+,n−,i(r, t)|r⟩ ⊗ |n+⟩ ⊗ |n−⟩ ⊗ |i⟩ , (25.38)

where ⟨r, α+, α−, i|ψ(t)⟩ = cn+,n−,i(r, t) are the expansion coefficients depend-
ing on photon numbers n± in the counterpropagating light modes, the electronic
excitation state i, and the atomic position r treated in terms of a continuous
wavefunction in space 7. When we want to treat the atomic motion as being
quantized in discrete momentum states labeled by some integer number µ, we
adopt the notation,

|ψ(t)⟩ =
∑

ν,n+,n−,i

cν,n+,n−,i(t)|ν⟩ ⊗ |n+⟩ ⊗ |n−⟩ ⊗ |i⟩ , (25.39)

where ⟨ν, α+, α−, i|ψ(t)⟩ = cν,n+,n−,i(t) are the new expansion coefficients.

A5. Next, we write down the Schrödinger equation for the state |ψ(t)⟩, insert the
expansion on the basis, and we derive a linear set of equation of motion for the
expansion coefficients ċ{m}(r). This set governs the dynamics of the quantum
degrees of freedom.

A6. The dynamics of the classical degrees of freedom B is obtained by taking the
expectation values of the Heisenberg equations. Here, we need to take care
that the quantum degrees of freedom appearing in the Heisenberg equations are
expressed by their expansions.

A7. The coupled set of equations for the expectation values of projectors of the
system into a particular state, that is, ċ{m} (respectively, ċ{m}(r)), and of ob-
servables B really represents all we need to describe the system dynamics and
to simulate it numerically. Hack everything into your PC, pronto!

B4. In the case of dissipative dynamics, derive the master equation obeying commu-
tation rules for all quantized degrees of freedom including the Lindbladt terms
and expand every quantized degrees of freedom on the common basis, we do the
same expansions, but,

ρ̂(t) = |ψ(t)⟩⟨ψ(t)| . (25.40)

B5. Derive the linear set of equation of motion for the matrix elements ρ̇{m},{n}.

B6. Take the expectation values Tr ρ̂B̂ of the Heisenberg equations for all degrees of
freedom to be handled classical as expanding the quantized degrees of freedom
on their basis.

B7. The coupled set of equations for ρ̇{m},{n} and Ḃ is sufficient to describe the
dynamics of the system, hack everything into your PC, pronto!

7Note that, in the absence of other quantum numbers, we rather use to write c(r) = ψ(r).
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Let us apply the procedure to the simplest case that the electronic excitation has
been adiabatically eliminated and all remaining degrees of freedom can be treated
classical. Then we do not require a Hamiltonian, nor the Schrödinger equation. We
just take the expectation value of the Heisenberg equations (25.25) for all degrees of
freedom which is easy to do, because there is no quantum state to be expanded: we
just can replace the operators by c-numbers,

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0e
∓2ıkzα∓ + η±

ṗ = 2ıℏkU0(e
−2ıkzα†

+α− − e2ıkzα+α
†
−)

. (25.41)

These totally classical equations, called CARL equations, will be studied in the subse-
quent sections, while a thorough discussion of partially quantized equations of motion
is postponed to Sec. 25.4.

25.1.5.1 CARL as a beam splitter

Neglecting spontaneous emission, γ0 = 0, cavity pumping, η = 0, cavity decay, κ = 0,
and cavity detuning, ∆c = 0, the CARL equations in the adiabatic approximation
can be derived from the following Hamiltonian,

Ĥ =
p̂2

2m
+
∑

±
U0â

†
±â± + U0(e

−2ıkẑâ†+â− + e2ıkẑâ+â
†
−) , (25.42)

and read,

˙̂a± = −ıU0â± − ıU0e
∓2ıkẑâ∓ (25.43)

˙̂p = 2ıℏkU0(e
−2ıkẑâ†+â− − e2ıkẑâ+â†−) ,

or with the substitution b̂± ≡ â±eıU0t,

˙̂
b± = −ıU0e

∓2ıkẑ b̂∓ (25.44)

¨̂
b± = −U2

0 b̂± − 2kżU0e
∓2ıkẑ b̂∓ ,

we see that, if the motion weren’t a dynamic variable, ˙̂z = 0, the field amplitudes
would just perform harmonic oscillations.

On the other hand, with the substitution ĉ ≡ â+e
ıkẑ + â−e−ıkẑ 8, the complete

Hamiltonian rephrased as,

Ĥ =
p̂2

2m
+ U0ĉ

†ĉ . (25.45)

Here, we see that, if the motion described by (ẑ, p̂) weren’t a dynamic variable, our
system would simply be a harmonic oscillator vibrating with the frequency U0.

8Provided we are allowed to commute the operators ẑ and â±.
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25.1.5.2 Classical limit of the equations of motion

For atoms much hotter than the recoil limit and macroscopic light intensities we may
replace the quantum operators by complex numbers z ≡ ẑ, α± ≡ â± and ρ21 = σ̂−.
The classical equations of motion (25.41) for the coupled system of a single atom
confined at the position r = z of the dipolar potential of a ring cavity can be cast
into the form,

(
α̇+

α̇−

)
=

(−κ− γ0 + ı(∆c − U0) −(γ0 + ıU0)e
−2ıkz

−(γ0 + ıU0)e
2ıkz −κ− γ0 + ı(∆c − U0)

)(
α+

α−

)
+

(
η+
η−

)

ṗ = 2ℏkγ0(α+α
∗
+ − α−α∗

−) + 2ıℏkU0(α
∗
+α−e−2ıkz − α+α

∗
−e

2ıkz)

.

(25.46)
Recalling that α∗

±α± is the number of photons in the respective mode, we can interpret
this equation as a rate equation: The number of photons in a mode α+ changes by
photon losses at a rate κ from resonator, or by gain due to backscattering from the
counterpropagating mode, or by pumping with an external incident light field at rate
η+.

The equations (25.46) completely describe our coupled atom-cavity system. They
are totally classical and work for both, atoms and macroscopic particles.

25.1.6 Cumulant expansion for CARL

The dynamics of quantum correlations such as â†+â− or â+σ
+ can be derived from

Heisenberg equations, as well. As an example, let us consider the adiabatically elim-
inated Hamiltonian (25.26) and ignore the quantized nature of the atomic motion,

the relevant first-order field-field correlations are then â2+, â
†
+â+, â

†2
+ , â2−, â

†
−â−, â

†2
− ,

â+â−, â+â
†
−, â

†
+â−, â

†
+â

†
−. From the Heisenberg equation we get, for instance,

d

dt
â2+ = ı[Ĥ, â2+] (25.47)

= −2ı(U0 −∆c)â
2
+ + 2U0

(
e2ıkẑâ+â

†
− − e−2ıkẑâ+â−

)
− 2ıη+â+ .

This is the lowest order cumulant expansion. The expectation values form a system
of 10 linear first order differential equations [135] from which we can calculate the
steady-state of the system.

The correlation functions and spectra are obtained directly from the CARL equa-
tion for the cavity fields (25.25) using the Wiener-Khinchin theorem (17.81) and
the quantum regression theorem (17.137). With the substitutions, t → 0, B̂ → 1,
Â → dÂk/dτ , and ξi(τ)Âi(0) → ζiÂi(τ), the quantum regression theorem can be
written in the form,

d

dτ
⟨Âk(τ)⟩ =

∑

i

ζi⟨Âi(τ)⟩ =⇒ d

dτ
⟨Âk(τ)Ĉ(0)⟩ =

∑

i

ζi⟨Âi(τ)Ĉ(0)⟩ .

(25.48)
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Applied, for example, to the correlation function (25.47), we obtain from the CARL
equation (25.25), with γ0 = 0 and ∆c = 0,

d

dτ
⟨â+(τ)â+(0)⟩ = (−κ− ıU0)⟨â+(τ)â+(0)⟩ − ıU0e

−2ıkẑ⟨â−(0)â+(0)⟩+ η+⟨â+(0)⟩ .
(25.49)

Repeating this calculation for the other first-order correlations functions we obtain a
system of 10 linear first order differential equations, which can be solved via Laplace
transform.

25.1.7 Exercises

25.1.7.1 Ex: Origin of quantum correlations

Derive the Hamiltonian (25.2) from the JCM Hamiltonian (17.21) transforming it
into the co-rotating frame.

25.1.7.2 Ex: Linear pumping of a cavity mode

Study how the Hamiltonian Ĥpmp = ıη∗â−ıηâ†, describing linear pumping of a cavity
mode, fills the cavity with photons in the absence of dissipation (see also (15.29)).

25.1.7.3 Ex: The adiabatically approximated Hamiltonian

a. Derive the adiabatically approximated Hamiltonian (25.26) from the total Hamil-
tonian (25.4).
b. Derive the CARL equations (25.25) directly from the adiabatically approximated
Hamiltonian.
c. Show that, in the absence of pumping, the energy stored in the light fields is con-
served separately from the mechanical energy of the atom.
d. Verify momentum conservation.

25.1.7.4 Ex: Hamiltonian after adiabatic elimination of internal states
for a linear cavity including counter-rotating terms

Repeat the adiabatic elimination of Sec. 25.1.4 for a linear cavity including counter-
rotating terms.

25.1.7.5 Ex: Periodicity of a lattice

Assume a symmetrically pumped ring cavity in equilibrium with an atom initially
at rest. What photonic states are generated in the counterpropagating light modes,
when the atom is kicked by an external force imparting a sudden recoil of ℏkkck.

25.1.7.6 Ex: Adiabatic elimination of the cavity modes

Derive the coherent part of the equations of motion (25.36) directly from the Hamil-
tonian (25.4) in the absence of pumping, η± = 0, and in the limit of large cavity
detunings, |∆c| ≫ κ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian02b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian02b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian04.pdf
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25.2 CARL: The collective atomic recoil laser

The collective atomic recoil laser (CARL) was first predicted in 1994 [101] as an atomic
analog of FEL. The idea consists of a monochromatic homogeneous beam of moving
two-level atoms (all atoms have the same velocity), a strong counterpropagating pump
laser beam, and a weak copropagating probe beam tuned to the blue side of the
resonance. The lasers form a standing light wave that moves in the same direction
as the atoms. Atoms that are faster than the velocity of the standing wave are
rejected by the maxima of the dipolar potential created by the standing wave and feel
a repulsive force. Atoms that are slower than the standing wave velocity are pushed
by the dipole potential maxima and feel an accelerating force. These forces can be
interpreted as backscattering of photons from the pump wave into the probe wave.
This redistribution of energy amplifies the contrast of the stationary wave, which
in turn amplifies the backscattering efficiency, etc. Therefore, the CARL converts
kinetic energy into coherent radiation (or more precisely, into an increase of the energy
difference between probe and pump) mediated by atomic bunching. It is a self-
amplifying mechanism. The CARL signature is a transient exponential amplification
for the incident probe, which defines the frequency of the ’CARL laser’. The first
experimental realization of CARL used a ring cavity [490].

Figure 25.3: Collective atomic recoil laser.

25.2.1 Classical CARL equations for many mobile atoms

The preceding sections dealt with a single atom in a ring cavity. More interesting
dynamics, however, emerge in the presence of several atoms, because their motion can
be become correlated via their simultaneous interaction with the same two counter-
propagating modes of the cavity, as illustrated in the following movie (watch movie).
A talk on CARL can be assisted at (watch talk).

To describe experiments dealing with many atoms, we have to extend the equations
of motion (25.26) to N atoms via z −→ zj and p −→ pj , where j = 1, N ,

α̇± = (−κ− ıNU0)α± − ıU0

N∑

j=1

e∓2ıkzjα∓ + η±

ṗj = −2ıℏkU0(α+α
∗
−e

2ıkzj − α−α∗
+e

−2ıkzj )

. (25.50)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_Optomech_Movie.avi
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/ClassicalCARL
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with the kinetic and potential energies 9,

Ekin =
∑

j

p2j
2m

, Epot =
∑

j

U0|α+e
ıkzj + α−e

−ıkzj |2 . (25.51)

If the atomic density distribution is homogeneous, the phases of randomly scattered
photons destructively interfere and the quantity,

b ≡ 1
N

∑

j

e−2ıkzj , (25.52)

called bunching parameter, vanishes. That is, the impact of the scatterers on the light
modes cancels out, as we will see in Exc. 25.2.5.1 for the case of two atoms. If on
the other hand, atoms accumulate in the antinodes of the standing wave, it increases
the contrast of it can spread more efficiently collectively by Bragg scattering. The
particularity of the CARL is that during the temporal evolution the bunching process
can amplify itself leading to an exponential growth of the counterpropagating mode,
accompanied by an increasingly pronounced self-bunching.

In general, the equations can not be solved analytically, especially when the pump
varies over time. A first approach consists in iterating them numerically,

α±(t+ dt) = α±(t) + dt [−(κ+ ıNU0 − ı∆c)α± − ıNU0bα∓ + η±(t)] (25.53)

zj(t+ dt) = zj + dt 1
mpj

pj(t+ dt) = pj − dt 2ıℏkU0(α+α
∗
−e

2ıkzj − α−α
∗
+e

−2ıkzj ) .

In Exc. 25.2.5.2 we will extend the equations (25.50) to the presence of two atomic
species, and in Exc. 25.2.5.3 we will use them to describe the response of the light
fields to an inertially moving atom supposing that is does not feel the CARL force.

25.2.1.1 Locking of the pump laser

In practice the resonant frequency of a cavity fluctuates due to ambient noise. Hence,
it is easier, experimentally, to lock the pump laser on a cavity mode, e.g. using the
Pound-Drever-Hall method. This means,

α+ =
η+
κ

. (25.54)

In the presence of atoms, however, the resonant frequency can be shifted due to the
refractive index of the atomic cloud [264]. Moreover, the shift depends on the atomic
bunching and consequently varies during the dynamics of the CARL. The way the
locking circuit works, is to continuously adjust the detuning between the laser and
the cavity ∆c (defined for the empty cavity) such as to maximize the amplitude of the
field |α+| and, hence, the transmission of the cavity filled with atoms. The dynamics
of the detuning must be incorporated by an additional equation modeling the action
of locking. Now that we know the effect, which an ideal lock should have, we can

9Note, that there is also a radial motion of the atom coupled to the axial movement. The coupling
happens, because the axial motion influences the number of intracavity photons of the radiation field
which, in turn, determines the depth of the dipole potential.
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apply the boundary condition (25.54) and eliminate the pump mode α+ from the
dynamics of the system. That is, the following equations are usually sufficient to
describe the CARL:

α̇− = (−κ+ ı∆c − ıU0)α− − ıU0e
−2ıkzα+ + η−

mz̈ = 2ıℏkU0α+(α−e−2ıkz − α∗
−e

2ıkz)
. (25.55)

The frequency offset of the cavity resonances caused by the atom, U0, can exceed the
width of the cavity κ. From equation (22.67) we know,

|α+(∞)|2 =
χχ∗

(χ2 + U2
0 )(χ

∗2 + U2
0 )
η2+ .

The maxima of |α+(∞)|2 as a function of ∆c give the shifted resonances of the modes.

Example 178 (Locking on transverse modes): We already mentioned that
as the CARL accelerates, the frequency of the light which is backscattered to the
probe shifts to the red until it escapes from the resonant mode. What happens
if we provide another resonant mode that can receive photons? We will show in
the following calculation, that CARL simply picks up the closest mode to dump
the photons. The starting point is generalized CARL equations to accommodate
a second reverse mode labeled β−,

α̇+ = −(κ− ı∆c)α+ − ıU0(u
∗
+u+α+ + u∗

+u−α− + u∗
+uββ−) + η+ (25.56)

α̇− = −(κ− ı∆c)α− − ıU0(u
∗
−u−α− + u∗

−u+α+ + u∗
−uββ−)

β̇− = −(κ− ı∆β)β− − ıU0(u
∗
βuββ− + u∗

βu+α+ + u∗
βu−α−)

mẍ = −U0∇|α+u+ + α−u− + β−uβ |2 ,

com u± = e±ıkz and uβ = e−ıkβx. We obtain,

α̇+ = −(κ− ı∆c + ıNU0)α+ − ıU0e
−2ıkzα− − ıU1e

−ı(k+kβ)xβ− + η+ (25.57)

α̇− = −(κ− ı∆c + ıNU0)α− − ıU0e
2ıkzα+ − ıU1e

ı(k−kβ)xβ−

β̇− = −(κ− ı∆β + ıNU1)β− − ıU1e
ı(k+kβ)xα+ − ıU1e

−ı(k−kβ)xβ−

mẍ = −U0(2ıke
2ıkzα∗

−α+ − 2ıke−2ıkzα∗
+α−)

− U1(ı(k + kβ)e
ı(k+kβ)xβ∗

−α+ − ı(k + kβ)e
−ı(k+kβ)xα∗

+β−)

− U1(ı(k − kβ)eı(k−kβ)xα∗
−β− − ı(k − kβ)e−ı(k−kβ)xβ∗

−α−) .

Note that k−kβ ≈ 0 and k+kβ ≈ 2k. The result of the simulation is displayed

in Fig. 25.4.

25.2.1.2 Analytic approximations for one-sided pumping and perfect bunch-
ing

Here, we will assume for simplicity, that the atoms are perfectly bunched, zj = z and
pj = p, i.e. they have zero temperature. This means that we only need to consider a
single equation of motion for the atoms. However, their coupling to the cavity modes
is N times stronger, which means that we have to substitute U0 −→ UN ≡ NU0 in
the equation of motion for the cavity fields.
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Figure 25.4: (code) The CARL locks to other modes of the cavity.

Figure 25.5: In the momentum picture the CARL acceleration process occurs as Raman-
anti-Stokes processes along the free-particle dispersion relation.

When only one atom is in the cavity or when the atoms are perfectly bunched
together, it is possible to derive analytical solutions. Particularly interesting is the
following situation: We pump the cavity from one side. The pump is supposed to
be dominant and locked to a resonance, such that we can neglect the feedback of the
system on the pump, that is, we can assume, α+ = η/κ. Using the abbreviations
χ ≡ κ+ ıU0 − ı∆c and the photon recoil shift [300],

ωrec ≡
ℏk2

2m
, (25.58)

the equations (25.26) then become,

α̇− = −χα− − ıUNα+e
2ıkz

kv̇ = 4ωrecıU0α+(α−e−2ıkz − α∗
−e

2ıkz)
. (25.59)

We consider the stationary case (25.26). Doing the ansatz,

α− ≡ βe2ıkx where β̇ = 0 (25.60)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlLocking.m
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we assume that the atom and the standing wave have the same velocity, that is, they
move in phase. We obtain as solution,

β =
−ıUNα+

κ+ 2ıkv
, kv̇ = 8ωrecU

2
0α

2
+

2κ

κ2 + 4k2v2
. (25.61)

If κ≪ 2kv, then the differential equation is approximately solved by,

(kv)3 = 3εκU2
0α

2
+t . (25.62)

This means that the CARL frequency, that is, the frequency difference between the
emitted probe wave and the incident light, increases temporarily. The frequency
corresponds to the double Doppler shift. As the frequency of the probe light gradually
shifts away from the cavity resonance, the probe light finally stops being amplified,
and the amplitude of the probe field decreases: CARL is only a transient phenomenon.
In fact, the behavior described by the equation (25.61) was observed in experiments
[490].

Example 179 (Universal scaling): Our formula describing CARL,

α̇− = − ıU0η+
χ

∑
j
e2ıkzj − χα− (25.63)

kv̇j = −4ωrecıU0η+

(
α−

χ∗ e
−2ıkzj − α∗

−

χ
e2ıkzj

)
− γfrckvj ,

where χ = κ+ ıNU0 − ı∆c, can be rewritten in terms of a universal ’scaling’ if
we define,

τ = 4ωrecρt and γ̄ =
γfrc

4ωrecρ
(25.64)

θj = 2kzj and Pj =
2kvj
4ωrecρ

A =
ı|χ|

χ∗
√
ρN

α− and χ̄ =
χ

4ωrecρ
.

We obtain,

Ȧ =
1

N

∑
j
eıθj − χ̄A (25.65)

θ̇ = Pj

Ṗj = −2(A∗e−ıθj +Aeıθj )− γ̄Pj .

provided that the universal scaling parameter ρ is set to,

ρ ≡
(
NU2

0 η
2
+

8ω2
rec|χ|2

)1/3

. (25.66)

The meaning of the ρ parameter can be gathered by rewriting it in terms of the
number of photons of the pump |α+|2 = η2+/κ

2 and the depth of the dipolar
potential Ud = U0|α+|2,

ρ3 =
N

α2
+

U2
d

8ω2
rec

. (25.67)

The ρ parameter therefore indicates the number of atoms per photon and the

ratio between the depth of the dipolar trap and the photonic recoil energy.
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25.2.2 Observation of CARL in ring cavities

The first observation of CARL was achieved with a cloud of 100µK cold rubidium
atoms interacting with a high finesse ring cavity [490]. In a thermal cloud the atomic
motion prevents bunching, i.e. b = 0 so that according to Eq. (25.50) the cavity fields
do not couple to the atoms. Density fluctuations that could seed CARL dynamics are
rapidly washed out by thermal motion.

This problem can be circumvented by applying a robust pre-bunching, which can
be done by subjecting the atoms to a periodic potential, e.g. via a standing wave
formed by two counterpropagating cavity modes. The atoms then arrange themselves
into a periodic lattice, so that the bunching parameter is initially b ≃ 1. If one cavity is
then extinguished, a CARL dynamics can take place, until thermal motion succeeds
in washing out the periodic lattice. This dynamics is illustrated in the simulation
exhibited in Fig. 25.6 for the case of strontium atoms. The finite temperature of the
cloud is accounted for via an initial density and momentum distribution for the atoms
given by,

p0,j =
√
mkBT ζj and z0,j =

√
2

k

√
kBT

U0
ζj , (25.68)

where ζj is a normally distributed random variable.
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Figure 25.6: (code) Simulation for N = 105 strontium atoms at T = 10µK temperature

interacting via their Γ = (2π) kHz narrow intercombination line at λ = 689 nm with a ring

cavity (decay rate κ = (2π) 1.7MHz and waist w0 = 68.4µm). CARL dynamics is triggered

by switching off one of two pump lasers whose intracavity power is P = 1W. (a) Doppler

shift of the CARL-accelerated atoms, (b) interference signal between the two cavity light

modes, and (c) atomic distribution in the standing wave potential.

Example 180 (Curiosities: Atomic transport around mirrors): Displace-

ment of the atomic cloud in a unidirectionally pumped ring-cavity. The left and

right image in Fig. 25.7 are taken for different pumping directions α. The up-

per cloud shows atoms trapped in the main focus of the ring-cavity. The lower

traces stem from atoms transported from the focus passed the mirrors T1 and T2

towards the incoupling mirror located at the place where the lower traces inter-

sect. The lower trace are imaged twice, because the imaging beam is reflected

from the incoupling mirror surface, before it is sent to a photodiode.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
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Figure 25.7: Displacement of the atomic cloud in a unidirectionally pumped ring-cavity.
The left and right figures are taken for different pumping directions α. The upper cloud
shows atoms trapped in the main focus of the ring-cavity. The lower traces stem from atoms
transported from the focus passed the mirrors T1 and T2 towards the incoupling mirror
located at the place where the lower traces intersect. The lower trace are imaged twice,
because the imaging beam is reflected from the incoupling mirror surface, before it is sent
to a photodiode.

25.2.2.1 CARL in the presence of friction forces

A feature of CARL, as it has been detected in Fig. 25.6 is, that it does not lead to a
stationary state: the atoms are monotonically accelerated and the Doppler-shift of the
backscattered probe light increases at the same pace. After a while, the frequency of
the probe light runs out of the cavity resonance, so that the CARL dynamics starts to
be suppressed. This led to a reduction of the oscillation amplitude of the interference
signal observed in Fig. 25.6(b).

In order to maintain CARL strong we can think of limiting the acceleration by a
friction force. How this works is illustrated in Fig. 25.8, where by subject the atoms
to an optical molasses switched on at time κt = 0.3. The friction can be incorporated
into the CARl equations (25.50) via an additional force,

Ffrc = −βfrcp . (25.69)

We observe that the frequency shift of the backscattered light stabilizes at a lower
value and that the oscillation amplitude of the interference signal is stronger than
without molasses [843].
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Figure 25.8: (code) Influence of an external friction force (switched on at κt = 0.3) propor-

tional to βfrc = 3.8 · 106 s-1. Other parameters are the same as in Fig. 25.6.

Let us note that, while provide a nice intuition, the description of the impact of
an optical molasses force is incomplete, because it disregards heating effects caused
by random photon scattering processes. The temperature of the atomic cloud is given

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimMolasses.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimMolasses.m
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by an equilibrium between friction and heating processes. The correct inclusion of
optical molasses in the CARL dynamics will be studied in Sec. 25.6.1.

25.2.2.2 CARL in the presence of injected probe light

It is also interesting to study the impact of a weak injected probe light on the CARL
dynamics. This light may have the same frequency as the pump light, η−/|η−| =
η+/|η+|. This is for example the case, when light is backscattered from imperfection
of the cavity mirror surfaces. Or may have a different frequency (provided the probe
frequency is resonant to a cavity mode),

η− = eı∆νt . (25.70)

The injected light fields η+ and η− create a standing light wave potential, in which
the atoms move as being subject to an array of hurdles. The CARL force is too weak,
the atoms will get stuck. We study this in Exc. 25.2.5.4. In Exc. 25.2.5.5 we study
CARL dynamics for the case that the atoms are subject to an additional harmonic
potential.

25.2.2.3 Impact of radiation pressure on CARL

CARL is a coherent force resulting from a coupling of only two counterpropagating
modes of the cavity. As such, it can be derived from a potential. However, photons
may also be scattered out of the cavity and get lost for the system. These processes
give rise to an additional radiation pressure force, which has been given in Eq. (25.46),

Frp = 2ℏkγ0(α+α
∗
− − α−α

∗
+) . (25.71)

But this force is weak when the laser is tuned far enough from the atomic resonance.

Fig. 25.9 shows a simulation of the impact of radiation pressure for the same
system as in Fig. 25.6. For clarity the radiation pressure force has been exaggerated
by a factor of 100.
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Figure 25.9: (code) Influence of radiation pressure on CARL.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimRadPressure.m
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25.2.3 Optical instability in ring cavities

We have until now concentrated on the regime of weak coupling, NU0 < 1. If the
pump laser is tuned closer to resonance, or if the number of atoms is increased, so
that NU0 > 1, we observe instabilities in the coupled atom-field dynamics, which
critically depend on the pump intensities [615]. Imagine a sample of atoms trapped
in an optical lattice formed by a symmetrically pumped ring cavity, η+ = η−. The
system is stationary, the atoms are confined at the antinodes of the standing wave,
the light fields are equal in strength, α+ = α−. At time t = 0 we suddenly reduce
the pump rate η− of the non-stabilized mode by only a few percent. The response
of the system observed in experiment [615] is to completely break down the field α−.
The disappearance of the standing wave ejects most atoms and reduces NU0, until
the coupling gets so weak that the dynamics is essentially governed by the injected
fields. The system recovers a stationary state, with much less atoms.
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|α
+
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Figure 25.10: (code) Dynamics simulated with equations (25.46). At time κt = 0 the pump

rate η− is reduced by 1%. After a certain time that depends on NU0, the standing wave

breaks down ejecting atoms from the mode volume. Here, we simulate this via an artificial

linear trap loss process setting in at time κt = 15. As a result of the diminishing NU0 the

standing wave recovers.

The physical explanation for the instability is reminiscent to the CARL behavior
described in previous sections. Because atom-field coupling is strong, a small imbal-
ance of the injected beam intensities is sufficient to displace the atoms to a location,
where the light which they scatter into the reverse direction interferes destructively
with the injected light. A simple argument explains, why the standing wave is at-
tracted towards a position where it gets unstable. We treat the imbalance η+ > η−
as if it was due to a scatterer fixed in space inside the mode volume sitting on an
edge of the standing wave (corresponding to a π/4 phase shift), such that it only
scatters light from α+ into α−, but not the other way round. Whether the phase of
the standing wave adjusts itself to that of pump field or such that the scatterer sits at
the bottom of the potential well depends on the ratio of the coupling to the external
field (given by κ) and to the scatterer (given by U0). If U0 is stronger, the field is
pulled towards the scatterer dragging along the atoms which are free to move. The
stationary situation is therefore a displacement of the standing wave and the atoms
by λ/4, which is just the position where the cavity field α− and the injected field

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
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α
(in)
− are out of phase. The injected light is not transmitted through the cavity any

more.
Note that the instability occurs in a plane wave situation, there is no need to

consider the transversal motion. Furthermore, it is a single-atom effect, since we
assume perfect bunching. We may therefore consider a single atom strongly coupled to
the cavity and use the set of equations (25.46). In the undepleted pump approximation
we assume α̇+ = 0, and if the atom adiabatically follows the dynamics of the potential
valley, ẍ = 0, so that,

0 = −χα+ − ıU0

√
α+α∗

−
α∗
+α−

α− + η+ , (25.72)

α̇− = −χα− − ıU0

√
α∗
+α−
α+α∗

−
α+ + η− .

The first equation yields,

α+ =
η+

χ+ ıU0
|α−|
|α+|

, (25.73)

|α+| ≈
η+
χ

(
1− U2

0

2η2+
|α−|2

)
.

Plugging this result into the second equation and assuming the laser on resonance,
∆c = NU0, so that we may replace χ by κ, we get,

α̇− ≈ −κα− −
ıU0η+
κ

α−
|α−|

+
ıU3

0

2κη+
|α−|α− + η− . (25.74)

This equation describes optical bistability.

25.2.4 Phononic coupling of atoms mediated by a ring cavity

Phonons can be understood as vibrational excitations of quantum particles (atoms)
in quantized traps. When atoms are interconnected in vibrational lattices, phonons
can be transferred and shared between atoms 10. Due to the particularity of the
ring cavity of conserving the photonic momentum at each backscattering event, the
photonic momentum can be understood as a phononic excitation, propagating in one
dimension along the optical axis of the cavity.

We now consider a symmetrically pumped ring cavity [301]. The atoms are very
cold and deep in the Lamb-Dicke regime. Using blue-detuned light the atoms will
be trapped at the nodes of the standing wave, kzj = π/2 + kZj , where Zj are small
displacements. Hence, we may expand,

e∓2ıkzj ≃ −(1∓ 2ıkZj) . (25.75)

With the abbreviation χ ≡ κ − ı(∆c − NU0) and defining the center-of-mass of the
small displacements, Zcm = 1

N

∑
j Zj , the equation for the two field modes are,

α̇± ≃ −χα± + ıNU0(∓2ıkZcm)α∓ + η . (25.76)

10This is similar to the situation in micromasers, where several atoms can share a single photon.
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Neglecting the impact of the atom on the amplitudes of the fields, we may derive the
steady-state solution,

α± = η
χ+ ıNU0(1∓ 2ıkZcm)

χ2 +N2U2
0

. (25.77)

As shown in (25.28) the normalized field intensity can be written as,

1
2ε0cE2

1
I(z, t) = |α+|2 + |α−|2 + 2|α+||α−| cos(2kz + 2θ) , (25.78)

provided the field amplitudes are expressed by,

α± = |α±|e±ıθ such that α+α
∗
− = |α+||α−|e2ıθ and tan 2θ =

Imα+α
∗
−

Reα+α∗
−
.

(25.79)
Now,

tan 2θ =
Im [χ+ ıNU0(1− 2ıkZcm)][χ∗ − ıNU0(1− 2ıkZcm)]

Re [χ+ ıNU0(1− 2ıkZcm)][χ∗ − ıNU0(1− 2ıkZcm)]
(25.80)

= 4NU0kZcm
−∆c + 2NU0

−κ2 −∆2
c + 4∆cNU0 − 4N2U2

0 + 4N2U2
0 (kZcm)2

≃ 4NU0(∆c − 2NU0)

κ2 + (∆c − 2NU0)2
kZcm .

An individual atom in this optical potential feels the dipolar force,

mz̈j = [−ℏU0∂zI]z=zj = 4ℏkU0|α+||α−| sin(2kzj + 2θ) (25.81)

= 4ℏkU0η
2 |(χ+ iNU0)

2 − 4N2U2
0 (kZcm)2|

|χ2 +N2U2
0 |2

sin

(
2kzj +

2NU0(∆c − 2NU0)

κ2 + (∆c − 2NU0)2
2kZcm

)

≃ 4ℏkU0η
2

κ2 +∆2
c

sin

(
2kzj +

2NU0(∆c − 2NU0)

κ2 + (∆c − 2NU0)2
2kZcm

)
≡ m

2k
ω2
0 sin(2kzj − 2µjkZcm) ,

where,

mω2
0 ≡

8ℏk2U0η
2

κ2 + 4U2
0

and µj ≡
2NU0|2NU0 −∆c|
κ2 + (2NU0 −∆c)2

. (25.82)

Expanding this equation around the nodes we readily obtain,

kZ̈j + ω2
0µj ≃ µjkZcm =

µj
N

∑

j

kZj , (25.83)

which describes the force on a single atom. Note that the harmonic force, ω2
0kZj ,

on the atom is continuously fed by the center-of-mass force, ω2
0µjkZcm. The above

equation can be rewritten as,



kZ̈1

kŻ1

kZ̈2

kŻ2

.




=




0 −ω2
0(1− µj

N ) 0 −ω2
0
µj

N .

1 0 0 0 .

0 −ω2
0
µj

N 0 −ω2
0(1− µj

N ) .

0 0 1 0 .

. . . . .







kŻ1

kZ1

kŻ2

kZ2

.




. (25.84)
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The eigenvalues of the matrix are e = ıω0, ıω0

√
1− µj . Therefore, we expect, in

addition to the secular frequency ω0, a second oscillation frequency,

ωcm = ω0

√
1− µj . (25.85)

We find splitting in the strong coupling regime, g > Γ, but we consider the weak
coupling regime, g < Γ, to implement the phononic coupling.

Example 181 (Two-coupled atoms): Here we rewrite the field equations for
two atoms in center-of-mass coordinates,

Z =
z1 + z2

2
and z = z2 − z1 ,

finding,

α̇± = (−κ+ ı∆c − 2ıU0)α± − 2ıU0α∓e
∓2ıkZ cos kz + η .

25.2.4.1 Probing the phonon spectrum

To probe the phonon spectrum, we can measure (or simulate) the oscillation of a single
atom zj(t) in the presence of several atoms. The Fourier spectrum of the oscillation
should reveal the frequency components of the center-of-mass motion Z(t) and the
relative motion.

An experimental method for observing normal modes consists in parametrically
exciting the atomic motion at a modulation frequency ωϕ and watch out for a reso-
nant enhancement of the vibration amplitude near the secular frequency ω and the
collective frequency ωcm both defined in (25.82). In practice, the atomic vibration
can be excited by an external force, for example, a Bragg spectroscopic setup as it is
used for driving recoil-induced resonances (RIR),

ṗj = 2ıℏkU0(α
∗
+α−e

−2ıkzj − α+α
∗
−e

2ıkzj ) + Frir sinωϕt . (25.86)

Alternatively, we may shake the intracavity standing wave by modulating the phase
of the pump field,

η±(t) = ηe±ıϕ0 sinωϕt . (25.87)

Fig. 25.11 shows typical resonance curves obtained by simulating the CARL equa-
tions (25.50) together with the modulation term (25.87). Being shaken for a while, the
atoms suffer parametric heating visible as a noticeable increase of their kinetic energy,
as seen in Fig. 25.11(a). The atomic motion, in turn, acts back on the intracavity field
fields leading to a modulated photon imbalance between both.

Note, that the phase modulation frequency should not exceed the cavity decay
time, ωϕ < κ. Otherwise, even in the absence of atoms, we expect a low-pass be-
havior as discussed in Sec. 15.2.2, impeding that the applied phase modulation be
transformed into an efficient shaking of the phase θ of the intracavity standing wave.

25.2.5 Exercises

25.2.5.1 Ex: Anticorrelated atoms

Study the CARL equations (25.50) for the case of two fixed atoms sitting at positions
kz1 = kz2 − π.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveAtom00.pdf
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Figure 25.11: (code) Response of the cavity field to a phase modulation of the pump light.

(a) Kinetic energy, (b) photon imbalance, and (c) total photon number. The simulation

assumes N = 106 strontium atoms initially at T = 1µK driven on the λ = 689 nm line and

κ/2π = 3.4MHz, ∆c = 2U0, η = 104κ, NU0/κ = −.02, ϕ0 = 0.01. The calculated secular

frequencies are ω0 = 0.35κ and ω0

√
1− µN = 0.32κ.

25.2.5.2 Ex: Coupled motion of Rb and Cs atoms in a ring-cavity

Find out by simulation of the classical CARL equation, whether the motion of a Rb
atom and a Cs atom can be coupled to the same mode of a ring cavity.

25.2.5.3 Ex: Inertially moving atom in a ring-cavity

Illustrate by simulation of the classical CARL equation, how an inertially moving
single atom pushes the wave formed by two counterpropagating modes of a ring cavity.

25.2.5.4 Ex: CARL in a harmonic potential

Extend the CARL dynamics by an additional harmonic potential for the atoms and
study the steady state gain as a function of cavity detuning ∆c.

25.2.5.5 Ex: Impact of potential barriers on CARL

Illustrate by simulation of the classical CARL equations how (a) mirror backscattering
and (b) an external harmonic trapping potential influence the dynamics of an atom
interacting with two counterpropagating modes of a ring cavity.

25.2.5.6 Ex: CARL without cavity

Discuss whether CARL can be observed without a ring-cavity.

25.2.5.7 Ex: Cavity cooling in a ring cavity

Study cavity cooling in a ring cavity as a function of (a) friction and (b) detuning.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveAtom01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveAtom02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom06.pdf
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25.2.5.8 Ex: Motion of atoms in a ring-cavity including internal states

Motion of atoms in a ring-cavity, including internal states.

25.3 Phenomena related to CARL

The collective atomic recoil laser (CARL) unifies the principles of the FEL and LWI.
Assume two-level atoms in their ground state moving against the pump beam k2.
An (at first) weak probe beam k1 which is blue detuned with respect to k2 builds
a together with k2 a standing wave fraction moving in direction v. This fraction
gives rise to a moving dipole potential V (r) and a light force on the atoms. If the
moving standing wave is slower than the atoms (and the light frequency detuning
from the atomic resonance is suitable), the atoms fall into the potential valleys by
rescattering photons from the pump into the probe wave. This way they amplify the
probe (they push the ponderomotive wave like the FEL), deepen the light potential
valleys, are therefore further focused, etc.. We get a self-amplifying avalanche and
feedback. In this process, the kinetic energy of the atoms is transformed into laser
light. Or to resume: Collective recoil with self-bundeling produced by cooperative
Compton-scattering generates coherent laser light [101].

The following notes first discuss the basic equations of motion in the limit of very
far detuning, where the internal dynamics can be adiabatically eliminated. Then we
turn our attention to some characteristic features of CARL.

25.3.1 Recoil-induced resonances

The recoil-induced resonances (RIR) can be explained in two complementary pictures
[181]. In the Raman picture, an atomic transition stimulates Raman transitions
between momentum states of the free atom without influencing the atomic excitation
(the atom remains in a dark state) ρatom ⊗ |p⟩⟨p + 2ℏk|. Absorption ∆ > 0 or
amplification ∆ > 0 of the probe field ks by the pump field kp is a result of the
population imbalance. However, it is not an excitation imbalance (compare LWI)
ρatom ⊗ |p + 2ℏk⟩⟨p + 2ℏk| − ρatom ⊗ |p⟩⟨p|. In the Rayleigh picture the RIRs are
an effect of coherent backward Bragg scattering of the probe wave at the phase-lag
between the induced light-shift grating and the atomic density grating resulting from
the periodic optical potential.

25.3.1.1 RIR-spectroscopy

Two laser beams 1 and 2 having each two different frequencies ω−∆ω/2 and ω+∆ω/2
are irradiated from two different directions enclosing a small angle θ into the atomic
trap,

E(r, t) = E1 + E2 (25.88)

= E(0)
[
cos
(
k1 · r− (ω − 1

2∆ω)t
)
+ cos(k2 · r−

(
ω + 1

2∆ω)t
)]

≈ 2E(0) cos (K · r− ωt) cos
(
1
2q · r− 1

2∆ωt
)
,

where q ≡ k2 − k1 and k ≡ 1
2 (k2 + k1). The cycle-averaged intensities are Ii(t) =

2ε0c|Ei|2 = 4ε0cE(0) cos
(
1
2q · r− 1

2∆ωt
)
. Atoms coherently interacting with the light

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom07.pdf
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fields (which are tuned far from any atomic resonance) can redistribute the photons
between the optical modes in a nearly-degenerate four-wave mixing process (4WM)

thus modifying the amplitudes E(0)i so that a signal occurs.

Figure 25.12: Principle scheme for RIR spectroscopy.

From symmetry considerations, it is easy to see that a homogeneous density dis-
tribution (along q) of the motionless atoms does not give rise to a signal, neither. So
let us assume that the atoms be bunched inside an optical grating according to some
periodic distribution n(z) = n0 sin

2 kλz, but disregard their kinetics. The signals then
generalize to,

E1(z, t) = E1 + βn(z)χ(3)(E1 + E2)E1E2E1 + βn(z)χ(3)(E1 + E2)E1E2E1 (25.89)

= E1 + βn(z)χ(3)
(
2E(0) cos

(
1
2qz − 1

2∆ωt
))
E1E2E1

and analogous for E2(z, t). Or following Lambert-Beer [485],

I1(x, z, t) = |E1|2 exp
(
2ı
π

λ

∫
χ(3)

(
2E(0) cos

(
1
2qz − 1

2∆ωt
))
dy

)
(25.90)

= |E1|2 exp
(
2ı
π

λ

∫
n(x, y, z)...dy

)

= |E1|2 exp
(
2ı
π

λ
n0 sin

2 kλz

∫
...dy

)

I1(t) =

∫
I1(x, z, t)dxdz .

Regarding the momentum transfer, the 4WM process can be interpreted as Bragg
scattering af the atoms at one of the two counterpropagating standing waves. We
develop the theory if Bragg scattering in Sec. 29.2.

25.3.1.2 Temperature measurements via RIR

Temperature measurement are usually carried out by the time-of-flight method fol-
lowed by absorption imaging. Alternatively, one can perform spectroscopy of RIR



1096 CHAPTER 25. ATOMIC MOTION IN OPTICAL CAVITIES

resonances. In the latter case, we detect intensity variations in a probe laser beam,
i.e. the polarisation of the sample under the influence of all irradiated laser beams.
We have seen that α ∝ Imχ ∝ ImP ∝ Im ρ12. It is thus sufficient to calculate the
atomic coherences, if necessary including the motional states of the atoms. Calculated
by [353]

W (t) =
π

2

Ω1Ω2

∆

√
mv

kBT

[
∂

∂v
e−mv

2/2kBT

]

v=∆ω(t)/q

. (25.91)

25.3.1.3 RIR-spectroscopy on trapped atoms

In the case of free particles, the Raman beams interact for every detuning with a
different velocity class of atoms. The atoms are almost not disturbed. In the case of
trapped atoms, a coherence can be excited, and since the atoms periodically change
their velocity, be read out or reexcited at a later time. The same atom can thus
interact with the Raman beams at different times/detunings. If the trap is a standing
wave, the situation is complicated by the fact that there are two overlapping gratings:
The standing wave and the Raman grating. However, if the trap is much deeper than
the Raman grating the atoms can be considered as localized.

The signature of atomic oscillation is a modulation in the RIR signal with the
periodicity of the secular frequency [484, 678].

Let us consider a standing-wave dipole-trap with ωz = 2π × 700 kHz, ωr = 2π ×
1 kHz and Udip = h×30MHz = 4000×2ε = 45ωz = 2100ωz. The 100µK cold atoms
are therefore deep inside at the bottom of trap. This implies that the atomic energy
levels are sharp and equally distant, and that the transitions are degenerate upon
coupling by Raman-beams. If we apply a scan of ±2π × 300 kHz, we will not excite
the longitudinal motion. But the radial motion can be excited. As seen earlier the
absorption signal is α ∝ Im ρ12. What happens to the coherence, if the radiation is
swept across a resonance depends on the scanning speed. If the scan is slow, we expect
α ∝ Im ρ12(∞). We should be able to resolve the resonances [353, 355, 354] as peaks
at ±ωr,±2ωr, ... In contrast, if the scan is fast, as long as ∆c is far from resonance,
the population of the excited level ρ22 is just too small and nothing happens. When
∆c passes through 0, the coherence ρ12 is excited, and can now be driven by the laser
even when ∆c is tuned far away. The coherence precesses faster and faster.

Let us compare to the situation of a laser swept across an electric dipole reso-
nance. In analogy to the cavity response in reflection to a laser scanned across an
eigenfrequency, we might expect a ringing coming from interference of the radiating
electric dipole (which has been induced while the laser was close to resonance) with
the original laser frequency. The radiated electric field is proportional to the excited
state population. If we allow for a change of the input field, for example ∆c(t), the
Bloch-equations must be numerically integrated,

ρ(t+ dt) = ρ(t) + dt Mρ(t) . (25.92)

It is already clear that we should expect a ringing with exactly the time-dependent
frequency ∆c(t). Fig. 25.13 shows

This simple mathematical model only assumes a resonance with a given width
and a frequency-scanned oscillator. The physical nature of the resonance and the
level splitting are not specified and the formalism should be applicable to a variety of
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Figure 25.13: (code) Time-evolution of the atomic coherence as the driving laser frequency

is swept across resonance. The parameters are Γ = 2π × 8 kHz, Ω = 0.2Γ, ∆ = −50Γ..50Γ
and t = −150..150µs.

situations. A ringing is, in fact, observed for RIR scans, if the scanning speed is too
fast, in particular for atoms trapped in optical lattices. Ringing can also be generated
in classical harmonic oscillators and laser-driven two-level systems as we will see in
Exc. 29.5.4.1.

25.3.1.4 RIR versus CARL

The dynamics is characterized by backaction of the atomic motion onto the cavity
field. In this respect there is a connection to RIR resonances in the limit investigated
by [485]. While normal RIR is the action of the atomic motion on light fields, they
demonstrate that in the same time the Raman-lattice influences the atomic motion.
The coherence is limited by the time the photon spends in the sample (similar to
the limitation of superradiant Rayleigh scattering, without photonic recycling by a
ring-cavity). Real backaction in the sense of coherent interdependence of the photonic
and the kinetic degrees of freedom requires recycling of the photons.

25.3.2 FEL: the free electron laser

Normal lasers work by an inversion in the internal degrees of freedom, that is, bound
electrons are excited to energetically higher orbitals, from where they can decay by
emitting monochromatic light of well-defined frequency. Because, the free electron
laser (FEL) works with beams of free electrons, they are tunable over wide frequency
ranges. They have much higher efficiencies above 65%.

The principle is the following: Relativistic electrons are guided through an un-
dulator, which is a device producing a magnetic field with periodically alternating
polarization. Here, the electrons are subjected to a Lorentz force, F = −ev × B,
forcing the electrons to oscillate with the periodicity of the undulator field. This cor-
responds to a dipole moment interacting with the incident light field. The transverse
velocity of the electrons within the magnetic field of an incident light produces a
Lorentz force in the axial direction called ponderomotive force. This force accelerates
the electrons when they are a bit slower than the ponderomotive wave. Otherwise the
electrons are decelerated. In the second case, the energy of the electrons is transmitted
to the light field, which leads to a bunching of the atoms. Because it is a parametric

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_RirRinging.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_RirRinging.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_RirRinging.m
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process, there is a continuous energy flow between the field and the motion of the e−

(analogous to parametric Raman cooling). Thus, the FEL converts the kinetic energy
of the electron beam into laser radiation. The inversion in a FEL can be interpreted
as a relative displacement of the probability distributions for absorption and emission
of photons in momentum space,

Wabs(∆) = sinc 2 1
2 (∆ + ε/2) (25.93)

Wabs(∆) = sinc2 1
2 (∆− ε/2) ,

where ε = ℏk2/2me. The gain is a convolution of the difference of the above distri-
bution with the momentum distribution of the electrons [744].

Figure 25.14: Free electron laser.

There various kinds of FELs. In stimulated Compton FELs, described by the
shown Feyman graphs, the electrons are scattered by virtual (momentum transfer
without energy transfer) photons of the wiggler. In Bremsstrahlungs FEL, the elec-
trons are scattered at a static field. Virtual photons of the static field are scattered
at the electrons, who then emit Bremsstrahlung an change their propagation direc-
tion. In Raman FELs very dense electron beams produce charge density oscillations,
which provides an additional effect. Free Electron Lasers already have a wide range
of application ranging from biology and medicine to lithography and material science.

25.3.3 CARL in an ion storage ring

Bonifacio et al. [102] suggested to study collective atomic recoil lasing (CARL) with
relativistic atoms. They found that using very fast atoms it should, in principle, be
possible to get large CARL frequency shifts and much higher power enhancement
factors than observed in free-electron lasers (FEL). Relativistic atomic velocities can
be achieved in heavy ion accelerators such as the GSI heavy ion accelerator in Darm-
stadt and TSR ion storage ring in Heidelberg. Therefore the question arises, if CARL
could be an alternative way to produce very energetic and intense UV radiation in
concurrence to the FEL. In fact, CARL-based systems may prove more powerful and
versatile as their electronic counterparts: Cooling techniques based on electron beams
or on hybrid optical-radiofrequency friction forces are able to cool the ionic beams
down to mK temperatures.

The CARL which has been predicted ten years ago by Bonifacio et al. [101], has
recently been observed with cold atoms stored in a high-finesse ring cavity [490, 843].
This proof of principle, now may motivate a deeper study of the figure of merit of a
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relativistic CARL. This short note, however, shows that a relativistic CARL is still,
in my opinion, far from being realizable.

25.3.4 Matter wave superradiance

There is a close relationship between CARL and the phenomenon of matter wave
superradiance (or superradiant Rayleigh scattering) [100, 719], which will be discussed
in the following sections.

In 1999 the group of W. Ketterle at the MIT made a surprising observation, when
it illuminated an elongated Bose-Einstein condensate with a short linearly polarized
laser pulse traversing the condensate perpendicularly to the long axis [416]. Instead
of producing radiation with a dipole pattern, as we might expect for a polarized
atomic cloud undergoing Rayleigh scattering, they observed emission of directional
light bursts along the symmetry axis of the condensate. They also observed that some
of the atoms were accelerated at angles of 45◦. And these atoms could emit other
generations of atoms at angles of 45◦.

������0 0

Figure 25.15: (code) Flight-of-time measurement of the atomic momentum distribution after

matter wave superradiance.

The phenomenon was explained as follows. Let us imagine a first photon scattered
by an atom into the direction of the long axis of the condensate. This atom will be
accelerated by the photonic recoil in a direction of 135◦ with respect to the direction
of the photon, and it will interfere with the rest of the condensate thus generating
a standing matter wave of oriented in such a way, that the following photons are
scattered into the same direction as the first one via Bragg scattering. This reinforces
the contrast of the matter wave, etc.. We obtain an exponential gain of photons in
the mode defined by the first scattered photon, as well as of the mode receiving the
scattered matter wave. As the path of the gain is longer along the long axis of the
condensate, this mode is favored. That is, the condensate can be considered as a
cavity embracing the solid angle Ωsol.

The Rayleigh scattering rate for a single atom is,

R1 = sin2 θσ(∆a)
I

ℏω
3Ωsol

8π
, (25.94)

where θis the angle between the polarization of the incident laser (intensity I) and the

direction into which the light is scattered. The cross-section is σ(∆a) = σ0
Γ2

4∆2+2Ω2+Γ2 ,

where σ0 = 3λ
2

2π . Now, for the set of atoms, the superradiant scattering rate is not

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_KetterleRadiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_KetterleRadiance.m
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only amplified by the number of condensed atoms, N , but also by the number of
atoms, Nr, already being in the mode receiving scattered atoms,

Rsr = R1N
Nr + 1

2
. (25.95)

This is the superradiance matter wave.

25.3.5 Exercises

25.3.5.1 Ex: Good and bad cavity regime

What are the characteristics distinguishing the good from the bad cavity limit.

25.3.5.2 Ex: Ringing in resonant systems

In this exercise we study ringing in (a) an excited classical harmonic oscillator and
(b) in a laser-driven two-level system.

25.4 Quantization of the atomic motion in cavities

At the beginning of this chapter we set up the complete Hamiltonian of the coupled
atom-cavity system. Then tracing over dissipative degrees of freedom, we derived the
master equation or derived the Heisenberg equations for the operators appearing in
the remaining Hamiltonian quantum mechanically. But then for CARL we restricted
to a classical treatment of the motion, as well as of the cavity modes.

Resuming the discussion started in Sec. 25.1.5 we will, in the remaining sections of
this chapter, analyze effects due to the quantization of degrees of freedom represented
by operators. The present section will (i) on a quantum description of the motion
(with and without adiabatic elimination of the internal atomic dynamics and (ii) on
issues arising from the presence of many atoms.

25.4.1 Quantum description of the motion

Concretely, let us analyze again the situation of a single atom interacting with a
ring cavity. We assume validity of the adiabatic elimination of the internal atomic
excitation and want to treat the light fields as classical. In contrast, the atomic motion
is considered as quantum:

|ψ⟩ = |z⟩motion ⊗ |α+⟩ ⊗ |α−⟩
classical

⊗ |i⟩electron
adiab.elim.

→ |z⟩ . (25.96)

Since the motion, being the only quantum degree of freedom, is not subject to dissi-
pation, we may use the Schrödinger equation in addition to Heisenberg equations for
the light fields. Then, following the procedure outlined in Sec. 25.1.5, with z being
the only quantum number, we find that the system is completely described by the
dynamics of the expansion coefficients,

ıℏ
d

dt
⟨z|ψ(t)⟩ = ⟨z|Ĥ|ψ(t)⟩ (25.97)

α̇± = ⟨z| ıℏ [Ĥ, â±]− κâ±|z⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlConsorts01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlConsorts02.pdf
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Plugging in the Hamiltonian (25.26), we obtain the Schrödinger equation for the
particle’s motional wavefunction 11,

ıℏ
d

dt
⟨z|ψ(t)⟩ = p2

2m
⟨z|ψ(t)⟩+ U0⟨z|â†+â−e−2ıkẑ + â+â

†
−e

2ıkẑ|ψ(t)⟩ , (25.98)

and the Heisenberg equations for the light fields,

α̇± = ⟨z|(−κ+ ı∆c − ıU0)â± + ıU0e
∓2ıkẑâ∓ + η±|z⟩ (25.99)

= (−κ+ ı∆c − ıU0)α±+ıU0α∓⟨z|
∫
dz|ψ(t)⟩⟨ψ(t)|e∓2ıkẑ|z⟩+ η±

= (−κ+ ı∆c − ıU0)α± + ıU0α∓

∫
dz|ψ(z, t)|2e∓2ıkz + η± .

In summary,

ψ̇(z) =
ıℏ
2m

d2

dz2
ψ(z)− ıU0

(
α†
+α−e

−2ıkz + α+α−†e2ıkz
)
ψ(z)

α̇± = (−κ+ ı∆c − ıU0)α± + ıU0α∓

∫
dz|ψ(z)|2e∓2ıkz + η±

. (25.100)

These are the new CARL equations that should be used in cases when the particle is
slower than the recoil velocity, in which its motion must be described as a propagating
matter wave. Note, that under this form, the equations can easily be generalized to
apply to macroscopic wavefunctions such as a Bose-Einstein condensate.

The expectation value of the particle’s position is then calculated via,

z(t) = ⟨ψ(0)|ẑ(t)|ψ(0)⟩ = ⟨ψ(0)e−ıĤt|ẑ|eıĤtψ(0)⟩ (25.101)

= ⟨ψ(t)|ẑ|ψ(t)⟩ =
∫
⟨ψ(t)|z⟩⟨z|ẑ|z′⟩⟨z′|ψ(t)⟩dzdz′ =

∫
z|ψ(t, z)|2dz .

We can verify that the expectation value of the particle’s position satisfies the classical
equation of motion,

mz̈ = ⟨ψ(t)|m¨̂z|ψ(t)⟩ = 2ıℏkU0

(
â†+â−⟨ψ(t)|e−2ıkẑ|ψ(t)⟩ − â+â†−⟨ψ(t)|e2ıkẑ|ψ(t)⟩

)

= 2ıℏkU0

(
â†+â−e

−2ık⟨ψ(t)|ẑ|ψ(t)⟩ − â+â†−e2ık⟨ψ(t)|ẑ|ψ(t)⟩
)

(25.102)

= 2ıℏkU0

(
â†+â−e

−2ıkz − â+â†−e2ıkz
)
.

25.4.1.1 About the origin of quantized motion

The quantization of the light field into photons is, as discussed in Chp. 17, an intrinsic
property of light. In contrast, the quantization of atomic motion is less obvious,
because the atoms are not confined in a trapping potential. The reason for it lies in

11Terms of the Hamiltonian (25.26) which do not depend on z or p have been ignored, as they can
be removed form the Schrödinger equation by a simple unitary transformation. Note that this can
be done even though these terms depend on the field amplitudes α±.
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the monochromaticity of the driving laser fields and the one-dimensional geometry of
the system, which allow us to write the recoil operator (1.294) or (2.143) as,

e2ıkẑ =

∫
|p+ 2ℏk⟩⟨p|dp . (25.103)

Inserting it into the interaction part of the CARL Hamiltonian,

Ĥint = U0(e
−2ıkẑâ†+â− + e2ıkẑâ+â

†
−) , (25.104)

the Schrödinger equation for the expanded wavefunction

|ψ⟩ =
∫
c(p)|p⟩dp (25.105)

yields,

ıℏ
d

dt
⟨p|ψ⟩ = U0â

†
+â−⟨p|e−2ıkẑ|ψ⟩+ U0â+â

†
−⟨p|e2ıkẑ|ψ⟩ (25.106)

= ıℏ
d

dt
c(p) = U0[â

†
+â−c(p+ 2ℏk) + â+â

†
−c(p− 2ℏk)] .

That is, if the initial momentum distribution is narrow, ∆p ≪ 2ℏk, and if CARL-
induced recoil due to backscattering of photons between counterpropagating modes
is the only force acting on the atoms, the momentum of the atoms can only adopt
discrete values in units of 2ℏk, as if the atomic velocity were quantized. That is, the
quantization of the field is, in some way, imprinted on the distribution of the atomic
moment, so that we may as well use a discrete notation,

|ψ⟩ =
∑

ν

cν |ν⟩ , (25.107)

such that 12,

ıℏ
d

dt
cν = U0â

†
+â−cν+1 + U0â+â

†
−cν−1 . (25.108)

Example 182 (Analogy to the Bose-Hubbard Hamiltonian): Interestingly
the CARL Hamiltonian with quantized motion (25.104) has, in momentum
space, a similar shape as the 1D Bose-Hubbard Hamiltonian in position space,

Ĥ =
∑
ν

ℏωrecν
2 + U0

∑
ν

(
|ν − 1⟩⟨ν|â†+â− + |ν − 1⟩⟨ν|â+â†−

)
= ℏωrec

∑
ν

ν2 + U0â
†
+â−

∑
ν

Â†
ν−1Âν + U0â+â

†
−

∑
ν

Â†
ν+1Âν .

12Note that, instead of expanding the state |ψ⟩, we could expand the motional wavefunction into
plane waves,

⟨z|ψ̃⟩ = ψ̃(z) = 1√
2π

∑
n

cn(t)e
2ınkz normalized as

∫
dz|ψ̃(z)|2 = 1 =

∑
n

|cn(t)|2 .

Insertion of this expansion into the quantized CARL equations (25.100) yields the same results.
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Now, it is important to understand that the statement that photonic recoil is
quantized does not mean that the dipolar optical force can only be transmitted in units
of 2ℏk, as if the force needed to accumulate a certain amount of energy before it
makes a sudden transition to a different momentum state. Rather, the probability to
find an initially resting atom subject to a force in the momentum state 2ℏk gradually
increases with time. The atom gradually evolves into a coherent superposition of
states |0⟩+ |2ℏk⟩+ |4ℏk⟩+ .., and only when we measure the momentum distribution
will it have to decide in which state it ended up. The expectation value of the center-
of-mass momentum linearly, as long as the force is constant. A slide show on the
quantized CARL can be viewed at (watch talk).

25.4.2 Discretization of the momentum states

We will now assume that, for the physical reasons described above, the motional
state of the atom can only exist with momenta corresponding to multiples of twice
the photonic recoil.

25.4.2.1 Schrödinger equation approach

We basically repeat the treatment of Sec. 25.4.1, but now expanding the motion on a
discrete basis of momenta labeled by an integer number ν,

|ψ⟩ = |ν⟩motion ⊗ |α+⟩ ⊗ |α−⟩
classical

⊗ |i⟩electron
adiab.elim.

→ |ν⟩ . (25.109)

Applying the recipe detailed at the beginning of Sec. 25.4, we write down the same
Schrödinger equation as in (25.98) 13, but now projecting on ⟨ν| rather than on ⟨z|
and inserting the expansion (25.107) and,

e2ıkẑ =
∑

ν

|ν + 1⟩⟨ν| and p̂ =
∑

ν

ν2ℏk|ν⟩⟨ν| . (25.110)

We get,

⟨ν|ıℏ d
dt

∑

ν′′

cν′′ |ν′′⟩ = ⟨ν|
∑

ν′

(ν′2ℏk)2

2m
|ν′⟩⟨ν′| (25.111)

+ U0

(∑

ν′

|ν′ − 1⟩⟨ν′|â†+â− +
∑

ν′

|ν′ + 1⟩⟨ν′|â+â†−

)
.

And from the Heisenberg equation (25.15) for light modes,

⟨ψ| ˙̂a±|ψ⟩ = ⟨ψ|(−κ+ ı∆c − ıU0)â± − ıU0e
∓ı2kẑâ∓ + η±|ψ⟩ , (25.112)

we get,

∑

ν′,ν′′

⟨ν′|c∗ν ˙̂a±cν′′ |ν′′⟩ =
∑

ν,ν′,ν′′

⟨ν′|c∗ν′ [(−κ+ ı∆c − ıU0)â± − ıU0|ν ∓ 1⟩⟨ν|â∓ + η±] cν′′ |ν′′⟩ .

(25.113)

13Here again, as done in Sec. 25.4.1, we ignore terms of the Hamiltonian (25.26) which do not
depend on z or p.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/BECCarl
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Finally,

ċν = −4ıωrecν
2cν − ıU0

(
α∗
+α−cν+1 + α+α

∗
−cν−1

)

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0α∓
∑

ν

c∗ν∓1cν + η±
. (25.114)

In Exc. 25.4.7.1 and 25.4.7.2 we study the equations (25.114) in the presence of a
constant external force.

25.4.2.2 Master equation approach

As in the situation under study the motion is the only quantum degree of freedom
and not subject to dissipation, a master equation approach is useless, and we will
show it here only for completeness.

In 25.4.7.3 we show a derivation obtained by directly inserting the adiabatically
simplified Hamiltonian (25.26) into the Liouville equation (25.8). The result is,

ρ̇µ,ν = ı(ν − µ) [(ν + µ)ωrec −∆c] ρµ,ν

+ıU0

[
α∗
+α−(ρµ,ν−1 − ρµ+1,ν) + α∗

−α+(ρµ,ν+1 − ρµ−1,ν)
]

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0α∓
∑

ν

ρν,ν∓1 + η±

. (25.115)

25.4.3 Quantization of atomic motion without adiabatic elim-
ination

So far we have discussed the quantization of the atomic motion in the CARL equa-
tions, which were obtained by adiabatic elimination of the electronically excited state.
In the following, we will quantize the motion directly in the equations of motion
(25.15) for the observables and in the Liouville equation for the density operator. We
quantize the atomic motion along the optical z-axis simply by assuming that, in this
direction, the momentum only exists in multiples of ℏk, and organize up the Hilbert
space like this,

|ψ⟩ = |ν⟩motion ⊗ |i⟩electron ⊗ |n⟩+ ⊗ |n⟩−
classical

→ |ν, i⟩ , (25.116)

that is, skipping the quantum number counting the photons, we will treat the light
fields classically, â± = α±,

p̂ =
∑

ν

νℏk|νℏk⟩⟨νℏk| ⊗ I

e−ıkẑ =
∑

ν

|νℏk − ℏk⟩⟨νℏk| ⊗ I

σ̂+ = I⊗ |2⟩⟨1|

ρ̂ = |ψ⟩⟨ψ| =
∑

µ,ν,i,j

c∗µ,icν,j |µ⟩⟨ν| ⊗ |i⟩⟨j|

, (25.117)
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where in the last equation we defined cν,j = ⟨p, j|ψ(t)⟩ = ⟨νℏk, j|ψ(t)⟩ = ⟨ν, j|ψ(t)⟩,
such that,

ρµ,ν;i,j ≡ ⟨µ, i|ρ̂|ν, j⟩ = c∗µ,icν,j . (25.118)

Adopting the short notation |ν⟩ ≡ |νℏk⟩ we can write the state of the system,

|ψ(t)⟩ =
∑

ν

cν,1|νℏk, 1⟩+ cν,2|νℏk, 2⟩ (25.119)

⟨ψ(t)|p̂|ψ(t)⟩ = ℏk
∑

ν

ν(|cν,1|2 + |cν,2|2)

⟨ψ(t)|e±ıkẑ|ψ(t)⟩ =
∑

ν

(c∗ν±1,1cν,1 + c∗ν±1,2cν,2)

⟨ψ(t)|â|ψ(t)⟩ = α
∑

ν

(|cν,1|2 + |cν,2|2) = α

⟨ψ(t)|σ̂−|ψ(t)⟩ =
∑

ν

c∗ν,1cν,2

⟨ψ(t)|σ̂z|ψ(t)⟩ =
∑

ν

(|cν,2|2 − |cν,1|2) .

Figure 25.16: Illustration of the quantized motion.

To describe the dynamics of the system we could use the Schrödinger equation,
but the Hamiltonian (25.4) does not contain spontaneous emission nor cavity decay.
So, let us employ the equations of motion (25.15), which were derived from a master
equation. The equation of motion for the field yields,

α̇± = ⟨ψ(t)| ˙̂a±|ψ(t)⟩ = ⟨ψ(t)|(−κ+ ı∆c)â± − ıgσ̂−e∓ıkẑ + η±|ψ(t)⟩ (25.120)

= (−κ+ ı∆c)α± + η± − ıg
∑

ν

c∗ν∓1,1cν,2

= (−κ+ ı∆c)α± + η± − ıg
∑

ν

ρν∓1,ν;1,2 .

For the atomic motion we get,

ẋ = ⟨ψ(t)| ˙̂x|ψ(t)⟩ = 1

m
⟨ψ(t)|p̂|ψ(t)⟩ = νℏk

m
, (25.121)
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and

ṗ = ⟨ψ(t)| ˙̂p|ψ(t)⟩ (25.122)

= ⟨ψ(t)|ıgℏkσ̂−
(
â†+e

−ıkẑ − â†−eıkẑ
)
− ıgℏkσ̂+

(
â+e

ıkẑ − â−e−ıkẑ
)
|ψ(t)⟩

=
∑

ν

ıgℏk
(
α∗
+c

∗
ν−1,1cν,2 − α∗

−c
∗
ν+1,1cν,2 − α+cν+1,1c

∗
ν,2 + α−cν−1,1c

∗
ν,2

)

=
∑

ν

ıgℏk(α∗
+ρν−1,ν;1,2 − α∗

−ρν+1,ν;1,2 − α+ρν,ν+1;2,1 − α−ρν,ν−1;2,1) .

25.4.3.1 Maxwell-Bloch equations without adiabatic elimination

Analogously to the treatment in Sec. 16.3.2, we will now derive the master equation
without adiabatic elimination of the excited state (in this case called Maxwell-Bloch
equations from the Liouville equation [first line of Eq. (25.8)] using the Hamiltonian
(25.4). The coherent part is,

ρ̇µ,ν;i,j ≡ ⟨µ, i| ˙̂ρ|ν, j⟩ = −ı⟨µ, i|[Ĥ, ρ̂]|ν, j⟩ (25.123)

= −ı
∑
p,u

⟨µ, i|Ĥ|p, u⟩ρp,ν;u,j + ı
∑
p,u

ρµ,q;i,v⟨p, u|Ĥ|ν, j⟩

= −ı
[
(µℏk)2

2m
−∆aδi2 −∆c(|α+|2 + |α−|2)− ıη+(α+ − α∗

+)− ıη−(α− − α∗
−)

]
ρµ,ν;i,j

− ıg [α∗
+δi1ρµ+1,ν;2,j + α+δi2ρµ−1,ν;1,j + α∗

−δi1ρµ−1,ν;2,j + α−δi2ρµ+1,ν;1,j ]

+ ı

[
(νℏk)2

2m
−∆aδj2 −∆c

(
|α+|2 + |α−|2

)
− ıη+(α+ − α∗

+)− ıη−(α− − α∗
−)

]
ρµ,ν;i,j

+ ıg [α∗
+δj2ρµ,ν−1;i,1 + α+δj1ρµ,ν+1;i,2 + α∗

−δj2ρµ,ν+1;i,1 + α−δj1ρµ,ν−1;i,2]

=

[
ı
(ν2 − µ2)(ℏk)2

2m
+ ı∆a(δi2 − δj2)

]
ρµ,ν;i,j

+ ıg [α∗
+ (δj2ρµ,ν−1;i,1 − δi1ρµ+1,ν;2,j) + α+ (δj1ρµ,ν+1;i,2 − δi2ρµ−1,ν;1,j)

+ (α∗
−δj2ρµ,ν+1;i,1 − δi1ρµ−1,ν;2,j) + α− (δj1ρµ,ν−1;i,2 − δi2ρµ+1,ν;1,j)] .

The incoherent part comprises the spontaneous decay [second line of Eq. (25.8)],

⟨µ, i|Latom−vacρ̂|ν, j⟩ = −γ⟨µ, i|
[
σ̂+σ̂−ρ̂− 2σ̂−ρ̂σ̂+ + ρ̂σ̂+σ̂−] |ν, j⟩ (25.124)

= −γ
∑
p,u

⟨µ, i|σ̂+σ̂−|p, u⟩ρp,ν;u,j + 2γ
∑
p,u,q,v

⟨µ, i|σ̂−|p, u⟩ρp,q;u,v⟨q, v|σ̂+|ν, j⟩.

− γ
∑
p,u

ρµ,p;i,u⟨p, u|σ̂+σ̂−|ν, j⟩

= −γ [δi2ρµ,ν;i,j − 2δi1δj1ρµ,ν;2,2 + δj2ρµ,ν;i,j ]

and the cavity decay [third line of Eq. (25.8)],

⟨µ, i|Lcavity−vac,±ρ̂|ν, j⟩ = −κ⟨µ, i|â†±â±ρ̂− 2â±ρ̂â
†
± + ρ̂â†±â±|ν, j⟩ = 0 . (25.125)
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Finally, using the definition of the recoil shift ωrec = ℏk2/2m we get,

ρ̇µ,ν;1,1 = ı(ν2 − µ2)ωrecρµ,ν;1,1 + 2γρµ,ν;2,2

+ ıℏg [−α∗
+ρµ+1,ν;2,1 + α+ρµ,ν+1;1,2 − α∗

−ρµ−1,ν;2,1 + α−ρµ,ν−1;2,1]

ρ̇µ,ν;1,2 =
[
ı(ν2 − µ2)ωrec − ıℏ∆a

]
ρµ,ν;1,2 − γρµ,ν;1,2

+ ıℏg [α∗
+ρµ,ν−1;1,1 − α∗

+ρµ+1,ν;2,2 + α∗
−ρµ,ν+1;1,1 − α∗

−ρµ−1,ν;2,2]

ρ̇µ,ν;2,1 =
[
ı(ν2 − µ2)ωrec + ıℏ∆a

]
ρµ,ν;2,1 − γρµ,ν;2,1

− ıℏg [α+ρµ−1,ν;1,1 − α+ρµ,ν+1;2,2 + α−ρµ+1,ν;1,1 − α−ρµ,ν−1;2,2]

ρ̇µ,ν;2,2 = ı(ν2 − µ2)ωrecρµ,ν;2,2 − 2γρµ,ν;2,2

+ ıℏg [α∗
+ρµ,ν−1;2,1 − α+ρµ−1,ν;1,2 + α∗

−ρµ,ν+1;2,1 − α−ρµ+1,ν;1,2]

α̇± = (−κ+ ı∆c − ıU0)α± + η± − ıg
∑
ν

ρν∓1,ν;1,2

.

(25.126)

We note ρ̂µ,ν;2,1 = ρ̂∗ν,µ;1,2.
The equations (25.126) form a set a equations to describe the quantized CARL

without adiabatic elimination. And as shown in the derivation of the CARL equations
(25.25), they contain radiation pressure. In Exc. 25.4.7.4 we study the quantized
CARL Maxwell-Bloch equations without adiabatic elimination of the excited state
for a three-level system.

25.4.4 Quantized motion with many particles

The Hamiltonian (25.98) holds for a single atom. If clouds of thermal atoms are
considered, we may switch to a classical description of the motion, as done in (25.46).
In the case of very cold (below the recoil limit) but still independent atoms, we may
assume that they all are coherently distributed over the same momentum states. We
may then apply a unique momentum state expansion for all atoms, as shown in the
subsequent section.

If on the other hand quantum statistics play a role, then we need to replace
the wavefunction in the Schrödinger equation (25.98) by field operators, as done in
Sec. 29.5. In the following sections, we will restrict to single atoms that can be in
a coherent superposition of momentum states or many atoms in a matter wave that
can be treated as a c-number, e.g. a Bose-condensate without fluctuations.

25.4.4.1 Modal expansion of the motion of many independent atoms in
the adiabatic approximation for one-sided pumping

Our starting point is the quantum version of the CARL equations (25.25), where we
neglect spontaneous emission, γ0 = 0. Setting α+ = η+/κ and η− = 0 we get,

˙̂a− = (−κ+ ı∆c − ıU0)â− − ıU0
η+
κ e

−2ıkẑj

m¨̂zj = 2ıℏkU0(â
†
+â−e

−2ıkẑj − â+â†−e2ıkẑj )
, (25.127)
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where the index j runs over all atoms. For this case, the total momentum is a constant
of motion for N atoms is,

[Ĥ, 2ℏkâ†−â−+
N∑

j=1

p̂j ] = 0 . (25.128)

where the Hamiltonian is obtained from (25.26) by eliminating the mode α+ and
summing over all atoms,

Ĥ =
∑

j

[
p̂2j
2m

+
η+
κ
U0

(
e−2ıkẑj â− + e2ıkẑj â†−

)]
+ (U0 −∆c)â

†
−â− . (25.129)

To treat the motion as being quantized we define a base |ν⟩j ,

p̂j |ν⟩j = 2ℏkν|ν⟩j and |ψ(zj)⟩ =
∑

ν

cj,ν |ν⟩j , (25.130)

and calculate the expected value of the equations (25.127) regarding the atomic mo-
tion,

dâ−
dt

= (−κ− ı∆c)â− − ıU0
η+
κ

∑

j

⟨ψ(zj)|e−2ıkẑj |ψ(zj)⟩ (25.131)

= (−κ+ ı∆c − ıU0)â− − ıU0
η+
κ

∑

j,µ,ν

c∗j,µcj,νj⟨µ|e−2ıkzj |ν⟩j

= (−κ+ ı∆c − ıU0)â− − ıU0
η+
κ

∑

j,ν

c∗j,νcj,ν+1 .

We do not use the second equation (25.127), but instead we use the Schrödinger

equation ıℏd|ψ(zj⟩dt = Ĥ|ψ(zj)⟩, which yields,

ıℏ
∑

ν

dcj,ν
dt
|ν⟩j =

∑

ν

1

2m
p2jcj,ν |ν⟩j + ℏ∆câ

†
−â−

∑

ν

cj(ν)|ν⟩j (25.132)

+ ℏU0η
∑

ν

(â†−e
−2ıkzj + â−e

2ıkzj )cj,ν |ν⟩j .

Projecting on j⟨µ|, we obtain [165],

ċj,µ = −4ıωrecµ
2cj,µ − ı∆câ

†
−â−cj,µ − ıU0η[â

†
−cj,µ+1 + a−cj,µ−1]

˙̂a− = −(κ+ ı∆c)â+NU0η
∑

ν

c∗j,νcj,ν+1

, (25.133)

where we took the expectation value of Eq. (25.131). The equations (25.133) can be
used for numerical simulations [696].
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Figure 25.17: Probe light and ’bunching’ when the temperature is raised.

25.4.4.2 Equations for the density matrix

The equations (25.133) allow to calculate the derivatives of the density matrix given
by,

ϱµ,ν ≡ e−ı(µ−ν)∆ct 1
N

∑

j

c∗j (µ)cj(ν) , (25.134)

yielding,

dϱµ,ν
dt

= e−ı(µ−ν)∆atN−1
∑

j

(
ċ∗j,µcj,ν + c∗j,µċj,ν −∆cc

∗
j,µcj,ν ı(µ− ν)

)
(25.135)

= e−ı(µ−ν)∆atN−1
∑

j

[ıωr(µ
2 − ν2)−∆cı(µ− ν)]c∗j,µcj,ν+

+ ıU0η
[
ac∗j,µ+1cj,ν − ac∗j,µcj,ν−1 + â†c∗j,µ−1cj,ν − â†c∗j,µcj,ν+1

]
.

Introducing ã ≡ aeı∆ct we finally obtain,

dϱµ,ν
dt

= ı(µ− ν)[ωr(µ+ ν)−∆c]ϱµ,ν

+ ıU0η
[
ã(ϱµ+1,ν − ϱµ,ν−1) + ã†(ϱµ−1,ν − ϱµ,ν+1)

]

dã

dt
= −κã− ıNU0η

∑

ν

ϱν,ν+1

. (25.136)

These are the CARL equations for the density matrix. In 25.4.7.3 we show an alterna-
tive derivation obtained by directly inserting the adiabatically simplified Hamiltonian
(25.26) into the Liouville equation (25.8).

We note, that
∑
ν ϱν,ν+1 is the ’bunching’ and that ϱ∗µ,ν = ϱν,µ. The average

moment is given by ⟨p⟩ =∑ν νϱν,ν . In the Figs. 25.18 and 25.19 we show simulations
in the semi-classical regimes ρ ≫ 1 in the ’bad-cavity’ limit, κ > 1, and the ’good-
cavity’ limit κ≪ 1.

Here are some movies illustrating the quantum CARL dynamics, simulated using
the momentum state expansion (watch movie) and (watch movie). The following
dynamics were calculated via direct integration of the Schrödinger equation with-
out momentum state expansion: Bloch oscillations (watch movie), CARL dynamics
(watch movie), and joint Bloch and CARL dynamics (watch movie). See also (watch
talk).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_QuantumCarlSimulation1_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_QuantumCarlSimulation2_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_AndreBloch.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_AndreCarl.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_AndreBlochPlusCarl.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumSensing
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumSensing
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Figure 25.18: (code) Simulation of the CARL equation (25.133) in the superradiant, semi-

classical, ’bad-cavity’ regime for κc = 4, ρ = 4, ∆c = 0.
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Figure 25.19: (code) Simulation of the CARL equation (25.133) in the superradiant, semi-

classical, ’good-cavity’ regime for κc = 0.02, ρ = 4, ∆c = 0.

25.4.5 Approximation for a bimodal momentum distribution

We observe that in the quantum regime the momentum distribution of the matter
wave is bimodal, that is, only two momentum states are simultaneously populated.
This justifies a simplification of the equations (25.136), assuming that at a given time,
atoms must either be in a specific state |µ⟩j or in a superposition of this state is an
adjacent state |µ− 1⟩j . Hence,

dϱµ,µ
dt

= −ıU0η(ãϱµ,µ−1 − ã†ϱµ−1,µ) = −
dϱµ−1,µ−1

dt
(25.137)

dϱµ−1,µ

dt
= −ı[(2µ− 1)ωr −∆c]ϱµ−1,µ + ıU0ηã(ϱµ,µ − ϱµ−1,µ−1)

dã

dt
= −ıNUµηϱµ−1,µ − κcã .

Introducing the coherence Sµ = ϱµ−1,µ and the inversion Wµ = ϱµ,µ − ϱµ−1,µ−1 and
postulating the normalization 1 = ϱµ,µ + ϱµ−1,µ−1,

dWµ

dt
= −2ıU0η(ãS

∗
µ − ã†Sµ) (25.138)

dSµ
dt

= −ı[(2µ− 1)ωr −∆c]Sµ + ıU0ηñaWµ

dã

dt
= −ıNU0ηSµ − κcã .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlSimulation1.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlSimulation1.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlSimulation2.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlSimulation2.m
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25.4.5.1 Linearization and stability analysis

We assume that the atoms are initially ’bunched’ in a specific state |µ⟩j . Only adjacent
momentum states are coupled,

dϱµ+1,µ

dt
= ı[ωr(2µ+ 1)−∆c]ϱµ+1,µ + ıU0ηã

†(ϱµ,µ − ϱµ+1,µ+1) (25.139)

dϱµ−1,µ

dt
= −ı[ωr(2µ− 1)−∆c]ϱµ−1,µ + ıU0ηã(ϱµ,µ − ϱµ−1,µ−1)

dã

dt
= −ıNU0η(ϱµ,µ+1 + ϱµ−1,µ)− κcã .

Conjugate the upper equation and build the sum and difference, Bµ ≡ ϱµ,µ+1+ϱµ−1,µ

and Dµ ≡ ϱµ,µ+1 − ϱµ−1,µ,

dBµ
dt

= ı(∆c − 2µωr)Bµ − ıωµDµ + ıU0ηã(ϱµ+1,µ+1 − ϱµ−1,µ−1) (25.140)

dDµ

dt
= ı(∆c − 2µωr)Dµ − ıωrBµ − 2ıU0ηã+ ıU0ηã(ϱµ+1,µ+1 − 2ϱµ,µ + ϱµ−1,µ−1)

dã

dt
= −ıNU0ηBµ − κcã .

Use ϱµ,µ ≃ 1 and abbreviate δµ ≡ 2rωµ −∆c,

dBµ
dt

= −ıδµBµ − ıωrDµ (25.141)

dDµ

dt
= −ıωrBµ − ıδrDµ − 2ıU0ηã

dã

dt
= −ıNU0ηBµ − κcã .

Seeking solution proportional to x ≡ x̄eı(λ−δµ)t,

ıλB̄µ = −ıωµD̄µ (25.142)

ıλD̄µ = −ıωµB̄µ − 2ıUµηā

ı(λ− δµ)ā = −ıNU0ηB̄µ − κcā .

Abbreviating Λm ≡ δm + ıκc, the characteristic equation is,

det




λ ωr 0

ωr λ 2U0η

NU0η 0 λ− Λµ


 = λ3 −Λµλ

2 − ω2
rλ+ ω2

rΛµ + 2NU2
0 η

2ωr = 0 . (25.143)

The gain is given by the imaginary part of λ. We have exponential amplification if
Im λ < 0. Hence, we search for solution with the lowest imaginary value.
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Figure 25.20: (code) Gain dependence on ρ and κ.

25.4.5.2 Universal scaling

To simplify the formulae simplify, we rescale them. We start from Eq. (25.136) and
use the substitution for universal scaling,

θj ≡ 2kzj and p̄j ≡ 2kvj/ρωr (25.144)

τ ≡ ρωrt and κ ≡ κc/ωrρ
λ̄ ≡ λ/ωrρ and δ̄µ ≡ δµ/ωrρ = 2µ/ρ+∆c/ωrρ

Ā ≡ (2/Nρ)1/2ā and ηUµ ≡
√
ρ3ω2

r/2N .

This reproduces the Bonifacio notation,

λ̄B̄µ + ρ−1D̄µ = 0 (25.145)

λ̄D̄µ + ρ−1B̄µ + ρĀ = 0

(λ̄− δ̄µ − ıκ)Ā+ B̄µ = 0 .

Skipping the bars, the characteristic equation reads,

det




λ ρ−1 0

ρ−1 λ ρ

1 0 λ− δµ − ıκ


 = (λ− δµ − ıκ)(λ2 − ρ−2) + 1 = 0 . (25.146)

Let us first discuss the semiclassical limit, ρ ≫ 1. In the good-cavity regime,
κ ≃ 0, we may neglect the recoil shift, 2mωr → 0, so that Λ = ∆c. The gain is largest

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlGain.m
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when ∆c → 0. The characteristic equation reduces to λ3 = −1, yielding the solutions
λ = 1, 12 (1± ı

√
3). Hence, the gain G = −Imλ, is

G = 1
2ωrρ

√
3 (25.147)

∆ωG ≃ ωrρ≫ κc, ωr .

The gain bandwidth ∆ωG being much larger than the recoil frequency, the Bragg con-
dition for scattering between different momentum states is approximately fulfilled for
a large number of initial momenta. I.e. although the momentum transfer is quantized,
∆c = nωr, the atoms can be accelerated to high velocities. From Eq. (25.140)(a) we
see |D̄µ/B̄µ| = ρ|λ̄| ≫ 1, i.e. ϱµ,µ+1 ≃ ϱµ−1,µ.

In the superradiant regime, κ > 1, of the semiclassical limit the characteristic
equation reduces to λ2 = −ı/κ, i.e. λ = ±(1− ı)/

√
2κ.14 Hence, the gain is,

G = 1
2ωrρ

√
2/κ (25.148)

∆ωG ≃ κc = ωrρκ≫ ωr .

In fact, the relative gain bandwidth is on the order of ∆ωG/ωr ≃ ρ ∝
(
nNU2

0

)1/3
.

Since recoil can be neglected we can have absorption or emission. The gain results
from the difference bewteen the average rates of both.

Now we turn to the quantum limit, ρ < 1. In the good-cavity regime, κ ≃ 0,
λ = ρ−1 + 1

2 (δm − ρ−1)− 1
2

√
(δm − ρ−1)2 − 2ρ. Hence, the gain is,

G = 1
2ωrρIm

√
(δm − ρ−1)2 − 2ρ ≃ 1

2ωrρ
√

2ρ (25.149)

∆ωG = ωrρ
3/2 < ωr .

In fact, the relative gain bandwidth is on the order of ∆ωG/ωr ≃ ρ3/2 ∝
√
nNU2

0 .
Here recoil plays a role so that we have emission without absorption. Gain re-
sults exclusively from emission. From Eq. ((25.140)a) we see |D̄m/B̄m| = ρ|λ̄| ≃ 1,
i.e. ϱm,m+1 ≪ ϱm−1,m.

In the superradiant regime, κ > 1, of the quantum limit, λ = ρ−1+ ρ
2 [(δm−ρ−1)+

ıκ]−1. Hence,

G = 1
2ωrρ

ρκ

(δm − ρ−1)2 + κ2
≃ 1

2

ωrρ
2

κ
(25.150)

∆ωG = κc > ωrρ .

The various regimes may be summarized in the following phase diagram. We
will see later, that each region produces qualitatively different solutions of the full
(non-linearized) equations.

14The assertion Reλ ≪ κ used to simplify the characteristic equation is compatible with the
solution.
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Figure 25.21: (code) Analytical approximations of the characteristic equation for the various

regimes in the good-cavity limit κ = 0.03 (a) and the superradiant limit κ = 2 (b).

25.4.6 Simulation of random quantum trajectories

Spontaneous emission can induce a random walk of the atoms, which be accounted for
by a proper master equation. We write the master equation for the density operator
of a dissipative system, as shown in (23.116) [138, 904],

˙̂ρ = ı[ρ̂, Ĥ]− 1
2

∑

µ

{ρ̂, L̂†
µL̂µ}+

∑

µ

L̂µρ̂L̂
†
µ . (25.151)

The first term describes the coherent part, the second part dissipation, and the third
quantum jumps. The dissipative operators L̂µ appearing in the Lindblad terms model
the impact of the environment. An alternative to solving the master equation consists
in simulating single trajectories of the system with a Schrödinger equation, accounting
for dissipation by a non-Hermitian effective Hamiltonian and for quantum fluctuations
by a stochastic noise term.

As an example, let us consider the Hamiltonian for an atom interacting with a
standing wave potential,

Ĥ =
p̂2

2m
+ U cos kx̂ , (25.152)

where p̂ = ℏqν̂ = −ıℏd/dx. We define a momentum basis |ϕ(τ0)⟩ =
∑
ν cν |ν⟩ with∑

ν |cν |2 = 1. In this basis, the momentum and the position operator can be expanded
as usual,

p̂ = ℏq
∞∑

ν=−∞
ν|ν⟩⟨ν| and cos kx̂ = 1

2

∞∑

ν=−∞
(|ν + 1⟩⟨ν|+ |ν − 1⟩⟨ν|) , (25.153)

where ℏq is the momentum transferred upon a kick. The expectation value for the
momentum and the position are then,

⟨p̂⟩ =
∑

ν

ℏqν|cν |2 and ⟨cos kx̂⟩ = 1
2

∑

ν

(c∗νcν−1 + c∗νcν+1) . (25.154)

The Lindblad operators describe deceleration of the rotor. With µ = ±, we get,

L̂± = g

∞∑

ν=0

√
ν + 1| ± ν⟩⟨±ν ± 1| , (25.155)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlAnalytic.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlAnalytic.m
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such that,

L̂†
±L̂± = g2

∞∑

ν=0

ν| ± ν⟩⟨±ν| and L̂†
+L̂+ + L̂†

−L̂− = g2
∞∑

ν=−∞
|ν| |ν⟩⟨ν| . (25.156)

Now, as we have seen in Sec. 16.4.3, we may treat the first part of the Lindblad terms
in (25.151) as the dissipative part of an an effective Hamiltonian,

Ĥeff = Ĥ − ı
2

∑

µ

L̂†
µL̂± . (25.157)

That is, we can attempt a quantum Monte Carlo wavefunction simulation of an ef-
fective Schrödinger equation.

We define the quantity dp± ≡ ⟨ϕ(τ0)|L̂†
±L̂±|ϕ(τ0)⟩dτ ,

dp+
dτ

= g2
∑

ν

|cν |2 and
dp−
dτ

= g2
∑

ν

|c−ν |2 . (25.158)

To perform simulations, we start with |ϕ(τ0)⟩. After a time dτ , we generate a uniform
random number ζ. After infinitesimal time, we compare the random number to the
accumulated probability. If ζ > dpµ, we say that a quantum jump occurred. The new
wavefunction is,

|ϕ(τ0)⟩ →
L̂±|ϕ(τ0)⟩
∥L̂±|ϕ(τ0)⟩∥

=

∑
ν≥0

√
ν + 1c±ν±1|ν⟩√∑
ν≥0 ν|c±ν |2

. (25.159)

If in contrast, ζ < 1−∑µ dpµ, then the system continues to evolve slowly. However,
dissipation losses have to be compensated by renormalization,

|ϕ(τ0)⟩ →
(1− ı

ℏĤeffdt)|ϕ(τ0)⟩√
1−∑k dpk

, (25.160)

where the evolution is

(|ϕ(dt)⟩ = 1− ıĤeffdt/ℏ)|ϕ(τ0)⟩ (25.161)

=

(
1− ı

ℏdt
p̂2

2m
− ı

ℏdtU cos kx̂− 1
2ℏdt

∑

±
L̂†
±L̂±

)∑

ν

cν |ν⟩

=
∑

ν

cν |ν⟩ − ı
ℏdt

1
2

∑

ν

cνℏ2ν2|ν⟩ − ı
ℏdt

1
2

∑

ν

cνU(|ν + 1⟩+ |ν − 1⟩)

− g2

2ℏ
dt
∑

ν≥0

ν(cν |ν⟩+ c−ν | − ν⟩)

= |ϕ(τ0)⟩ −
ı

2ℏ
dt
∑

ν

cν
[
ν(ℏ2ν − ıg2)|ν⟩+ U |ν + 1⟩+ U |ν − 1⟩

]
.

With this we can now follow the evolution of observables, such as ⟨ϕ(t)|ν⟩⟨ν|ϕ(t)⟩,
⟨ϕ(t)|p̂|ϕ(t)⟩, and ⟨ϕ(t)| cos kx̂|ϕ(t)⟩, in time.
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25.4.7 Exercises

25.4.7.1 Ex: Quantized CARL equations in the presence of a constant
external force

a. Generalize the quantized CARL equations (25.100), respectively, (25.114) for the
presence of a constant external force.
b. Now, we consider a unidirectionally pumped ring cavity, with the pump laser locked
to a cavity mode, in the presence of an external periodic potential. Show that this
system is equivalent to CARL in a ring cavity pumped from both sides.

25.4.7.2 Ex: Competition between CARL and Bloch oscillations

Reproduce the simulations of [721].

25.4.7.3 Ex: Alternative derivation of the Maxwell-Bloch with adiabatic
elimination

Derive the directly from the Liouville equation (25.8) using the Hamiltonian (25.26)
in adiabatic elimination.

25.4.7.4 Ex: Maxwell-Bloch equations without adiabatic elimination

Derive the Maxwell-Bloch equations for a three-level system coupled to a ring cavity
without adiabatic elimination, but with quantized motion.

25.4.7.5 Ex: Linearized quantum CARL

Analyze the quantum CARL according to [660].

25.5 Quantized light interacting with atoms moving
in cavities

Cavity QED has been studied extensively in the context of the Jaynes-Cummings
model in Sec. 17.2 and of cooperative scattering in Sec. 22.1, however, without ad-
dressing the issue of atomic motion which, via photonic recoil, inevitably influences
the dynamics. We also started a discussion on the role of photonic recoil in Sec. 20.3,
which will be continued in the following sections in the context of ring cavities,

ċn+,n−,i =
d

dt
⟨r, α+, α−, i|ψ(t)⟩ = ⟨r, α+, α−, i|

−ı
ℏ
Ĥ|ψ(t)⟩ (25.162)

α̇± = ⟨ψ(t)|ȧ±|ψ(t)⟩ = ⟨ψ(t)| ıℏ [Ĥ, â±]− κâ±|ψ(t)⟩ .

Concretely, we will be using the Hamiltonian (25.26), obtained after adiabatic
elimination of the excited state.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL05.pdf
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25.5.1 QED in ring cavities

Macroscopic high-finesse ring cavities interacting with a cloud of cold atoms allowed
to enter the regime of strong collective coupling. However, new interesting aspects
arise from the regime of strong coupling on the level of individual atoms.

Todays research projects on cold atoms in cavities are essential divided into two
classes, each class realizing an opposite regime: Cavity quantum electrodynamics
(CQED) experiments as they are done by the groups of Rempe [492] and Kimble use
microcavities having mode volumes so small that few photons give rise to macroscopic
field strength. In such cavities the atom-field coupling is made to exceed all other
decay rates. The other regime is that of cavity-cooling mainly investigated by Vuletic
at the MIT and, in the case of ring cavities, of the collective atomic recoil laser
(CARL) realized in the Tübingen research group. In this second regime the cavities
are so large that the light fields can be considered as classical.

An interesting question is, whether the two regimes can be married to realize a
system, where collective effects and entanglement between optical and atomic modes
can be observed. The central idea is not to increase the coupling strength by reducing
the mode volume, but to reduce the decay rates, in particular the natural linewidth
of the atomic transition by choosing an atomic species that can be laser-cooled on a
narrow intercombination line.

Example 183 (CQED by reducing the ring cavity mode volume): Tech-

nically a ring cavity design with (w,L, F ) = (30µm, 4 cm, 200000) is feasible.

This is enough to get below the critical atom number, but this is not sufficient

to get into the CQED regime. Reducing Γ seems unavoidable.

The isotope 88Sr posses a narrow transition which can be used for optical cooling.

The following table compares the various systems, i.e. a CQED example taken

from Rempe, the macroscopic ring cavity with rubidium used in our Tübingen

CARL experiments and a cavity tuned close to the strontium intercombination

line.

experiment Rempe, Rb Tübingen, Rb São Carlos, Sr

Γ (2π)6 MHz (2π)6MHz (2π)7.6 kHz

F 440000 80000 200000

κ (2π)0.7MHz (2π)22 kHz (2π)19 kHz

w 29µm 100µm 30µm

L 500µm 8.5 cm 4 cm

g (2π)4MHz (2π)88 kHz (2π)13 kHz

Ncrit 0.5 34 1.6

nsat 1.1 2312 0.16

With N = 104 the cooperativity parameter N/Ncrit is in all cases well above 1.

25.5.2 Description of quantized light fields in cavities

In order to calculate the evolution of photon distributions in the counter-propagating
modes â± of a ring cavity, we develop CARL in a Fock basis. For simplicity, we first
consider the motion of a single atom as classical and fixed (i.e. not as a degree of
freedom), and we apply the adiabatic approximation. I.e. we have only two quantized
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degrees of freedom, which we organize like,

|ψ⟩ = |ν⟩motion

classical
⊗ |i⟩electron

adiab.elim.
⊗ |n⟩+ ⊗ |n⟩− → |n+, n−⟩ , (25.163)

Expanding the fields into Fock states,

|ψ⟩ =
∑

n+,n−

cn+,n− |n+, n−⟩ , (25.164)

the field operators and the density matrix read,

â+ =
∑

n+

√
n+|n+ − 1⟩⟨n+| ⊗ I =

∑

n+,n−

√
n+|n+ − 1, n−⟩⟨n+, n−| (25.165)

â− = I⊗
∑

n−

√
n−|n− − 1⟩⟨n−| =

∑

n+,n−

√
n+|n+ − 1, n−⟩⟨n+, n−|

ρ̂ = |ψ⟩⟨ψ| =
∑

m+,m−,n+,n−

c∗m+,m−
cn+,n− |m+,m−⟩⟨n+, n−| .

Figure 25.22: (a) Bragg scattering at a 1D optical lattice. (b) Same as in (a), but now the
optical lattice is generated by the mode of an optical ring cavity.

Note that the master equation using the Lindbladt operator traces over the reser-
voir. Hence, the master equation only treats the cavity modes, but does not al-
low predictions on the quantum behavior of outcoupled fields. In order to describe
e.g. quantum correlations in output field, one needs an input-output theory [169, 304].

In the case of classical motion quantum light fields,

ċn+,n− = ı(∆c − U0)(n+ + n−) cn+,n−

− ıU0

(
e−2ıkz

√
n+(n− + 1) cn+−1,n−+1 − e2ıkz

√
(n+ + 1)n− cn++1,n−−1

)

− η+
(√
n+ + 1 cn++1,n− −

√
n+ cn+−1,n−

)

− η−
(√
n− + 1 cn+,n−+1 −√n− cn+,n−−1

)

ż = 2ıℏkU0

∑

n+,n−

(
e−2ıkz

√
(n+ + 1)n− c∗n++1,n−−1cn+,n−

− e2ıkz
√
n+(n− + 1) c∗n+−1,n−+1cn+,n−

)

.

(25.166)
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25.5.3 Photon backscattering for fixed atomic position

To tackle the problem of quantized light field we first assume an atom fixed in space,
that is, we completely disregard the motional degree of freedom by setting p̂ = 0 and
restricting to the Hamiltonian,

Ĥ =
∑

±
ω±â

†
±â± − ıη±(â± − â†±) + U0(â

†
+â−e

−2ıkẑ + â†−â+e
2ıkẑ) . (25.167)

In Exc. 25.5.7.1 we show how to cast the Hamiltonian into a matrix form using an
appropriate basis already used in the discussion of the beam splitter in the photon
representation in Sec. 14.5.1.

In Exc. 25.5.7.2(a) we derive the equations of motion for the components cn+,n− of
the state vector from the Schrödinger equation cavity decay. In Exc. 25.5.7.3(a) we de-
rive the equations of motion for the components ρm+,n+;m−n− = ⟨m+,m−|ρ̂|n+, n−⟩
of the density operator. Simulations performed based on these equations of motion
are shown in Fig. 25.23).

The simulations reveal a number of interesting facts:

• The field amplitudes |α±|2 execute oscillations due to CARL coupling, but with
preserved Poissonian shape of the photon number distributions.

• When simulations are done with initial Fock states, they eventually relax to a
Glauber state.

• The mean photon numbers and the atomic coordinates evolve in a continuous
way.
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Figure 25.23: (code) Time-evolution of CARL with one classical atom and two quantized

field modes. (a) Photon number distributions of two modes after some evolution time t. (b)

Time-evolution of the mean photon number; at time t = 10, the atom is suddenly displaced.

(c) Time-evolution of the (classical) atomic trajectory.

These observations are not surprising, once we understood the backscattering as
a linear coupling between the modes being mediated by a beam splitter Hamiltonian
of type (14.136) 15,

Ĥint = U0(â
†
+â−e

−2ıkz + â+â
†
−e

2ıkz) , (25.168)

15Which itself represents a generalized displacement operator,

Ĥint ≃ U0(α
∗
+e

−2ıkz â− + α+e
2ıkz â†−) ≡ ıℏβ∗â− − ıℏβâ†− ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDClassicForcedWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDClassicForcedWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDClassicForcedWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDClassicForcedWave.m
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for which we found the relationship (14.137),

e−ıĤinttâ±e
ıĤintt = â± cosU0t± â∓e∓2ıkz sinU0t . (25.169)

This means, that we expect (for a fixed location z of the atom) an oscillatory behavior
of the field amplitudes |α±|2 and also of the phase (encoded in α∗

+α−), but no modi-
fication of the coherent photon statistics. On the contrary, as shown in Sec. 14.5.1, a
beam splitter tends to transform sub-Poissonian states into Poissonian ones. In fact,
CARL is nothing else than a movable beam splitter.

Non-linearity may come into play, if photonic recoil is included, i.e. if the atomic
motion itself becomes a degree of freedom. This is the next step of our problem, that
needs to be solved.

25.5.4 Quantized light fields and quantized recoil

The simulations of the preceding section show that the CARL Hamiltonian (25.168),
despite the appearance of photon creation and annihilation operator, does not request
recoil to be quantized: If an arbitrary momentum kick of the atom can be absorbed
by the light fields, then an arbitrary dipole force can be transmitted to the atomic
momentum! The momentum conservation law (25.17) does not imply quantization of
photonic recoil. The question is now, how to conceal this fact with the observation of
discrete momentum sidemodes [765]. We have seen earlier, that the quantization of
the motion is transferred from the quantized photon fields via the operator (25.103)
to the atom: An initially resting atom can only adopt motional states with momenta
equal to a multiple of 2ℏk.

We will now take the quantization of the atomic momentum for granted and study
quantized light modes coupled by recoiling atoms, we extend our Hilbert space like,

|ψ⟩ = |ν⟩motion ⊗ |i⟩electron
adiab.elim.

⊗ |n⟩+ ⊗ |n⟩− → |ν, n+, n−⟩ , (25.170)

Expanding the motion and fields 16,

|ψ⟩ =
∑

ν,n+,n−

cν,n+,n− |ν, n+, n−⟩ , (25.171)

the momentum kick operator reads,

e−2ıkẑ ⊗ I⊗ I =
∑

ν

|νℏk − 2ℏk, n+, n−⟩⟨νℏk, n+, n−| . (25.172)

since defining β ≡ ıU0
ℏ α+e2ıkz , we find,

B(βt) = e−ıĤintt/ℏ = e
β∗tâ−−βtâ†− .

16Note the fact, which is important for computation, that the dimension of the Hilbert space
increases a lot, that is like dim ν ·dim n+ ·dim n−, where ν, n± are the numbers of states considered.
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The equations of motions derived in Exc. 25.5.7.2 from the Schrödinger equation are
now generalized to,

ċν,n+,n− = ı(∆c − U0)(n+ + n−)cν,n+,n−

− ıU0

(√
n+(n− + 1)cν−1,n+−1,n−+1 −

√
(n+ + 1)n−cν+1,n++1,m−−1

)
− η+

(√
n+ + 1cν,n++1,n− +

√
n+cν,n+−1,n−

)
− η−

(√
n− + 1cν,n+,n−+1 +

√
n−cν,n+,n−−1

)
.

(25.173)

Note that the general shape of fully quantized Schrödinger equations looks like,

ċν′,n′
+,n

′
−
=




. . .
...

· · · B{ν′,n′
+,n

′
−};{ν,n+,n−} · · ·
...

. . .


 cν,n+,n− (25.174)

and for fully quantized master equations,

ρ̇{µ′,m′
+,m

′
−};{ν′,n′

+,n
′
−} (25.175)

=




. . .
...

· · · L{µ′,m′
+,m

′
−;ν′,n′

+,n
′
−};{µ,m+,m−;ν,n+,n−} · · ·
...

. . .


 ρ{µ,m+,m−};{ν,n+,n−} .

However, the mere inclusion of a third degree of freedom coupled to the other two
degrees in the same linear fashion will modify the behavior of the system, which will
continue to oscillate as it did before, now just involving the atomic motion in this
dynamics. This behavior can only change, when we additionally consider the force
equation,

˙̂p = 2ℏkU0(â
†
+â−e

−2ıkz − â+â†−e2ıkz) , (25.176)

which will lead to feedback. Inserting the expansion (25.171),

ċν,n+,n− = 2ℏkU0

(
cν,n+,n−

√
n+(n− + 1)− cν,n+,n−

√
n+(n− + 1)

)
. (25.177)

Note that, in contrast to CARL equations, the fully quantized equations (25.173)
are linear. That is, it is the ’classization’ 17 of the degrees of freedom which intro-
duces the non-linearities, which are typical for CARL, e.g. the feedback introduced by
classical light fields. The process of ’classization’ corresponds to tracing over degrees
of freedom, which we want to treat classically and thus remove from the Hamiltonian.

25.5.4.1 Calculation of observables

Once the time evolution of the coefficients cν,n+,n−(t) has been determined by solving
the differential equation (25.173) we can calculate the observables in the following

17As opposed to the term quantization.
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way. The probability distribution for photon numbers in the mode α+ is given by,

Pn+
(t) = ⟨ψ(t)|I⊗ |n+⟩⟨n+| ⊗ I|ψ(t)⟩ (25.178)

=
∑

ν,n−

⟨ν, n+, n−|ν, n+, n−⟩ =
∑

ν,n−

|cν,n+,n−(t)|2 ,

the mean photon number by,

⟨n̂+(t)⟩ = |α+(t)|2 =
∑

n+

n+Pn+
(t) =

∑

ν,n+,n−

n+|cν,n+,n−(t)|2 , (25.179)

and similarly for α−. The probability distribution for momentum states is given by,

Pν(t) =
∑

n+,n−

|cν,n+,n−(t)|2 , (25.180)

the mean momentum by,

⟨p̂(t)⟩ =
∑

ν,n+,n−

νℏk|cν,n+,n−(t)|2 , (25.181)

the mechanical kinetic energy by,

Ekin(t) =
⟨p̂2⟩
2m

=
∑

ν,n+,n−

(νℏk)2

2m
|cν,n+,n−(t)|2 (25.182)

=
∑

ν,n+,n−

ν2ℏωrec|cν,n+,n−(t)|2 ,

and the potential energy by,

Epot(t) = ℏU0⟨e−2ıkẑâ†+â− + e2ıkẑâ+â
†
−⟩ (25.183)

= ℏU0

∑

ν,n+,n−

(
c∗ν+1,n++1,n−−1cν,n+,n−

√
(n+ + 1)n−

+c∗ν−1,n+−1,n−+1cν,n+,n−

√
n+(n− + 1)

)
.

With this we can check conservation of the total photon number,

⟨n̂+(t)⟩+ ⟨n̂−(t)⟩ = const , (25.184)

of the mechanical energy,

Ekin(t) + Epot(t) = const , (25.185)

and of total linear momentum,

ℏk[⟨n̂+(t)⟩ − ⟨n̂−(t)⟩]− ⟨p̂(t)⟩ = const . (25.186)
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25.5.4.2 Master equation for CQED with atomic recoil in the adiabatic
approximation

Using the Hamiltonian (25.26) or (25.98), the expansion of the recoil operator (25.103),
the expansion of the photon field operators (25.165), and the matrix representation
of the density operator (14.20), that is,

ρ̂ =
∑

µ,ν;m+,n+;m−,n−

|µ,m+,m−⟩ρµ,ν;m+,n+;m−,n−⟨ν, n+, n−| , (25.187)

the master equation (25.8) becomes,

⟨µ,m+,m−| ˙̂ρ|ν, n+, n−⟩ = −ı⟨µ,m+,m−|[Ĥ, ρ̂]|ν, n+, n−⟩+ Lcavity−vac,±ρ̂ ,

(25.188)
with the coherent contributions,

⟨µ,m+,m−|[ p̂
2

2m
, ρ̂]|ν, n+, n−⟩ = ωrec(µ

2 − ν2)ρµ,ν;m+,n+;m−,n− (25.189)

⟨µ,m+,m−|[(U0 −∆c)â
†
±â±, ρ̂]|ν, n+, n−⟩ = (U0 −∆c)n±ρµ,ν;m+,n+;m−,n−

⟨µ,m+,m−|[−ıη+(â+ − â†+), ρ̂]|ν, n+, n−⟩

= −ıη+
(√

m+ρµ,ν;m+−1,n+;m−,n− −
√
m+ + 1ρµ,ν;m++1,n+;m−,n−

+
√
n+ρµ,ν;m+,n+−1;m−,n− −

√
n+ + 1ρµ,ν;m+,n++1;m−,n−

)
⟨µ,m+,m−|[−ıη−(â− − â†−), ρ̂]|ν, n+, n−⟩

= −ıη−
(√

m−ρµ,ν;m+,n+;m−−′,n− −
√
m− + 1ρµ,ν;m+,n+;m−+1,n−

+
√
n−ρµ,ν;m+,n+;m−,n−−1 −

√
n− + 1ρµ,ν;m+,n+;m−,n−+1

)
⟨µ,m+,m−|[U0e

−2ıkẑ â†+â−, ρ̂]|ν, n+, n−⟩

= U0

(√
m+(m− + 1)ρµ+1,ν;m+−1,n+;m−+1,n− +

√
(m+ + 1)m−ρµ−1,ν;m++1,n+;m−−1,n−

)
⟨µ,m+,m−|[U0e

2ıkẑ â+â
†
−, ρ̂]|ν, n+, n−⟩

= U0

(√
(n+ + 1)n−ρµ,ν−1;m+,n++1m−,n−−1 +

√
n+(n− + 1)ρµ,ν+1;m+,n+−1;m−,n−+1

)
,

and the incoherent contributions,

⟨µ,m+,m−| − κ[â†+â+ρ̂− 2â+ρ̂â
†
+ + ρ̂â†+â+]|ν, n+, n−⟩ (25.190)

= −κ
(
m+ρµ,ν;m+,n+;m−,n− + n+ρµ,ν;m+,n+;m−,n−

−2
√

(m+ + 1)(n+ + 1)ρµ,ν;m++1,n++1;m−,n−

)
⟨µ,m+,m−| − κ[â†−â−ρ̂− 2â−ρ̂â

†
− + ρ̂â†−â−]|ν, n+, n−⟩

= −κ
(
m−ρµ,ν;m+,n+;m−,n− + n−ρµ,ν;m+,n+;m−,n−

−2
√

(m− + 1)(n− + 1)ρµ,ν;m+,n+;m−+1,n−+1

)
.

25.5.5 Kicking and forcing an atom in a ring cavity

The question we want to elucidate here is, how a coupled atom-ring cavity system
reacts to a kick transferring an arbitrary amount of momentum to the atom. We stud-



1124 CHAPTER 25. ATOMIC MOTION IN OPTICAL CAVITIES

0 5 10 15

#photon n+, n−

0

0.2

0.4

p n
+
,
p n

−

(a)

0 50

time

0

5

10

|α
|2

(b)

0 50

time

0

5

10

15

〈p̂
〉/
h̄
k

(c)

0 1 2 3 4 5 6

#momentum N

0

0.5

1

p N

(d)

0 50

time

0

10

20

E
k
in

,
E

po
t

(e)

Figure 25.24: (code) Time-evolution of CARL with one classical atom and two quantized

field modes. (a) Photon number distributions of two modes after some evolution time t. (b)

Time-evolution of the mean photon number; at time t = 10, the atom is suddenly displaced.

(c) Time-evolution of the (classical) atomic trajectory.

ied a similar question when studying the kicking of a harmonic oscillator in Sec. 2.6.2,
however, the situation is quite different now because, in contrast to the harmonic
oscillator, the motion of an atom subject to CARL dynamics is not localized and,
hence, not quantized. That is, an arbitrarily kicked atom is not bound to join one of
those momentum states it would populate when kicked by photonic recoil. Hence, a
momentum state expansion like (25.107) is not appropriate, so that we have to go a
step back and consider the Hamiltonian (25.26) again. See also (watch talk).

25.5.5.1 Kicking

Let us first describe the kick as an incoherent disruptive one time event transforming
operators, the Hamiltonian and the system’s state like,

Â −→ e−ıqẑÂeıqẑ , |ψ⟩ −→ eıqẑ|ψ⟩ (25.191)

and in particular,

Ĥ −→ e−ıqẑĤeıqẑ = Ĥ(ẑ, p̂−ℏq) , ⟨p|ψ⟩ −→ ⟨p|eıqẑ|ψ⟩ = ⟨p−ℏq|ψ⟩ . (25.192)
The Schrödinger equation tells us the system’s evolution after the kick,

ıℏ
d

dt
⟨p|ψ⟩ = p2

2m
⟨p|ψ⟩+ U0

(
⟨p|e−2ıkẑ|ψ⟩â†+â− + ⟨p|e2ıkẑ|ψ⟩â+â†−

)
. (25.193)

We remind that this equations contains CARL feedback via the simultaneous presence
of ẑ and p̂. If we want to disregard the CARL force (assuming, for example, that the
motion is totally imposed by an external force, as done in Sec. 22.1.8 in order to focus
on the behavior of the light fields), we must not project the Schrödinger equation on
⟨p| but treat the motional degree of freedom as classical.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDQuantMobileWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDQuantMobileWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDQuantMobileWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDQuantMobileWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/CQEDCarl
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25.5.5.2 Forcing

Let us now describe the kick as a force F (t) = mgθ(t) being switched on at a given
time, but being constant afterward,

Ĥ =
p̂2

2m
+ U0

(
e−2ıkẑâ†+â− + e2ıkẑâ+â

†
−
)
+mgẑ . (25.194)

We note that with (1.267) the Hamiltonian transformed into the accelerated frame
reads,

Ĥ −→ e−ımgẑt/ℏĤeımgẑt/ℏ + ıℏ
(
d

dt
eımgẑt/ℏ

)†
eımgẑt/ℏ = Ĥ(ẑ, p̂−mgt)−mgẑ

=
(p̂−mgt)2

2m
+ U0

(
e−2ıkẑâ†+â− + e2ıkẑâ+â

†
−
)
. (25.195)

The Schrödinger equation for the transformed wavefunction |ψ⟩ = |ψ̃⟩eımgẑt/ℏ, which
tells us the system’s evolution during the force,

ıℏ
d

dt
⟨p|ψ̃⟩ = (p−mgt)2

2m
⟨p|ψ̃⟩+ U0

(
⟨p|e−2ıkẑ|ψ̃⟩â†+â− + ⟨p|e2ıkẑ|ψ̃⟩â+â†−

)
,

(25.196)
has a similar shape to Eq. (25.193).

25.5.5.3 Vibrating

Another option might be to additionally confine the atom in a harmonic potential
[891],

Ĥ =
p̂2

2m
+ U0

(
e−2ıkẑâ†+â− + e2ıkẑâ+â

†
−
)
+
m

2
ω2ẑ2 (25.197)

= ℏω(Â†Â+ 1
2 ) + U0

[
D†(α)â†+â− +D(α)â+â

†
−
]
,

where D(α) ≡ eαÂ†−α∗Â with α ≡ 2ıkaho√
2

.

25.5.5.4 Quantized equations of motion

In both cases, ’kicking’ and ’forcing’, we may discretize momentum space, although
in the latter case we need to transform back into the lab frame after having solved
the Schrödinger equation (25.173).

25.5.6 Quantum correlations

Superradiant or CARL scattering exist due to a correlation of subsequent scattering
events. In the quantum regime, the emergence of quantum correlations, such as
entanglement and squeezing is to be expected as a consequence of CARL dynamics
[598, 658, 675, 667, 668, 836, 166, 167, 168]. The advantage of doing CARL with BECs
is the possibility to exploit the instability in the good-cavity regime to parametrically
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amplify optical and matter waves, manipulate matter wave coherence properties and
generate entanglement.

For the description of the dynamics of the fields, i.e. the momentum sidemodes
and the cavity modes, a first-quantized treatment of the atomic motion [660] would
be sufficient. All information can be extracted from a numerical simulation of the
quantum CARL equations. However, here we are also interested in quantum corre-
lations. Hence, in a first-quantized treatment of the atomic motion, the coefficients
ĉn must be treated as field operators. Alternatively, we derive the basic equations
rigorously from a second-quantized treatment.

25.5.6.1 Generation of squeezing and entanglement via CARL

An experiment by [679] produces squeezing in transmission of a cavity resonantly
interacting with single atoms. The effect was induced by vacuum Rabi-splitting. In
our case we have a ring cavity, we operate far from equilibrium, we have classical
Stark splitting. Hence, we may expect squeezing and entanglement from the CARL
dynamics.

Figure 25.25: Production and detection of squeezing.

Differences between entanglement and correlation (correlations involve time or
space coordinates g(τ), particles correlate across space and time, coherence).

Bragg scattering of light at an atomic grating (or simply the splitting of light at a
beam splitter) is an irreversible process (see Sec. 14.5). CARL can be interpreted in
terms of Bragg scattering of light at an atomic grating, which is generated itself by
the Bragg scattering. Hence, the scattering of early photons influences the scattering
of late photons, i.e. the scattering processes get correlated, the dynamics gets a his-
tory. The correlation between subsequent scattering processes is what preserves the
coherence in CARL and superradiant Rayleigh scattering.

It is now interesting to ask how this classical correlations will behave in the quan-
tum regime, i.e. upon 1. quantization of the motion of individual atoms and upon 2.
quantization of atomic particle field. Following [598, 597, 600, 599, 658, 659, 667, 668],
non-classical correlations such as entanglement of matter wave modes, and entangle-
ment between matter-wave and optical modes is expected.
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25.5.6.2 Quantum non demolition measurements with CARL

According to [668], a ring cavity could lend itself to quantum non demolition mea-
surements. They consider our ring cavity being pumped from both sides through an
incoupling mirror. A so-called pump mode is injected with a p-polarized light field,
and a probe mode with a s-polarized light field. The light of the probe mode leaking
through a mirror gives information about the atoms (e.g. via the refraction index).
The counterpropagating pump light gives access to higher-order moments of the atom
distribution.

The problem is that the effect is based on photon exchange between the modes,
and those are orthogonally polarized. Even more problematic is that, in practice,
the modes have different frequencies. Other work on this subject has been done by
[43, 258, 567, 568, 146].

25.5.7 Exercises

25.5.7.1 Ex: Analogy between CARL and two-atom Dicke states

a. Write the Hamiltonian (25.167) in matrix form using the basis,

ψk = {|0, 0⟩, |0, 1⟩, |1, 0⟩, |0, 2⟩, |1, 1⟩, |2, 0⟩, ...} .

b. Now restrict to the finite number of states ψk = {|0, 0⟩, |0, 1⟩, |1, 0⟩, |1, 1⟩} and
discuss the analogy between CARL and two-atom Dicke states.

25.5.7.2 Ex: Cavity QED with Schrödinger equation

Assume a symmetrically pumped ring cavity in equilibrium with an atom at a fixed
position.
a. Derive the equations of motion for the components for the probability amplitudes
in a Fock state basis.
b. Express the possible initial states |α+, α−⟩, |α+, n−⟩, and |n+, n−⟩ in the Fock
state basis. How to calculate the photon distribution pn+

, the amplitudes of field
modes α±, and the atom’s position and momentum at later times of the evolution?

25.5.7.3 Ex: Cavity QED with density matrix

Assume a symmetrically pumped ring cavity in equilibrium with an atom at a fixed
position.
a. Derive the equations of motion for the components of the density operator.
b. Write down the density operator describing two decoupled Glauber states? How
to retrieve the Fock state populations from the density operator?
c. Now, assume that the atom can move. What will be the evolution of the motional
state?

25.5.7.4 Ex: Photon number and momentum conservation

a. Calculate the evolution under CARL interaction, e−ıĤcarltn̂±eıĤcarlt, of the photon
numbers in each mode and show that the total photon number is conserved.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL0m1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL02.pdf
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b. Assuming conservation of total momentum calculate the evolution of the atomic
momentum.

25.5.7.5 Ex: Self-synchronization of Bloch oscillations

Study the Bloch-CARL dynamics for the case of a sinusoidally modulated CARL
pump light intensity. Choose as the modulation frequency the expected Bloch oscil-
lation frequency and a variable phase delay.

25.6 Atomic self-organization in light fields

The CARL phenomenon introduced in the previous chapter raises a variety of ques-
tions, such as: How does it compare to an ordinary laser? Is there a phase transition?
Of what kind would be this transition (in the Ehrenfest or Landau classification
scheme)? What are the coherence properties (measured by correlation functions)?
How do these properties depend on the random motion (temperature) of the atoms?
These issues will be addressed in this chapter and in the later chapter within the
models of Langevin, Fokker-Planck, VlasovVlasov, and Kuramoto.

25.6.1 The Langevin model

25.6.1.1 CARL with damping

We saw in the previous chapter that CARL is a transient phenomenon, the atoms and
the phase of the light wave being continuously accelerated. However, it is possible
to force stationary behavior by providing additional friction for the atoms. Such
friction can be carried out by an optical molasses (see Sec. 26.2.1) characterized by
a friction coefficient γfrc. The friction force can be added to the CARL equations of
motion (25.69),

α̇− = −κα− − ıU0α+

∑

m

e2ıkzm (25.198)

kv̇n = 4iωrecU0α+(α−e
−2ıkzn − α∗

−e
2ıkzn)− γfrckvn .

Now, the balance of forces happens at a well-defined atomic velocity, which inci-
dentally corresponds to a well-defined CARL frequency. Assuming perfect ’bunching’
e2ıkzm = e2ıkz, and balanced forces, v̇m = 0 e α− = βe2ıkz with β̇ = 0, we obtain for
κ≪ 2kv,

α− = −ıNU0α+

κ+2ıkv e2ıkz (25.199)

(kv)3 =
2ωrecκNU

2
0α

2
+

γfrc
.

This result will be derived in Exc. 25.6.7.1.
Optical molasses obviously are subject to a cooling limit coming from the ran-

dom scattering of photons. As a consequence, atoms follow a random walk in the
momentum space, which leads to the diffusion and heating of atoms and impedes the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL11.pdf
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Figure 25.26: Scheme of the ring cavity.

bunching of atoms. It also turns out that a minimal grouping is required to initial-
ize CARL. Therefore, there is a threshold behavior as a function of the equilibrium
temperature of the molasses,

α̇− = −κα− − ıU0α+

∑
m e

2ıkzm

kv̇n = 4ıωrecU0α+(α−e−2ıkzn − α∗
−e

2ıkzn)− γfrckvn + ξn(t)
. (25.200)

The equation corresponds to a Langevin equation, where the stochastic term ξn(t) de-
scribes white noise. We can simulate this equation by a Runge-Kutta method, where
the atoms are continually exposed to random momentum changes. For N atoms we
need to solve 2N + 2 Langevin equations to describe the dynamics of all degrees of
freedom. The Langevin equations are associated to so-called Fokker-Planck equations
[843, 698, 430, 842]. These describe the temporal evolution of the atomic density
along the optical x-axis. With these equations we replace the 2N trajectories of indi-
vidual particles by a one-dimensional field P (x, t). The Vlasov equation represents a
different approach: Here we assume that the equilibrium between cooling and heating
is achieved by a continuous thermalization process described by a single rate γth

18.

25.6.1.2 Characterization of an optical molasses

Optical molasses is discussed in Sec. 26.2.1. In Exc. 26.2.5.1 we will show how, through
a linearization of the radiative pressure force, we arrive at the following approximation,

F = −γfrcv with γfrc ≃ −
√
3ℏk2s(1 + s)−3/2 , (25.201)

where s = I/Is is the saturation parameter. This formula estimates the maximum
friction force, when the lasers are tuned close to an atomic resonance 19.

A more fundamental problem is the interdependence of the molasses friction and
the CARL. In fact, because the dipole potential influences the detuning of the molasses

18Through a linearization of the CARL equations, the cavity dissipation itself is found to exert a
friction force to the atoms [373, 301]. This implies the existence of diffusion and a finite equilibrium
temperature even at if the atoms are initially at T = 0.

19We note that atomic species exhibiting a hyperfine structure in the ground state are subject
to cooling phenomena called ’polarization gradient cooling’, which can cause much higher friction
coefficients.
We also note that, when the molasses is applied to atoms confined to a potential, the atomic levels
can be displaced (e.g., by light-shift or the Zeeman effect). This causes an inhomogeneous effective
detuning of the laser beams generating the molasses.
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beams by light-shifting the D2 line, the γth coefficient depends on ∆a and η+ (the
reverse field |α−| may be neglected). The threshold equations must then be solved
in a self consistent way. It might however be possible to determine γth only slightly

above threshold, where the modification is small, γth ≈ γ(thresh)th .

25.6.1.3 Fluctuation-dissipation theorem

Trajectories of ensembles of particles subject to friction and stochastic forces can be
described by Langevin equations. The friction and the diffusion forces are related by
the fluctuation-dissipation theorem. This theorem states that, for a thermal sample
of atoms whose coordinates θn follow,

θ̈n = −γfrcθ̇n + ξn(t) , (25.202)

the Langevin force ξ(t) fluctuates stochastically with,

⟨ξn(t)⟩ = 0 and ⟨ξn(t)ξm(t+ τ)⟩ = 2γ2frcDT δmnδ(τ) . (25.203)

Here, the diffusion coefficient,

DT =
σ2

γfrc
(25.204)

is related to the width of the Maxwell-Boltzmann velocity distribution,

σ = 2k

√
kBT

m
. (25.205)

25.6.1.4 Langevin simulations

The Langevin equations of CARL can be simulated, including the random term of
the Langevin force, using the Runge-Kutta method [405]. The procedure consists in
propagating a general first order differential equation,

ẋ = f(x) + g(t) , (25.206)

subject to a deterministic force f and a stochastic noise g satisfying,

⟨g(t)⟩ = 0 and ⟨g(t)g(t′)⟩ = 2Dδ(t− t′) (25.207)

as follows,

x(dt) = x0 +
1
2dt[f(x0) + f(x̃)] + ζ(2Ddt)1/2

with x̃ ≡ x0 + f(x0)dt+ ζ(2Ddt)1/2
, (25.208)

where ζ is a random variable distributed according to a normal (Gaussian) distribution
normalized as 20,

⟨ζ⟩ = 0 and ⟨ζ2⟩ = 1 . (25.209)

20The MATLAB random number generator satisfies this requirement: ⟨ζn⟩ ≜
sum(randn(1, N))/N = 0 and ⟨ζ2n⟩ ≜ sum(randn(1, N). ∧ 2)/N = 1.
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25.6.1.5 Langevin simulation in the adiabatic approximation

Now, we apply this method to the CARL subject to an optical molasses. Making the
adiabatic approximation θ̈n = 0, the starting point is,

α̇− = −κα− − ıU0α+

∑

m

eıθm ≡ B(α−, θn)

θ̇n =
8iωrecU0α+

γfrc
(α−e

−ıθn − α∗
−e

ıθn) +
ξn(t)

γfrc
≡ F (α−, θn) +

ξn(t)
γfrc

.

(25.210)
In order to apply the Runge-Kutta method (25.208), we identify the variables and
functions,

x(t) ≡
(
α−(t)
θn(t)

)
, f(x) ≡

(
B(α−, θn)
F (α−, θn)

)
, g(t) ≡

(
0

ξn(t)/γfrc

)
, (25.211)

such that,

x̃ =

(
α̃−
θ̃n

)
=

(
α−(0)
θn(0)

)
+ dt

(
B(α−(0), θn(0))
F (α−(0), θn(0))

)
+

(
0

ζn
√
2DT dt

)
(25.212)

and

x(dt) =

(
α−(dt)
θn(dt)

)
(25.213)

=

(
α−(0)
θn(0)

)
+
dt

2

[(
B(α−(0), θn(0))
F (α−(0), θn(0))

)
+

(
B(α̃−, θ̃n)
F (α̃−, θ̃n)

)]
+

(
0

ζn
√
2DT dt

)
.

The Langevin equation can be used to simulate the temporal evolution of CARL.
Fig. 25.27 shows a simulation of the frequency and amplitude of the CARL based on
prescription (25.208).

25.6.1.6 Langevin simulation of the full dynamics

Without adiabatic approximation, the starting point is,

α̇− = κα− − ıU0α+

∑

m

eıθm ≡ B(α−, θn)

θ̇n = Vn

V̇n = 8iωrecU0α+(α−e−ıθn − α∗
−e

ıθn)− γfrcVn + ξn(t) ≡ F (α−, θn, Vn) + ξn(t)

.

(25.214)
In order to apply the Runge-Kutta method (25.208), we identify the variables and
functions,

x(t) ≡



α−(t)
θn(t)

Vn(t)


 , f(x) ≡




B(α−, θn)
Vn

F (α−, θn, Vn)


 , g(t) ≡




0

0

ξn(t)


 , (25.215)
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N = 100000

κ/2π = 550 kHz

ωrec/2π = 4.5 kHz

η = 200 ns−1

U0 ≡ g21/Δa = (2π) -0.5 Hz

NU0/κ = -0.091

γfrc = 1100000 s−1

Tmol = 1000 μK
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Figure 25.27: (code) Time evolution with phase transition of the viscous CARL in the

adiabatic approximation. Shown are (a) the number of photons in the probe mode, (b) the

beat signal, (c) the bunching, (d) the phase of the standing wave and the position of the

center-of-mass of the cloud, and (e) the dipole potential calculated from (25.21) with the

atomic distribution.

such that,

x̃ =



α̃−
θ̃n
Ṽn


 ≡



α−(0)
θn(0)

Vn(0)


+ dt




B (α−(0), θn(0))
Vn(0)

F (α−(0), θn(0), Vn(0))


+




0

0

ζn
√
2γ2frcDT dt




(25.216)
and

x(dt) =



α−(dt)
θn(dt)

Vn(dt)


 =



α−(0)
θn(0)

Vn(0)


+

dt

2






B (α−(0), θn(0))
Vn(0)

F (α−(0), θn(0), Vn(0))


 (25.217)

+




B(α̃−, θ̃n)
Ṽn

F (α̃−, θ̃n, Ṽn)




+




0

0

ζn
√
2γ2frcDT dt


 .

25.6.2 The Fokker-Planck and the Vlasov model

The Fokker-Planck equation for a density distribution Q(r, t),

dQ

dt
+Q∇ · v = D∇2Q , (25.218)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m


25.6. ATOMIC SELF-ORGANIZATION IN LIGHT FIELDS 1133

N = 100000
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ωrec/2π = 4.5 kHz
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Figure 25.28: (code) Time evolution of the complete dynamics of the viscous CARL with

phase transition. Same parameters as in Fig. 25.27. Shown are (a) the number of photons

in the probe mode, (b) the beat signal, (c) the bunching, (d) the phase of the standing wave

and the position of the center-of-mass of the cloud, and (e) the dipole potential calculated

from (25.21) with the atomic distribution.

represents a generalization of the continuity equation, since with d
dt ≡ ∂

∂t + v · ∇, we
obtain,

∂Q

∂t
= −∇ · (vQ) +D∇2Q . (25.219)

If ρ is a local density, it the continuity equation reads,

dρ

dt
+ ρ∇ · v = 0 . (25.220)

Knowing,
d

dt
≡ ∂

∂t
+ v · ∇ , (25.221)

we obtain,
∂ρ

∂t
= −∇ · (ρv) . (25.222)

The Fokker-Planck equation is just a generalization to include a diffusion process,

dρ

dt
+ ρ∇v = Dx

∂2ρ

∂x2
, (25.223)

or
∂ρ

∂t
= −∇ · (ρv) +Dx

∂2ρ

∂x2
. (25.224)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
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25.6.2.1 Thermalization in the Fokker-Planck equation

We now apply the Fokker-Planck equation to the density distribution (25.210) of an
atomic cloud subjected to the CARL force [843, 698]. As CARL is a one-dimensional
process, we can use ∇ → ∂θ and replace the velocity field v→ θ̇:

α̇− = −κα− − ıNU0α+b

∂Q

∂t
=

8ıωrecU0α+

γfrc

∂

∂θ

[
(α−e

−ıθ − α∗
−e

ıθ)Q
]
+Dθ

∂2Q

∂θ2

. (25.225)

The position diffusion coefficient can be estimated by,

Dθ =
⟨k2v2⟩
γfrc

. (25.226)

The normalization and the ’bunching’ |b| are given by,

1 =

∫ 2π

0

Q(θ, t)dθ , b ≡
∫ 2π

0

Q(θ, t)e−ıθdθ . (25.227)

To simulate the equations (25.225) we expand the distribution function in spatial
harmonics [698],

Q(θ, t) ≡
∑

ν

Qν(t)e
ıνθ . (25.228)

In this expansion the normalization and the bunching become,

Q0 = 1/2π , |b| = 2π|Q1| , (25.229)

and the equations (25.225) immediately yield,

α̇− = −2πıNU0α+Q1 − κα−

dQν
dt

=
8ωrecU0α+

γfrc
ν
(
α−Qν+1 + α∗

−Qν−1

)
− ν2DθQν

. (25.230)

We will derive the results (25.229) and (25.230) in Exc. 25.6.7.3. Also,

kv =
d

dt
arctan

Imα−
Reα−

, (25.231)

and,

⟨θ̇⟩ ≡
∫ 2π

0

Q̇(θ, t)dθ =
∑

ν

Q̇ν(t)

∫ 2π

0

eıνθdθ (25.232)

=
∑

ν

8ωrecU0α+

γfrc
ν
(
α−Qν+1α

∗
−Qν−1

)
δν0 =

16ωrecU0α+

γfrc
Re (α−Q

∗
1) .

These equations can be easily simulated.
Matlab simulations of the Fokker-Planck equation, shown in Fig. 25.29, reproduce

quantitatively the curves previously obtained by simulations of the Langevin equa-
tions.
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Figure 25.29: (code) Temporal evolution of the complete dynamics with phase transition

of the viscous CARL. The same parameters as in Fig. 25.27. Shown are (a) the number

of photons in the probe mode, (b) the beat signal, (c) the bunching, (d) the phase of the

standing wave and the position of the center-of-mass of the cloud, and (e) the atomic density

distribution.

25.6.2.2 Bistability and instability of the viscous CARL

The threshold can be found by simulating the Fokker-Planck equation while varying a
control parameter (pumping power, temperature, number of atoms) sufficiently slowly,
that the system always remains in a steady state. Fig. 25.30 shows the behavior of
the CARL, while the pump power is linearly reduced and then linearly increased at
different velocities. We observe a bistability that slightly depends on the speed of the
ramp. The behavior of the mass-center velocity kvcm and the phase of the standing
wave, ϕ̇, are different [697] 21.

25.6.3 Thermalization in the Vlasov equation

The basic equations describing our ring-cavity filled with atoms are [490],

α̇− = κα− − ıU0α+

∑

m

eıθm

θ̇n = Vn

V̇n = 8ıωrecU0α+(α−e−ıθn − α∗
−e

ıθn)− γfrc(Vn − V (0)
n )

, (25.233)

21We can expect a second phase transition when the pump power exceeds a critical value, because
for NU0 > κ, the CARL becomes unstable again: It will unlock from the self-determined frequency
and start to oscillate strongly. However, this effect is not described by the equations used for the
simulation, which suppose an adiabatic elimination of the inertia.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
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Figure 25.30: (code) Bistability of CARL near the threshold when the power is ramped at

different paces.

if we assume the pump mode to be stationary α+ = η+/κ
−1 and define the atomic

bunching parameter by b = 1
N

∑
j e

2ikxj . A non-zero steady-state temperature is

reached, if we allow the steady-state velocities of the atoms v
(0)
j to be different for all

atoms and distributed according to a Maxwell-Gaussian velocity distribution. The
assumption of a common steady-state velocity for all atoms obviously results in perfect
bunching and cooling to T = 0.

Let us introduce a local phase space density of the atomic cloud Q(x, p, t) as a
two-dimensional field in phase space. The time-evolution of this quantity is given by
the so-called Vlasov equation (or collisionless Boltzmann equation),

0 = ∂tQ+ v∂xQ+ F∂pQ+ γth(Q−Q0) , (25.234)

where v and F are the center-of-mass velocity and force taken from equation (25.233)
without the friction term. According to this equation the atomic cloud tends to a sta-
tionary distribution Q0 as time goes on. Following Bonifacio et al. [103] and Javaloyes
[431, 432, 433], we replace the friction term by an additional (Vlasov) equation:

α̇− = −ıNU0α+b− κα−

θ̇ = ωrecV

V̇ = ıU0α+(α−e−ıθ − α∗
−e

ıθ)

0 = ∂tQ+ θ̇∂θQ+ ϱ̇∂ϱQ+ γfrc(Q−Q0)

. (25.235)

The bunching parameter can now be rewritten in terms of

b =

∫ 2π

0

dθ

∫ ∞

−∞
dϱ Q(θ, ϱ, t) e2ıθ . (25.236)

The equilibrium distribution is chosen to be a homogeneous cloud with a Maxwell-
Boltzmann velocity distribution,

Q0 =
1

2π

√
σ

π
e−σϱ

2

, (25.237)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerBistable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerBistable.m
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where σ ≡ ℏωrec/kBT with ωrec ≡ ℏk2/2m such that
∫ 2π

0
dθ
∫∞
−∞Q0dϱ = 1. We now

perform a linear stability analysis. We expand Q around the steady state, Q(θ, ϱ, t) =
Q0(ϱ) +Q1(θ, ϱ, t) and retain to first order,

0 = ∂tQ1 + θ̇∂θQ1 + ϱ̇∂ϱQ0 + γthQ1 . (25.238)

Now we look for a time-dependent particular solution by inserting the ansatz,

α−(t) = β−e
ıλt with β̇− = 0 (25.239)

Q1(θ, ϱ, t) = H1(ϱ)e
−2ıθeıλt + c.c. ,

where iλ ≡ λg+ iλω into the field equation (25.235)a, the first order expansion of the
Vlasov equation (25.238) (only retaining co-rotating terms) and into the expression
for bunching (25.236). This ansatz accounts for the fact that, in steady state, we
expect a fixed CARL frequency ν and a spatially modulated density distribution of
the atoms. The set of equations becomes,

qiλβ− = −κβ− − ıNU0η̃+be
−ıλt (25.240)

0 = ıλH1(ϱ)− 4ıωrecϱH1(ϱ) + ıU0η̃+β−∂ϱQ0 + γthH1(ϱ)

b =

∫ 2π

0

dθ

∫ ∞

−∞
dϱ H1(ϱ)e

ıλt .

With the definition,

Γ(σ, γth, ıλ) ≡
∫ ∞

−∞

dϱ ∂ϱQ0

ıλ− 4ıωrecϱ+ γth
(25.241)

= −
∫ ∞

−∞

dϱ 4ıωrecQ0

(ıλ− 4ıωrecϱ+ γth)2
,

the solution of the above set of equations is,

H1(ϱ) =
−ıU0η̃+β−∂ϱQ0

ıξ − 4ıωrecϱ+ γth
(25.242)

b = −eıξtıU0η̃+β−2πΓ(σ, γth, ıλ)

0 =
[
κ+ ıλ+NU2

0 η̃
2
+ 2πΓ(σ, γth, ıλ)

]
β− .

25.6.3.1 Calculation of the threshold

The bifurcation where the reverse field crosses the threshold to lasing occurs at λg = 0.
We divide the field equation in real and imaginary parts,

κ+NU2
0 η̃

2
+ 2πReΓ(σ, γ, ıλω) = 0 (25.243)

ν +NU2
0 η̃

2
+ 2πImΓ(σ, γ, ıλω) = 0 .

Now the condition λωReΓ(σ, γth, ıλω) = κImΓ(σ, γth, ıλω) leads to,

∫ ∞

−∞

dϱ ϱe−σϱ
2

(κλω − 2κεϱ+ λωγth)

(λω − 2εϱ)2 + γ2th
= 0 . (25.244)
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The values λω where this integral is zero are inserted into one of the equations (25.243).
Finally,

η̃2+ =
−1

NŨ2
0 2πReκΓ(σ, γth, ıλω)

, (25.245)

is the expression for the pump power threshold as a function of temperature σ, friction
γth, cavity damping κ and coupling constant U0. The intracavity CARL power is,

P+ = ℏωδ η̃2+ . (25.246)

λω is the associated CARL frequency, i.e. the frequency difference between probe and
pump.

The final equations show that the threshold power drops as NU2
0 increases. To see

the dependencies of the threshold power on T and γth, we have to evaluation of the
integral (25.244). Fig. 25.31 shows a numerical evaluation of Eqs. (25.244),(25.245)
and (25.246) for finite T and γth.
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Figure 25.31: (code) Intracavity threshold power as a function of temperature and friction

coefficient. The coupling strength is set to Ũ0 = −10−7, the atom number is N = 106.

Apparently, the threshold pump power drops with vanishing friction and with
low temperatures. For typical experimental situations, T ≈ 100 µK and γth ≈ 10κ,
we expect threshold powers on the order of about P+ = 1 W, corresponding to

P
(out)
+ = 4 µW leaking out of the cavity.

25.6.4 The Kuramoto model

Ripples on a dusty street driven by cars, rapids in a river arising spontaneously or
behind an obstacle, wind blowing over a water surface spontaneously creating waves.
Imagine a photon wind blowing over an atomic sea. Just like for water waves fric-
tion hinders boundless acceleration. The analogies are wind-molasses-friction, water-
atoms, wind-acceleration-field, gravitation-dipole-force. The phenomenon is closely
related to the dissipative structure. See also (watch talk) and (watch talk).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerThreshold.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerThreshold.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/KuramotoModel
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/LongrangeInteractions
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Our system has the advantage over macroscopic systems, that the hypothesis of
uniform coupling is exactly satisfied, because the coupling medium, i.e. the light fields
are delocalized within the cavity mode. In contrast, rapids develop exclusively behind
the perturbation. There are no delay times effects and no spatial constraints due to
a finite size of the individual oscillators.

The viscous CARL system is representative for of the vast class of Kuramoto
systems [801]. This can be seen most appropriately by rewriting the CARL equations
in terms of phase and amplitude of individual atoms. Another approach is via the
Fokker-Planck equation, for which there already exists a Kuramoto equivalence.

Why is it interesting to investigate yet another coupled oscillator system? Our
CARL is fully classical, although we deal with microscopic particle, such as atoms and
photons. However, our system bears the possibility of being transferred to quantum
situations, and thus to study the coupling of large ensembles of quantum oscillators.
Furthermore, the coupling mechanism is well understood and controlable by experi-
ment. Because the coupling goes through the standing wave fraction, it depends on
the atom number and the coupling strength independently. Furthermore, the tunable
friction force (temperature) corresponds to a variable width of the distribution of the
oscillator frequencies, which we can manipulate in-situ and on-line.

Another realization of the Kuramoto model would be atoms in a ring cavity stand-
ing wave. Cold trapped atoms have the same oscillation frequencies. And thus do
not need to synchronize. For hot atoms, however, the oscillation period depends on
their kinetic energy.

The equation for the phases of the atoms is similar to the Kuramoto model [433],

θ̇n =
K

N

∑

m

sin(θn − θm)− ξn(t) . (25.247)

The CARL equations which describes the dynamics of an ensemble of mean-
field coupled oscillators, belong to the class of Kuramoto systems [432]. The main
differences are: a Dirac-like distribution of eigenfrequencies and a mean-field self-
consistently provided by a dynamical equation. Hence, in contrast to the original
Kuramoto model, where the collective oscillation frequency is just the mean of the
individual frequencies, the CARL frequency is self-determined and depends also on
control parameters. This phenomenon is known from other systems like rhythmic ap-
plause, which only takes place by a reduction of the individual frequencies of clapping
hands, towards a resonance. For this to happen the mean-field must self-adjust while
the individual oscillators synchronize, e.g. the noise produce by the audience must
adjust to the average desire of the audience to produce a satisfying level of noise.

In [864] is stated: ’The essence of the problem is the competition between the
intrinsic disorder (i.e. noise and diffusion) and the dynamical coupling strength. In
the Kuramoto model, the disorder enters via the distribution of natural frequencies,
while the effective coupling strength is set by the parameter combination K cosαj .’

25.6.4.1 Phase formalism of CARL

The starting point is the CARL equations (25.50). We make ansatz,

α+ ≡ α1 , α− ≡ α2 e
ıϕ , η+ ≡ η1 , η− ≡ η2 eı∆ , (25.248)
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where the quantities with numeric suffixes are real, such that,

|α+ + α−|2 = α2
1 + α2

2 + 2α1α2 cosϕ . (25.249)

By this ansatz we assume that a pumping laser is locked to the mode α+ of the ring
cavity, such that the phases of the fields α+ and η+ are equal and, without loss of
generality, zero. On the other hand, the phase ϕ of the probe mode is a dynamic
variable. Inserting the ansatz into the equations (25.50) we obtain,

α̇1 = −(κ+ ıNU0 − ı∆c)α1 − ıU0

∑

n

e−ıθn+ıϕα2 + η1 , (25.250)

α̇2 + ıϕ̇α2 = −(κ+ ıNU0 − ı∆c)α2 − ıU0

∑

n

eıθn−ıϕα1 + η2e
ı∆−ıϕ ,

θ̈n = 16ωrecU0α1α2 sin(θn − ϕ) .

The first two equations, which describe the dynamics of the fields, can be separated
into real and imaginary parts,

α̇1 = −κα1 − U0

∑

n

sin(θn − ϕ)α2 + η1 (25.251)

α̇2 = −κα2 + U0

∑

n

sin(θn − ϕ)α1 + η2 cos(ϕ−∆) ,

∆c = NU0

(
1 +N−1

∑

n

cos(θn − ϕ)
α2

α1

)
,

ϕ̇ = ∆c −NU0

(
1 +N−1

∑

n

cos(θn − ϕ)
α1

α2

)
− η2
α2

sin(ϕ−∆) .

Eliminating ∆c, we can substitute the third and fourth equations for,

ϕ̇ = U0

(
α2

α1
− α1

α2

)∑

n

cos(θn − ϕ)−
η2
α2

sin(ϕ−∆) . (25.252)

Defining the ’bunching’ parameter,

b ≡ |b|eıψ ≡ N−1
∑

n

eıθn , (25.253)

we finally obtain, in the presence of friction and dissipation,

α̇1 = −κα1 −NU0α2|b| sin(ψ − ϕ) + η1

α̇2 = −κα2 +NU0α1|b| sin(ψ − ϕ) + η2 cos(ϕ−∆)

ϕ̇ = NU0

(
α2

α1
− α1

α2

)
|b| cos(ψ − ϕ)− η2

α2
sin(ϕ−∆)

θ̈n = 16ωrecU0α1α2 sin(θn − ϕ)− γfrcθ̇n + ξn

. (25.254)

A particularly interesting case is that of unidirectional pumping, η2 = 0. Assuming
that the pump mode be not affected,α̇1 = 0, and that the probe mode be weak,
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α1 ≫ α2, and making the adiabatic approximation, θ̈n = 0, of the atomic motion, we
obtain,

α̇2 = −κα2 +NU0α1|b| sin(ψ − ϕ)

ϕ̇ ≃ −NU0α1

α2
|b| cos(ψ − ϕ)

θ̇n =
ξn
γfrc

+
16ωrecU0α1α2

γfrc
sin(θn − ϕ)

. (25.255)

We note that the equation for the phases of the atoms is similar to the Kuramoto
equation (25.247).

25.6.4.2 Relationship between CARL and Kuramoto

The viscous CARL described by the formulas (25.255) corresponds to the Kuramoto
model [801]. Defining θn ≡ 2kxn as the position of the nth atom, we assume the pump
laser to be in resonance and write α+ ≡ η+/κ [490]. The diffusion in the momentum
space is a process that limits the temperature in optical molasses.

We start from the Langevin equations (25.210). In addition, we assume that
the standing wave propagates at a constant velocity, which is to say that for a strong
viscous damping, the system quickly finds a steady state. This condition is formulated
by dt|α−| = 0 and α̇− = iωcaα− with constant velocity ωca, which may be different
from the velocity of the center of mass kv. We note that this assumption can introduce
a considerable error, when used to describe temporal phase transitions, since, as shown
by simulations of the complete dynamics (25.214), the mode α− exhibits a transient
behavior, as well. We obtain from the first Eq. (25.210),

α− = − ıU0α+

ıωca + κ

∑

m

eıθm . (25.256)

Substituting Eq. (25.256) into the second equation (25.210),

θ̇n =
ξn
γfr

+
8ωrecNU

2
0α

2
+

γfr

1

N

∑

m

(
eıθm−ıθn

ıωca + κ
+
e−ıθm+ıθn

−ıωca + κ

)
(25.257)

=
ξn
γfr

+
16ωrecNU

2
0α

2
+

γfr(ω2
ca + κ2)

1

N

∑

m

[κ cos(θm − θn) + ωca sin(θm − θn)] .

Defining the order parameter,

b ≡ |b|eıψ ≡ 1

N

∑

m

eıθm , (25.258)

which also implies,

|b| sin(ψ − θn) =
1

N

∑

m

sin(θm − θn) , (25.259)

we can write Eq. (25.259) as,

θ̇n =
ξn
γfr

+
8εNU2

0α
2
+κ

γfr(ω2
ca + κ2)

|b|
[
cos(ψ − θn) +

ωca
κ

sin(ψ − θn)
]
. (25.260)
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In the ’good cavity’ limit, κ ≪ ω, using (2kv)3 = 8εNU2
0α

2
+κ/γfr and additionally

assuming small amplitude oscillations, ψ ≈ θn, that is, good ’bunching’,

θ̇n ≈
ξn
γfr

+
(2kv)3

ω2
ca

|b|+ (2kv)3

κωca
|b| sin(ψ − θn) . (25.261)

This shows that in the limit of perfect ’bunching’ ωca = 2kv must be satisfied. If
really κ≪ ω is valid, we can despise the cosine. Introducing the Kuramoto coupling
constant,

K ≡ 16ωrecNU
2
0α

2
+ωca

γfr(ω2
ca + κ2)

≈ 1

κ

(
16ωrecNU

2
0α

2
+κ

γfr

)2/3

= (4ωrecρ)
2

(
4

κγ2fr

)1/3

,

(25.262)
using 2ερ = (4εNU2

0α
2
+)

1/3, Eq. (25.260) is precisely the one used by the Kuramoto
model of N coupled harmonic oscillators synchronizing over time,

θ̇n ≈
ξn
γfr

+
κK

ωca
|b|+K|b| sin(ψ − θn) . (25.263)

Oscillators with ωn ≤ K|b| are locked. For a reasonable ’bunching’ this is satisfied in
the ’good cavity’ limit.

25.6.4.3 Kuramoto model with inertial effects

It is possible to incorporate inertial effects into the Kuramoto model [2]: allowing for
θ̈n ̸= 0, but still assuming dt|α−| = 0 and α̇− = iωα−, the equation (25.257) becomes,

θ̈n = −γfr θ̇n + ξn +
16ωrecNU

2
0α

2
+

ω2 + κ2
1

N

∑

m

[κ cos(θm − θn) + ω sin(θm − θn)]

(25.264)

= −γfr θ̇n + ξn +
κ

ω
K|b| cos(ψ − θn) +K|b| sin(ψ − θn) .

25.6.4.4 Fokker-Planck equation

Let us write the Kuramoto equation including stochastic noise,

θ̇n = ω +K|b| sin(ψ − θn) + ξn(t) , (25.265)

define the order parameter,
b = |b|eıψ , (25.266)

and the Langevin-force ⟨ξn(t)⟩ = 0 and ⟨ξn(t)ξm(τ)⟩ = 2Dδijδ(t− τ).
The Fokker-Planck equation associated to Eq. (25.265) reads,

∂ρ

∂t
= −∂ρ [ω +K|b| sin(ψ − θ)]

∂θ
+D

∂2ρ

∂θ2
, (25.267)

where D = σ2/γfr. Inserting ρ(θ, t) ≡
∑
ν ρν(t)e

ıνθ,

∂ρν
∂t

= −(ν2D + ıνω)ρν +
1
2νK (b∗ρν−1 − bρν+1) , (25.268)
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especially, ∫ 2π

0

ρ(θ, t)dθ = 1 =⇒ ρ0 = 1
2π , (25.269)

and we defined the bunching as |b|, where,

b ≡
∫ 2π

0

ρ(θ, t)e−iθdθ =⇒ b ≡ 2πρ1 . (25.270)

25.6.4.5 Laser-type equation for CARL

Defining the displacement of the nth atomic oscillator as,

En ≡ eıθn , (25.271)

we can rewrite the second equation (25.210) as,

Ėn =
ıξn
γfr

En −
8ωrecU0α+

γfr
(α− − α∗

−E
2
n) . (25.272)

Substituting α− by the integral of the first equation (25.210),

Ėn =
ıξn
γfr

En +
8ωrecıNU

2
0α

2
+

γfr

(∫
be−κ(t−t

′)dt′ + E2
n

∫
b∗e−κ(t−t

′)dt′
)
. (25.273)

In the limit e−κ(t−t
′) = κ−1δ(t − t′) we obtain an equation similar to that of an

ordinary laser,

Ėn =
ıξn
γfr

En +
8ωrecıNU

2
0α

2
+

γfrκ
(b+ b∗E2

n) (25.274)

=
ıξn
γfr

En +
8ωrecıNU

2
0α

2
+

γfrκ

(∑

m

Em +
∑

m

E∗
mE

2
n

)
.

25.6.5 Thermodynamics of the CARL process

There is an analogy between the laser threshold and a second-order phase transition
[749], p. 341 ff : ’... The usual treatment of laser behavior is a self-consistent field the-
ory. In the laser analysis each atom develops a radiating dipole in an electromagnetic
field due to (i.e. emitted by) all the other atoms. The radiation field produced by an
ensemble of radiating atoms is then calculated in a self-consistent fashion. (...This)
suggests the identification of the laser electric field as the variable corresponding to
the (...) order parameter and the atomic population inversion as that corresponding
to the temperature.’

Note that numerical simulations revealed that in certain regimes the CARL cor-
responds to a first-order phase transition: At high temperatures the probe to pump
power diagram shows bistability [431] and [697].

The correspondence between CARL and a common laser is illustrated by the table
below. A number of questions arise from the analogy:
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The CARL being a laser without inversion, what is the equilibrium parameter? Is it
the temperature of the atomic cloud? How to calculate the density of states?

ferromagnet laser

control parameter external magnetic field H pump intensity S
equilibrium parameter temperature T population inversion σ

order parameter

magnetization

⟨M⟩ =
{

0

c
√

Tc−T
T

T > Tc
T < Tc

electric field

⟨E⟩ =
{

0

c
√

σc−σ
σ

σ > σc
σ < σc

probability density P (M) ∝ e−F (M)/kBT
P -representation

P (x, y) ∝ e−G(x,y)/Kσ

thermodyn. free energy F = F (T,H) G(x, y)

heat capacity C(T ) = ∂E(T )
∂T

?

CARL atoms CARL light

control parameter pump intensity η pump intensity η

equilibrium parameter temperature T ?

order parameter

bunching

b =

{
0

?

T > Tc
T < Tc

electric field

⟨α⟩ =
{

0

?

probability density ? ?

thermody. free energy ? ?

heat capacity ? ?

25.6.6 CARL as a laser

Why is CARL a laser? What is the basic difference between CARL and an AOM or
a moving Bragg mirror? CARL is essentially based on exponential self-amplification.
This self-amplification is in fact observed in our switch-off experiment [490]. But
a laser is normally understood as a steady-state system. For CARL to find to a
steady-state we have to insert friction forces.

Gordon rewrites the CARL as a common laser: He generalizes the linear stability
analysis (previous Sec.) and retains the lowest-order nonlinearity. The Fokker-Planck
equations read:

dBn
dτ

= ın(aBn−1 + a∗Bn+1)− n2DBn (25.275)

da

dτ
= B1 − κa ,

with B0 = 1 and B−n = B∗
n. Linearization means Bn>1 = 0,

dB1

dτ
= ıa−DB1 (25.276)

da

dτ
= B1 − κa
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or,

d2a

dτ2
+ (κ+D)

da

dτ
+ (κD − ı)a = 0 (25.277)

d2B1

dτ2
+ (κ+D)

dB1

dτ
+ (κD − ı)B1 = 0

The determinant is,

det

(−D − λ ı

1 −κ− λ

)
= (D + λ)(κ+ λ)− ı = 0 (25.278)

Including the lowest-order nonlinear term means Bn>2 = 0,

dB2

dτ
= 2ıaB1 − 4DB2 (25.279)

dB1

dτ
= ıa+ ıa∗B2 −DB1

da

dτ
= B1 − κa

Assuming dB2/dτ = 0,

dB1

dτ
= ıa−

( |a|2
2D

+D

)
B1 (25.280)

da

dτ
= B1 − κa

or,

d2B1

dτ2
+ (κ+D)

dB1

dτ
+ (κD − ı)B1 = − 1

2D

(
d

dτ
+ κ

)
|a|2B1 (25.281)

= −(K1|a|2 −K2|a|4)B1

d2a

dτ2
+ (κ+D)

da

dτ
+ (κD − i)a = −|a|

2

2D

(
d

dτ
+ κ

)
a

substitute a(τ) = A(τ)eλτ and Eq. (xx),

eλτ
(
d2

dτ2
+ 2λ

d

dτ
+ λ2

)
A+ eλτ

(
(κ+D)

d

dτ
+ (κ+D)λ

)
A− (λ2 +Dλ+ κλ)eλτA

(25.282)

= −|e
λτA|2
2D

(
eλτ

dA

dτ
+ λeλτA+ κeλτA

)

neglect d2A/dτ2and |A|2dA/dτ ,

eλτ2λ
dA

dτ
+ eλτ (κ+D)

dA

dτ
= −|e

λτA|2
2D

(
λeλτA+ κeλτA

)
(25.283)
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substitute back a(τ) = A(τ)eλτ ,

da

dτ
= λa− λ+ κ

2D(2λ+ κ+D)
|a|2a (25.284)

= λa− C|a|2a

or,
d|a|2
dτ

= 2|a|2Reλ− 2|a|4ReC (25.285)

in steady-state,

0 = λa− C|a|2a . (25.286)
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Figure 25.32: (code) Laser crossing the threshold.

According to A. Politi a general laser theory exists, there is no point in repeating
this for CARL. The analogy is there and evident.

25.6.6.1 CARL as a ferromagnet

A similar treatment with a(τ) = A(τ)eλτ and B1(τ) = β(τ)eλτ and d2β/dτ2 = 0 and
|A|2dβ/dτ = 0 and βd|A|2/dτ = 0 results in,

dB1

dτ
= λB1 −

2λ+ λ∗ + κ

2D(2λ+ κ+D)
|a|2B1 (25.287)

= λB1 − C̃|a|2B1 ,

i.e. the instability comes from the field and it drives the bunching.

25.6.6.2 Out-of-equilibrium thermodynamics

Strictly speaking the above analogy is flawed. In particular the analogy between
CARL bunching and ferromagnetic ordering is not good. While the ferromagnetic
ordering occurs as a thermodynamic phase transition, the CARL bunching is driven
by a dissipative force, which triggers spatio-temporal instabilities. Therefore viscous

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LaserEquation.m
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CARL occurs far from thermodynamic equilibrium. This may point towards an in-
terpretation of CARL bunching as a dissipative structure along the lines traced by
Prigogine, who showed that non-equilibrium may be a source of order.

On the other hand, the laser itself is a system operating far from thermal equilib-
rium, since it requires a pump to emit steady-state radiation. Perhaps a comparison
with estruturas de Bénard is better than with ferromagnets. Bénard structures oc-
cur as spontaneous breaking of translational symmetry, just like CARL. One could
say that the periodicity of CARL is predefined by the pump laser wavelength, and
thus not surprising. However, the size of the periodic structures is always fixed by
boundary conditions in a more or less complicated way. For example, the size of the
Bénard structures is fixed by the viscosity, the provided amount of heat, etc., the
wavelength of surface waves can be calculated from first principles, i.e. the Navier-
Stokes equations and the continuity equation for given boundary conditions. The
symmetry breaking resides in the exact place, where the Bénard structure develops.
It is the phase, which is broken, just like for CARL.

The Kuramoto model and the Weiss model of ferromagnetism are both mean
field theories [756]. Despite the fundamental difference that ferromagnetism is a
thermodynamic feature and Kuramoto a nonequilibrium phenomenon, they are far-
reaching analogies. The role of temperature in ferromagnetism is played by external
noise in Kuramoto. CARL is clearly a dissipative structure: It survives only as long
as energy is fed to the system.

25.6.6.3 Finite and infinite temperature reservoirs

The phase transition is ruled by a competition of dissipation and diffusion. If the
reservoir has zero temperature γfrc ̸= 0 but D = σ2/γfrc = 0, i.e. we have dissipation
without diffusion. In this case, we do not expect a threshold behavior. The Lindtbladt
operator for coupling to a finite-temperature reservoir is something like L ≈ κ(n̄ +
1) {...emission...}+ κn̄ {...absorption...}+ η {...phase noise...}, where n̄ is the mean
photon number at thermal equilibrium with a given temperature T ∝ n̄/(n̄ + 1).
The interpretation in terms of dissipation without diffusion is correct according to
A. Buchleitner. There are three kinds of noises: 0 temperature noise for n̄ → 0, ∞
temperature noise for n̄ ≈ n̄+1 and phase noise. Thus for T = 0 the energy flux goes
only from the system to the reservoir. At T > 0 entropy may go from the reservoir
to the system. The system reaches its cooling limit when the temperatures of the
system and the reservoir are balanced.

But how to explain Doppler cooling or cavity-cooling? The electromagnetic vac-
uum is an effective T = 0 reservoir, but the cooling is nevertheless limited by the
spontaneous decay width or the cavity linewidth, resp.. Why does coupling to a
zero-temperature reservoir not cool down to zero? Apparently, the coupling is af-
flicted by vacuum noise. This permits coupling of degrees of freedom having different
temperatures without reaching a temperature equilibrium. Examples are the limit of
cavity-cooling to the cavity decay width or simply Doppler-cooling by spontaneous
emission.

Interprete damping as scattering into continuum!
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25.6.7 Exercises

25.6.7.1 Ex: Viscous CARL

Assuming a perfect ’bunching’, e2ıkzm = e2ıkz, e α− ≡ βe2ıkz with β̇ = 0 and z̈ = 0
derive the equations (25.199).

25.6.7.2 Ex: Langevin simulations

Langevin simulations

25.6.7.3 Ex: Fokker-Planck equations

Derive the equations (25.229) and (25.230) from (25.227) and (25.225) applying the
expansion (25.228).

25.6.7.4 Ex: Kuramoto simulations

Implement the Kuramoto model with pendulum clocks.

25.7 Coherent properties of CARL

In Sec. 25.6.1 we have demonstrated collective interaction of atoms with light fields and
how the application of friction via optical molasses can lead to stationary CARL radi-
ation at a self-determined frequency [489]. We have demonstrated that the molasses
also lead to diffusion resulting in a threshold behavior and in atomic self-organization
at finite temperatures [698, 843]. An interesting question is whether the temperature
not only determines the collective behavior, but also the deviation from it. The tem-
perature being related to the amount of random walk on top of the center-of-mass
motion, we may wonder whether the viscous CARL radiation bears a signature of the
atomic temperature not only in the self-determined CARL frequency, but also in the
laser emission bandwidth. It is conceivable that the autocorrelation functions and the
emission spectrum of the CARL are influenced by the fact that the atoms experience
a random walk in momentum space due to the diffusion in the optical molasses.

In this section, we will attempt an analytical approach, present numerical simula-
tions and discuss how to access to the informations experimentally. The Fokker-Planck
approach described in Refs. [698, 843] is particularly well adapted to calculating col-
lective variables. In contrast the simulation of the Langevin equation conveniently
gives access to the noise properties.

25.7.1 Analytical derivation of the coherence

Our starting point are the Langevin equations (25.210) [698, 843] in the adiabatic
limit, θ̈n = 0. The Langevin noise force is uncorrelated,

⟨ξ∗n(t)ξm(t+ τ)⟩ ≡ lim
T→∞

1

T

∫ T

0

ξ∗n(t)ξm(t+ τ)dτ = 2Dθ̇δmnδ(τ) , (25.288)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_ViscousCarl01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_FokkerCarl01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_.pdf
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where the momentum diffusion coefficient Dθ̇ = γfrσ
2 is proportional to the atoms’

equilibrium temperature, which is related to the Maxwell-Gaussian velocity spread
by σ ≡ 2k

√
kBT/m. In contrast, the trajectories of the atoms are not, because all

atoms are motionally coupled by the fields, so that the noise imparted to one atom is
sensed by all others. Therefore the relationship (25.289) certainly does not hold for
the atomic positions,

⟨θ∗n(t)θm(t+ τ)⟩ ≁ δmnδ(τ) . (25.289)

25.7.1.1 Single atom

So, let us first concentrate on a single atom coupled to the cavity fields. If its velocity
only fluctuates a little around a mean value ωca, we may write θ(t) ≡ ωcat+φ(t). The
randomized position has a Gaussian statistics leading to a Brownian motion described
by a Wiener-Levy stochastic process: ⟨φ(t)⟩ = 0 and ⟨φ(t)φ(t+ τ)⟩ = Dθ(2t+ τ −|τ |)
([749], p. 344),

Rθ̇(τ) = ⟨[ωca + φ̇(t)][ωca + φ̇(t+ τ)]⟩ = ⟨φ̇(t)φ̇(t+ τ)⟩ = 2Dθδ(τ) , (25.290)

where Dθ = σ2/γfr is the position diffusion coefficient. Note that deterministic parts
are removed from the function in order to satisfy ⟨φ̇(t)⟩ = 0. In that case the spectral
density of fluctuations of the atomic phase is constant,

Sθ̇(f) =

∫ ∞

−∞
Rθ̇(τ)e

−2πıfτdτ = 2Dθ . (25.291)

Note that Sθ̇(f) = f2Sθ(f). The variance of the fluctuations for white noise is or,

σ2
θ̇
(τ) = ⟨φ̇(t)2⟩ = Dθ

τ
. (25.292)

Under the assumption α̇− = ıωcaα− and introducing the abbreviation α0 ≡
−ıU0α+/(κ+ ıωca), the first equation (25.210) takes the form α− = α0e

ıθ such that
the autocorrelation function of the field amplitude reads,

Rα(τ) ≡ ⟨α∗
−(t)α−(t+ τ)⟩ (25.293)

= |α0|2⟨eı[θ(t+τ)−θ(t)]⟩
= |α0|2eıωcaτ ⟨eı[φ(t+τ)−φ(t)]⟩ = |α0|2eıωcaτ ⟨eıτφ̇(t)⟩ .

In the case of a Gaussian distribution for the noise amplitude with φ̇(t) = φ̇(−t), we
have ⟨φ̇2k−1⟩/(2k − 1)! = 0 and ⟨φ̇2k⟩/ (2k)! = ⟨ 12 φ̇2⟩k/k! [198, ?, 263],

⟨eıτφ̇(t)⟩ =
∑

k

ık⟨τkφ̇(t)k⟩
k!

=
∑

k

ı2k⟨τ2kφ̇(t)2k⟩
(2k)!

(25.294)

=
∑

k

⟨− 1
2τ

2φ̇(t)2⟩k
k!

= e−
1
2 τ

2⟨φ̇(t)2⟩ .

Apparently, noise mainly affects the field’s phase and not its amplitude. Note that the
first-order coherence is just the normalized autocorrelation g(1)(τ) ≡ Rα(τ)/Rα(0),

g(1)(τ) = eıωcaτe−ω
2
caτ

2σ2
ϱ/2 (25.295)

= eıωcaτe−Dθ|τ |/2 .
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The power spectral density is a Lorentzian,

Sα(ω) = |α0|2
∫ ∞

−∞
Rα(τ)e

−ıωτdτ (25.296)

=
|α0|2D2

θ

(ω − ωca)2 +D2
θ

.

The CARL emission bandwidth is thus 1
2Dθ. The above results show that the CARL

laser bandwidth increases linearly with temperature and reduces with the friction
force. In our experiment we have γfr = 5κ and σ = 10κ, so that Dθ = σ2/γfr = 20κ.
The CARL bandwidth is extremely large as compared to the CARL frequency ωca =
5κ. The reason is that we only considered a single atom. The impact of several atoms
will partially compensate and reduce the linewidth.

25.7.1.2 Many atoms, hand-waving

In order to account for the combined effect of many atoms, we reconsider the Eq. (25.210).
If α̇− = ıωcaα−, we may write it like,

α− = α0

∑

m

eıθm , (25.297)

θ̇n =
4εıU0α+α0

γfr

∑

m

(
eıθm−ıθn + e−ıθm+ıθn

)
+

ξn
γfr

.

The light mode α− appears to be a superposition of coherent waves having the same
frequencies, αm(t) = α0e

iωcat+iφm(t), but interrupted by random phase jumps. We
may thus try an analogous argumentation as for pressure broadening,

⟨α∗
−(t)α−(t+ τ)⟩ = |α0|2

∫ ∑

n

e−ıωcat−ıφn(t)
∑

m

eıωcat+ıωcaτ+ıφn(t+τ)dt

= |α0|2eıωcaτ
∑

n,m

∫
eıφm(t+τ)−ıφn(t)dt = N⟨α∗

n(t)αm(t+ τ)⟩δnm .

Cross-terms vanish, the autocorrelation function is just the sum of the single-atom
components. However, while we may view the noise impact of the atoms as coming
from a single atom, the rate of the phase jumps is much higher, than for a single
atom. For one atom the probability density for encountering a coherent interval of
length τ is given by p1(τ)dτ = 1

2Dθe
−Dθ|τ |/2dτ [530]. Thus,

⟨α∗
1(t)α1(t+ τ)⟩ = |α0|2eıωcaτe−Dθ|τ |/2 = |α0|2eıωcaτ

∫ ∞

τ

p1(τ
′)dτ ′ . (25.298)

For N atoms we expect a probability density for encountering a coherent intervall of
length τ ,

pN (τ)dτ = p1(τ/N)dτ =
Dθ

2
√
N
e−Dθ|τ |/2

√
Ndτ , (25.299)

such that
∫∞
0
pN (τ ′)dτ ′ = 1. However this remains to prove. Thus,

g
(1)
N (τ) = eıωcaτ

∫ ∞

τ

pN (τ ′)dτ ′ = eıωcaτ−Dθ|τ |/2
√
N . (25.300)
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The second-order correlation function is,

g
(2)
N (τ) = 1 + |g(1)N (τ)|2 . (25.301)

The laser bandwidth is accordingly reduced by,

DN =
Dθ√
N

. (25.302)
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Figure 25.33: (code) First and second-order correlation functions. The solid and dotted lines

in (a) and (b) are calculated for N = 1 and N = 100, resp.. The solid and dotted lines in

(c) and (d) are calculated for T = 100µK and T = 300µK, resp..

Fig. 25.33 shows the dependencies of the correlation functions on N and T . For
N = 106 atoms the CARL bandwidth becomes βN = 0.01κ, which is already well
below any mechanical noise. The linewidth reduction with increasing atom numbers
is quantitatively supported by numerical simulations (see below).

25.7.1.3 Many atoms, formal

In order to account for the combined effect of many atoms, we reconsider the Eq. (25.210).
If α̇− = ıωcaα−, we get,

α− = − ıU0α+

κ+ ıωca

∑

m

eıθm , (25.303)

θ̇n =
4εU2

0α
2
+

γfr (κ+ ıωca)

∑
m

(
eıθm−ıθn + e−ıθm+ıθn

)
+

ξn
γfr

.

The autocorrelation is then,

Rα(τ) ≡ ⟨α∗
−(t)α−(t+ τ)⟩ = U2

0α
2
+

κ2 + ω2
ca

∑

n,m

⟨eıθn(t+τ)−ıθm(t)⟩ (25.304)

= |α0|2eıωcaτ
∑

n,m
⟨eıφn(t+τ)−ıφm(t)⟩ = |α0|2eıωcaτ

∑
n,m,k

ık

k!
⟨[φn(t+ τ)− φm(t)]

k⟩

= |α0|2eıωcaτ
∑

n,m,k

ık

k!

∑k

j=0
(−1)j

(
k

j

)
⟨φn(t+ τ)jφm(t)k−j⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationTheory.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationTheory.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationTheory.m
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The main role of cavity-induced interparticle correlations is to self-consistently es-
tablish a constant center-of-mass motion ωca. We may, to first order, neglect the
possibility that the coupling correlates the noise, since the noise is imprinted from the
outside, i.e. the molasses. Therefore, ⟨φn(t+ τ)φm(t)⟩ ∝ δnm,

⟨φn(t+ τ)jφm(t)k−j⟩ =
∑

all pairs
⟨φn(t+ τ)2⟩j/2⟨φm(t)2⟩k/2−j/2 (25.305)

=
j!

2j/2(j/2)!

(k − j)!
2(k−j)/2(k/2− j/2)! ⟨φn(t+ τ)2⟩j/2⟨φm(t)2⟩k/2−j/2

so that,

Rα(τ) = |α0|2eıωcaτ
∑
n,m,k

ık

k!

k∑
j=0

(
k

j

)
j!

2j/2(j/2)!

(k − j)!
2(k−j)/2(k/2− j/2)! ⟨φn(t+ τ)2⟩j/2⟨φm(t)2⟩k/2−j/2 ,

(25.306)

where j and k are even,

Rα(τ) = |α0|2eıωcaτ
∑

n,m,k

ık

2k/2(k/2)!

k∑
j=0

(
k/2

j/2

)
⟨φn(t+ τ)2⟩j/2⟨φm(t)2⟩k/2−j/2

= |α0|2eıωcaτ
∑
n,m,k

1

(k/2)!

(
−1

2
⟨φn(t+ τ)2⟩ − 1

2
⟨φm(t)2⟩

)k/2
(25.307)

= |α0|2eıωcaτ
∑
n

e−
1
2
⟨φn(t+τ)2⟩

∑
m
e−

1
2
⟨φm(t)2⟩ = |α0|2N2eıωcaτe−

1
2
⟨φn(t+τ)2⟩e−

1
2
⟨φn(t)2⟩ .

25.7.1.4 Memory effects

Relax adiabaticity, α̇− ̸= ıωcaα−, substitute β = eκtα−,

θ̇ =
4εıU0α+

γfr

(
βe−ıθ−κt − β∗eıθ−κt

)
+

ξ

γfr
, (25.308)

β = −ıU0α+

∫ t

eıθ+κt
′
dt′ .

so that,

Rα(τ) ≡ ⟨α∗
−(t)α−(t+ τ)⟩ = ⟨e−κtβ∗(t)e−κt−κτβ(t+ τ)⟩ (25.309)

= e−κτ ⟨e−2κtβ∗(t)β(t+ τ)⟩

= U2
0α

2
+e

−κτ
∫ ∫ t ∫ t+τ

eıθ(t
′′)−ıθ(t′)+κt′+κt′′−2κtdt′′dt′dt

= U2
0α

2
+e

−κτ
∫ ∫ t ∫ t+τ

eıωcat
′′−ıωcat

′+ıφ(t′′)−ıφ(t′)+κt′+κt′′−2κtdt′′dt′dt .

Using the representation of half the δ-distribution
∫ t
e(ıωca+κ)t

′
dt′ = δ1/2 = limκ→0

1
κ+ıωca

.
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25.7.1.5 Schawlow-Townes limit for CARL

The ultimate limit for the spectral purity of a perfectly stable laser oscillator is the
Schawlow-Townes limit [730]. The origin of this limitation is the discrete nature of the
light field. Similarly to quantum projection noise, which is caused by the discretisation
of atomic energy levels, the optical shot-noise registered in photodetectors arises from
the discrete repartition of electromagnetic energy in photons. With a laser power P ,
a cavity bandwidth κ and an interrogation time τ , the Allan variance [?] and the
linewidth of a Schawlow-Townes limited laser are given by,

σST(τ) =
1

ω/κ

1√
(P/ℏω)τ

, (25.310)

β = κ2
ℏω
P

.

In the case of CARL, using P = δℏω|α−|2 the variance is σ2
ST(τ) = κ/τωδ|α−|2 ≈

10−20 s/τ . The shot-noise which limits the CARL is not the one of the CARL light
itself, but the random momentum kicks imparted by molasses-cooled atoms. The
CARL linewidth is β = κ2/δ|α−|2 = 10−14κ.

The time-lap between two scattering events for a single atom be distributed ac-
cording to p1(τ)dτ = γe−γτdτ . What is the waiting time distribution for two atoms
[733]? Schenzle related the waiting time distribution to the autocorrelation function
g(2)(τ).
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Figure 25.34: Simulated time-dependence of the (a) beat and the (b) intensity signals.
Calculated (c) first and second-order correlation functions. The temperature was set to
T = 100µK and the atom number to N = 40. (e-f) Spectra of the CARL laser for (e) 4 and
(f) 40 atoms. The total coupling constant NU0 has been held constant, only the number of
atoms whose trajectories are simulated is varied.
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Fig. 25.34(e-f) shows spectra of the CARL frequency obtained by Fourier-transforming
the autocorrelation function of a Langevin-simulated trajectory of the CARL fre-
quency. The width results from thermal fluctuations in the atomic motion induced
by momentum diffusion in the molasses. It is clearly visible that the width is reduced
when the atom number is increased, thus confirming Eq. (25.302).

25.7.2 Measuring the coherence properties

We may also attempt to verify the predictions in experiment. Our signals are the
beams transmitted through the cavity mirrors.

25.7.2.1 Homodyne signal

Ideally in order to get the full information on the the first-order coherence, we should
record both the in-phase and the quadrature component of the field α− = Reα− +
iImα− by homodyning it with the local oscillator α+. Thus we need to use both
ports of the beamsplitter: For the in-phase component we get,

P
(ph)
hody ∝ b†b− c†c (25.311)

= |α+
√
η + α−

√
1− η|2 − |α+

√
1− η − α−

√
η|2

= (1− 2η)(|α−|2 − |α+|2) + 4
√
η − η2α+Reα− .

For a 50% beamsplitter the offsets disappear, P
(ph)
hody ∝= 2α+Reα−, which means that

the homodyne signal is insensitive to intensity noise in the individual ports. Similarly
we obtain for the quadrature component,

P
(qu)
hody ∝ |α+

√
η + ıα−

√
1− η|2 − |α+

√
1− η − ıα−

√
η|2 (25.312)

= −2α+Imα−.

By mounting a piezo on one of the mirrors in the homodyne loop, we can influence
which quadrature component to map. Is there a way how to get Imα− and Reα−
simultaneously?

Figure 25.35: Homodyning the counterpropagating beams.

Knowing α− we can calculate the first order coherence,

g(1)(τ) ≡ ⟨α
∗(t)α(t+ τ)⟩
⟨α∗(t)α(t)⟩ =

∫
α∗(t)α(t+ τ)dt∫

α(t)2dt
, (25.313)
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the second-order coherence,

g(2)(τ) ≡ ⟨α
∗(t)α∗(t+ τ)α(t+ τ)α(t)⟩

⟨α∗(t)α(t)⟩2 (25.314)

=

∫
P−(t)P−(t+ τ)dt∫

P−(t)dt
,

and the emission spectrum (power spectral density),

F (ω) =
1

π
Re

∫
g(1)(τ)eıωτdτ . (25.315)

All these quantities can be evaluated from numerical simulations of the Langevin
equations.

Example 184 (Real Signals): What is recorded in experiment is the probe
field power Pprobe and only one quadrature component of the beat between the
probe and the pump. The probe signal is simply,

P− ∝ |α−|2 . (25.316)

So it may be used directly for the g(2)(τ) intensity correlation function (25.314)
analogous to the Hanbury-Brown-Twiss experiment.
In contrast, the beat signal is obtained in a Young type experiment,

Pbeat ∝ |α+ ± α−|2 = |α+|2 + |α−|2 ± 2α+Reα− , (25.317)

because we may assume α+ real. Obviously, the beat signal oscillates between
the limits ±2α+|α−|. Using only one port of the beamsplitter, we miss informa-
tion on the other quadrature phase. The question arises now, how to calculate
the spectrum if only the real part of the field Reα is known. The interesting
quantity is |g(1)(τ)|, because it contains the information on the photon statistics.
This function is smooth (it does not oscillate) and should in our case describe
an exponential decay (25.295). Fortunately, from numerical calculation it seems
that |g(1)(τ)| is just the convolution of ⟨Reα(t)Reα(t+ τ)⟩/⟨Re 2α(t)⟩, so that
we may recover the informations. For the spectrum, which is calculated from
the complex quantity g(1)(τ) the question is more delicate. It comes down to
asking if,

F (ω) ∝ Re

∫
⟨Reα(t)Reα(t+ τ)⟩ eıωτdτ (25.318)

gives the correct spectrum (25.315).

25.7.2.2 Impact of finite time window

Technical noise may overrule the thermal noise just like in ordinary lasers. This
situation may change if atom numbers are low, so that we have bad statistics, or if
the collective force is strong enough to correlate the noise.

The spectral width may also be limited by the finite time window t ∈ [− 1
2 t0,

1
2 t0],

which is taken for computing the spectrum. Even a perfect harmonic oscillation
α−(t) = α−eıωcat will then have a finite bandwidth,

Fa−(ω) = F [α−e
ıωcat] ⋆ F [χ[−t0/2,t0/2](t)] (25.319)

= α−δ(ω − ωca) ⋆
√

2

π

sin 1
2ωt0

ω
= α−

√
2

π

sin 1
2 (ω − ωca)t0
(ω − ωca)

.
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Figure 25.36: (code) Measured trajectories (a) and (b) and correlation functions (c) and (d)

of the CARL laser. The coupling constant was NU0 = −0.1.

The spectrum Sα−(ω) = |Fa−(ω)|2 has a bandwidth of β = 5.6/t0. For example
an oscillation observed for a period 100 times longer than the cavity decay time,
t0 = 100/κ, the bandwidth will be β = 0.056κ. Simulations are based on the Langevin
equation.

Figure 25.37: Spectrum of the CARL calculated from the first-order correlation function in
Fig. 25.36(c). The coupling constant was NU0 = −0.1κ.

25.7.3 Exercises

25.7.3.1 Ex: Autocorrelation functions

25.7.3.2 Ex: Signal-to-noise ratio of Bloch oscillations

You want to evaluate the stability of a noisy periodic signal. How many noisy oscil-
lations do you have to observe in order to evaluate the oscillation period with a given
S/N ratio [888].

25.8 Further reading

J. Guo et al., Recoil-induced Resonances in Non-linear Spectroscopy [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationMeasure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationMeasure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_.pdf
http://doi.org/10.1103/PhysRevA.46.1426
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J.-Y. Courtois et al., Recoil-induced Resonances in Cesium: An Atomic Analog to
the Free Electron Laser [DOI]

P. R. Hemmer et al., Self-Organization, Broken Symmetry, and Lasing in an Atomic
Vapor: The Interdependence of Gratings and Gain [DOI]

G.-L. Lippi et al., Spontaneous Generation of a Longitudinal Atomic Density Grating
in Sodium Vapor [DOI]

D.R. Meacher et al., Method for Velocimetry of Cold Atoms [DOI]

P. Verkerk et al., Comment on ”Spontaneous Generation of a Longitudinal Atomic
Density Grating in Sodium Vapor” [DOI]

S. Barbay et al., Pump-probe spectroscopy of the sodium D line and the question of
recoil-induced gratings in hot vapors [DOI]

P.R. Berman, Comparison of recoil-induced resonances and the collective atomic
recoil laser [DOI]

M. Vengalattore et al., Optical bistability at low light level due to collective atomic
recoil [DOI]

V. Vuletic et al., Three-dimensional cavity Doppler cooling and cavity sideband cool-
ing by coherent scattering [DOI]

M. Gangl et al., Cold atoms in a high-Q ring cavity [DOI]

S. Ostermann et al., Atomic self-ordering in a ring cavity with counterpropagating
pump fields [DOI]

S.C. Schuster et al., Supersolid properties of a Bose-Einstein condensate in a ring
resonator [DOI]

J. Léonard et al., Supersolid formation in a quantum gas breaking continuous trans-
lational symmetry [DOI]

J.K. Asbóth et al., Optomechanical coupling in a one-dimensional optical lattice
[DOI]

G.R.M. Robb, Dispersive optical bistability in cold atomic vapours [DOI]

R. Culver et al., Collective strong coupling of cold potassium atoms in a ring cavity
[DOI]

S. Bux et al., Cavity-controlled matter wave superradiance at the recoil limit [DOI]

R.J. Schulze et al., Optomechanical approach to cooling of small polarizable particles
in a strongly pumped ring cavity [DOI]

http://doi.org/10.1103/PhysRevLett.72.3017
http://doi.org/10.1103/PhysRevLett.77.1468
http://doi.org/10.1103/PhysRevLett.76.2452
http://doi.org/10.1103/PhysRevA.50.R1992
http://doi.org/10.1103/PhysRevLett.79.3094
http://doi.org/10.1016/S0030-4018(99)00202-3
http://doi.org/10.1103/PhysRevA.59.585
http://doi.org/10.1103/PhysRevLett.101.063901
http://doi.org/10.1103/PhysRevA.64.033405
http://doi.org/10.1103/PhysRevA.61.043405
http://doi.org/10.1209/0295-5075/109/43001
http://doi.org/10.1103/PhysRevLett.124.143602
http://doi.org/10.1038/nature21067
http://doi.org/10.1103/PhysRevA.77.063424
http://doi.org/10.1016/S0030-4018(01)01249-4
http://doi.org/10.1088/1367-2630/18/11/113043
http://doi.org/10.1103/PhysRevLett.106.203601
http://doi.org/10.1103/PhysRevA.81.063820
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Preface to the part AtomOptics

The field of atom optics deals with the motion of atoms and its control by technical
tools. At high velocities with no external forces, the atoms follow straight paths,
similar to light beams in classical optics. At low speeds, they propagate as waves,
similarly to wave optics in Maxwell’s theory of electrodynamics. The term atom optics
emphasizes the analogy and the duality in the behavior of microscopic particles.

The duality principle is one of the fundamental ideas of quantum mechanics. The
appearance of an object as a wave or as a particle depends on the situation in which
it is observed. While the wave nature of light was well established in classical physics
since a long time, Louis de Broglie was the first in 1924 to apply the duality princi-
ple also to massive particles and to predict that particles, under certain conditions,
behave like waves whose wavelengths increase as their velocity decreases. Each par-
ticle (or sample of particles) is delocalized along a distance corresponding to the ’de
Broglie wavelength’. This feature of the matter was soon discovered experimentally in
electron beams and is still used today in commercial devices, for example in electron
microscopes.

The laser was discovered in 1956. In a laser, light particles are forced to oscillate
synchronously, that is, coherently. By analogy, we can raise the question whether
a similar phenomenon can occur with massive particles, and whether it is possible
to construct an atom laser. Such a device would emit coherent matter waves just
as the laser emits coherent light. When a gas is cooled to very low temperatures,
the Broglie waves of the atoms become very long and, if the gas is sufficiently dense,
eventually overlap. If the gas consists of a single species of bosonic particles with all
atoms being in the same quantum state, their Broglie waves interfere constructively
thus and form a huge wave of coherent matter. This matter wave is described by
a single wavefunction exhibiting long range order and having a single phase. If this
wavefunction is formed inside a trap, all atoms accumulate in its ground state. Thus,
we obtain a pure quantum state of many bodies in the kinetic degree of freedom 22.
The transition of a gas from individual atoms to a degenerate mesoscopic many-body
quantum state occurs as a phase transition named Bose-Einstein condensation (BEC)
as a homage to Bose and Einstein who predicted the effect already in 1924 [107, 259].

In chapter 26 we review experimental techniques which are essential for the prepa-
ration and study of ultracold atomic clouds of atoms. In Chp. 27 we study properties
of quantum-degenerate gases. In Chp. 28 we concentrate on superfluid features of
Bose-condensates. In Chp. 29 we focus on the interaction of Bose-condensates with
radiation fields.

22In particular, for very cold atoms whose internal excitation occurs on a very different energy
scale, the corresponding degree freedom is frozen and does not influence the kinetics.
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Chapter 26

Manipulation of atomic gases

The course begins in this chapter with a presentation of the most important exper-
imental techniques for cooling, trapping, manipulating and detecting atomic gases.
The knowledge of these techniques will allow for a better understanding of how it is
possible to generate and analyze all the effects mentioned above. Chp. ?? sets the
foundations for the theoretical description of many-body fields with particular atten-
tion to issues arising from quantum statistics. Chp. 27 introduces the phenomenon
of Bose-Einstein condensation, and the subsequent chapters focus on the thermody-
namic, superfluid, coherent and dielectric properties of condensates.

Figure 26.1: Temperature scale.

The incomparable success of atomic optics has been rewarded with 20 nobel prices
in the last 25 years (Dehmelt, Paul, Ramsey, Cohen-Tannoudji, Chu, Phillips, Cornell,
Wieman, Ketterle, Hänsch, Glauber, Hall, Wineland, Haroche, Ahskin) plus several
indirectly related noble prices (De Gennes, Leggett, Thouless, Haldane, Kosterlitz).
For review articles on BEC see [641, 192, 175, 322, 710, 780], [459] or check in internet
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sites http://amo.phy.gasou.edu/bec.html and http://jila.edu/bec.html.
In this chapter we review the basic techniques of Atomic Optics, emphasizing the

cooling, trapping and measurement of cold atomic gases. See also (watch talk) and
(watch talk).

26.1 The atomic motion

26.1.1 The atom as a matter wave

We have already emphasized that atomic optics deals with the motion of atoms in a
gas, that is, we are interested only in the external degrees of freedom of the atoms.
To describe the motion of a free massive particle in one dimension, we write the
Hamiltonian,

Ĥ = − ℏ2

2m

d2

dx2
. (26.1)

Therefore, the general solution of the stationary Schrödinger equation,

Ĥψ(x) = Eψ(x) , (26.2)

is,

ψ(x) = Aeıkx +Be−ıkx with k =

√
2mE

ℏ2
. (26.3)

Note, that the wavefunctions eıkx are not quadratically integrable. On the other
hand, they do not represent real physical systems. In practice, we need to consider
wavepackets or specify a finite volume for the particle.

Note also that the eigenvalue spectrum of is continuous. To warrant the interpre-
tation of the wavefunction as a probability density we will require quadratic integra-
bility,

∫
|ψ|2d3r = 1. This means that the wavefunction can not be infinite in a finite

volume, but it can be infinite in an infinitely small volume.
The description of the atomic motion by a wave equation emphasizes the fact

that microscopic particles have wave properties with each atom corresponding to a
velocity-dependent de Broglie wave,

λdB =
h

p
, (26.4)

which describes the coherence length of the atom.

26.1.1.1 Characteristic velocities

The behavior of an atom described by the Schrödinger equation depends very much
on its kinetic energy. At high velocities (or short de Broglie waves), it will behave
like a classical particle with a well-defined trajectory. At low velocities (or long de
Broglie waves), it will propagate like a wave and exhibit phenomena such as diffraction
and interference. Therefore, it is important to highlight some characteristic velocity
regimes.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/AMOTechniques
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/AMOAdvantage
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Most optical cooling techniques are based on the removal of kinetic energy upon
light scattering on electronic transitions. It is, therefore, interesting to compare the
kinetic energy (or temperature) of an ensemble of atoms with the width Γ of the
transition. The Doppler limit is given by (see Exc. 26.1.3.1),

kBTD =
ℏ
2
Γ . (26.5)

We can also compare the kinetic energy with the energy transferred to an atom by
the absorption of a single photon. The photonic recoil energy is given by,

kBTrec =
ℏ2k2

2m
. (26.6)

Atomic clouds with temperatures around T ≃ TD = 10..1000µK are called cold.
Clouds with temperatures around and below T ≲ Trec = 0.1..10µK are called ultra-
cold.

In most atomic optical experiments we do not work with individual atoms (or
ions), but with relatively dilute ensembles of atoms, called clouds. In general, clouds
can not be described by a single wavefunction. Either we describe every atom by a
separate and independent wavefunction (which only works when the atoms do not
interact), or we describe the cloud by probability distributions (such as the ’density
matrix’). Let us now consider a thermal cloud. The Maxwell-Boltzmann distribution
of velocities is,

g(v) =

√
m

2πkBT

3

e−mv2/2kBT . (26.7)

This distribution is normalized,
∫
g(v)d3v =

∫∞
0

4πv2g(v)dv = 1. Average velocity is
now

v̄ =

∫
vg(v)dv =

√
kBT

m
. (26.8)
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Figure 26.2: (code) Maxwell-Boltzmann distribution.

Maxwell-Boltzmann’s law was experimentally proven by Otto Stern in 1920, using
a primitive atomic beam and a simple time-of-flight technique based on a rotating
drum for selecting atomic velocities. With the advent of laser spectroscopy, the MB

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_MaxwellBoltzmann.m
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law and its limitations can be tested with highly improved accuracy. This law de-
scribes well the behavior of weakly interacting hot atoms. Deviations from this law
are insignificant until, at low temperatures, quantum effects come into play. For this
to happen the temperature must be so low that the atomic Broglie wavelengths be-
come comparable to the average distance between particles. For a gas in thermal
equilibrium the characteristic wavelength, called thermal de Broglie wavelength, is,

λtherm ≡
h

mv̄
=

√
2πℏ2
mkBT

. (26.9)

It represents an average over the de Broglie wavelengths of all atoms of the sample.
When a dense gas is sufficiently dense, so that this quantity exceeds the average
distance between atoms,

ρ ≡ nλ3therm > 1 , (26.10)

where n is the atomic density, we enter a new regime, where the Maxwell-Boltzmann
law ceases to be valid. Since λtherm ∝ T−1/2, this regime corresponds to low tempera-
tures. The quantity ρ is called phase space density. A phase space density approaching
1 means an increased probability of finding more than one atom per elementary phase
space cell. We then enter the regime of quantum degeneracy, where the Boltzmann
statistics must be replaced by the Bose-Einstein statistics, in the case of bosons, or
the Fermi-Dirac statistics, in the case of fermions. From the condition nλ3therm ≃ 1,
we obtain

kBTc =
1

m

(
2πℏ
λtherm

)2

=
(2πℏ)2n2/3

m
. (26.11)

For example, an atomic gas with density n ∼ 1016 cm-3 and temperature 900K is
certainly in the classical regime, since n−1/3 ∼ 106 cm ≫ λdB = 10−9 cm. To observe
quantum effects, we need relatively dense and cold clouds of atoms. In most gases,
lowering the temperature or increasing the density promotes the system to liquidity
before the quantum regime is reached. Well-known exceptions are spin-polarized
hydrogen (H↑), which does not become liquid and helium, which exhibits quantum
degeneracy effects in the liquid phase, although these effects are quite complex due
to strong interparticle forces.

We have already seen that all particles in the quantum world are either bosons with
integer spin or fermions with semi-integer spin. Fermions do not share a quantum
state, because they must follow the Pauli’s exclusion principle. They obey a quantum
statistical distribution called Fermi-Dirac distribution (FD). In contrast, bosons enjoy
to share a quantum state and even encourage other bosons to join them in a process
called bosonic stimulation. Bosons obey a quantum statistical distribution called
Bose-Einstein distribution (BE). The basic difference between the MB-statistics on
one hand and the BE- or FD-quantum statistics on the other is that the former applies
to identical particles which, however, are distinguishable from each other, while the
second describes identical indistinguishable particles. For the BE/FD statistics one
can derive [469] the occupancy number (7.91) for a non-degenerate quantum state
having the energy ε when the system is kept at temperature T ,

wT,µ =
1

eβ(ε−µ) ∓ 1
, (26.12)
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where we used the abbreviation β ≡ 1/kBT . The upper sign refers to the BE statistics,
the lower sign to the FD statistics. The chemical potential µ is an important system
parameter, which helps to normalize the distribution (26.12) to the total number of
particles,

N =
∑

ε

wT,µ(ε) . (26.13)

Similarly, the total energy of the system is given by,

E =
∑

ε

εwT,µ(ε) . (26.14)

A very remarkable effect occurs in a bosonic gas at a certain characteristic critical
temperature Tc: below this temperature a substantial fraction of the total number
of particles occupies the lowest energy state, while all other states are occupied by
a negligible number of particles. Above the transition temperature the macroscopic
observables of the gas, such as pressure, heat capacity, etc., receive contributions of all
states with a certain statistical weight, but without favoring the state of lower energy.
Below the transition temperature, the observables are altered by a macroscopic occu-
pation of the ground state, which results in dramatic changes of the thermodynamic
properties. The phase transition is named after Shandrasekar Bose [107] and Albert
Einstein [259] Bose-Einstein condensation (BEC).

26.1.2 Bose-Einstein condensation

The first hint, that Bose-Einstein condensation was more than just a theoretical
fantasy came from London [528], who linked the newly discovered phenomenon of
superfluidity in 4He to BEC. However, the interpretation of the λ-point in terms of
BEC was not obvious, because strong interactions between particles concealed the role
of quantum statistics, and the thermodynamic potentials exhibited divergences at the
critical temperature instead of discontinuities, as expected for an ideal gas BEC. These
uncertainties triggered an intense search for other systems. In 1954, Schafroth pointed
out that electron pairs can be seen as composite bosons and may form Bose-Einstein
condensates at low temperatures [729]. In 1957, Bardeen, Cooper and Schrieffer
developed the microscopic theory of superconductivity [54], after other researchers,
including Blutt, Schaffrot, Fröhlich and Bogolubov, had suggested a relationship of
this phenomenon to Bose condensation of electron pairs (nowadays called Cooper
pairs).

Motivated by the need to test the concept of condensation of composite particles
in weakly interacting systems, in 1962 Blatt et al. proposed the investigation of the
BEC in gases of excitons [85]. Excitons are bound electron-hole pairs that can form a
weakly interacting gas in certain non-metallic crystals. They are interesting because
their small mass allows BEC at high temperatures and gas density can be controlled
over a wide range, by only modifying the intensity of the optical excitation. Being
quasi-particles, excitons can be created and annihilated, that is their number is not
conserved. Excitons were discovered in 1968, and the first evidence for Bose-Einstein
of biexciton molecules in a CuCl crystal dates back to 1979 [145].

The laser as coherence phenomenon between photons shares many analogies with
condensates. However, photons are quasi-particles as well, and again their number
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Figure 26.3: (a) Illustration of atomic Broglie waves at different temperatures with respect
to the critical temperature. (b) Illustration of the recoil temperature: An atom recoiled by
the momentum imparted by absorption of a single photon is ejected from the BEC.

is not conserved 1. Hence, there is no phase transition: When an optical cavity
containing photonic modes is cooled, the photons prefer to disappear in the walls of
the cavity instead of condensing.

Hecht [375] suggested in 1959, followed by Stwalley and Nosanow [802] in 1976,
that an atomic hydrogen gas with polarized spins would be an appropriate candidate
for BEC. The advantage of this system is that interactions between atoms are weak
and only give rise to a negligible quantum depletion below 1%. In 1978 Greytak and
Kleppner started at the MIT intensive efforts to generate BECs in dilute hydrogen
gases. In the 1990s, important advances in the cooling of atoms using laser light
allowed to reach very low temperatures, and the invention of the magneto-optical trap
(MOT) for neutral atoms permitted their spatial confinement and the compression of
their density. These successes boosted efforts to try to create BEC in alkaline gases,
which have electronic level schemes that lend themselves to optical cooling. Later, it
was discovered that the phase space density in MOTs is limited by radiation trapping
effects. As a solution to this problem, scientists had to learn how to trap atoms
without the use of light in conservative traps, e.g. by their magnetic dipole moment,
and to replace optical cooling with evaporative cooling. This was the crucial step
that finally permitted to reach BEC in alkaline gases in 1995. Later, the hydrogen
experiment, which initially stimulated the alkaline experiments, now taking advantage
of their success, has been taken to BEC as well [291].

Why did it take so long to reach Bose-Einstein condensation, seven decades after
its prediction by Bose and Einstein? How can we see when we have a condensate?
What are the characteristics of a BEC accessible to observation and how to measure
them? These are the answers that we will answer in the following sections. Solve
Exc. 26.1.3.2.

1The chemical potential of photons is µ = 0.
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26.1.3 Exercises

26.1.3.1 Ex: Fundamental temperature limits

Calculate the Doppler limit, the recoil limit, and the threshold to quantum degeneracy
for an atomic cloud of density n = 1014 cm−3 for the sodium D2 transition (λ =
590 nm, Γ/2π = 10MHz) and the rubidium D2 transition (λ = 780 nm, Γ/2π =
6MHz).

26.1.3.2 Ex: Boson or fermion?

Whether an atom is a fermion or boson solely depends on its total spin. Half-integer
spin particles are fermions, integer spin particles are bosons. For example, Rb atoms
have in the ground state J = 1/2, I = 7/2 and F integer, and therefore are bosons.
Ca+ ions have J = 1/2 and no hyperfine structure, and thus are fermions. 6Li has
the half-integer F and is a boson.
Decide on the bosonic or fermionic nature of the following atoms/molecules:
85Rb with I = 3/2 in the state 2S1/2
88Sr with I = 0 in the state 1S0
88Sr with I = 0 in the state 3P2
87Sr with I = 9/2 in the state 1S0
172Yb+ with I = 0 in the state 2S1/2
171Yb+ with I = 1/2 in the state 2S1/2

26.2 Optical cooling

As discussed in Sec. 20.2, the force exerted by a light field on an atom can be of two
types: a dissipative force arising called radiation pressure, which is often used for
optical cooling purposes, and a conservative dipolar force which often serves for the
engineering of optical trapping potentials. Both applications of optical forces will be
detailed in the following sections.

26.2.1 Optical molasses

In the Doppler cooling model, we treat the phenomenology of optical forces quantita-
tively by considering the amplitude, phase and frequency of a classical field interact-
ing with the dipole of an atomic transition in a two-level atom. From Eq. (20.25) and
previous definitions of Ω and Ωsat, and with the intensity I ∝ E2, we can write the
saturation parameter,

s =
I

Isat
=

Ω2

Ω2
sat

=
Ω2

Γ2/2
, (26.15)

and

Frp =
ℏkΓ
2

s

(2∆/Γ)2 + 1 + s
. (26.16)

Now, if we consider an atom propagating in ∓z direction with the velocity vz coun-
terpropagating to a light wave detuned by ∆ from the resonance, the total detuning
will be

∆ −→ ∆∓ kvz . (26.17)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_LimiteRecuo.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_BosonFermion.pdf
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where the term kvz is the Doppler shift. The force F± acting on the atom will be in
the direction opposite to the motion,

F± = ±ℏkΓ
2

s

(2(∆∓ kvz)/Γ)2 + 1 + s
. (26.18)

Supposing now, that we have two light fields propagating in directions ±z, the total
force will be F = F+ + F−. If kvz is small compared to Γ and ∆, we find through a
Taylor expansion,

Fz ≃ 4ℏks
kvz(2∆/Γ)

[1 + s+ (2∆/Γ)2]2
. (26.19)

This expression shows that, if the detuning ∆ is negative (that is, on the red side of
the resonance), then the cooling force will oppose the motion and be proportional to
the atomic velocity. Fig. 26.4 shows this decelerating dissipative force as a function
of vz at a detuning ∆ = −Γ with I = Isat/2. The one-dimensional motion of the
atom is thus behaving like being subject to a friction force which is proportional to
the atomic velocity,

Fz ≃ αdvz with αd = s
−4k2(2∆/Γ)

1 + s+ (2∆/Γ)2
. (26.20)

The proportionality factor, is just the friction coefficient.
However, the atom will not cool down indefinitely. At some point, the Doppler

cooling rate will be balanced by the heating rate coming from the momentum fluc-
tuations of the atom absorbing and remitting photons. The Doppler cooling limit is
given by,

kBT = ℏ
Γ

2
, (26.21)

as we will see in Exc. 26.2.5.1. This limit is generally, for alkaline atoms, on the order
of dozens of micro-Kelvin. In the early years of cooling and trapping, the Doppler
limit was thought to be a real physical barrier. But in 1988, several groups have shown
that, in fact, atoms could be cooled well below the Doppler limit. The effect arises
in atoms, whose ground state exhibits a hyperfine structure. We will show simplified
one-dimensional models for sub-Doppler cooling in the next section. Resolve the
Exc. 26.2.5.2.

26.2.2 Sub-Doppler cooling

It turns out that atoms with a hyperfine structure in the ground state can be cooled
below the Doppler limit (26.5). To explain this unexpected observation, models in-
volving a slow motion of the atoms in polarization gradients of a standing light wave
have been invoked. The phenomenon is now known as polarization gradient cooling.

Two principal mechanisms for cooling atoms to temperatures below the Doppler
limit are based on spatial polarization gradients. These two mechanisms, however,
invoke very different physical processes and are distinct by the spatial dependence of
the light polarization. A key point is that these sub-Doppler mechanisms only work
on atoms with multiple ground state levels. Two parameters, the friction coefficient
and the capture velocity, determine the importance of these cooling processes. In this
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Figure 26.4: (code) Doppler force due to one-dimensional radiative pressure as a function of

atomic velocity along the z-axis for red detuning ∆ = −Γ at a light intensity of I = 2Isat.

The solid line shows the exact expression for the restoring force [Eq (26.18)]. The broken line

shows the approximate linear expression of the velocity dependence according to Eq. (26.19).

section we compare the expressions for these quantities in the sub-Doppler regime to
those found by the conventional one-dimensional Doppler cooling model for optical
molasses.

Figure 26.5: The upper line shows, how the polarization changes as a function of position (in
units of a wavelength) for the ’lin-perp-lin’ standing wave configuration. The figure below
shows a simplified picture of the Sisyphus cooling mechanism for an atom with two levels,
Jg ↔ Je.

26.2.2.1 Lin ⊥ lin molasses

In the first case, two counterpropagating light waves with orthogonal linear polar-
izations form a standing wave. This configuration is familiarly called lin-perp-lin.
Fig. 26.5 illustrates the change of polarization every period of λ/8 from linear to cir-
cular to linear again, but rotated by 90◦, and so on [196]. Along the same distance,
the light-atom coupling produces a periodic energy shift (light-shift) of the ground

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_DopplerCooling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_DopplerCooling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_DopplerCooling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_DopplerCooling.m
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state Zeeman levels. To illustrate the cooling mechanism, we assume the simplest
case, a transition Jg =

1
2 −→ Je =

3
2 . As shown in Fig. 26.5 an atom moving through

the region z ≃ λ/8, where the polarization is σ−, will see its population pumped
to Jg = − 1

2 . In addition, the Clebsch-Gordan coefficients that control the dipolar
coupling of the Je = 3

2 require that the Jg = − 1
2 couples to σ− with a force three

times larger than the Jg = + 1
2 does. The difference of the coupling forces leads to

the light-shift between the two fundamental states shown in Fig. 26.5. As the atom
continues to move toward +z, the relative coupling forces are reversed near 3λ/8,
where the polarization is essentially σ+. Thus, the relative energy levels of the two
hyperfine fundamental states oscillate ’out of phase’ when the atom moves through
the standing wave.

The fundamental idea is that the optical pumping rate, which always redistributes
population to the lower hyperfine level, delays the light-shift of the atom moving
through the field. The result is a ’Sisyphus effect’, where the atom spends most
of its time in sub-levels climbing a potential hill and thus converting kinetic energy
into potential energy. This accumulated potential energy is subsequently dissipated
by spontaneous emission to the electromagnetic modes of the vacuum. Simultane-
ously, the spontaneous emission transfers the population back to the lower one of
two ground state levels. The lower diagram of Fig. 26.5 illustrates the phase delay
of optical pumping. For this cooling mechanism to work, the optical pumping time,
which is controlled by the intensity of the light, must be sufficiently slow to give the
atom enough time to climb a noticeable part of the light-shift potential. This time
essentially depends on the speed of the atom. As the atom is moving slowly, having
previously been cooled by the Doppler mechanism, the light field must be weak in or-
der to decrease the optical pumping rate. Interestingly, this physical picture combines
the conservative dipole optical force, whose spatial integral gives rise to the mounts
and valleys of the potential on which the atom moves, and the irreversible dissipation
of energy by spontaneous emission, which is necessary for any type of cooling.

We can obtain simple expressions for the friction coefficient and the capture ve-
locity after some definitions. As in the Doppler cooling model we define the friction
coefficient αlpl as the proportionality constant between the force F and the atomic
velocity v,

F = −αlplv . (26.22)

We assume that the light field is tuned to the red of the transition Jg - Je,

∆ = ω − ω0 , (26.23)

and we denote the light-shifts of the levels Jg = ± 1
2 as ∆±, respectively. At the

position z = λ/8, we find ∆− = 3∆+ and at z = 3λ/8, ∆+ = 3∆−. As the applied
field is tuned to red, all ∆± have negative values. Now, for the cooling mechanism to
be efficient, the optical pumping time τp should be similar to the time needed for an

atom with velocity v to move from the bottom to the top of the potential, λ/4v ,

τp =
λ/4

v
(26.24)

or
Γ′ ≃ kv , (26.25)
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where Γ′ = 1/τp and λ/4 ≃ 1/k. Now, the energyW dissipated during a cycle of esca-
lation and spontaneous emission is essentially the average energy difference between
the light-shifted ground states, ∆ls ≡ ∆+ +∆−, that is W ≃ −ℏ∆ls. Therefore, the
rate for energy dissipation is,

dW

dt
= Γ′ℏ∆ls . (26.26)

At the same time, every temporal energy change of a system can always be expressed
as dW

dt = F · v. Therefore, in this one-dimensional model, considering Eq. (26.23), we
can write,

dW

dt
= −αlplv

2 = −Γ′ℏ∆ls , (26.27)

such that with (26.25),

αlpl = −
Γ′ℏ∆ls

v2
≃ −kvℏ∆ls

v2
≃ −ℏk2∆ls

Γ′ . (26.28)

Note that since ∆ < 0, αlpl is a positive quantity. Also note, that for large detunings,
(∆≫ Γ) Eq. (20.24) gives,

U

ℏ
=

∆ls

4
=

Ω2

4∆
. (26.29)

It is also true that for light-shifts, which are large compared to the natural width
of ground state (∆ls ≫ Γ′), and for large red detunings (∆ ≳ 4Γ),

Γ

Γ′ ≃
∆2

4Ω2 .
(26.30)

Therefore, the sub-Doppler friction coefficient can also be written,

αlpl = −
ℏk2∆
4Γ

(26.31)

Eq. (26.31) makes two remarkable predictions: Firstly, in the ’lin-perp-lin’ configura-
tion the sub-Doppler friction coefficient can be a large number in comparison to αd.
Note that from Eq. (26.20), with I ≲ Isat and ∆≫ Γ,

αd ≃ ℏk2
(
Γ

∆

)3

, (26.32)

and
αlpl

αd
≃
(
∆

Γ

)4

. (26.33)

Secondly, αlpl is independent of the intensity of the applied field. This last result is
different from the friction coefficient, which is proportional to the field intensity up
to until saturation (see Eq. (26.20)). However, although αlpl seems impressive, the
range of atomic velocities where it can operate is constrained by the condition,

Γ′ ≃ kv . (26.34)
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The ratio of the capture velocities for sub-Doppler versus Doppler cooling is therefore
only,

vlpl
vd
≃ 4∆ls

∆
. (26.35)

Fig. 26.6 graphically illustrates the comparison between the Doppler and the ’lin-perp-
lin’ sub-Doppler cooling mechanisms. The dramatic difference of the capture ranges is
evident. Note also that the slopes of the curves give the friction coefficients and that,
within the capture range, the slope is much steeper for the sub-Doppler mechanism.
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Figure 26.6: (code) Comparison of slopes, amplitudes, and capture ranges for Doppler and

Sisyphus cooling.

26.2.2.2 σ+-σ− molasses

The second mechanism operates with two counterpropagating light beams, which are
circularly polarized in opposite directions. When the two counterpropagating beams
have the same amplitude, the resulting polarization is always linear and orthogonal
to the propagation axis, but the tip of the polarization vector traces a helix with a
periodicity of λ [see Fig. 26.7(b)]. The physics of this sub-Doppler mechanism does
not involve hill-climbing nor spontaneous emission, but an imbalance of the photon
scattering rates by the two counterpropagating light waves as the atom moves along
the z-axis. This imbalance leads to a velocity-dependent force counteracting the
atomic displacement. The essential factor leading to the different scattering rates
is the creation of a population orientation along the z-axis between the sub-levels
of the atomic ground state. The more populated sub-levels scatter more photons.
Now, considering the energy level diagram (see Fig. 26.5) and the symmetry of the
Clebsch-Gordan coefficients, it is evident that transitions Jg = 1

2 ↔ Je =
3
2 coupled

by linearly polarized light can not produce an orientation of the population in the
ground state. In fact, the simplest system exhibiting this effect is Jg = 1 ↔ Je = 2.
A measure for this orientation is the magnitude of the matrix element ⟨Jz⟩ between
the sublevels Jgz = ±1. For an atom at rest at the position z = 0 interacting with the
light polarized along the y-direction, the light-shifts ∆0 and ∆± of the three sub-levels
of the ground state would be,

∆+1 = ∆−1 = 3
4∆0 , (26.36)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_PolGradSisyphus.m
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and the stationary populations would be 4/17, 4/17 e 9/17, respectively. Obviously,
linearly polarized light does not produce a stationary orientation, ⟨Jz⟩s = 0. But when
the atom begins to move along the z-axis with velocity v, it sees a linear polarization
precessing about the axis of propagation at an angle φ = kz = −kvt. This precession
gives rise to a new term in the Hamiltonian, V = kvJz. Furthermore, when we
transform to a rotating coordinate system, the eigenfunctions of the Hamiltonian of
the atom moving in this new ’inertial’ system become linear combinations of the basis
functions of the resting atom. The expectation value of the stationary orientation
operator Jz, is now zero in the inertial system [196],

⟨Jz⟩ =
40

17

ℏkv
∆0

= ℏ(Π+ −Π−) . (26.37)

Figure 26.7: Polarization as a function of position (in units of a wavelength) for the σ+-σ−

standing wave configuration.

Note that, as the expectation value of the orientation is nonzero only when the
atom moves. In Eq. (26.37) we denote the populations of the sub-levels |± > as
Π±, and we interpret nonzero matrix elements as a direct measure of the population
difference between the ground state levels |± >. Note that, since ∆0 is negative (red
tuning), the Eq. (26.37) tells us, that the population Π− is larger than Π+. Now, when
an atom traveling in +z direction is exposed to two light waves with polarizations
σ∓ propagating in the ∓z directions, the preponderance of population in the state
|−⟩ will result in a higher scattering rate from the wave propagating in −z direction.
Therefore, the atom will be subject to a total force opposite to its movement and
proportional to its velocity. The differential scattering rate is,

40

17

kv

∆0
Γ′ . (26.38)

With a quantized momentum of ℏk transferred at each scattering event, the total
force is,

F =
40

17

ℏk2vΓ′

∆0
. (26.39)



1176 CHAPTER 26. MANIPULATION OF ATOMIC GASES

The friction coefficient αcp is,

αcp = −40

17
ℏk2

Γ′

∆0
, (26.40)

which is a positive quantity, since ∆0 is negative for red detuning. Comparing αcp
with αlpl we see, that αcp must be much smaller, because we always assumed that
the light shifts ∆ are much larger than the linewidths Γ′. However, the heating rate
due to fluctuations of the recoil is also much lower. Thus, the minimum temperatures
that can be reached with the two sub-Doppler mechanisms are comparable.

Although the Doppler cooling mechanism also depends on an imbalance of scat-
tering from counterpropagating light waves, in this case the imbalance comes from
the fact that the Doppler shift experienced by the moving atoms leads to different
probabilities for photon scattering. For the sub-Doppler mechanism the scattering
probabilities from the two light waves are the same, but the ground state populations
are not. The state with the largest population suffers the highest scattering rate.

26.2.3 Raman cooling

26.2.3.1 Optical cooling of confined particles

It is also possible to cool ions confined in a trap [870]. The direction of their motion
and their velocity change periodically with the secular frequencies ζr und ζz. For
optical cooling it is sufficient to irradiate a single red-detuned running-wave light
field: In a real ion trap the cylindrical symmetry cannot be realized with absolute
precision so that we get different secular frequencies ζx ̸= ζy ̸= ζz and a coupling of
the degrees of freedom for all directions of space. The cooling of the ionic motion in
a single direction results in a cooling of the motion in the other directions.

In the rest system of an ion oscillating in a harmonic trap the Doppler-shift of the
laser frequency changes periodically: v(t) = v0 cos ζr,zt. The ion absorbs therefore in
its rest system the light on a withb of sidebands whose distance and strength depend
on the oscillation frequency and amplitude. The absorption profile of a transition
in such a harmonically vibrating ion follows as a convolution of the Lorentz profile
LΓ, describing the naturally broadened resonance, with a function S, describing the
splitting of the absorption profile into sidebands [421]:

A(∆) = (LΓ ⋆ S)(∆) , S(∆) =
∑

n

Jn(k · v0/ζr,z)
2δ(∆− nζr,z) . (26.41)

Jn denotes the Bessel function of nth order. In essence, the system is governed by
three time-constants: The natural decay width of the cooling transition Γ is a measure
for the inneratomic time scale, since it determines the average duration of absorption-
emissions cycles. The secular frequencies ζr,z determine the time scales for changes
in the external degrees of freedom, i.e. for changes of the ion’s location and velocity.
The Doppler-shift kv0 of the resonance frequency in the return point of the ion motion
finally, is a measure for the kinetic energy of the ion.

The relative importance of these three characteristic frequencies reveal the state
of the ion in the trap. The modulation index kv0/ζr,z decides on the height and the
number of sidebands in the excitation spectrum. The better the ion has been cooled,
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the smaller the modulation index and the smaller the height and number of sidebands.
The kinetic energy of the ion is,

Ekin =
1

2
mv20 =

1

2
mζ2r,zx

2
0 . (26.42)

The modulation index kv0/ζr,z = kx0 = 2πx0/λ is also called Lamb-Dicke parameter.
By cooling the Lamb-Dicke parameter is so much reduced and the ion is so well
localized that its motional sidebands are smaller than the wavelength of the exciting
light. It then is in the so-called Lamb-Dicke regime x0 ≪ λ [?] and has so small
motional sidebands that they do not contribute to the line shape and do not influence
the line width. Therefore the linear Doppler effect vanishes.

The quantity ζr,z/Γ defines the resolution of the sidebands. If the resolution is
poor, we talk about weak confinement, else about strong confinement. Therefore the
same ion can be weakly confined with respect to an allowed transition and strongly
confined with respect to a forbidden transition. The cooling processes in the two cases
of strong and weak trapping must be described differently. At weak confinement the
oscillation frequency ζr,z is so slow that many absorption-emission cycles with the time
constant Γ−1 can occur during one oscillation period. Cooling process and cooling
limit are approximately the same as for free particles and are described by Doppler
cooling.

26.2.3.2 Raman sideband cooling

In the case of strong confinement for the description of the cooling process we must
consider the quantization of the motional energy in the harmonic potential. The two
levels coupled by the narrow transition split into vibrational sublevels |nr,z⟩, which
are populated in thermal equilibrium according to the Bose-Einstein distribution and
have the kinetic energies Ekin,

nr,z =
1

eℏζr,z/kBT − 1
and Ekin = ℏζr,z(nr,z + 1

2 ) . (26.43)

To perform the so-called optical cooling sideband cooling [870] the laser is tuned to
the first lower sideband. The laser light is then scattered in a Raman-Anti-Stokes
process at the excited electronic state with a vibrational quantumnumber lower by 1
|e, nr,z − 1⟩. The subsequent spontaneous decay occurs most probably to the same
vibrational substate of the ground state |g, nr,z−1⟩. The net effect of such a scattering
process therefore is a transition to the next lower vibrational quantum number. The
zero point energy of the ion in the trapping potential cannot be underscored by
cooling, Ekin >

1
2ℏζr,z (for the Yb+ ion it is Ekin > 2 neV). However, the uncertainty

of the kinetic energy, and the temperature T given by (26.43) have no lower limit
[230].

At every absorption process, free particles carry away the momentum of the pho-
tons ℏk. The recoil of a free Yb+ ion corresponds to the frequency shift ε/2π =
5.3 kHz. On a narrow transition, it yields a resonance at the frequency ε. For trapped
ions, this is not the case, because the momentum is absorbed by the whole trap (see
analogy to the Mößbauer effect).
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26.2.3.3 Stimulated Raman sideband cooling

We may use two lasers detuned far from resonance to couple two vibrational states.
However, additional dissipation by optical pumping is still required.

Numerous schemes have been tested to cool neutral atoms in optical lattices. For
the schemes to work, the ion should be already in the Lamb-Dicke regime. Otherwise,
transitions with transfer of higher vibrational quantum numbers nr,z are possible
during spontaneous emission. The Lamb-Dicke limit is set by kr < 1, or,

⟨n⟩ = mωtrp

2ℏk2
. (26.44)

This means that higher trap frequencies ease the required temperature at which side-
band cooling can start to work.

26.2.4 Adiabatic cooling of an optical lattice

Adiabatic cooling by [454] in 1D. Defining the lattice constant Q0, the Boltzmann
factor fB ≡ e−ℏω/kBT , the initial thermal population πn = (1 − fB)f

n
B , the recoil

energy Erec ≡ ℏ2k2

2m ,

kBT

2
=
∑

n

πn
ℏQ0

∫

(n+1)thBloch band

p2

2m
dp = 2

∑

n

πn
ℏQ0

∫ (n+1)ℏQ0/2

nℏQ0/2

p2

2m
dp (26.45)

= 2Erec

(
Q0

k

)2 ∞∑

n=0

πn
3n2 + 3n+ 1

24
= Erec

(
Q0

k

)2
1 + 4fB + f2B
12(1− fB)2

. (26.46)

Furthermore,

fB =
n̄

1 + n̄
⇐⇒ n̄ =

fB
1− fB

.

26.2.5 Exercises

26.2.5.1 Ex: Optical molasses

Optical molasses are created (in one dimension) by two beams counterpropaganting
lasers tuned to red of an atomic transition. Each of the laser beams exerts on the
atoms the radiative pressure force F± = ℏk Γ

2
s

[2(∆±kv)/Γ]2+1+s
. ∆ is the detuning of

the laser, ν is the velocity of an atom.
a. Show that for small velocities (|kv| ≪ Γ and ∆ ≤ Γ) the optical molasses can be
understood as a friction force and calculate the friction coefficient.
b. Heating processes caused by spontaneous emission limit the minimum temperature
that can be reached in optical molasses. Calculate the laser tuning, where the tem-
perature reaches its minimum value and specify the cooling limit.
Help: Suppose a one-dimensional molasses and assume, that the spontaneous emis-
sion only happens along this dimension. The heating rate follows from the scat-

tering rate R through
(
dE
dt

)
heat

= d
dt

⟨p2⟩
2m = ℏ2k2

2m 2R, the cooling rate follows from(
dE
dt

)
cool

= Fv.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_OpticalMolasses01.pdf
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26.2.5.2 Ex: Atomic fountain

In atomic fountains atoms are accelerated upward by a ’moving optical molasses’.
After the molasses has been switched off, they perform a ballistic flight in the Earth
gravitational field. The moving molasses is generated by two pairs of counterpropa-
gating laser beams intersecting at right angle and oriented both at an angle of 45◦

with respect to gravity. The upgoing beams are tuned to the blue, and the counter-
propagating downgoing beams have the same detuning to the red side of the atomic
resonance (λ = 780 nm). Supposing that the resonator is close to the position of
the molasses and has with negligible length, what should be the detuning in order to
achieve 1 s time period between the two passages of the atoms through the microwave
resonator?

26.3 Optical and magneto-optical traps

26.3.1 The magneto-optical trap

An apparently fatal obstacle to the confinement of particles by optical forces is Earn-
shaw’s optical theorem. This theorem states that, if a force is proportional to the light
intensity, its divergence must be zero because the divergence of the Poynting vector
expressing the directional flux of intensity is zero inside a volume without sources nor
sinks of radiation. The absence of divergence precludes the possibility of a restoring
force to the interior at all places of a closed surface [29]. However, Earnshaw’s optical
theorem can be bypassed by a clever trick. The internal degrees of freedom of the
atom (i.e., its electronic energy levels) can change the proportionality between the
force and the Poynting vector in a position-dependent manner, such that the opti-
cal Earnshaw’s theorem does not apply. Spatial confinement is then possible using
the radiative pressure force generated by counterpropagating light beams. The most
common trap configuration is based on a radial magnetic field gradient produced by
a quadrupolar field and three pairs of counterpropagating circularly polarized laser
beams tuned to the red of an atomic transition and intersecting at right angles at
the point where the field is zero. This magneto-optical trap (MOT) uses the position-
dependent Zeeman shift of the electronic levels as the atom moves in the radially
increasing magnetic field. The use of circularly polarized light which is red-detuned
by about Γ results in a spatially varying transition probability, whose effect is to
produce a restoring force that pulls the atom back to the origin. To understand bet-
ter how the trapping scheme works, we consider a two-level atom with a transition
J = 0→ J = 1 moving along the z-direction. We apply a magnetic field B(z) growing
linearly with the distance from the origin. The Zeeman shifts of the electronic levels
depend on the position,

∆B =
µBgFmF

ℏ
dB
dz
z ≡ ∂zωZeem , (26.47)

see Fig. 26.8. We also apply counterpropagating laser beams along the directions
±z with circular polarizations of opposite signs and tuned to the red of the atomic
transition. It is clear from Fig. 26.8 that an atom moving in ±z direction will scatter
σ∓ type photons at a faster rate than σ± type photons, because the Zeeman effect

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ChafarizAtomico.pdf
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Figure 26.8: Left: Diagram of the energy level shift in an MOT, when an atom moves out of
the center of the trap. A restoring force is observed around the indicated resonance positions.
Right: Scheme of a typical MOT set up showing the six laser beams and the current-carrying
coils in anti-Helmholtz configuration producing the quadrupolar magnetic field.

will pull the ∆mJ = ∓1 transition closer to the laser frequency. The expression for
the radiation pressure force extends Eq. (26.18) to include the Doppler effect kvz and
the Zeeman effect,

F±z = −
ℏk
2
Γ

2Ω2

4(∆± kvz ± z∂zωZeem)2 + 2Ω2 + Γ2
. (26.48)

The atom will, therefore, feel a restoring force which pushes it back to the origin.
If the laser beams are red-detuned by an amount ∆ = −Γ, the Doppler shift of the
atomic motion introduces velocity-depending term to the restoring force, such that
for small displacements and velocities the total restoring force can be expressed by
the sum of a term which is linear in the velocity and a term which is linear in the
displacement,

FMOT = F1z + F2z = −αż − κz , (26.49)

as we will study in Exc. 26.3.3.1. From Eq. (26.49) we can derive the equation of
motion of a damped harmonic oscillator with mass m,

z̈ +
2α

m
ż +

κ

m
z = 0 . (26.50)

The damping constant α and the spring constant κ can be written compactly in terms
of atomic parameters and the field as,

κ =
16ℏkΓΩ2∆∂zωZeem

4∆2 + 2 · 6Ω2 + Γ2
. (26.51)

and

α = κ
k

∂zωZeem
. (26.52)

Typical conditions for MOT are Ω = Γ/2, ∆ = −Γ. For typical MOTs,

α ≃ 2 · 10−22 Ns/m and κ ≃ 3.7 · 10−19 N/m . (26.53)
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We can also estimate the curvature of the MOT,

ω =

√
κ

m
≃ (2π) 200Hz . (26.54)

Solve Exc. 26.3.3.2.

Figure 26.9: Picture of a strontium MOT operated at 461 nm. The atomic cloud, which
consists of about 106 atoms at 5mK temperature is visible as a diffuse spot located inside a
three-mirror ring cavity.

MOTs are realized with current-carrying coils in anti-Helmholtz configuration
which generates a quadrupolar geometry potential. Near the center, the magnetic
field and its absolute value are well approximated by,

B⃗ = q




x

y

−2z


 and |B⃗| = qB

√
r2 + 4z2 , (26.55)

with r2 = x2 + y2 and the gradient q ≡ ∂rB is a constant, which depends only on
the geometry of the coils and the current in them. Thus, the extension of the above
results to three dimensions is simple if we consider the fact that the gradient of the
quadrupolar field in the z-direction is twice the gradient in the radial directions x and
y, such that κz = 2κx = 2κy.The damping term, which proportional to the velocity,
implies that the kinetic energy E is dissipated from the atom (or a cloud of atoms)
as,

E/E0 = e−2αt/m , (26.56)

where m is the atomic mass and E0 the kinetic energy at the beginning of the cooling
process. Therefore, the dissipative force term cools the atomic cloud and, at the same
time, combines with the position-dependent term to confine it. The time constant for
the damping,

τ =
m

2α
(26.57)



1182 CHAPTER 26. MANIPULATION OF ATOMIC GASES

is typically dozens of microseconds. It is important to keep in mind that a MOT is
anisotropic, since the restoring force is proportional to the anisotropic field gradients.
Because of its dissipative non-conservative nature, it is is more accurate to characterize
a MOT by the maximum capture rate, rather than by a ’potential depth’.

In early experiments MOTs were loaded from a decelerated atomic beam. Later it
was shown, that the low-velocity tail of the Maxwell-Boltzmann distribution provides
a sufficient amount of atoms that can be captured by a MOT, so that it can be
loaded directly from an atomic vapor at room temperature. Now many groups in the
world use these assemblies for applications ranging from precision spectroscopy to the
optical control of reactive collisions; the MOT has become the working horse of atom
optics.

26.3.1.1 Density in a MOT

A typical MOT captures up to a billion atoms in a volume of a few 1mm3 resulting in
densities of ∼ 1010 cm-3. Although a MOT works as a versatile and robust ’reaction
cell’ for many applications, the frequencies of the light beams must be tuned close
to atomic transitions, which bears the disadvantage that a considerable fraction of
atoms remains in excited states. This fact is at the origin of two processes limiting the
density of a MOT: (1) losses of trapped atoms by collisions and (2) repulsive forces
between the atoms caused by reabsorption of photons scattered within the cloud.
Collisional losses arise from two sources: (i) hot atoms of the residual gas inside the
chamber can elastically collide with cold atoms and kick them out of the MOT, and
(ii) cold atoms in excited states can undergo inelastic binary collisions. ’Photon-
induced repulsion’ or radiation trapping arises when a trapped atom spontaneously
emits a photon, which is then reabsorbed by other atoms. If the optical density of the
cloud is high, it can take a long time for the photon to find its way out 2. Since any
photon exchange between two atoms will increase their relative momentum by 2ℏk,
this leads to a repulsive force, which is proportional to the absorption cross section
for the incident light beam. When this repulsive force balances the confining force
exerted by the MOT, any increase in the number of trapped atoms augments its size,
but its density.

26.3.1.2 Dark SPOT

In order to overcome the ’radiation trapping’ effect, the atoms can be optically
pumped into a ’dark’ hyperfine level of the ground state that does not interact with
the MOT light. In a conventional MOT one usually employs an auxiliary light beam
called ’repumper’, copropagating with the MOT beams, but tuned to another transi-
tion between hyperfine levels of the ground and excited states. The repumper recycles
the population leaking out of the (not perfectly) cyclic MOT transition. As an exam-
ple, Fig. 26.10 shows the MOT and repumper transitions for sodium.

In contrast to this conventional MOT, the scheme known as the dark spontaneous
force optical trap (dark SPOT), passes the repumping beam through a glass plate the
center of which is obstructed by a small circular disk. The shadow of this disk is
projected into the center of the trap in such a way that the atoms in the center are

2E.g. a photon at the center of the sun will take thousands of years to get out.
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not repumped back into the cyclic transition, but spend most of their time (∼ 99%) in
’dark’ hyperfine levels. While the cooling and confinement force continue to operate
on the periphery of MOT, its center does not feel any radiation pressure. Dark SPOTs
are able to increase the density of a trapped cloud by almost two orders of magnitude.
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Figure 6.7: Hyperfine structure in sodium atom showing the usual cooling,
pumping, and repumping transitions.

red of resonance. The obvious advantage of large detunings is the suppression
of photon absorption. Note from Eq. 6.2 that the spontaneous force, involving
absorption and reemission, falls off as the square of the detuning while Eq. 6.8
shows that the potential derived from dipole force falls off only as the detuning
itself. At large detunings and high field gradients (tight focus) Eq. 6.8 becomes

U ' ~ |Ω0|2
4∆ω

, (6.39)

which shows that the potential becomes directly proportional to light intensity
and inversely proportional to detuning. Therefore at far detuning but high
intensity the depth of the FORT can be maintained but most of the atoms
will not absorb photons. The important advantages of FORTs compared to
MOTs are: (1) high density (∼ 1012 cm−3) and (2) a well-defined polarization
axis along which atoms can be aligned or oriented (spin polarized). The main
disadvantage is the small number of trapped atoms due to small FORT volume.
The best number achieved is about 104 atoms.

6.4.5 Magnetic traps

Pure magnetic traps have also been used to study cold collisions, and they are
critical for the study of dilute gas-phase Bose-Einstein condensates (BECs) in
which collisions figure importantly. We anticipate therefore that magnetic traps

Figure 26.10: Hyperfine structure in sodium atoms showing the usual cooling, pumping, and
repumping transitions.

26.3.2 Optical dipole traps

When temporal variations are to be applied to a confinement potential, magnetic
fields are not the best choice, because they are slow and of limited spatial resolution.
On the other side, laser beams can be varied quickly and in localized well. The dipole
force exerted by a far-detuned laser beam can be derived from the gradient of the
Rabi frequency F = −∇(d · E⃗). Hence, it can be derived from an optical potential,
which can be used for trapping. The force may be attractive (toward the intensity
maximum) or repulsive.

Compared to MOTs, optical traps (far off-resonance optical trap, FORT) are tuned
far away from resonances, where the population in excited states is insignificant and
spontaneous forces are absent. Note from Eq. (20.22), that spontaneous forces fall off
with the square of the detuning while the potential derived from the dipolar force only
decreases linearly with the detuning. The off-resonant optical density is negligible,
so that radiation trapping is not an issue. The most simple FORT consists of a
single focussed, linearly polarized gaussian laser beam tuned far to the red of an
atomic resonance. For large detunings and strong field gradients the Eqs. (20.24) and
Eqs. (20.25) become [345],

U(r) ≃ ℏΩ(r)2

4∆
=

3πc2

2ω3
0

Γ

∆
I(r) and ℏγsct(r) ≃ σa(∆)

I(r)

ω
=

3πc2

2ω3
0

(
Γ

∆

)2

I(r) ,

(26.58)
using the Rabi frequency ℏΩ = d12E , the dipole moment d12 =

√
3πε0ℏΓ/k3, and the

intensity I = ε0
2 c|E|2. This shows that the potential becomes directly proportional

to the light intensity and inversely proportional to the detuning. Therefore, at large
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detuning but very high intensity, the depth of the FORT can be maintained, although
the atoms do not absorb photons. Important advantages of FORTs as compared to
MOTs are: (1) high densities (∼ 1012 cm-3) and (2) a well-defined polarization axis
along which the atoms can be aligned or oriented (polarization of the spins).

Since lasers beams can easily be manipulated in position, intensity, and frequency,
they can realize a large wide variety of possible geometries. For example, with a
focused laser beam, one may influence the local density of a condensate and stir
it around by moving the position of the laser beam. Strongly focused laser beams
are often used for transporting or manipulating microscopic objects in arrangements
called optical tweezers. And with standing light waves, it is possible to form periodic
optical lattices in one, two or three dimensions (see Sec. 28.4.2).

26.3.2.1 Spin relaxation

When the atomic ground state has a hyperfine structure, another relaxation mecha-
nism can be observed: Near-resonance Raman scattering can induce transitions be-
tween hyperfine states causing a population redistribution of between Zeeman sub-
states called spin relaxation. In magnetic traps, this can lead to losses, because not
all Zeeman substates are trapped.

The rate of an arbitrary scattering process starting from an initial state |F,m⟩
through several possible excited states |F ′

j ,m
′
j⟩ to a final state |F ′′m′′⟩ is, according

to the formula of Kramers-Heisenberg [581],

γFm→F ′m′ ∝

∣∣∣∣∣∣
∑

j

α
(F ′

jm
′
j)

Fm→F ′m′

∆F ′
jm

′
j

∣∣∣∣∣∣

2

. (26.59)

Far from resonance the scattering decreases as ∆2 for Rayleigh scattering, Fm =
F ′m′. Raman scattering, Fm ̸= F ′m′, is further suppressed by destructive interfer-
ence of the different scattering paths.

In the case of rubidium, we calculate,

γspin =
3c2ω4

8π

70

81
Γ2

∣∣∣∣∣

(
1

ωD1

)3
1

∆D1
−
(

1

ωD2

)3
1

∆D2

∣∣∣∣∣

2
I0
ℏω

. (26.60)

26.3.2.2 Potential of a Gaussian beam

The far-off resonance optical trap (FORT) is an example of an optical trap based on
dipole forces [345]. The intensity distribution of a gaussian beam with a diameter of
w0 at its waist is 3,

I(r) =
2P

πw2
0

e(−2x2−2y2)/w2
0e−z

2/z2R , (26.61)

where P is the total power of the beam and zR ≡ πw2
0/λ the Rayleigh length at a

given wavelength λ. The dipolar potential is given by (26.58). Using the potential
depth,

U0 ≡
3πc2

2ω3
0

Γ

∆

2P

πw2
0

, (26.62)

3See script on Electrodynamics: Electricity, Magnetism and Radiation (2025).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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which is U0 < 0 for red-detuned light, we can approach the potential near its center,
that is, near the optical axis, r ≪ 1

2w0, and within the range of the Rayleigh length,
z ≪ πw2

0/λ, by a harmonic potential 4,

U(r) ≃ U0e
(−2x2−2y2)/w2

0e−z
2/z2R ≃ U0

(
1− 2x2 + 2y2

w2
0

− z2

z2R

)
(26.63)

≡ U0 +
m

2
ω2
rr

2 +
m

2
ω2
zz

2 ≡ kBT
(
U0

kBT
+

r2

2r̄2
+

z2

2z̄2

)
.

This leads to the equivalences,

ωr = 2
w0

√
U0

m , ωz = 1
zR

√
2U0

m

r̄ = w0

2

√
kBT
U0

, z̄ = zR

√
kBT
2U0

. (26.64)

Solve Excs. 26.3.3.3 and 26.3.3.4.

Example 185 (Dipole trap for rubidium): The formulas (26.58) hold for a
two-level system. In case of the D1- and D2-lines of rubidium, we must consider
all contributions weighted by the respective detunings,

U0 ≡ σ0
ℏΓ
4

(
1

∆D1
+
gD2/gD1

∆D2

)
I0
ℏω
≃ 3ℏπc2

2ω2

Γ

∆

I0
ℏω

,

where gD2/gD1 = 2.
Similarly, the spontaneous emission rate is,

γsct ≃ πc2Γ2

2ω2

(
1

∆2
D1

+
gD2/gD1

∆2
D2

)
I0
ℏω

.

The spontaneous emission rate decays faster with detuning than the potential
depth. Thus, heating can be avoided by working at large detunings and provid-
ing higher laser intensities. Defining the recoil temperature by,

Trec =
ℏ2k2

kBm
,

the heating rate is [345],

Ṫ =
1

3
Trecγsct =

ℏ2k2

3mkB
γsct .

4The diameter of a Gaussian beam can be characterized in several ways,

r̄1/
√
e-radius =

r̄1/e2-radius√
2

=
√
2 r̄1/e2-radius =

r̄1/2-radius

2 ln 2
,

and r̄-rms ≡ r̄1/
√
e-diam and r̄-hwhm ≡ r̄1/2-diam and r̄-diam = 2r̄-radius.
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Figure 26.11: (code) (left) Dipole potential created by a Gaussian beam. (right) Dipole

potential created by a stationary light wave.

26.3.2.3 Trapping in standing light waves

If both counterpropagating modes are pumped at different powers, P±, the intensity
distribution is,

I(r) =
2

πw2
0

e(−2x2−2y2)/w2
0e−z

2/z2R

∣∣∣
√
P+e

ıkz +
√
P−e

−ıkz
∣∣∣
2

. (26.65)

Defining the contrast of the standing wave as,

Csw ≡
4
√
P+P−

(
√
P+ +

√
P−)2

, (26.66)

we can express the potential depth by,

U0 =
3πc2

2ω3
0

Γ

∆

2(
√
P+ +

√
P−)2

πw2
0

=
3πc2

2ω3
0

Γ

∆

8(
√
P+P−)2

πw2
0Csw

. (26.67)

Therefore, within the Rayleigh length, the potential is,

U(r) ≃ U0e
(−2x2−2y2)/w2

0e−z
2/z2R

P+ + P− + 2
√
P+P− cos kz

P+ + P− + 2
√
P+P−

(26.68)

≃ CswU0e
−2ρ2/w2

0
P+ + P− + 2

√
P+P− cos kz

4
√
P+P−

.

Neglecting terms containing higher powers of the coordinates than squared, we can
also write,

U(r) ≃ U0

(
1− 2x2

w2
0

− 2y2

w2
0

−
√
P+P−

(
√
P+ +

√
P−)2

k2z2 + ...

)
. (26.69)

This leads to the identities,

ωr = 2
w0

√
U0

m , ωz = 1
zR

√
2U0

m , ωlat = k
√

CswU0

2m

r̄ = w0

2

√
kBT
U0

, z̄ =
√
2
k

√
kBT
U0

.

(26.70)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Dipoletraps.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Dipoletraps.m
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Solve the Excs. 26.3.3.5, 26.3.3.6, and 26.3.3.7.

26.3.3 Exercises

26.3.3.1 Ex: Linearization of the MOT

Derive the friction coefficient and the spring constant for a MOT.

26.3.3.2 Ex: Design of a Zeeman slower

In this exercise we will design a ’decreasing field Zeeman slower’ for strontium (see
also Exc. 16.5.6.3).
a. Calculate the mean velocity of atoms in a strontium gas heated to 500◦ C. What
is the Doppler shift for an atom moving at this velocity at the cooling transition at
λ = 461 nm (linewidth 30.5MHz)?
b. Assuming you want to decelerate a fraction of 20% of the atoms flying in a

Figure 26.12: Design of a Zeeman slower.

particular direction, to what frequency should a counterpropagating laser (intensity
I = 20mW/cm2) be tuned in order to slow down the atoms?
c. Suppose the strontium atoms were always in resonance with the counterpropagating
laser light while being decelerated. What would be the evolution of their Doppler shift
along their trajectory (supposed to be on a straight line antiparallel to the laser beam).
d. In order to maintain the laser always in resonance we need to compensate for the
diminishing Doppler shift along the atomic trajectory. This can be done exploiting
the Zeeman shift induced by a magnetic field. We will now design a magnetic field
generating an appropriate Zeeman shift. For simplicity, let us assume 5 identical radial
solenoids distributed over L = 30 cm as sketched in Fig. 26.12, the only adjustable
parameters being the currents in all solenoids, which need to be optimized such as to
compensate the Doppler shift along the atom’s trajectory.
e. Simulate the 1D trajectory of an atom cooled by the Zeeman slower.

26.3.3.3 Ex: Dipole trap near an intercombination line

a. Strontium has a strong transition (Γ461 = (2π) 30.5 kHz) at 461 nm and a weak
intercombination resonance (Γ689 = (2π) 7.6 kHz) at 689 nm. A Gaussian laser
beam with the power P = 10mW focused to a waist of w0 = 100µm is tuned
∆689 = −(2π) 10GHz below the intercombination transition. Calculate the potential
depth and the vibration frequencies for atoms trapped by this laser beam considering
both resonances. What is the scattering rate on the two transitions.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_LinearizacaoMot.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_DesignZeeman01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaDipolar01.pdf
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b. Supposes that the trapped atomic cloud consists of N = 108 atoms at the tem-
perature T = 10µK. Calculate the atomic density n0 in the center of the cloud.

26.3.3.4 Ex: Dipole trap with a focused beam

a. Calculate the vibration frequencies of 87Rb atoms confined in an optical trap con-
sisting of a focused laser beam with the power P = 10W and the beam diameter
w0 = 100µm. The laser beam is tuned 5 nm to the red side of the rubidium D1
resonance located at λ = 795 nm.
b. Assume that the trapped atomic cloud consists of N = 108 atoms at the tempera-
ture T = 100µK. Calculate the atomic density n0 in the center of the cloud.
c. The cross section for elastic collisions is σ = 10−12 cm2. How many times do atoms
meet on average?

26.3.3.5 Ex: Optical lattice

A laser beam with wavelength λdip = 1064 nm, power P = 2W, and diameter
w0 = 50µm is subdivided into three retroreflected beams intersecting at right angles.
With this configuration we form a cubic optical lattice for strontium atoms, whose
relevant transition lies at λSr = 461 nm and has a decay width of ΓSr = (2π) 32MHz.
Calculate the potential depth and the secular frequencies.

26.3.3.6 Ex: Minimum optical lattice depth

Estimate the minimum required intensity of two counterpropagating laser beams
tuned 7GHz to the red of the strontium intercombination transition at 689 nm nec-
essary to sustain an optical lattice exhibiting a single vibrational level.

26.3.3.7 Ex: Ring shaped optical potential

An interesting system is the 1D array of annular optical potentials realized in a
standing wave formed by red-detuned Gaussian beam and a counterpropagating blue-
detuned doonat-mode. In general, the tight longitudinal confinement freezes out the
axial motion by quantum confinement. It can be readily shown [877] that in the far-off
resonance case and if the potential is approximate by a harmonic potential around its
minimum the eigenenergy spectrum is given by,

Epq = U0 + ℏω(q + 1
2 ) +

ℏ2p2

2mR2
0

.

It thus reproduces the ro-vibrational spectrum of a 2D artificial molecule and gives
rise to two normal motions. In its ground state, we have the atom optical analog
of a 2D rigid rotator. Gravity plays formally the same role as static electric fields
for molecules. Such systems might be interesting for investigating the selection rules
for transitions between ro-vibrational states involving conservation of total angular
momentum of light and atoms and yield insight into the concept of orbital angular
momentum of light fields.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaDipolar02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaDipolar03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaDipolar04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaRinglattice.pdf
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26.3.3.8 Ex: Time-averaged trap

For sufficiently fast periodic displacements of a far-detuned laser beam it is possible to
engineer effective more complicated trapping potential. What are the conditions for
modulation speed? Simulate the effective trapping potential generated by a vibrating
laser beam.

26.4 Magnetic traps

Purely magnetic traps are widely used in atom optics, where they served, e.g., for the
first realizations of Bose-Einstein condensation (BEC). The most important feature
that distinguishes magnetic traps is, that they do not need light to confine atoms.
Hence, they are free of heating effects caused by photonic absorption, which turned out
to be necessary condition for reaching BEC. Magnetic traps rely on the interaction
of atomic spins with magnetic fields and gradients designed to contain the atoms.
Depending on the sign of U and F, atoms in states whose energy increases or decreases
with the magnetic field are called ’low-field seekers’ or ’high-field seekers’, respectively.
One might think, that it should be possible to trap atoms in any of these states,
generating either a magnetic field minimum or a maximum. Unfortunately, only low-
field seekers can be trapped in static magnetic fields, because in free space magnetic
fields can not form maxima. Even though low-field seekers are not in the energetically
lowest hyperfine levels, they can still be trapped because the rate of spontaneous
emission through the magnetic dipole is ∼ 10−10 s-1, and hence completely negligible.
However, spin changing collisions can induce losses and limit the maximum densities.
Solve Exc. 26.4.5.1.

The most basic static magnetic trap for neutral atoms is generated by a pair of
current-carrying coils in anti-Helmholtz configuration (similar to the geometry used
for a MOT), producing an axially symmetric qudrupolar magnetic field. Since this
field configuration always has a central point, where the magnetic field disappears,
non-adiabatic Majorana transitions can occur when the atom passes through the
zero point. The transitions transfers population from a low-field seeking state to a
high-field seeker, which consecutively is expelled from the trap. This problem can
be overcome by using a different magnetic field geometries. One example is the so-
called magnetic bottle also called the Ioffe-Pritchard trap, where the minimum field
amplitude has a finite value different from zero. Other methods to eliminate the
zero-field point are time-varying potentials, such as the time-orbiting potential (TOP)
trap, or the application of an ’optical plug’, which consist in an intense dipolar optical
laser beam, tuned to the blue of an atomic transition, focused into the center of a
quadrupole trap where the magnetic field is zero, and repelling the atoms from this
area.

26.4.1 Quadrupolar traps and Majorana spin-flips

The most basic static magnetic trap for neutral atoms is generated by a pair of
current-carrying coils in anti-Helmholtz configuration producing an axially symmetric
quadrupolar magnetic field, as shown in Fig. 26.13.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaShaking.pdf
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Figure 26.13: (a) Quadrupolar magnetic trap generated by a pair of current-carrying wires
in anti-Helmholtz configuration. (b) Ground state energy levels of 23Na, 2S1/2, F = 1 as a
function of axial distance from the trap center. (c) Illustration of Majorana spin-flips: The
red atom passes through the hole, while the green one moves adiabatically avoiding the hole.

Close to the trap center an expansion of the magnetic field generated by anti-
Helmholtz coils yields,

B⃗ =




x

y

−2z


 ∂rB , (26.71)

where the field gradient ∂rB along radial direction r2 ≡ x2 + y2 in the trap center
depends on the applied current and the geometry of the coils. However, the 1:2 aspect
ratio is generic for all quadrupolar potentials, as we will see in Exc. 26.4.5.2. We easily
verify that,

∇ · B⃗ = 0 but ∇|B⃗| = ∂rB√
r2 + 4z2



x

y

4z


 . (26.72)

Thus, the quadrupolar magnetic potential is linear in the spatial coordinates,

U(r) = −|µ⃗||B⃗| = µBgJmJ ∂rB
√
r2 + 4z2 , (26.73)

where 2∂rB = ∂zB.
To calculate the rms-radius r̄ of a cloud of temperature T confined to this poten-

tial, we set,
kBT ≡ U(r̄, 0) = µBr̄∂rB , (26.74)

and obtain the density distribution,

n(r) = n0e
−U(r)/kBT = n0e

−
√
r2+4z2/r̄ . (26.75)

Normalization requires,

N =

∫

R3

n(r) d3r = n0

∫ ∞

−∞

∫ ∞

0

e−
√
r2+4z2/r̄2πr drdz (26.76)

= n02πr̄
2

∫ ∞

−∞

∫ ∞

2|z|/r̄
ξe−ξdξdz = n02πr̄

2

∫ ∞

−∞
e−

2|z|
r̄

(
1 + 2|z|

r̄

)
dz

= n02πr̄
3

∫ ∞

0

e−ζ(1 + ζ) dζ = n04πr̄
3 .
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Therefore, the effective volume is, Veff = 4πr̄3. In application example is discussed
in Exc. 26.4.5.3.

26.4.1.1 Majorana spin-flips

The quadrupolar trap is the simplest one that can be technically realized. Unfor-
tunately, this trap is not stable because of the phenomenon of Majorana spin-flips,
which expel atoms from the trapped cloud. Since this field configuration always has
a central point, where the magnetic field disappears, non-adiabatic Majorana transi-
tions can occur when the atom passes through the zero point [see Fig. 26.13(c)]. The
disappearance of the field leaves the atoms disoriented, that is, ready to reorient their
spins. The transitions transfer population from a low-field seeking state to a high-field
seeker, which consecutively is expelled from the trap. This problem is particularly
severe for hydrogen, where it can induce a so-called relaxation explosion [394].

From (26.74) we get the rms-radius,

r̄ =
kBT

µB∂rB
. (26.77)

The average velocity of an atom is,

v̄ =

√
kBT

m
. (26.78)

In order for the atomic motion in the magnetic potential to be adiabatic [so that
Eq. (26.73) applies], the local Larmor frequency,

ωLarmor(r) =
µB

ℏ
√
r2 + 4z2∂rB (26.79)

must be faster, than any change the atom might experience due to its motion with
velocity v. I.e. we need [650],

ωLarmor(r) >
v · ∇|B⃗|
|B⃗|

. (26.80)

For a quadrupolar trap, this can not be satisfied within a certain volume located at the
trap center, since the expression (26.80) divergence near the center. This ellipsoidal
volume is delimited by rsf given by the condition,

ωLarmor(rsf) ≡
v · ∇|B⃗|
|B⃗|

. (26.81)

For our quadrupole trap,

v · ∇|B⃗|
|B⃗|

=
v · ∂rB√

r2sf+4z2sf

∂rB
√
r2sf + 4z2sf



xsf
ysf
4zsf


 =

xsfvx + ysfvy + 4zsfvz
r2sf + 4z2sf

. (26.82)

Considering for simplicity only radial motion, v = vêr, then by equating (26.79) and
(26.81),

µB

ℏ
rsf∂rB = ωLarmor(rsf) =

v

rsf
, (26.83)
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that is, the spin-flip volume is on the order of,

rsf =

√
ℏv

µB∂rB
. (26.84)

Let us now estimate the spin relaxation rate from the flow of atoms through the
volume,

1

τsf
= N

r3sf
Veff

v̄

rsf
, (26.85)

where r3sf/Veff is simply the fraction of the cloud’s volume overlapping with the spin-
flip volume. Then,

1

τsf
=

N

4πr̄3
r2sfv̄ =

N

4π
(

kBT
µB∂rB

)3
ℏv̄

µB∂rB
v̄ (26.86)

=
Nℏ

4π(kBT )3
(µB∂rB)2

kBT

m
=
Nℏ(µB∂rB)2
4πm(kBT )2

.

That is, the problem gets worse when the cloud is cooled to low temperatures.

26.4.2 Magnetic Ioffe-type traps

The spin-flip problem can be overcome by using a different magnetic field geome-
tries. One example is the so-called magnetic bottle, also called the Ioffe-Pritchard
trap illustrated in Fig. 26.14(a), where the minimum field amplitude has a finite value
different from zero. Other methods to eliminate the zero-field point are time-varying
potentials, such as the time-orbiting potential (TOP) trap illustrated in Fig. 26.14(b)
and discussed in Exc. 26.4.5.4 [267, 367], or the application of an ’optical plug’, which
consist in an intense dipolar optical laser beam, tuned to the blue of an atomic transi-
tion, focused into the center of a quadrupole trap where the magnetic field is zero, and
repelling the atoms from this area (see Fig. 26.22). The advantage of Ioffe-Pritchard-
type traps is that they are always harmonic sufficiently close to the trap center, which
simplifies the theoretical treatment in many respects, as shown in Exc. 26.4.5.5.

Figure 26.14: (a) Magnetic trap in Ioffe-Pritchard configuration. (b) Time-Orbiting Poten-
tial (TOP) trap. (c) Death-circle in a TOP trap.

Close to the trap center Ioffe-Pritchard-type traps are described by,

U(r) = µBgFmF

√
B20 + (r∂rB)2 + (z∂zB)2 , (26.87)
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and this magnetic trapping potential can be harmonically approximated by,

U(r) ≃ µBgFmF

(
B0 +

(r∂rB)2
2B0

+
(z∂zB)2
2B0

)
(26.88)

≡ const+ m

2
ω2
rr

2 +
m

2
ω2
zz

2 ≡ kBT
(
const+

r2

2r̄2
+

z2

2z̄2

)
,

where the rms-radius r̄ = ω−1
r

√
kBT/m follow from the normalization of the density

n(r) = n0e
−U(r)/kBT to the number of atoms,

N =

∫
n(r)d3r = n0

∫ ∞

0

e−r
2/2r̄22πdr

∫ ∞

−∞
e−z

2/2z̄2dz = n0(2π)
3/2r̄2z̄ ≡ n0Veff .

(26.89)
The trap frequencies can be calculated as,

ωr,z =

√
µB(∂rBr,z)2

mB0
. (26.90)

The Earth’s gravitational field deforms the trapping potential and, in the case of a
harmonic potential, causes a gravitational sag without changing the secular frequen-
cies of the potential. Assuming the potential to be given by,

U =
m

2
ω2
rr

2 +
m

2
ω2
zz

2 −mgz = m

2
ω2
rr

2 +
m

2
ω2
z(z − g/ω2

z)
2 − m

2
g2/ω2

z , (26.91)

the atoms sag to a height of g/ω2
z . In time-dependent traps, gravity causes a more

complex behavior [362]. Important works have been done by [151, 654, 269, 349, 3,
199, 504, 507, 224]. We study the impact of gravitation in Exc. 26.4.5.6.

Figure 26.15: Creation of a repulsive hole by light tuned to the blue of an atomic transition.
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26.4.2.1 Characterization of Ioffe-type traps

The ’time-of-flight’ density distribution is,

rToF =
√
r̄2 + v̄2t2ToF =

√
kBT

m

√
1

ω2
r

+ t2ToF ≃ tToF
√
kBT

m
. (26.92)

The phase space density is,

ρ = n0λ
3
dB =

N

(2π)3/2r̄2z̄

(
2πℏ2

mkBT

)3/2

= Nω2
rωz

(
ℏ

kBT

)3

= ζ(3)

(
Tc
T

)3

. (26.93)

where ζ(3) = 1.202 and

kBTc = ℏ
(
Nω2

rωz
ζ(3)

)1/3

(26.94)

is called ’critical temperature’. The maximum collision rate is,

γcoll = n0σv̄ = n04πa
2
s

√
kBT

m
, (26.95)

The average collision rate can be obtained from,

γ̄collN =
1

N

∫
γcoll(r)n(r)d

3r =

∫
σv̄n2(r)d3r∫
n(r)d3r

. (26.96)

26.4.3 Radiative coupling and evaporative cooling

As we saw in the last section, optical cooling becomes ineffective when the density of
the gas is high. Hence, we need another dissipation mechanism to cool trapped atoms.
A method called evaporation has been proposed by Hess [392] for spin-polarized hy-
drogen (H↑) and was observed by Masuhara et al. [556]. Later, evaporation was used
on alkali metals [3, 650, 202]. A detailed review of the subject was published by
Ketterle and van Druten [458].

Another collision-based cooling mechanism is sympathetic cooling. The technique
was originally used in ion traps. Later it was applied to neutral atoms confined in
magnetic traps. The idea is to get the cloud under study into thermal contact with a
cold buffer gas. In some cases, the buffer gas may be optically or evaporatively cooled.
Sympathetic cooling has been used in magnetic traps to create double condensates
[613] and to cool fermions until the regime of quantum degeneracy [214].

26.4.3.1 Evaporative cooling

Evaporation always occurs when energetic particles abandon a system with finite
bonding energy, removing more than their share of average energy per particle. Here,
we consider the case of a finite-sized trapping potential, that is, the potential has an
edge or a beak through which hot atoms, with sufficient kinetic energy to reach that
region, may leave the trap. In the ideal case, this will lead to a complete truncation
of the hot tail of the equilibrium Maxwell-Boltzmann velocity distribution. If the
remaining system finds back to thermal equilibrium, it will do at a lower temperature.
The redistribution of kinetic energy between atoms leading to thermalization occurs
through elastic collisions.
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Figure 26.16: The basic idea of evaporation consists in removing hot particles from the
sample.

Figure 26.17: Principle of (a) rethermalization due to elastic collisions and (b) evaporation.

26.4.3.2 Truncating the Boltzmann distribution

Let us first explain how the truncation leads to colder temperatures [202].

The objective is to calculate the Boltzmann distribution in a particular trap for
a given atom number N and temperature T . The first step is to obtain the density-

of-states. For an isotropic harmonic trap ε = p2

2m + V (r) with V (r) = m
2 ω

2r2, it
is,

η(ε)dε =
1

(2π)3

∫

V

d3rd3k =
2π(2m)3/2

h3

∫

V

√
ε− V (r)d3rdε =

ε2dε

2(ℏω)3
. (26.97)

The atom density is,

n(ε) = e(µ−ε)/kBT = wT,µ(ε) = Ze−ε/kBT . (26.98)
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From these expressions we obtain the atom number,

N =

∫ ∞

0

n(ε)η(ε)dε =

∫ ∞

0

e(µ−ε)/kBT
ε2

2(ℏω)3
dε = Z

(kBT )
3

(ℏω)3
, (26.99)

which we may now use to calibrate the fugacity via

Z = N
(ℏω)3

(kBT )3
, (26.100)

which finally allows us to calculate the total energy,

E =

∫ ∞

0

εn(ε)η(ε)dε =

∫ ∞

0

εe(µ−ε)/kBT
ε2

2(ℏω)3
dε = 3Z

(kBT )
4

(ℏω)3
= 3NkBT .

(26.101)

The evaporation consists in truncating the distribution function n(ε) at some
energy ℏωrf. We get with β ≡ (kBT )

−1,

Ñ =

∫ ℏωrf

0

n(ε)η(ε)dε = N

(
1− 2 + 2βℏωrf + (βℏωrf)

2

2eβℏωrf

)
(26.102)

and

Ẽ =

∫ ℏωrf

0

εn(ε)η(ε)dε = E

(
1− 6 + 6βℏωrf + 3(βℏωrf)

2 + (βℏωrf)
3

6eβℏωrf

)
. (26.103)

As the truncation removes the hottest atoms from the cloud, we loose atom number
and energy. Assuming the existence of some rethermalization mechanism, we may
now use the new values for N and T to calculate the new equilibrium Boltzmann
distribution starting all over from Eq. (26.98),

N ←− Ñ and T ←− Ẽ

3NkB
(26.104)

Repeating this over and over the temperature will gradually reduce. The cooling
process can be speed up by readjusting the truncation frequency to the actual tem-
perature. This is called forced evaporation (see Fig. 26.18).

Example 186 (Truncating in a quadrupole potential): The formulas (26.102)
and (26.102) were derived for a harmonic trap. An analogous calculation for a
quadrupole potential yields, with the abbreviation κ ≡ βℏωrf,

N(κ) ≈ −2
√
Z
105 + 70κ + 28κ2 + 8κ3

√
π105eκ

+ erf(
√
κ) (26.105)

E(κ) ≈ −2

9

√
Z
945 + 630κ + 252κ2 + 72κ3 + 16κ4

√
π105eκ

+
9

2
erf(
√
κ) .
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Figure 26.18: (code) (a) Forced evaporation by truncating the Boltzmann distribution over

and over again. (b) Evolution of the temperature and (c) of the phase space density with

number of remaining atoms.

26.4.3.3 Rethermalization

As already mentioned, rethermalization occurs due to elastic collisions. It needs more
or less three collisions per atom to rethermalize a cloud [595, 882], so that the collision
rate determines the speed of the evaporation process. A large collision rate is desirable
to keep the evaporation process faster than trap loss processes. Evaporation ramps
between several seconds and a minute are typical.

The maximum rate of elastic collisions between trapped atoms (in the trap center)
is,

γcoll = n0σelv̄
√
2 ∝ ρ3N2/3 , (26.106)

where n0 is the peak density,
σel = 8πa2s , (26.107)

is the cross-section for elastic collisions and, v̄ being the average thermal velocity of
the cloud,

√
2v̄ is the average relative velocity between two of its atoms [457]. This

formula gives the average collision rate at the center of the cloud, where the density
is highest. To calculate the total collision rate, we need to integrate over the entire
volume of the cloud,

γ̄coll =
1
N

∫
γcoll(r)n(r)d

3r =

∫
σelv̄n

2(r)d3r∫
n(r)d3r

. (26.108)

For harmonic potential we find an average rate reduced by 2
√
2, for linear potentials

by 8. We verify this in Exc. 26.4.5.7. Finally, the rate for collision events is two times
smaller, as it involves two atoms at a time.

Obviously, the evaporation process slows down when the cloud cools more, unless
the edge of the potential is lowered, such that the hotter atoms of the colder cloud can
be evaporated. By continually lowering the edge of the potential, while the atomic
cloud keeps on rethermalizing (this procedure is called forced evaporation) very low
temperatures in the nano-Kelvin regime can be achieved, and the phase space density
can be increased by many orders of magnitude (between a MOT and a BEC there are
6 orders of magnitude) up to the threshold of Bose-Einstein condensation. Of course,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Evaporation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Evaporation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Evaporation.m
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this is only possible by sacrificing many hot atoms. Even with a well optimized
evaporation ramp (i.e., a controlled lowering of the potential edge), usually only some
0.1% of the atoms reach the condensation phase after about 500 collisions per atom.

Two aspects should be mentioned regarding the optimization of the evaporation
ramp. The first aspect is, that elastic collisions with atoms from the residual back-
ground vapor of the vacuum chamber limit the lifetime of the trap. Therefore, the
evaporation must be sufficiently fast, which requires either a high rate of elastic col-
lisions or a good vacuum. A compromise must be found between a slow but efficient
evaporative cooling and a minimization of the losses, which come into play when the
evaporation takes too long. The second aspect is, that the dimensionality of the evap-
oration surface determines the effectiveness of the cooling. In the first demonstration
of evaporation, H↑ atoms of a hot cloud were ejected over a saddle point. The saddle
was located a small region away from the trap center, and only atoms with sufficient
kinetic energy along a certain direction, Ez > Uedge, could leave the trap. In such
cases, evaporation is called one-dimensional. Even though ergodic redistribution due
to anharmonicities of the potential will drive, sooner or later, all the atoms to this
region, this effect becomes less pronounced when the cloud cools down, because the
atoms accumulate at the bottom of the approximately harmonic (and therefore sep-
arable) potential. This fact has inhibited efficient evaporation of H↑ below 120µK
[291].

A second evaporative technique has been demonstrated in traps called time-
orbiting potential (TOP) [650]. It is a feature of TOP traps to display a spatial
region called a ’death-circle’, where passing atoms are ejected from the trap. This
fatal circle can act as a 2-dimensional evaporation surface, provided the radius of the
circle is large enough [367]. However, under the influence of gravity the dimensionality
is further reduced to 1D [457].

The most successful evaporation technique implemented so far is based on a ra-
diative coupling of confined and free states. We discuss this technique in the following
sections. Publications on evaporative cooling are [532, 579, 650, 672, 72, 572, 595, 268,
272, 380, 620, 392, 556, 202, 458, 881, 368, 551, 244, 394]. See ([175], Sec. 3.1.4) for
an overview.

26.4.3.4 Adiabatic (de-)compression

The condition for adiabatic decompression of a trapping potential is,

|ω̇trp|
ωtrp

≪ ωtrp . (26.109)

The population of the quantized levels should not change under adiabatic decom-
pression, eℏωi/kBTi = eℏωf/kBTf , and the phase space density remains unchanged,
niλdB,i = nfλdB,f . If this is true, then the temperature and density change as,

ωf
ωi

=
Tf
Ti

=

(
nf
ni

)3/2

. (26.110)

Solve Exc. 26.4.5.8.
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26.4.3.5 Radiative coupling of internal state

The most successful evaporation technique implemented so far is based on a radia-
tive coupling of confined and free states. We discuss this technique in the following
sections. See ([175], Sec. 3.1.4) for an overview.

Figure 26.19: Illustration of evap-
orative truncation.

The radiative coupling technique originates
from an idea proposed by Pritchard et al. [368],
who have already had some experience with ra-
diofrequency spectroscopy in magnetically trapped
neutral atoms [551, 380]. The spatial dependence
of the Zeeman splitting is an intrinsic feature of
magnetic traps. Irradiation of a radio wave at a
certain frequency couples trapped and untrapped
Zeeman substates at a well-defined distance from
the trap center. This gives rise to a 3D evapora-
tion surface, where the passing atoms can undergo
Landau-Zener transitions and be expelled from the
trap. The technical advantages of this technique
are substantial: The magnetic trapping potential does not have to be manipulated,
for example, by the creation of a nozzle, and the potential edges can be easily con-
trolled by the radiofrequency. If evaporation is forced via a continuous reduction
of the radiofrequency and if the evaporation ramp is optimized, the density will in-
crease as well as the collision rate. Rethermalization will accelerate and initiate a
self-accelerated evaporation process (run-away evaporation). Rf-evaporation was first
demonstrated by Ketterle and colleagues [202]. Solve Exc. 26.4.5.9.

26.4.3.6 Adiabatic and diabatic limits of rf-induced evaporation

Rf-induced evaporation can be described within the formalism of the dressed atom
[164], where the different statesmF of an atom with spin F are coupled to an rf-field 5,
which we assume to be linearly polarized:

B(t) = Bêrf cosωt . (26.111)

The element of the coupling matrix between the levels, |F,mF ⟩ and |F,mF ± 1⟩ is,

Ω =
µBg

4ℏ

∣∣∣B⃗rf × êB

∣∣∣
√
F (F + 1)−mF (mF + 1) , (26.112)

where g is the atomic g-factor and êB the orientation of the local static magnetic
field.

The adiabatic potentials U(r) are obtained through the eigenvalues of the atomic
states dressed by the local magnetic field B(r). In the dressed atom picture, we
consider the total energy of the atom plus the field of N radiofrequency photons.
Without coupling, this simply means that Nℏω is added to the atomic Zeeman ener-
gies, resulting in a Zeeman pattern being vertically shifted by Nℏω for N = 0,±1, ...
At positions where the rf-field is in resonance, curves with ∆N = 1 intersect. Here,
the coupling develops an avoided crossing, which determines the pattern of adiabatic
energy levels [see Fig. 26.20(b)].

5Alternatively, a microwave frequency may be used to couple different hyperfine levels.



1200 CHAPTER 26. MANIPULATION OF ATOMIC GASES

-1 0 1

z (mm)

-40

-20

0

20

40

Δ
(M

H
z)

(a)
mF = 2

mF = −2

h̄ω

-1 0 1

z (mm)

-40

-20

0

20

40

Δ
(M

H
z)

(b)

Figure 26.20: (code) (Left) Potentials due to the Zeeman structure of an atom in the ground

state with F = 1. (Right) Adiabatic potentials resulting from the coupling of Zeeman

levels via radiofrequency radiation being resonant with the difference of Zeeman levels at the

position 0.7.

A slowly moving atom remains on the curve of an adiabatic potential. As an
example, let us assume an atom in the hyperfine state |F, F ⟩ moving away from the
center of the trap. When it comes close to resonance, the rf-field blends this state
with other mF -states, from the |F, F − 1⟩ down to the |F,−F ⟩ state, which changes
the slope of the potential curve. Beyond the resonance point, the atomic state is
adiabatically transformed into an untrapped high-field seeking state, and the atom
is repelled from the trap. Thus, while passing the avoided crossing, the atom has
emitted 2F rf-photons in a stimulated manner and inverted the orientation of both
the electron and the nuclear spin.

In this way the radiofrequency generates an adiabatic potential surface with a
depth of approximately |mF |ℏ(ω − ω0), where ω0 is the resonant rf-frequency at the
center of the trap. The evaporation process corresponds, then, to the removal of the
most energetic atoms out of the trap.

For this adiabatic picture to be valid, an adiabaticity condition must be fulfilled.
This condition requires that the energy difference at the avoided crossover be larger
than the energy uncertainty related to the limited time that an atom with velocity v
spends in the resonance region. For a two-level system coupled by a matrix element
V12 and an atom moving with velocity v along the z-axis, the transition probability
P between the adiabatic curves is given by the Landau-Zener formula [707],

P = 1− e−ξ with ξ =
2π|V12|2
ℏgµB∂zBv

. (26.113)

The Landau-Zener theory is strictly valid only for a two-level system, which we use
here only for a qualitative discussion of two following limiting cases.

For a weak rf-field, ξ ≪ 1, P is much smaller than 1, i.e., the atoms remain pre-
dominantly on the diabatic surface shown in Fig. 26.20(a). The probability for a spin
flip transition is, P ≈ t, which describes the diabatic limit of rf-induced evapora-
tive cooling: The atomic energy levels are almost unperturbed, the atoms often spill
across the resonance surface, and only after 1/P oscillations, they spin-flip from the
hyperfine state |F, F ⟩ to the |F, F − 1⟩.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_AdiabaticPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_AdiabaticPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_AdiabaticPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_AdiabaticPotentials.m


26.4. MAGNETIC TRAPS 1201

The adiabatic limit is clearly the ideal situation for evaporative cooling. However,
the evaporation process in a trap (with oscillation time Tosc) saturates at a lower
rf-power. The condition for saturation is P ≈ Tosc/τel, where τel is the average time
between two collisions. This means that an energetic atom is evaporated before it
collides again.

Only the component of the magnetic field of the rf-radiation which is perpendic-
ular to the magnetic trapping field induces spin-flips. In certain geometries of the
confinement potential, for example the quadrupole trap, the magnetic field covers the
entire solid angle. Consequently, there are two points where the trapping field and
the rf-field are parallel and the elements of the transition matrix consequently zero.
Within an area around these points, the coupling is diabatic. In practice however, the
rf-transition can be sufficiently saturated that this area is small and does not strongly
affect the evaporation efficiency.

Note also that gravitation deforms the equipotential surfaces of the confinement
potential, which can reduce the evaporation efficiency [457]. Solve Exc. 26.4.5.10.

Figure 26.21: Effective potential due to a rapid modulation of the trap’s location.

Figure 26.22: Creation of a repulsive hole by light tuned to the blue of an atomic transition.

26.4.4 Sympathetic cooling

The efficiency of evaporative cooling depends on the rate of interatomic collisions.
However, there are atomic species with unfavorable, that is, small or even nega-
tive scattering lengths. Also, while at low temperatures only s-wave collisions occur
(higher partial waves being frozen behind the centrifugal barrier), such collisions are
prohibited for fermionic gases. Fermions or species with unfavorable scattering lengths
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can not be cooled by evaporation. There is, however, another technique called sym-
pathetic cooling by thermal contact with another species. The additional species is, in
general, actively cooled (e.g., by evaporation), while the species of interest is passively
cooled via elastic collisions with atoms of the additional species. Of course, for this
scheme to work the interspecies scattering length and the mass ratio must be adequate
to ensure adequate thermal coupling.

Following [611] the transfer of kinetic energy between two colliding atoms is re-
duced by a factor depending on the their mass difference,

ξ =
4m1m2

(m1 +m2)2
. (26.114)

Around 3/ξ collisions per atom on average are required for complete thermalization
of a gas. For example, for the Rb-Li mixture, we have 3/ξ = 12.4. The collision rate
is,

Γcoll = σ12v̄

∫
n1(r)n2(r)d

3r , (26.115)

where the average thermal velocity is,

v̄ =

√
8kB
π

(
T1
m1

+
T2
m2

)
. (26.116)

The instantaneous temperature is calculated by,

γtherm = − 1

∆T

d∆T

dt
, (26.117)

or via simulations: ∆T (t+ dt) = ∆T (t)−∆T (t)γthermdt. Following [213] the rether-
malization rate is connected to the collision rate via,

γtherm =
ξ

3

(
∆E1→2

N1kB∆T
+

∆E2→1

N2kB∆T

)
=
ξ

3

(
Γcoll

N1
+

Γcoll

N2

)
. (26.118)

Analytic solutions can be derived for harmonic traps. This will be studied in
Excs. 26.4.5.11 and Exc. 26.4.5.12.

26.4.5 Exercises

26.4.5.1 Ex: Lack of trapping potentials for strong field seekers

Show that it is not possible to create magnetic trapping potentials for atoms in low-
field seeking Zeeman states.

26.4.5.2 Ex: Quadrupolar potential

Show that for a quadrupolar trap always holds 2∂rBqua = ∂zBqua.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_BuscadorCampoforte.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_PotencialQuadrupolar.pdf
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26.4.5.3 Ex: Magnetic quadrupole trap

a. Consider 87Rb atoms confined in a magnetic trap with B⃗(x, y, z) = x y −2z ×
200G/cm. The atoms are in the state |F = 1,mF = −1⟩ with the g-factor gF = 1/2.
Check whether it is reasonable to assume constant vibration frequencies for such traps.
b. Assume that the trapped atomic cloud consists of N = 108 atoms at temperature
T = 100K. Calculate the atomic density n0 at the center of the cloud.
c. The cross section for elastic collisions is σ = 10−12 cm2. How many times do atoms
meet in the middle of the trap?

26.4.5.4 Ex: TOP trap

The TOP trap (time-orbiting potential) was the first design to allow for Bose-Einstein
condensation in 1995. It consists of the superposition of a quadrupolar magnetic field,
with the radial and axial gradients 2∂rBqua = ∂zBqua), and a homogeneous magnetic
field Btop rotating in the symmetry plane of the quadrupole field. Atoms which
oscillate with an amplitude beyond a given radius rd, called the ’circle of death’,
undergo Majorana transitions and are expelled from the trap.
a. Calculate the radius of the death circle.
b. Plot the time-averaged ’effective’ trapping potential.

26.4.5.5 Ex: Harmonic trap

Calculate the vibration frequencies of 87Rb atoms trapped in a harmonic trap, when
the atoms are in the |F = 1,mF = −1⟩ hyperfine level of the ground state.

26.4.5.6 Ex: Gravitational sag in a trap

Consider (a) a quadrupolar trap and (b) an isotropic harmonic trap. What is the
gradient, respectively the curvature of the trapping potential required to suspend a
cloud of rubidium subject to gravitation? What is the sag of the cloud in the potential
due to gravitation?

26.4.5.7 Ex: Mean collision rate

Assuming that the peak collision rate γcoll is known, calculate the average collision
rate (a) in a quadrupolar and (b) in a harmonic trap.

26.4.5.8 Ex: Adiabatic compression

How does temperature change upon adiabatic compression of (a) a quadrupole trap
and (b) a harmonic trap. How do density, phase space density, and elastic collision rate
vary. Help: Define the compression for quadrupole trap as η ≡ ∂rBr,final/∂rBr,initial
and for harmonic trap as η ≡ ωr,final/ωr,initial.

26.4.5.9 Ex: RF-antenna for radiative coupling

Calculate the Rabi frequency that can be generated by an rf-antenna consisting of
a single square loop with side length L = 2 cm on a cloud of trapped 87Rb atoms

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaQuadrupolar.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaTop.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaHarmonica.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_InclinacaoGravitacional.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_MeanCollision.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_CompressaoAdiabatica.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_RFAntenna01.pdf
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located in the center of the loop on transitions between magnetic sublevels of the
F = 1 ground state hyperfine structure. Assume the antenna to carry an ac-current
with I = 1A amplitude.

26.4.5.10 Ex: Landau-Zener transitions

Consider a rubidium-88 cloud in its ground state 2S1/2, F = 1,mF = −1 confined
in an isotropic quadrupolar potential with the gradient 200G/cm. To initiate an
efficient radiofrequency evaporation, you want atoms crossing the region where the
radiofrequency couples the Zeeman states to make a transition to the untrapped
Zeeman state mF = 0 with 95% probability. What is the amplitude of the required
magnetic field.

26.4.5.11 Ex: Damping in mixtures of species

From Eq. (26.118) derive the interspecies thermalization rate for harmonic potentials.

26.4.5.12 Ex: Damping in mixtures of species

Describe the damping in mixtures of species, and show how to use a measurement of
the damping time for a determination of the interspecies the scattering length.

26.5 Other traps

26.5.1 Ion traps

The electric charge of ions allow for their efficient manipulation and control by elec-
tric and magnetic fields exploiting the Coulomb-Lorentz force. In fact, the control
is so good, that it is possible to isolate and store individual ions or even arrays of
quantum entangled ions and to perform coherent operations on them, which quali-
fies them as quantum registers. Two different types of traps have been investigated.
In Penning traps [647], electrically charged particles are subjected to a radially at-
tractive quadrupolar electrostatic field superimposed to an axial magnetostatic field
forcing the particles into closed circular orbitals 6. In the so-called radiofrequency
trap or Paul trap –Wolfgang Paul received the Nobel Prize in 1989 together with
Hans Dehmelt and Norman Ramsey– charged particles subjected to an alternating
electric field with quadrupolar symmetry. Hyperboloidal electrode configurations pro-
duce saddle-shaped potentials, as shown in Fig. 26.24, which are, at any instant of
time, parabolically repulsive in the one direction (axial or radial) and parabolically
attractive in the other (radial or axial). The alternating electric field causes a pe-
riodic reorientation of the Coulomb force, which leads to a time-averaged parabolic
quasi-potential Φ(r, t). In this potential the particles perform harmonic oscillations
at characteristic frequencies, which are independent of the oscillation amplitude [642]:

Φ(r, z) = Φ0(t)(r
2 − 2z2) , r2 = x2 + y2 , (26.119)

6Note that purely electrostatic fields do not lend themselves to trapping, since the necessary
condition for the existence of minima in a potential, ∂i∂jϕ < 0, does not obey the Laplace equation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_TransicaoLandauzener.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_AmortecimentoMisturas01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_AmortecimentoMisturas02.pdf
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where the polarity is alternated at a radiofrequency Ωa,

Φ0(t) = Φdc +Φac cos(Ωat) . (26.120)

Φdc denotes the amplitude of the dc part of the voltage, Φac the amplitude of the ac
part. The potential Φ(r, z, t) exerts, in the temporal average, a central force on the
ion, if the radiofrequency field satisfies specific conditions.

Figure 26.23: Geometry of the Paul trap.

26.5.1.1 Evaluation of the stability diagram

Paul traps do not have to have perfect quadrupolar geometry. To determine the
secular frequencies of the pseudo-potential for an arbitrary geometry, we expand the
potential around the position r0 of the potential minimum, which depends on the
geometry of the electrodes and the applied voltages,

Φ(r) = Φa + (r− r0)∇Φ(r0) + 1
2 [(r− r0)∇]2Φ(r0) + ... (26.121)

≡ Φa[1 + br(r − r0)2 + bz(z − z0)2] .

In the last step, we assume that the potential has an almost cylindrical shape. For
a given geometry, the curvatures bz,r can be extracted from numerical simulations.
From the continuity equation, we find bz = −2br. The polarity of the electrodes is
modulated with frequency Ω,

Φ(r, t) = Φ(r)(ζ − cosΩt) . (26.122)

The equations of motion are derived from mr̈ = −e∇ϕ(r, t),

mr̈j + 2eΦabj(ζ − cosΩt)rj = 0 . (26.123)

Introducing the parameters a and q,

az =
8eϕabzζ

mΩ2
= −2ar and qz =

4eΦabz
mΩ2

= −2qr , (26.124)

we arrive at the so-called Mathieu equation [566, 279],

r̈j +
1
4Ω

2(aj − 2qjζ cosΩt)rj = 0 . (26.125)

These equations predict stable orbits, provided that the parameters a and q are within
the so-called stability diagram shown in Fig. 26.25.
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Figure 26.24: (code) Two-dimensional illustration of time-dependent potential: at each

instant of time the potential has the form of a saddle. The potential rotates around the

vertical axis at an appropriate pace.

According to these equations, the ion goes through oscillatory motions that are
defined by the trap parameters ai and qi. For the motion of the ion to be finite, its
oscillation amplitude may not exceed the boundaries defined by the electrodes. This
condition imposes an allowed regime for the trap parameters called stability diagram
[566].
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0

0.2

a
r

Figure 26.25: (code) Stability diagram.

In the limit |ai|, qi ≪ 1 the ion travels only a short distance s ≪ r0 during one
modulation period Ωa. Then the ion undergoes a slow periodic motion called macro-
motion within the trapping potential with the secular frequency ζi. This motion is
modulated by a rapid oscillation called micromotion, which is excited by the modula-
tion field Ωa. Without dc voltage applied between the ring and the endcaps, ai = 0,
the motion of the ion is described by the following simple equation:

ri(t) = r0i
(
1− 1

2qi cosΩat
)
cos ζit , ζi =

1√
8
qiΩa , i = r, z . (26.126)

The orbit of the ion is confined to the inner region of the trap, if its kinetic energy is
less than mζ2r r

2
0 +Mζ2z z

2
0 . Since the trap is, at any instant of time, focusing in some

directions and defocusing others, it is not a conservative potential. The oscillatory

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsSaddlePot.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsSaddlePot.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsSaddlePot.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsStabilityDiagram.m
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motion (disregarding micromotion) of the ion, however suggests a model, where the
trap is described by a pseudo-potential [279, 86] whose depth is,

Dz =
qz
8 eVac = 2Dr if ai = 0 . (26.127)
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Figure 26.26: (code) Simulated micro- and macromotion of an ion.

Other geometries, deviating from the perfect quadrupole, are possible for the
electrodes. These traps are also well described by equation (26.119), as long as the
ion is near the trap center. For example, higher order multipolar traps have been used
for trapping ion clouds [852], as well as Paul-Straubl traps [740] and storage rings [846].
Particularly important for the storage of arrays of cooled ions with applications in
quantum computing is the linear Paul trap [670, 282, 669], where immobilized ions
are aligned on a linear chain. The advantage of the linear trap, as compared to other
traps designed for many ions, is the easier optical access to individual ions by focused
laser beams and the possibility of canceling the micromotion.

26.5.2 Micromotion

The motion of an ion in a Paul trap is a superposition of two vibrations with the
respective oscillation frequencies Ωa (modulation frequency) and ζr,z (secular fre-
quencies for radial and axial direction vibrations). For an ion in thermal equilibrium
(i.e., without active cooling), the mean kinetic energies of the micro- and macromotion
are equal [87].

The macromotion can be reduced by cooling, in contrast to the micromotion,
which is constantly excited by the modulation of the applied electric field [157]. On
the other hand, the amplitude of the micromotion decreases with the distance of the
ion from the trap center and, in the minimum of the pseudo potential, disappears
completely. Therefore, to suppress the micromotion, it is imperative to cool the
macromotion and push the ion to the trap center, if necessary, using additional static
electric fields. Since the frequency of the micromotion is much higher than that of the
macromotion, the dynamic sidebands can be resolved on a sufficiently narrow optical
transition. When the modulation frequency Ωa is very high, the secular frequencies
of the macromotion are also high, so that even large optical transitions are able to
resolve the macromotional sidebands. This is called the strong coupling regime.

Because of Coulomb repulsion, only a single atom can be at the center of a Paul
trap, such that it is difficult to zero micromovement. One solution is to use a linear
trap, where the center is smeared out over a straight line. Solve Exc. 26.5.4.1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsPaulTrapSimul.m
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Example 187 (Numerical calculation of the electric field created by a
charged surface): To calculate the trapping potential for a charged particle
held on top of a planar microtrap structure, we proceed as follows. The energy
of a charge in an electric field is H = −eΦ. The electrostatic potential is given
by Coulomb’s law,

Φ(r) =
1

4πϵ0

∑
n

∫
Vn

ρ(r′)

|r− r′|dV
′− 1

4π

∑
n

∫
Sn

Φn
r− r′

|r− r′|3 df
′+

1

4π

∑
n

∫
Sn

E⃗(r′)
|r− r′| ·df

′ ,

where ϕn is the voltage applied to the n-th boundary. In practice, electric fields
are generated by electrodes set to specific voltages. Using the Dirichlet boundary
conditions, we only retain the second term. Furthermore, to account for the
planar geometry of the chip electrodes, we only consider surface boundaries in
the y′ = 0 plane,

Φ(r) = − 1

4π

∑
n

Φn

∫
Sn

ydx′dz′√
(x− x′)2 + y2 + (z − z′)23

.

This implies that the field lines cross the chip surface orthogonally, which in
reality is only true if the chip electrodes cover the whole area. Therefore, we

�1

�2

�3

�rf

�4

10 m�

Figure 26.27: Possible design for a microchip ion trap. Φn are static potentials except for
Φ0, which is alternates sign with radio frequency.

only consider small gaps between the electrodes. We digitize the integral by
dividing every electrode Φn into a number of identical surface elements ∆fm,

Φ(r) = − 1

4π

∑
n,m

Φn
y∆fm√

(x− xm)2 + y2 + (z − zm)2
3 .

This formula can easily be evaluated numerically. A concrete example for a

microchip ion trap is shown in Fig. 26.27.

Example 188 (Numerical calculation of the magnetic field created by a
current wire): Current-carrying wires may exert Lorentz forces on the ions.
The magnetostatic field is given by the Biot-Savart law,

B⃗(r) = µ0

4π

∫
V

(r− r′)× j

|r− r′|3 dV ′ .
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Figure 26.28: (code) Two-dimensional cuts through the electric potential generated by the

microchip shown in Fig. 26.27 for Φrf = 100 V and Φj = 0.

In practice magnetic fields are created by current-carrying wires. Those can be
parametrized by one-dimensional currents, j =Iδ2ds, so that,

B⃗(r) = µ0I

4π

∫
C

ds′ × (r− r′)

|r− r′|3

|B⃗(r)| = µ0I

4π

∑
n

√
ds2y,n(z − zn)2 + ds2z,n(x− xn)2 + ds2x,n(y − yn)2√

(x− xn)2 + (y − yn)2 + (z − zn)23
.

can immediately be numerically solved.

26.5.2.1 Electronic detection of ions

The presence of ions in the trap can be probed through the damping that they induce
a coupled electronic resonance circuit [851, 857].

26.5.3 QUEST

Homonuclear atoms and dimers do not have a permanent electrical dipole moment,
but they may have a permanent magnetic dipole moment. Therefore, homonuclear
dimers must be confined by magnetic field gradients, or else an electric dipole moment
must be induced by an oscillating electromagnetic field. In the optical regime, this
was demonstrated with the quasi-electrostatic trap (QUEST).

In contrast, heteronuclear dimers are polar molecules with a permanent electric
dipole moment, which can be quite large if the molecules are deeply bound. According
to Earnshaw’s theorem, there is no static magnetic field maximum in free space. Thus,
no ’high-field seeking’ state can be trapped. In principle, QUEST-type dipolar optical

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsBecCalcs.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsBecCalcs.m
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�

rf

Figure 26.29: Resonance circuit for electronic ion detection. The trap is operated by a
radiofrequency, while a DC voltage is scanned across the stability diagram. Simultaneously,
an oscillating field is tuned near one of the trap’s secular frequencies. When the stability
point is such, that the secular frequency coincides with the frequency of the oscillating field,
the motion of the ions is parametrically excited and the resonance circuit is damped. This
damping is detected by a narrow-band amplifier.

traps can also be used for heteronuclear dimers. The problem is, however, that in
contrast to homonuclear molecules, transitions between the vibrational ground state
levels are possible. Thus, the light generating the QUEST also induces transitions
leading to a redistribution of the population over all vibrational states.

Very far from resonance,

Udip(r) = −αstat
I(r)

2ε0c
. (26.128)

Loosely bound homonuclear molecules are subject to the sum of the restoring forces
exerted by magnetic traps on the individual atoms, µm = 2µa and dm = 2da. This is
also true for heteronuclear molecules as long as the trapping potential is much weaker
than the binding energy.

Example 189 (Permanent electric dipole moment of LiRb ): The inter-
action energy of two dipoles is,

Ĥint =
1

4πε0

p1 · p2 − 3(p1 · r̂)(p2 · r̂)
r3

.

Thus, two identical dipoles with 1Debye = 10−27/2.998Cm = 10−19/cCm2 / s =
39.36 eaB parallel oriented at a distance r = 1µm have the energy,

Ĥint =
1

4πε0

p2

r3
≈ h× 1.5MHz ≈ kB × 73µK .

For example, LiRb has an electrical dipole moment of between -2 and -4.2 Debye

depending on the vibrational state of the molecule.

26.5.4 Exercises

26.5.4.1 Ex: Coulomb repulsion in linear Paul trap

Coulombian repulsion prevents that two ions confined in a linear Paul trap be si-
multaneously in the ground state. Determine the spatial extent of the ground state

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_PaulTrap.pdf
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and the depth of the potential in the pseudo-potential approximation. What is the
equilibrium distance of the ions?

26.5.4.2 Ex: Motion of ions in a surface Paul trap

Programs on the motion of ions in a surface Paul trap.

26.6 Analysing techniques

To analyze the kinetic state of an atomic gas and, for example, to identify the presence
of a Bose-Einstein condensate, it is necessary to measure its spatial or momentum
distributions. However, the only way to gather information from the atoms is to throw
some kind of particles into them and to detect, where these particles are scattered.
The most suitable particle to penetrate an ultra-high vacuum chamber surely is the
photon. Therefore, apart from few exceptions where electron beams are used, all
information on ultra-cold gases has been obtained so far through their reactions to
incident laser beams [401, 142, 22, 434, 335].

26.6.1 Time-of-flight imaging

The most common imaging techniques measure the absorption of a laser beam by
an atomic cloud after a time-of-flight or the dispersion of a laser beam induced by
a trapped cloud. The amplitude E0 of a light wave traversing an atomic cloud of
diameter L and characterized by the refractive index η is modified by a factor eıωLη/c.
For an inhomogeneous cloud, we have,

E = E0eıωL/c exp
(
ı
ω

c

∫ ∞

−∞
(η(r)− 1)dz

)
. (26.129)

We can approximate the refractive index by the atomic susceptibility,

η =
√
1 + χ ≃ 1 +

χ

2
with χ = − 4πn(r)

k3(2∆/Γ + ı)
. (26.130)

where n(r) is the density distribution of the cloud. The imaginary part of the suscep-
tibility is related to the absorption coefficient α and the real part to the dispersion
coefficient δ,

Imχ =
α

ω/c
and Reχ =

2δ

ω/c
. (26.131)

Now, the absorption and dispersion coefficients can be related to the optical cross-
section σ(∆) defined in (1.102) [530], where ∆ is the detuning of light frequency from
an atomic resonance, whose linewidth is Γ. This result is called the optical theorem,

α = nσ(∆) and δ = nσ(∆)
∆

Γ
, (26.132)

Finally, we obtain the Lambert-Beer law,

E = E0eıωL/c exp
[
ıσ(∆)

(
ı

2
− ∆

Γ

)∫ ∞

−∞
n(r)dz

]
≡ E0eıωL/ce−b/2eıφ . (26.133)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_.pdf
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For the intensity, I ∝ |E|2, we get,

I

I0
= exp

[
−σ(∆)

∫ ∞

−∞
n(r)dz

]
≡ e−b . (26.134)

The absorption b describes the loss of intensity for the laser beam due to scattering
by the (disordered) atoms. It is strong near resonance, but diminished quadratically
with the detuning ∆. The scattering is necessarily accompanied by radiation pressure
accelerating and heating the atoms. The dispersion φ describes the refraction of the
laser beam by the atomic density distribution (which for this purpose can be consid-
ered as continuous) [176, 286]. It disappears in resonance and diminishes slowly with
increased detuning (∝ ∆). It is connected to the dipole force and, thus, does not heat
the atomic cloud. The coefficient φ describes the phase shift of the electromagnetic
wave transmitted through the atomic cloud.

Figure 26.30: Sequence of a typical time-of-flight experiment: As soon as the trapping
potential is suddenly switched off, the atomic cloud ballistically expands for 18 ms, before
it is illuminated by a short resonant laser pulse. The shadow printed by the cloud onto the
beam is photographed by a CCD camera.

26.6.2 Absorption imaging

Let us now detail the experimental process of absorption imaging (see Fig. 26.31):
The trap confining the atomic cloud is suddenly turned off, thus letting the atoms,
accelerated by the Earth’s gravitation, fall for a flight time of a few ms. Then a pulse
of a resonant laser light, whose diameter is much larger than the size of the cloud,
is irradiated. The local attenuation of the beam intensity I ∼ |E|2 can be related
through the absorption b (also called optical density or optical depth) to the atomic
density via,

− ln
I(x, y)

I0
= b(x, y) = σ(∆)

∫
n(r)dz . (26.135)
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The shadow printed by the atomic cloud on the transverse profile of the laser beam
is recorded by a CCD camera.

We have already noted that the absorption is accompanied by radiative pressure.
After some scattering events, due to the photonic recoil, the atoms have accumulated
a sufficiently large velocity, and therefore a sufficiently large Doppler shift, to be
out of resonance with the laser beam. Subsequent photons are no longer scattered
by the atoms and only contribute to increase the illumination of the CCD camera
without carrying any information about the presence of atoms. Consequently, it is
advantageous to use very short laser pulses. In addition, the intensity of the laser beam
should not saturate the transition in order to guarantee an optical cross-section, which
is independent of the intensity, and hence to guarantee the validity of the Lambert-
Beer law. Finally, the laser frequency must be tuned perfectly to resonance, ∆ = 0.
Otherwise, the interaction between the laser beam and the atomic cloud becomes
partially dispersive, which leads to a focusing or defocusing of the laser beam by
refraction and a distortion of the image making it impossible to estimate the size of
the cloud.

Figure 26.31: Absorption images after a time-of-flight allow to identify the presence of a Bose-
condensate through its characteristic momentum distribution. Shown are images (a,b) above,
(c,d) slightly below, and (e,f) well below the critical temperature for a Bose-Einstein phase
transition (figures [367]).

Fig. 26.31 shows examples of absorption images of an atomic cloud taken at differ-
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ent stages of the evaporation process. Fig. 26.31(a,b) was taken at a temperature of
320 nK; the cloud is large and isotropic and therefore purely thermal. At 250 nK [see
Fig. 26.31(c,d)] an elliptically shaped part appears in the center of the thermal cloud.
And at 180 nK [see Fig. 26.31(e,f)] the thermal cloud almost completely disappeared
for the benefit of the condensate. A quantitative evaluation of the condensed fraction
is given in Sec. 7.3.2. Solve the Excs. 26.6.6.2 and 26.6.6.1.

26.6.3 Dispersive imaging

The absorption imaging technique is destructive, because of the involved ballistic ex-
pansion and also because of the radiative pressure exerted by the resonant imaging
beam, which accelerates and heats the atomic cloud. That is, the measurement pro-
cess messes up the distributions of the cloud, such that a second image taken after
the first one will give different results. However, there is a non-destructive imaging
technique called dispersive imaging or phase contrast imaging. In this technique, the
laser light is tuned sufficiently far from resonance, |∆| ≫ Γ, for spontaneous emission
and heating induced by random photonic recoil to be negligible [22]. This permits to
take a series of consecutive images and create a movie of the temporal evolution of
the cloud. Another advantage of this technique is the low off-resonant optical den-
sity, which allows to take pictures of very dense clouds in situ, that is, while they are
confined in a trap.

Figure 26.32: Scheme for dispersive images.

The physical quantity which is measured by this method is the local phase shift of
the wavefront of the probe laser. Wavefront distortions are difficult to measure. To
transform the phase profile into an intensity profile, a method known from classical
optics called Schlieren method is used. It is based on the interference of the probe
beam with its distorted wavefront and a reference plane wave. In practice, there
are several possibilities. For dark-ground imaging, the part of the incident beam
not having interacted with the atoms is blocked behind the interaction zone (see
Fig. 26.32)

Īdg = 1
2 |E − E0|2 = I0|e−b/2+ıφ − 1|2 (26.136)

b→0−→ I0φ
2 = I0b

∆2

Γ2
.

The intensity signal Īdg is quadratic in optical density b.

For phase contrast imaging, the part of the beam not having interacted with the
atoms receives a phase shift of λ/4 with respect to the part of the beam having
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interacted with the atoms:

Īpc =
1
2 |E − E0 + E0e±ıπ/2|2 = I0|e−b/2+ıφ − 1 + e±ıπ/2|2 (26.137)

b→0−→ I0(±1 + φ)2 ≃ I0
(
1± b∆

Γ

)
.

The intensity Īpc is linear in b and, consequently, more sensitive to weak signals.
Finally, a third technique, called polarization contrast imaging, detects the local bire-
fringence of the atomic cloud [113, 712].

The imaging techniques shown so far only allow to visualize the instantaneous
density distribution of the atomic cloud n(r). If we are interested in other quantities,
we have to conceive the experiment in such a way, that the desired information leaves
its signatures in the density distribution. For example, to measure the excitation
frequencies of a condensate, which can perturb its shape and observe the subsequent
time evolution of n(r, t) via dispersive imaging [438, 573, 23, 459].

26.6.4 Reconstruction of column-integrated absorption images

Assume cylindrical symmetry n(r) = n(r, z), with r =
√
x2 + y2. Absorption images

are column-integrated, i.e. they are taken by integration along the x-axis,

I(y, z)

I0(y, z)
= e−σ

∫
n(r,z)dx = e−σf(y,z) . (26.138)

The radial density can be recovered by tomography [208, 246, 640],

n(r, z) =
1

(2π)2

∫
(Fyf)(κy, z)J0(κyr)dκy . (26.139)

This is called image reconstruction or Fourier reconstruction or inverse Abel transform
and will we studied in Exc. 26.6.6.3.

26.6.5 Condensable atomic species

Early work on BEC has been done by [729, 54, 85, 145, 520]. Proposals for atomic
gases withe from [375, 802, 798]. An appropriate BEC candidate must fulfill a few
conditions: The transition wavelengths must be accessible by laser light, the level
scheme should exhibit a closed cycling transition for laser cooling and have a rea-
sonable pressure in gas phase. Furthermore, it is desirable to have a large HFS,
metastable electronic state, no trapping state, large positive scattering length, Fesh-
bach resonances. For sympathetic cooling it may be nice to have several isotopes of
the same element.

The most common elements are alkalis, alkali earths and noble gases. The fol-
lowing gases have already been condensed 1H, 1He∗, 7Li, 23Na, 85Rb, and 87Rb
[20, 201, 114, 113, 713, 179, 367, 371]. Investigations in 1Ne∗, 39K, 133Cs, xSr, xCr
and 40Ca are underway [771, 350, 476, 671, 758, 64, 291].
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26.6.6 Exercises

26.6.6.1 Ex: Lensing by cold clouds

The interaction of light with two-level atoms generates a susceptibility which gives
rise to a refraction index,

η(r) =

√
1− 4πn(r)

k3(2∆/Γ + ı)
,

where n(r) is the cloud’s density distribution and Γ/2π = 30.5MHz for strontium.
a. Calculate the phase-shift suffered by a light beam crossing an ultracold atomic cloud
(N = 105, T = 1µK) confined in an isotropic harmonic trap (ωtrp = (2π) 100Hz) as
a function of detuning.
b. Estimate the focal distance of the cloud for ∆ = −Γ.

26.6.6.2 Ex: Optical density

A cloud of N = 106 87Rb atoms is prepared in a cylindrical harmonic trap char-
acterized by the axial vibration frequencies ωz = (2π) 50Hz and the radial one
ωr = (2π) 200Hz. The experimenter takes the absorption image after 18ms time-of-
flight, as shown in Fig. 26.31(a). A pixel of the CCD camera corresponds to 5µm in
real space.
a. At what temperature is the phase transition to Bose-Einstein condensate to be
expected?
b. Determine the temperature of the sample.
c. Evaluate its density distribution.
d. Evaluate the resonant optical density for the D2-transition at 780 nm along the
symmetry axis of the trapped cloud.

26.6.6.3 Ex: Inverse Abel transformation

Calculate the inverse Abel transform using Bessel of an arbitrary function in 2D.
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Chapter 27

Bose-Einstein condensation

The experimental verification of Bose and Einstein’s prediction was for a long time
a cherished dream of many physicists. On the one hand, several phenomena have
been related to BEC in the past, for example, the phenomenon of superfluidity in
liquid helium and superconductivity. On the other hand, these strongly interacting
systems are not pure enough to clearly identify the role of BEC. In 1995, however,
Bose-Einstein condensation of weakly interacting confined atomic gases was achieved
in several laboratories [20, 203, 114, 367]. This success gave rise to a revolution
in atom optics documented in an enormous amount of theoretical and experimental
work. While initial work focused on the equilibrium thermodynamics of condensates
near the phase transition, very soon the dynamic response of condensates to pertur-
bations was the subject of in-depth investigations, followed by the study of superfluid
characteristics, quantum transport phenomena, the interaction of condensates with
light, of condensed gas mixtures [613, 792], and the behavior of condensates in peri-
odic potentials. To name only a few landmarks, we mention the creation of vortices
[557, 541] and quantum turbulence [386], the realization of various types of atom lasers
[571, 19, 90, 360] and atom interferometers with condensates [363, 483], the coherent
amplification of matter waves [416, 486, 418, 221], the creation of the Mott insulat-
ing states in optical lattices [337], the study of condensates in reduced dimensions
[603], the Anderson localization of atomic matter waves [144, 695], the observation
of Feshbach type collision resonances [178, 415, 845] and Efimov states [487, 58], the
creation of homonuclear molecular [338, 440, 184, 908, 886, 388] and heteronuclear
condensates [637] and degenerate Fermi gases [214], the observation of BCS type pair-
ing [398, 339], the observation of matter wave superradiance [416] and the interaction
of condensates with optical cavities [765, 132] and with surfaces [68].

It is clearly unthinkable to discuss all matters in this course. Let us, however, give
a basic and practical introduction to atomic optics with condensates.

27.1 Bose-Einstein condensation of dilute gases

The challenge of the experimental realization of Bose-Einstein condensation is the
preparation of a very dense sample of very cold atoms. In practice, the first step
consists in providing an atomic gas, for example, of an alkali metal. This is done
by heating the metal in an oven (or sometimes in a dispenser). The atoms being
ejected from the metal and forming a hot gas are then forced through a nozzle out of
the oven, where they form a hot atomic beam. Some experiments employ a Zeeman
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slower, which is a device that decelerates the fast atoms of the beam by means of
a counterpropagating laser exerting a radiative pressure force. A position-dependent
magnetic field applied along the trajectory of the atoms is calculated in order to
compensate for the Doppler decreasing shift of the decelerated atoms and to ensure
that the laser always stays in resonance with an atomic transition (see Exc. 16.5.6.3).
Velocities around 30m/s are realistic and low enough to allow the capture of the
atoms by a magneto-optical (MOT) trap. Usually, some 109 atoms are captured in a
few seconds.

MOTs do not only trap atoms, but simultaneously cool them down to the Doppler
limit of typically some 10µK. Quasi-resonant optical traps, such as MOT, are afflicted
by the problem of radiation trapping (see Sec. 26.3.1), which limits the densities of
atomic clouds to typically 1011 cm3. This corresponds (at temperatures close to the
Doppler limit) to phase space densities several orders of magnitude away from the
threshold to Bose-Einstein condensation. For this reason, the atoms are transferred
from the MOT to a potential exempt of radiative pressure force, for example, an
optical dipole potential or a magnetic trap.

Once the atoms are confined in such a conservative potential, all the light beams
are turned off, and the technique of evaporative cooling is activated (see Sec. 26.4.3).
That is, the effective potential is deformed (for example, by an irradiated radiofre-
quency) in a way to skim out hot atoms and leave behind a cooler sample. This
however supposes that the atomic cloud finds back to thermal equilibrium afterwards.
As the rethermalization happens by elastic collisions, a high atomic density is neces-
sary, which is often achieved via a compression of the trapping potential. In general,
99.9% of the atoms must be sacrificed to condense the rest. Finally, the momentum
distribution is imaged after a time of free expansion. This is done by irradiation of a
probe laser pulse (see Fig. 26.31). The entire process of producing a condensed cloud
usually takes between 10 s and 60 s.

27.1.1 Condensate of alkaline gases

The first experimental observation of Bose-Einstein condensation was done with a
dilute rubidium gas by Cornell and Wieman at the Joint Institute for Laboratory
Astrophysics (JILA) [20]. A group from the University of Texas [367, 179] used
rubidium as well. A group led by Ketterle from the Massachusetts Institute of Tech-
nology (MIT) created the first sodium condensate. And a group led by Hulet from
Rice University opted for lithium [114, 112], which has a slightly negative scattering
length, a = −27.3aB. In this situation, only small condensates are expected to be
stable [710, 799], which explains the observation of a limited number of about 1400
condensed lithium atoms. Meanwhile, Bose-Einstein condensation has been achieved
with many other species, such as 1H [291], 85Rb [173], 4He∗ [699], 133Cs [771], 39K
[671], 4Ne [64], 88Sr [789], or even molecules [884].

27.1.2 Condensation of hydrogen

Hydrogen is a very interesting element to study condensation, because its short scat-
tering length, a ≈ 1.23aB, makes it an almost ideal gas. Consequently, the three-body
collision rate causing losses is weak, even at very high densities. Since the mass of
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hydrogen is small, the critical temperature is high. The simplicity of its electronic
structure allows precise calculations of the interaction potentials based on fundamen-
tal principles, which can thus be tested experimentally.

Twenty years after having started the project of condensing dilute hydrogen gases,
Greytak and Kleppner [291] crossed the phase transition at a temperature of 50µK
with an atomic density of 5 × 1015 cm−3. The number of condensed atoms was 109,
which corresponds to a condensed fraction below 10% 1. The condensed cloud had a
needle-like shape of 15µm diameter and 5mm length. It was detected by an in situ
measurement technique of the atomic velocity distribution.

Figure 27.1: Spectrum of condensed hydrogen.

27.1.3 Recognizing Bose-Einstein condensates

’How to recognize the presence of a condensate, what are its signatures?’ We have
already seen in Sec. 7.3.3 that, trapped inside a confinement potential, an ultracold
ideal Bose-gas has a modified density distribution when Bose-Einstein statistics come
into play. Below the critical temperature the density distribution is well described by
a superposition of a condensed cloud concentrated in the trap’s ground state and a
thermal cloud distributed over several vibrationally excited states. We thus expect
distinct distribution functions for both clouds, and the same is true for the momen-
tum distribution. The splitting of the distribution functions in two fractions occurs
abruptly during the phase transition to quantum degeneracy. In a real gas, however,
the interatomic collisions have a drastic influence on the distribution functions and
the behavior of the gas at the phase transition, and we are obliged to develop a more
general theory in order to quantitatively understand the thermodynamic properties
(temperature, critical point, heat capacity, ...) through the measured static quantities
(density, number of atoms, condensed fraction, ...).

’What observables can be measured in the laboratory?’ In fact, with few excep-
tions, the only accessible quantity is the spatial density distribution of the atomic cloud

1When the condensed fraction and the density are too high, losses induced by dipolar spin-flip
processes predominate over the gain due to evaporative cooling of the thermal cloud [394].
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n(r) measured after a time of ballistic expansion. Information on non-trivial proper-
ties of the condensate, for example, its dynamic behavior (excitations, superfluidity,
turbulence, ...) or its coherent features (phase, correlations, ...), can only be gathered
through an observation of the condensate’s response to applied perturbations. Solve
the Excs. 27.1.5.1 and 27.1.5.2.

27.1.4 Photon condensation

An interesting question is that of the possibility of photon condensation and its re-
lationship to the laser. The relationship is not that obvious because, on one hand
atomic condensates are produced by evaporating a ensemble in constant thermal
equilibrium, while on the other hand the photonic laser requires inversion, which is
a highly non-equilibrium situation. And under the constraint of having to reduce its
energy, a photon gas trapped in an optical cavity has the simpler alternative to let
photons escape into the void by annihilating them on the cavity walls, as it happens
for black-body radiation. Since the number of photons in a cavity is not conserved,
the chemical potential disappears, µ = 0. The density of states can be written,

u(ν) =
8πV

c3
ϵ2dϵ

h2
. (27.1)

It is the same as in the Debye model. Planck’s formula now follows from,

u(ϵ)dϵ =
1

V
ϵfBE(ϵ)ρ(ϵ)dϵ , (27.2)

where fBE is the Bose-Einstein distribution. Hence, the treatment of the photons
as indistinguishable particles following the Bose-Einstein distribution is equivalent to
assuming a Boltzmann distribution for waves with quantized energies.

Nevertheless, one can imagine a photonic gas in thermal equilibrium with an
atomic gas through Compton scattering [459]. In fact, photon condensation was
observed experimentally [470]. Also, there are theories about superfluid photon gases
[148] 2.

2Bose-Einstein condensation occurs in thermal equilibrium when entropy is maximized by putting
a macroscopic population of atoms into the ground state of the system. It might appear counter-
intuitive that an apparently highly ordered state as the Bose condensate maximizes entropy. However,
only the particles in excited states contribute to the entropy. Their contribution is maximized at a
given total energy by forming a Bose condensate in the ground state and distributing the remaining
atoms among higher energy states. A macroscopic population of atoms in the ground state of the
system is achieved simply by lowering the temperature of the sample. This is in contrast to the
optical laser where a non-equilibrium process is necessary to place a macroscopic population of
photons in a single mode of the electromagnetic field. This is due to the fact that, unlike photons,
the number of atoms is conserved. For bosonic atoms, the lowest entropy state below a certain
temperature includes a macroscopic population of the ground state. In contrast, when one cools
down a blackbody cavity, the cavity empties. Photons do not Bose condense into the ground state of
the cavity, but are absorbed by the walls. The absorbed energy leads to a larger entropy than forming
a Bose condensate. The laser phenomenon requires inversion of the active medium characterized by
a ’negative’ temperature. In that sense, ’lasing’ of atoms is a simpler phenomenon than lasing of
light –all you need to do is cool a gas! However, if a photon gas would thermalize while the number of
photons is conserved, it would be described by a Bose-Einstein distribution with non-zero chemical
potential and could form a Bose condensate. Thermalization with number conservation is possible,
for example, by Compton scattering with a thermal electron gas [459].
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27.1.5 Exercises

27.1.5.1 Ex: Condensation of ions

Discuss the possibility of creating Bose-Einstein condensates from ionic clouds.

27.1.5.2 Ex: Isobaric impurities

Discuss the possibility of creating Bose-Einstein condensates with isobaric species.

27.2 Quantum theory

As detailed above, interatomic interactions strongly influence the properties of Bose-
Einstein condensates, even their density and momentum distributions. For a correct
interpretation of the experimental measurements a theoretical many-body treatment
taking care of these interactions is compulsory. This is done through a description of
the atomic distribution as a scalar field of matter called second quantization, where the
atoms are treated as delocalized Broglie waves. For an introduction to this formalism
see [850].

27.2.1 Description of the atom as a scalar field

In position space a state with n particles can be described in a canonically quantized
way by a field operator,

Ψ̂(r1, ..., rn, t) = ψ̂†(r1, t) · ... · ψ̂†(rn, t)Ψ̂0 , ψ̂(r)Ψ̂0 = 0 , (27.3)

where Ψ̂0 is the vacuum state, i.e. the state without atoms. The field operators ψ̂(r, t)

and ψ̂†(r, t) annihilate, respectively create, an atom at position r and time t. This
state represents a bosonic Fock state and can be generated from the empty state by
a sequence of individual particle creation operators. Applying the notions and rules
developed for the harmonic oscillator in Sec. 2.6.1, we can define a coherent state of
bosonic matter as,

|Φ̂(t)⟩ =
∞∑

n=0

Nn/2

√
n!
|Ψ̂(r1, ..., rn, t)⟩ . (27.4)

The field operators for particle creation and annihilation are normalized to the number
of atoms and satisfy the following commutation rules,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_CondensacaoIons.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_ImpurezasIsobaras.pdf
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(i) [ψ̂(r), ψ̂(r′)]− = 0

(ii) [ψ̂(r), ψ̂†(r′)]− = δ3(r− r′) , ψ̂†(r) =

∫
d3r′ψ̂†(r′)δ3(r− r′)

(iii) [ψ̂(r), N̂ ]− = ψ̂(r) , N̂ =

∫
d3r′ψ̂†(r′)ψ̂(r′)

(iv) [ψ̂(r), p̂]− = ℏ
ı∇ψ̂(r) , p̂ =

∫
d3r′ψ̂†(r′)(ℏı∇′)ψ̂(r′)

(v) [ψ̂(r), Ĥ]− = ıℏ ∂
∂t ψ̂(r)

(27.5)

The last equation is the Heisenberg equation of motion and describes the dynamics
of a system whose many-body Hamiltonian Ĥ ≡ Ĥcm+ Ĥself for N bosons interacting
within an external potential Vtrp in second quantization is defined by 3,

Ĥcm ≡
∫
d3rψ̂†(r)

(
− ℏ2

2m
∇2 + Vtrp(r, t)

)
ψ̂(r)

Ĥself ≡
∫
d3r

∫
d3r′ψ̂†(r)ψ̂†(r′)Vcoll(r− r′)ψ̂(r′)ψ̂(r)

. (27.6)

The equations (27.5) and (27.6) represent the foundation of the theory of ultra-
cold bosonic gases. However, to solve the equations, we will need to apply some
simplifications, which will be discussed in the following sections. For example, we will
generally assume that the temperature of the sample is T = 0, and that all atoms are
condensed. Also, in a first time, we will neglect quantum fluctuations, replacing field
operators with complex numbers. And finally, we will need to handle the nonlinear
term appearing in Ĥself and which signs responsible for collisions between atoms.

27.2.2 Quantum scattering at low temperatures

To simplify the term Ĥself, we have to go back to Secs. 13.2.5 (and following) and
study the phenomenon of the elastic collisions in the ultracold regime. For simplicity,
we consider two particles without internal degrees of freedom with masses m1 and
m2 approaching each other along the z-axis [163, 858]. Neglecting spin-spin and spin-
orbit interactions, the Schrödinger equation in the inertial center-of-mass system is
given by (13.115), (

− ℏ2

2m∗∇
2 + Vcoll(r)

)
ψ̂(r) = Eψ̂(r) , (27.7)

where r = r1 − r2 is the momentary interatomic separation, r = |r|, and mr ≡
m1m2/(m1+m2) is the reduced mass of atomic collision partners. We assume that the
interatomic potential, Vcoll(r), is spherically symmetrical. In the asymptotic limit of
large separations 4, and in the Born-approximation (13.135), the solution of Eq. (27.7)

3Sometimes the Landau potential is used for canonical and macrocanonic ensembles. It defined
by, Ω̂ = Ĥcm + Ĥself −

∫
d3rψ̂†(r)µψ̂(r), where µ is the chemical potential.

4This means, r ≫ r0, where r0 is the range of potential V (r).
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can be seen as the sum of an incident plane wave and a scattered spherical wave
modulated with a certain amplitude f(θ),

ψ(r) = eıkz + f(θ)
eıkr

r
, (27.8)

where k =
√
2mrE/ℏ2 is the amplitude of the wavevector of the incident and scat-

tered waves and θ the angle between r and z. The function f(θ) is called scattering
amplitude and determines the scattering cross-section for s-wave collision through the
expression [see (13.123)],

dσ

dΩ
= |f(θ)|2 . (27.9)

where dΩ = sin θdθdϕ is an element of the solid angle. To calculate the scattering
amplitude, we expand the wavefunction (27.8) into spherical partial waves of orders
ℓ of the angular momentum, as done in (13.136),

fk(θ) =
1

k

∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)e
ıδℓ sin δℓ . (27.10)

The collision cross section has been shown in (13.148) to be given by,

σ =
4π

k2

∞∑

ℓ=0

(2ℓ+ 1) sin2 δℓ . (27.11)

For a potential with finite range, that is, a potential falling faster than r−3 with the
distance (interatomic potentials usually fall as r−6 or r−7), the phase shift satisfies,

δℓ ∝ k2ℓ+1 (27.12)

for small k. In ultra-cold gases, the collision energy is very low and k → 0. Thus
the scattering will be dominated by terms with ℓ = 0. This is the so-called limit of
s-wave scattering. In this limit the Eqs. (27.10) can be approximated as,

fk(θ) =
1

k
eıδ0 sin δ0 . (27.13)

27.2.3 Scattering length

For ℓ = 0, taking the limit k → 0, we define the scattering length as via,

Im fk(θ)

Re fk(θ)
= tan δ0 ≡ − tan kas . (27.14)

Therefore, the scattering length defined by (27.14) and the cross section (27.11) are
given at very low temperatures at the asymptotic boundary by,

as = −
δ0
k

and σ = 4πa2s . (27.15)
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The scattering process can be interpreted as follows: During a collision, the sys-
tem’s wavefunction undergoes a phase shift, δ0, which may be positive or negative,
depending on the sign of as. If as < 0, the phase is ’delayed’ by the collision. This
corresponds to an attractive interaction. In contrast, if as > 0, the phase is ’advanced’
and the interaction is repulsive, as illustrated in Fig. 13.16. Of course, the intensity of
the interaction is proportional to the value of |as|. The expression for σ in Eq. (27.15)
indicates, that the atoms behave like hard spheres with radius |as|. The specific value
of as will depend on the interaction potential, however, the details of the potential
are unimportant, as all information about the collision is already contained in as.
Consequently, in the low-energy limit, we can assume that the collision is mediated
by an effective potential Veff(r), which has the particularity,

∫
Vcoll(r)d

3r =
4πℏ2

m
as ≡ g . (27.16)

This has been shown in Sec. 13.1.2. Consequently, the effective interaction between
two particles at positions r and r′ can be considered as contact interaction given by 5,

Vcoll(r, r
′) =

g

2
δ(r− r′) . (27.17)

The factor 1
2 comes from the reduced mass introduced when converting the colli-

sion potential Vcoll(r) specified in center-of-mass coordinates back into an interaction
energy Vcoll(r, r

′) needed in lab coordinates.
The interatomic interaction potential decides on the value of the scattering length

as: A repulsive potential corresponds to a positive as. For a purely attractive potential
that does not support bound states as is negative, and for an attractive potential that
supports bound states as may be positive or negative depending on the proximity of
the last bound vibrational state of the interaction potential below the dissociation
limit.

27.2.4 The mean field approximation

The mean-field theory (MFT) or local density approximation (LDA) is based on the
assumption of hard sphere collisions between atoms (as described by the potential

(27.17)) propagating through a locally homogeneous mean-field potential, g
2 |ψ̂(r)|2.

The procedure is also called regularization of the interaction.
Thus, the mean-field energy of a condensate is proportional to the density of the

gas n and to a single atomic constant, which is the scattering length as. Its presence
in the Gross-Pitaevskii equation emphasizes its impact on shape, dynamic stability
and many other properties of the condensate. For example, the mean-field interaction
contributes to the broadening of a condensed wavepacket, and consequently contracts
its momentum distribution in comparison with an ideal gas. Homogeneous conden-
sates with a negative scattering length are unstable, because the attempt of such a

5The Hartree-Fock-Bogolubov method (HFB) for the mean-field theory disregards corrections of
higher orders, for example, due to the renormalization of the scattering length. It also neglects

quantum depletion due to the correlation effects of the order of Nout/N = 5
8

√
π
√
a3n0. The the-

ory mean-field supposes the validity of the Born approximation, that is, two-body correlations are
neglected, ψ̂(r′) ≈ ψ̂(r) and

∫
d3RVcoll(R) = g

2
.
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condensate to lower its self-energy by increasing its density also increases the rate of
inelastic three-body collisions until the condensate collapses.

27.2.5 Gross-Pitaevskii equation

The Heisenberg equation [last line of (27.5)] is equivalent to the variational principle,
as stated by the Ehrenfest theorem,

ıℏ
dψ̂

dt
=
δH
δψ̂†

. (27.18)

This facilitates the derivation of the equation of motion for the atomic field. With
the Hamiltonian (27.6) in the mean-field approximation,

Hatom ≡ Hcm +Hmf with Hmf ≡
∫
d3rψ̂†(r, t)

g

2
|ψ̂(r, t)|2ψ̂(r, t) , (27.19)

we find the non-linear Schrödinger equation,
[
− ℏ2

2m
∇2 + Vtrp(r, t) + g|ψ̂(r, t)|2

]
ψ̂(r, t) = ıℏ

∂

∂t
ψ̂(r, t) . (27.20)

Remember that, despite their symbol ψ̂, which usually is associated to wavefunc-
tions, and the fact that they satisfy a non-linear Schrödinger equation the field op-
erators are represented by matrices acting of many-body states. That is, Eq. (27.20)
also represents a Heisenberg equation for the field operators.

A common approximation is the Bogolubov prescription, where the field operators
describing the condensate and its fluctuations are decomposed into a complex func-
tion, ψ0(r) ≡ ⟨ψ̂(r)⟩ called condensed wavefunction, which can be chosen as the order

parameter of the system, and a small perturbation, δψ̂(r) ≡ ψ̂(r) − ψ0(r) describing
thermal excitations. At zero temperature, we can neglect the excitations [61], and our
system is completely described by a single wavefunction, ψ0(r, t), obeying the famous
Gross-Pitaevskii equation (GPE),

[−ℏ2
2m
∇2 + Vtrp(r, t) + g|ψ0(r, t)|2

]
ψ0(r, t) = ıℏ

∂

∂t
ψ0(r, t) . (27.21)

27.2.5.1 Spontaneous breaking of gauge symmetry

The description of a condensate by a single macroscopic wavefunction means that we
attribute a well-defined phase to it. However, the GPE does not allow us to pre-
dict, which phase between 0 and 2π this will be, and we have to assume, that the
BEC chooses its phase spontaneously when it undergoes the phase transition to quan-
tum degeneracy. This principle is called spontaneous breaking of gauge symmetry 6.
In Exc. 27.2.6.2 we study the relation between the fact of having exactly N atoms
in a condensate and a well-defined phase φ, knowing that these two quantities are
conjugate variables having to satisfy a Heisenberg uncertainty relation.

6An alternative way of modeling the development of a BEC phase is based on measurement theory.
See also (14.86) for an analogy to the correct state of a laser.
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27.2.6 Exercises

27.2.6.1 Ex: Derivation of the non-linear Schrödinger equation

Derive the non-linear Schrödinger equation using (a) the commutator relation (27.5)(v)
and (b) the variational expression (27.18).

27.2.6.2 Ex: Spontaneous breaking of gauge symmetry

One of the primary characteristics of a condensate is its phase coherence. Now,
consider a condensate with exactly N atoms. The exact knowledge of the atom
number implies a totally uncertain phase of the condensate, according to Heisenberg’s
uncertainty relation. Explain this contradiction!

27.3 Approximate solutions of the Gross-Pitaevskii
equation

27.3.1 Stationary GPE

In cases where the external potential is stationary, Vtrp(r, t) = Vtrp(r), the temporal
dependency of the GPE can be removed by the ansatz,

ψ0(r, t) = ψ0(r)e
−ıµt/ℏ . (27.22)

This gives the stationary Gross-Pitaevskii equation,

[−ℏ2
2m
∇2 + Vtrp(r) + g|ψ0(r)|2

]
ψ0(r) = µψ0(r) , (27.23)

where µ is called the chemical potential. Solve Exc. 27.3.4.1.

27.3.2 Trapped condensates and the Thomas-Fermi limit

27.3.2.1 Free particles

The wavefunction of free particles, V (r) = 0, can be described by a plane wave,

ψ(r) =
√
neık·r , (27.24)

also called the Hartree solution. Inserted it into the equation of Gross-Pitaevskii
equation,

E(k) =
ℏ2k2

2m
+ gn , (27.25)

we observe a gap in the energy spectrum due to the interaction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_QuebraCabeca.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_QuebraCalibre.pdf
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27.3.2.2 Ideal gas in a harmonic potential

Most experiments apply non-isotropic (often cylindrical) potentials, which are ad-
ditionally distorted by the mean-field. Hence, the non-linear term of the GPE is
important, and the spatial coordinates can not be separated. However, assuming an
ideal gas and a harmonic potential, the dimensions could be separated, as demon-
strated in Sec. 2.5.5, even when the potential is not isotropic. It is then sufficient to
consider one-dimensional problems with g = 0,

[
− ℏ2

2m

∂2

∂x2
+
m

2
ω2
xx̂

2

]
ψn = µnψn . (27.26)

In this limit, the GPE is nothing more than the usual Schrödinger equation, which
has the well-known spectrum (2.119) and the solutions (2.118).

27.3.2.3 Ideal gas in an isotropic potential

In the case of an ideal gas trapped in a spherically symmetric potential, as shown in
(3.34), the Schrödinger equation can be reduced to its radial component,

[
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
+ Vtrp(r)

]
fnlm(r) = µnlfnlm(r) , (27.27)

with the solution (3.18),

ψn(r, ϑ, φ) =
∑

l,m

fnlm(r)Ylm(ϑ, φ) (27.28)

The differential equation (27.27) can be solved numerically by Runge-Kutta type
methods, (

f ′′

f ′

)
=

(
2
r µ+ l(l+1)

r2 − Vtrp(r)
1 0

)(
f ′

f

)
. (27.29)

27.3.2.4 Thomas-Fermi limit for strong interactions

In the case of strong interactions, the kinetic energy term can be neglected, at least in
the center of the cloud, where the mean-field energy is stronger. For this case, called
Thomas-Fermi limit, the GPE solution is easy,

|ψ0(r)|2 =
µ− Vtrp

g
. (27.30)

The chemical potential follows from the normalization condition,

N =

∫

n(r)>0

n(r)d3r . (27.31)

In the case of an cylindrical harmonic oscillator potential, Vtrp(r, z) =
m
2 (ω

2
rr

2+ω2
zz

2),
the chemical potential is,

µ =

(
15Ng

8π

)2/5 (m
2
(ω2
rωz)

2/3
)3/5

. (27.32)
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The radial size σ of the condensate follows from n(rhw, 0) =
n(0,0)

2 ,

rhw =

√
µ

mω2
r

. (27.33)

Solve the Excs. 27.3.4.2 and 27.3.4.3.

27.3.3 Variational treatment of the GPE

The many-body Hamiltonian (27.19) can be used as an energy functional,

E[ψ0] ≡ ⟨H[ψ0]⟩ =
∫
d3r

[
ℏ2

2m
|∇ψ0|2 + Vtrp(r)|ψ0|2 +

g

2
|ψ0|4

]
, (27.34)

from which, using the variational condition (27.18), we have derived the Gross-
Pitaevskii equation (27.21). Hence, the wavefunction ψ0 minimizes the functional
[237]. By inserting an ansatz for the wavefunction with adjustable parameters, the
functional provides conditions to optimize these parameters.

The variational method is useful e.g. for finding the ground state wavefunction
of a condensate in an arbitrarily shaped trap or to perform a stability analysis of a
condensate with attractive interatomic forces.

27.3.3.1 Finding the fundamental state of the GPE

This problem of finding the ground state wavefunction of a condensate consists in
finding the ψ for which the energy H[ψ] goes to a minimum. In general, the functional
has the form H[ψ] =

∫
f [ψ,∇ψ]d3r. The fastest way to the minimum is to reduce the

energy by varying ψ in that direction, where the gradient δH/δψ∗ is largest, that is,

H → H[ψ + τ δH
δψ∗ ] (27.35)

ψ → ψ + τ δHδψ∗ ,

with the boundary condition, that the normalization must be preserved. Formally,
this problem is similar to a time-dependent Gross-Pitaevskii equation, but with imag-
inary time. Physically, the procedure, called the steepest descent method, can be
interpreted as applying a heavily ’overdamped’ friction force,

∂ψ

∂τ
=

δH
δψ∗ . (27.36)

In practice, the procedure is as follows: we start with a trial wavefunction, for
example, the exact solution of the interaction-free case. This function is now prop-
agated in imaginary time, using the complete Hamiltonian including the non-linear
term, and then renormalized:

ℏ
∂

∂t
ψ(r, t) = H(r)ψ(r, t) . (27.37)
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Figure 27.2: (code) Calculation of the BEC wavefunction by the steepest descent method

(red dots). Also shown are the ideal gas approximation (yellow line) and the Thomas-

Fermi approximation (magenta line), as well as the ground state energy (black line) and the

chemical potential (green line).

Substituting the imaginary unit i in the time-dependent Gross-Pitaevskii equation
(27.21) by −1, we obtain,

ψ(r, t+ dt) = [1− ℏ−1H(r)dt]ψ(r, t) (27.38)

ψ′(r, t) ≡ ψ(r, t+ dt)

|ψ(r, t+ dt)| → ψ(r, t) .

This procedure is repeated until the function converges. Since this method is derived
from a variational principle, it only serves to find the ground state of the trapping
potential. It can not be used for excited states (with the exception of vortex states,
where in cylindrical coordinates the Hamiltonian differs by an additional centrifugal
term).

27.3.3.2 Collapse and stabilization of condensates with attractive inter-
actions

Attractive interactions destabilize a Bose-Einstein condensate. Since the interaction
energy, 4πℏ2asn/m, of a condensate with negative scattering length decreased with
increasing density n, the condensate attempts to lower its interaction energy by in-
creasing its density until it succumbs to inelastic two-body spin-changing collisions of
to three-body collisions leading to the formation of molecules [799]. Strictly speak-
ing, this only holds true for homogeneous condensates. In the presence of a trapping
potential, however, the zero-point energy exerts a kinetic pressure, which counteracts
the condensate collapse to a certain extent, such that small condensates are stabi-
lized. This can be verified by inserting a Gaussian wavefunction ψ0 ∝ e−r

2/2r̄2 into
the energy functional (27.34). Varying the radius r̄ of the condensate, we find a local
minimum where the condensate is stable. Calculations for spherical traps predict
[710, 192],

Nmin ≃ 0.575
atrp
|as|

, (27.39)

where atrp =
√
ℏ/mωtrp.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_SteepestDescent.m


1234 CHAPTER 27. BOSE-EINSTEIN CONDENSATION

The atomic species 7Li has a slightly negative scattering length as = −27.3aB. As
can be seen in Fig. 27.3, small condensates can survive in a confining trap, since the
energy functional has a local minimum [114, 112, 711]. Solve Exc. 27.3.4.4.

10−1 100 101

r̄/atrp

0

1

2

3

4

E
[ψ

0
]/
h̄
ω

×104

Figure 27.3: (code) Energy of a 7Li condensate in a harmonic isotropic potential with

ωtrp = (2π) 50 Hz with N = 500 atoms (linha inferior) up to N = 3000 (linha superior)

when the radius r̄ of the condensate is varied.

27.3.4 Exercises

27.3.4.1 Ex: GPE in dimensionless units

Use the following abbreviations to rewrite the Gross-Pitaevskii equation and its solu-
tion for a harmonic isotropic potential in dimensionless units,

V1 ≡ Vtrp/ℏωtrp Vtrp = m
2 ω

2
trpr

2

r1 ≡ r/atrp atrp =
√

ℏ/mωtrp

µ1 ≡ µ/ℏωtrp T1 ≡ kBT/ℏωtrp

ψ1 ≡ ψ/a3/2trp p1 ≡ atrpp/ℏ
g ≡ 4πℏ2a/m g1 ≡ 8πN0a/atrp

27.3.4.2 Ex: Interacting gas in an isotropic potential

Consider the potential V (r) = V (r), such that the wavefunction will have radial

symmetry, ψ(r) = ϕ(r)
r . Rewrite the Gross-Pitaevskii equation for the function ϕ

[401].

27.3.4.3 Ex: Interacting gas in a cylindrical potential

Consider the potential V (r) = V (ρ, z), such that the wavefunction will have rotational

symmetry, ψ(ρ, z, φ) = ϕ(ρ,z)
ρ . Rewrite the Gross-Pitaevskii equation for the function

ϕ [401].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_StableCollapse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_StableCollapse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_StableCollapse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_GpeSemdimensao.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_GasinteragindoIsotropo.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_GasinteragindoCilindrico.pdf
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27.3.4.4 Ex: Collapse of condensate with attractive interactions

A Bose-Einstein condensate of 7Li may become unstable due to attractive inter-
atomic forces, the scattering length being as = −27.3aB. Consider the radial Gross-
Pitaevskii Hamiltonian with an external harmonic potential with the oscillation fre-
quency ωtrp/(2π) = 50 Hz. Using the variational method, determine the maximum
number of atoms allowing for a stable condensate. (Note that the derived minimiza-
tion condition must be evaluated numerically.)

27.4 Elementary excitations

The dynamics of Bose-Einstein condensates is usually studied by observing the change
of their shape in response to temporal variations in the trapping potential. The sim-
plest variation surely consists in suddenly removing the trapping potential altogether.
Consequently, the first experiment performed with a BEC was the study of its ballistic
expansion [20, 268, 142] (see Sec. 27.7.1).

On the other hand, the temporal variation of the potential can also be a small
oscillatory or pulsed perturbation, for example, a small modification of the amplitude
of the trapping field, a displacement or a local anisotropy induced by the dipole force
of a laser beam tuned far away from resonance. It is even conceivable to manipulate
the self-energy of the condensate or to irradiate electromagnetic waves, which couples
internal atomic excitation levels or states of the atomic motion [61, 21, 783, 438,
573, 761, 256, 800, 439, 632, 782, 313]. The response of the condensate to such
small perturbations can be understood by a linearized model of the Gross-Pitaevskii
equation, which we will present in the following sections.

27.4.1 Bogolubov spectrum of excitations

To analyze the spectrum of a condensate’s response to small perturbations, let us
follow Bogolubov’s treatment of the time-dependent Gross-Pitaevskii equation [780].
We start by substituting Eq. (27.20) [255],

ψ̂(r, t) −→ ψ̂(r, t)e−ıµt/ℏ , (27.40)

which gives us,

[
− ℏ2

2m
∇2 + Vtrp(r) + g|ψ̂(r, t)|2

]
ψ̂(r, t) =

[
µ+ ıℏ

∂

∂t

]
ψ̂(r, t) . (27.41)

The Bogolubov prescription now consists in approximating the field operators of the
condensate by a sum of the equilibrium wavefunction, which is interpreted as a com-
plex number, and a small perturbation, which conserves its operator character,

ψ̂(r, t) ≃ ψ0(r) + δψ̂(r, t) . (27.42)

This treatment assumes that most atoms are condensed, N − N0 ≪ N0, and only a
few thermal atoms are left out.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_ColapsoInteracaoatrativa.pdf
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Applying the Bogolubov transform,

δψ̂(r, t) ≡
∑

k

uk(r)âk(t) + v∗k(r)âk(t)
† , (27.43)

the perturbation is expressed as a superposition of amplitudes for annihilation and
creation of non-interacting quasi-particles. By inserting this ansatz into the Gross-
Pitaevskii equation, we obtain a linear system of equations called Bogolubov-de Gennes
equations.

27.4.1.1 Semi-classical approximation

To simplify the equations, let us neglect the operator character of the quasi-particle
by doing the substitutions,

âk → e−ıωkt and â†k → eıωkt . (27.44)

That is, we insert the ansatz (27.42) with,

δψ̂(r, t) ≡ uk(r)e−ıωkt + v∗k(r)e
ıωkt , (27.45)

into the Gross-Pitaevskii equation (27.41), we look for the lowest order,

(
− ℏ2

2m
∇2 + Vtrp + g|ψ0|2

)
ψ0 = µψ0 , (27.46)

and we collect the terms of first order in e±ıωkt, neglecting terms of order u2k, v
∗2
k or

higher,

− ℏ2

2m
∇2uk + Vtrpuk + 2gψ2

0uk − gψ2
0v

∗
k = µuk + ℏωkuk (27.47)

ℏ2

2m
∇2vk − Vtrpvk − 2gψ2

0vk + gψ2
0u

∗
k = −µvk + ℏωkvk .

Introducing the abbreviations n = ψ2
0 and,

L ≡ −ℏ
2∇2

2m
+ Vtrp + 2gn− µ , (27.48)

we can write
(L − ℏωk gn

gn L+ ℏωk

)(
uk
vk

)
=

[( L gn

gn L

)
− ℏωkσ̂z

]
ϕk = 0 , (27.49)

with σ̂z being the third Pauli matrix. The solution of Eq. (27.49) is given by the
requirement, that the determinant of the matrix be 0,

ℏωk =
√
L2 − (gn)2 . (27.50)

The object

ϕk ≡
(
uk(r)

vk(r)

)
(27.51)
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is called a normal mode of the condensate. The normal modes (27.50) are orthonormal,

⟨ϕk|ϕk′⟩ =
∫
drϕ†k(r)σ̂zϕk′(r) = δk,k′ , (27.52)

which means that the modes do not interact, that is, the quasi-particles do not collide.
For homogeneous systems or at the interior of a large condensate with strong

interactions, we can assume that the potential is approximately constant, Vtrp → 0,
and kinetic energy negligible compared to the self-energy, and Eq. (27.41) shows us,
µ→ gn. Assuming plane waves,

uk(r) ≡ ueık·r and vk(r) ≡ veık·r , (27.53)

we obtain the Bogolubov spectrum of elementary excitations,

ℏωk =

√
ℏ2k2

2m

(
ℏ2k2

2m
+ 2µ

)
. (27.54)

which corresponds to a dispersion relation for Bose-Einstein condensates. For an
interacting gas, the collective modes are distortions of the condensate, caused by
restoring forces originating in the finite compressibility of the gas.

27.4.1.2 Phonon- and particle-like excitations

The coefficients u and v describe the annihilation and u∗ and v∗ the creation of quasi-
particles called phonons or elementary excitations. Two limits are interesting. In the

low energy limit, ℏ2k2

2m ≪ gn(r), we create phonon-like excitations. The Bogolubov
spectrum becomes,

ℏωph
k ≃ csℏk with cs ≡

√
ng

m
. (27.55)

Here is cs the sound velocity inside the condensate. The fact that, comparing (27.54)
and (27.55), we find,

ℏωk > ℏωph
k (27.56)

for all k is the Landau criterion for the superfluidity of the condensate. It means that,
for an object being dragged through the condensate with a velocity less than cs, it does
not become energetically favorable to produce excitations, see Fig. 27.4. Therefore,
the object will move without dissipation, which is an important characteristic of
superfluids. Experiments demonstrated this manifestation of superfluidity by slowly
stirring a strongly focused blue-detuned laser through a condensate. We will come
back to this in Sec. 28.1.1.

In the high energy limit, ℏ2k2

2m ≫ gn(r), we create particle-like excitations. The
Bogolubov spectrum becomes,

ℏωpa
k =

ℏ2k2

2m
. (27.57)

In this limit, we recover the quadratic dispersion relation of free particles, as seen in
Fig. 27.4.

Experimentally, the complete Bogolubov spectrum (27.54) can be measured by
Bragg spectroscopy [791, 781] (see Sec. 29.2). Solve Exc. 27.4.3.1.
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Figure 27.4: (code) Bogolubov spectrum (red), phonon limit (blue line) and particle limit

(green line).

27.4.2 Excitation of normal modes

In the simplest case, we generate a perturbation as a weak additional potential in the
Gross-Pitaevskii equation (27.41),

[
L − gn+ f+(r)e

−ıωpt + f−(r)e
ıωpt
]
ψ̂ = ıℏ

∂

∂t
ψ̂(r, t) . (27.58)

After the Bogolubov transform (27.45) we now have,

[( L gn

gn L

)
− ℏωkσ3

](
u(r)

v(r)

)
= −

(
f+(r)ψ0(r)

f∗−(r)ψ
∗
0(r)

)
. (27.59)

The solution of this equation is found by expanding the amplitudes u(r) and v(r) into
normal modes,

(
u(r)

v(r)

)
=
∑

k

ckϕk(r) and

(
f+(r)ψ0(r)

f∗−(r)ψ
∗
0(r)

)
=
∑

k

gkϕk(r) , (27.60)

where gk is given by the overlap integral,

gk =

∫
drϕ†k(r)σ3

(
f+(r)ψ0(r)

f∗−(r)ψ
∗
0(r)

)
. (27.61)

To calculate the response of the condensate to a given perturbation f±(r), we
must first calculate the normal mode spectrum ϕk(r) from the Bogolubov equation
(27.49). After that, we can calculate the coefficients (27.61). Inserting the expansions
into the Eq. (27.59), we obtain the response of the condensate,

(
u(r)

v(r)

)
= −

∑

k

gk/ℏ
ωk − ω

ϕk . (27.62)

The deviation, which is observed for resonant excitation, is due to the neglected losses
and non-linear effects.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BogolubovSpectrum.m
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27.4.2.1 Classification of normal modes

BECs often have cylindrical symmetry, ψ(r) = ψ0(r, z). In this case, similar calcu-
lations to those shown above, result in analytical expressions for the frequencies of
the elementary excitations. These frequencies were derived by [191] 7. The modes
can be classified by their main quantum numbers nr and by their multipolar moment
ℓ. Examples are the surface excitation or shape oscillation (nr = 0) and the com-
pression oscillation (nr ̸= 0). Special cases are called shaking mode, breathing mode
(nr = 1, ℓ = 0), and swirling mode. In the case of cylindrical symmetry, the projec-
tion of the angular momentum onto the symmetry axis m is the relevant quantum
number. The dispersion relations are,

ω(ℓ,∓m = ℓ) = |m|ω2
r (27.63)

ω(ℓ,∓m = ℓ− 1) = |m|ω2
r + ω2

z

ω(ℓ,∓m = ℓ− 2) = ω2
r

[
2|m|+ 2 + 3

2λ
2 ∓

√
(|m|+ 2− 3

2λ
2)2 + 2λ2(|m|+ 1)

]

ω(ℓ,∓m = ℓ− 3) = ω2
r

[
2|m|+ 2 + 7

2λ
2 ∓

√
(|m|+ 2− 5

2λ
2)2 + 6λ2(|m|+ 1)

]
,

where λ is the aspect ratio λ = ωz/ωr. Obviously, higher excitation orders depend
on the trap geometry. Moreover, we can easily see, that occasional degeneracies must
arise for specific aspect ratios. For example, when ω+(2, 0) = 2ω(2, 2), we derive
from (27.63) the condition λ =

√
16/7, and when ω+(2, 0) = 2ω−(2, 0), we derive

λ = 1
6

√
77 + 5

√
145.
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Fig. 14. – Shape of low-lying collective excitations: a) slow m = 0 quadrupolar oscillation (JILA, MIT), b) fast
m = 0 radial oscillation (MIT), c) |m| = 2 oscillation (JILA).

quadrupolar modes observed at JILA, with out-of-phase oscillations along the axial and radial directions.

The higher frequency mode was primarily a radial breathing mode (fig. 14b). After locating the modes

by a non-selective “step” excitation, we used a five-cycle sinusoidal modulation of the trapping coils to

resonantly excite the shape oscillations. The subsequent free oscillations were clearly visible as periodic

modulations of the aspect ratio in time-of-flight (fig. 15) and in phase-contrast (fig. 16) as observed

later [30].

Fig. 15. – m = 0 quadrupolar condensate oscillations viewed in time-of-flight absorption imaging. Oscillations in
the aspect ratio of the expanding condensate are clearly visible. The horizontal width of each cloud is 1.2 mm.
Figure taken from ref. [177].

350 µm

Fig. 16. – m = 0 quadrupolar condensate oscillations viewed in-situ. Repeated phase-contrast images, taken at
5 ms intervals, show large-amplitude oscillations of a low-temperature Bose-Einstein condensate. Figure taken
from ref. [30].
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by a non-selective “step” excitation, we used a five-cycle sinusoidal modulation of the trapping coils to

resonantly excite the shape oscillations. The subsequent free oscillations were clearly visible as periodic

modulations of the aspect ratio in time-of-flight (fig. 15) and in phase-contrast (fig. 16) as observed

later [30].

Fig. 15. – m = 0 quadrupolar condensate oscillations viewed in time-of-flight absorption imaging. Oscillations in
the aspect ratio of the expanding condensate are clearly visible. The horizontal width of each cloud is 1.2 mm.
Figure taken from ref. [177].

350 µm

Fig. 16. – m = 0 quadrupolar condensate oscillations viewed in-situ. Repeated phase-contrast images, taken at
5 ms intervals, show large-amplitude oscillations of a low-temperature Bose-Einstein condensate. Figure taken
from ref. [30].

(d)

Figure 27.5: Normal modes of a BEC. (a) Shape oscillation, (b) breathing oscillation,
and (c) quadrupole oscillation. (d) Non-destructive measurements of quadrupolar
vibrations of a BEC [782].

7It is worth mentioning that the linearized theory applies to small perturbations. Strong distur-
bances render the dynamics chaotic, since the energy is coupled to many modes of excitation.
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27.4.2.2 Quantum depletion

Following Bogolubov’s theory the quantum depletion is given by,

δN

N
=

1

N

∑

k

∫
d3r|vk(r)|2 . (27.64)

27.4.2.3 Fluctuations in BECs

Fluctuations in condensates are reduced as compared to thermal ensembles. Non-
linearities are always very sensitive to fluctuations (see the laser). Therefore, we
have to look at closer at collisions. For 3-body decay in a thermal source, ⟨ρ(r)3⟩ ∼
6⟨ρ(r)⟩3, and in a coherent source: ⟨ρ(r)3⟩ ∼ ⟨ρ(r)⟩3 [128, 771].

27.4.3 Exercises

27.4.3.1 Ex: Sound velocity in the Thomas-Fermi regime

Consider a condensate of N = 105 87Rb atoms confined to an isotropic harmonic
potential with secular frequency ωtrp = (2π) 50 Hz. Remember as = 110aB and use
the Thomas-Fermi approximation.
a. Evaluate the chemical potential.
b. Calculate the sound velocity at the center of the condensate.

27.5 Hydrodynamics and the propagation of sound

The question arises how the elementary excitations relate to the phenomenon of sound,
well known from the hydrodynamic theory of superfluid 4He proposed by Landau
[499]. The hydrodynamic regime is characterized by the dominance of collisions 8. On
the other hand, Bogolubov’s theory describes elementary excitations in the collision-
less regime, where quasi-particles do not interact 9. There is, therefore, a great
motivation to study excitations with condensates in a very dense regime, where one
can expect to recover predictions of hydrodynamic theory.

The hydrodynamic regime is reached, when the free path of the particles is smaller
than the wavelength of the sound, that is 10,

lmfp < λ/2π . (27.65)

27.5.1 Zero, first and second sound

The occurrence of several types of sound was related by Tisza and London to the
existence of superfluid and normal components in 4He [622]. The second sound is a
quantum phenomenon, where the heat transfer occurs as an wave-like motion instead

8Collisions prevent condensation, because they localize the particles. This is the reason for the
large quantum depletion, which in 4He is of the order of 10% and hides effects of quantum statistics.
Quantum depletion prevents any form of long-range order, as this requires delocalization.

9Bogolubov’s theory assumes that the only impact of collisions is to deform the dispersion rela-
tionship, keeping the collective modes orthogonal.

10Note the similarity to the Ioffe-Regel criterion.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_SomThomasfermi.pdf
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of being diffusive. Heat takes the place of pressure in normal sound waves called first
sound. This induces a very high thermal conductivity. At temperatures below the
λ-point, 4He has the highest known conductivity of all materials (a few hundred times
higher than copper).

The zero sound was introduced by Landau to name quantum vibrations in Fermi
quantum liquids. This sound can not be seen as a simple wave of compression and
rarefaction. In gaseous condensates, the zero sound corresponds to the elementary
excitation called phonon-like.

MAKING, PROBING AND UNDERSTANDING BOSE-EINSTEIN CONDENSATES 45

Our experiments were performed with condensates which were well in the Thomas-Fermi limit. The

oscillations we observed were considered by Stringari, who provided the first analytical expression for

their frequency and shape [222]. The agreement between the predicted frequencies and the experimental

results was quite good. The fast oscillation at ν = 2.04(6) ·νr agreed with the prediction of 2 ·νr. For the
slow oscillation, we measured a frequency ν = 1.556(14) · νz compared with the prediction of 1.580 · νz.
More recently, we improved our measurement to obtain a frequency of 1.569(4) · νz at the limit of low

temperature (νr and νz are the radial and axial frequencies, resp.) [30]. This close agreement constitutes

a critical quantitative test of the mean-field description of excited states of a Bose condensate.

6
.
4. Measurements of the speed of Bogoliubov sound . – The experiments described above studied the

low-lying discrete oscillation modes of a trapped condensate. In order to connect more closely with

the continuous excitation spectrum of homogeneous system, we also studied density modulations at

wavelengths of 20 – 30 µm that were smaller than the length of the condensate [28, 223]. For this,

localized density perturbations were created using an off-resonant blue-detuned laser beam focused to

the middle of the trap. Positive perturbations were created by suddenly switching on the laser beam

after the condensate had formed. The repulsive optical dipole force expelled atoms from the center of

the condensate, creating two density peaks which propagated symmetrically outward. Alternatively, we

formed a condensate in the presence of the laser light and then switched the laser off. This created

localized depletions of density which also propagated outward.

Fig. 17 shows the propagation of density perturbations observed by sequential phase-contrast imaging

of a single trapped cloud. We observed one-dimensional axial propagation of sound at a constant velocity

near the center of the cloud, where the axial density varies slowly. The density dependence of the

speed of sound was studied using adiabatically expanded or compressed condensates, yielding maximum

condensate densities n0 ranging from 1 to 5 ×1014 cm−3 (fig. 18). The data were compared with the

prediction of Bogoliubov theory, cs = (4πh̄2an/m2)1/2, where the variation of the condensate density

across the radius of the cloud is accounted for by using n = n0/2 [224, 225, 220]. The agreement between

the data and this theory was good except at low density where the assumption that the sound pulse is

longer than the radial extent of the condensate began to break down.
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Fig. 17. – Observation of sound propagation in a Bose condensate. A non-destructive phase-contrast image was
taken every 1.3 ms. Vertical profiles of the condensate density show two “blips” traveling out symmetrically from
the center of the cloud. Figure taken from ref. [28].

Figure 27.6: (code) Consecutive measurements of the BEC density profile showing the prop-

agation of zero sound. The sound was excited by a blue-detuned laser tuned focused into the

middle of the BEC (lower curve). The other curves show how the perturbation propagates

towards the edges of the BEC.

Finally, the excitation called particle-like or ballistic, observed in gaseous conden-
sates has no correspondence in dense superfluids, since the mean free path there is too
short. The various regimes accessible in condensed gasses are listed in the following
table [21, 23, 343, 456, 755, 783, 782, 283]:

regime range scale energy range condensate thermal cloud

collision-less k−1 < ξ < lmfp
ℏ2

2ml2mfp
< gn0 <

ℏ2k2

2m ballistic ballistic

collision-less ξ < k−1 < lmfp
ℏ2

2ml2mfp
< ℏ2k2

2m < gn0 zero sound ballistic

hydrodynamic ξ < lmfp < k−1 ℏ2k2

2m < ℏ2

2ml2mfp
< gn0 second sound first sound

(27.66)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecSoundKetterle.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecSoundKetterle.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecSoundKetterle.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecSoundKetterle.m
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normal modes qR≪ 1

macroscopic qa≪ 1

beyond Bogolubov qa > 1

superfluid (TF limit, LDA) Eself ≫ Ekin 8πNa≫ aho aho ≫ ξ

??? Eself ≪ Ekin 8πNa≪ aho aho ≪ ξ

collision-less γcoll ≪ ℏq2
2m qlmfp ≪ 1

hydrodynamic γcoll >
ℏq2
2m qlmfp > 1

(27.67)

With lmfp ≃ 1/nthermσ. Typical values are,

a = 0..1000aB = 0..50 nm

n−1/3 = 20..200µm

2π/q = 0.2..∞µm

ξ =
√
8πna

−1
= 0.03..30µm

aho =
√

ℏ/mωtrp = 0.1..3µm

2π/kF = 2πaho(48N)−1/6 = 30..70µm

(27.68)

The various regimes of sound are distinguished by frequency shifts and damping
rates of the collective modes, which depend on the density (determining the mean-field
energy and the mean free path) and the temperature (controlling the ratio between
condensed and normal fraction). The quantity

ξ ≡ 1√
8πasn

, (27.69)

is called healing length.
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Figure 27.7: Simulation of the propagation of sound toward the edges of the condensate.
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27.6 Momentum representation

We showed in Sec. 1.5.7, that the wavefunctions can be represented in the spatial or
the momentum domain. These notions can be extended to the second quantization
procedure by generalizing the equations (1.214),

âk ≡ 1√
(2π)3V

∫
ψ̂(r)e−ık·rd3r , ψ̂(r) ≡

√
V

(2π)3

∫
âke

ık·rd3k . (27.70)

Differently from (1.214) we chose here a normalization, which leaves the field operators
ak without unit.

27.6.1 Confined particles

In the case of confined atoms, H = Hcm + Vtrp(r) +Hself, we get sharp eigenvalues,

âk =
1

V

∑

k′

âk′δ(3)(k− k′) . (27.71)

We insert this in equation (27.70),

ψ̂(r) =
√

1
(2π)3V

∑

k′

âk′

∫
δ(3)(k− k′)eık·rd3k (27.72)

=
√

1
(2π)3V

∑

k′

âke
ık·r =

∑

k

uk(r)âk ,

thus making an expansion of the condensate into plane waves,

uk(r) =
1√

(2π)3V
eık·r , (27.73)

which is particularly adapted to the 3D box potential, Vtrp(r) ≡ ∞ se r > R. Also,
we calculate,

âk =
√

1
(2π)3V

∫
ψ̂(r)e−ık·rd3r =

∫
ψ̂(r)u∗k(r)d

3r . (27.74)

We obtain the observable commutation rules from (27.5),

[âk, â
†
k′ ] = δkk′ , [âk, âk′ ] = 0 , N̂ =

∑

k

â†kâk . (27.75)

Using the following mathematical relationships,

1
(2π)3V

∑

k

e−ık·(r−r′) = δ3(r− r′) and 1
(2π)3V

∫
d3reı(k

′−k)·r = δk,k′ , (27.76)

and easy to show for plane waves,

∑

k

u∗k(r)uk(r
′) = δ3(r− r′) and

∫
u∗k(r)uk′(r)d3r = δkk′ . (27.77)
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In Exc. 27.6.4.1 we will check the validity of the commutation rules (27.75), and in
Exc. 27.6.4.2 we derive the following representation of the Hamiltonian:

H =

∫
d3rψ̂†(r)

(
− ℏ2

2m
∇2 + Vtrp(r)

)
ψ̂(r)

+
g

2

∫
d3r

∫
d3r′ψ̂†(r)ψ̂†(r′)δ(r− r′)ψ̂(r′)ψ̂(r)

=
∑

k

ℏ2k2

2m
â†kâk +

∑

k,k′

â†kVk,k′ âk′ +
g

2

∑

k,k′,k′′

â†kâ
†
k′ âk′′ âk+k′−k′′

, (27.78)

with the abbreviation,

Vk,k′ =

∫
u∗k(r)Vtrp(r)uk′(r)d3r = 1

(2π)3

∫
Vtrp(r)e

ı(k′−k)rd3r . (27.79)

The equation of motion for the momentum wavefunction now becomes,

ıℏ
∂

∂t
âk = [âk,H] =

ℏ2k2

2m
âk +

∑

k′

Vk,k′ âk′ + g
∑

k′,k′′

â†k′ âk′′ âk+k′−k′′ . (27.80)

27.6.1.1 Harmonically confined particles

In harmonic traps, Vtrp(r) =
m
2 ω

2
trpr

2, the motion can be canonically quantized,

â =
1√
2

(
r̂

atrp
∓ ıatrpp̂

)
, Hcm =

∑

k

ℏωtrpâ
†
kâk , (27.81)

with the size of the ground state,

atrp ≡
√

ℏ
mωtrp

. (27.82)

As an alternative notation we could introduce,

|r⟩ ≡ ψ̂†(r) and |k⟩ ≡ â†k . (27.83)

Hence, just considering the ground state of the trap, that is, assuming that the atomic
motion be frozen, our Hamiltonian becomes:

Hcm +Hself = ℏωtrpâ
†â+

g

2
â†â†ââ . (27.84)

27.6.2 Thomas-Fermi limit

In the limit of negligible kinetic energy (that is, in the middle of a large condensate)
with the analytical form of the condensate wavefunction,

ψ̂(r) ∝ √n0
(
1− r2

r20

)
, (27.85)

the transformation (27.70) allows us to derive an expression for the momentum dis-
tribution,

|a(k)| ∝ J1(k · r0)
(k · r0)2

. (27.86)



27.6. MOMENTUM REPRESENTATION 1245

27.6.2.1 Width of the momentum distribution

It is interesting to compare the size of an ideal gas condensate with the size of an
interacting condensate. We can express the Thomas-Fermi radius as,

∆rTF = atrp

√
µ

ℏωtrp
. (27.87)

The Heisenberg limit requires,

∆pTF =
ℏ

∆rTF
. (27.88)

Since
√
µ/ℏωtrp > 1, the interaction increases the volume of the condensate, but

restricts the distribution of its velocities. For a hypothetical thermal Boltzmann gas
having the same temperature,

∆rtherm = atrp

√
kBT

ℏωtrp
and ∆ptherm =

ℏ
atrp

√
kBT

ℏωtrp
. (27.89)

The thermal cloud is not at the Heisenberg limit, because
√
kBT/ℏωtrp > 1.

These relationships were experimentally confirmed [791] by measurements of the
velocity distributions of condensates using a Bragg spectroscopy technique (see Sec. 29.2).
It is interesting to note that the measured widths of velocity distributions were lower
than the photonic recoil limit, ℏk/m ≃ 30 mm/s for 87Rb.

27.6.3 Master equation approach

The Hamiltonian that describes a BEC in second quantization in an orthonormal set
of energy eigenfunctions reads:

H =
∑

i,j
H(ij)

atomâ
†
i âj +

∑

i,j,k,l

1
2W

(ijkl)â†i â
†
j âkâl (27.90)

H(ij)
atom = ⟨ϕi| 1

2mp2 + Vtrp(r)|ϕj⟩

W (ijkl) = g

∫
ϕi(r)ϕj(r)ϕk(r)ϕl(r)d

3r .

The inclusion of spontaneous processes (one-body-loss, dephasing) requires a master
equation including a Lindblad term within a density matrix formalism. The von
Neumann equation for the density operator reads:

d

dt
ρ̂ = −ı[V, ρ̂] + Lρ̂ (27.91)

Lone-body loss ≡ κ(2âρ̂â† − â†âρ̂− ρ̂â†â)
Lone-body feeding ≡ κ(2 + 2â†ρ̂â− ââ†ρ̂− ρ̂ââ†)
Ltwo-body loss ≡ κ

(
2â2ρ̂â†2 − â†2â2ρ̂− ρ̂â†2â2

)
.
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27.6.4 Exercises

27.6.4.1 Ex: Commutators in momentum space

Demonstrate the validity of the commutation rules (27.75).

27.6.4.2 Ex: Commutators in momentum space

Derive the representation (27.78) of the Hamiltonian.

27.7 Condensates at finite temperature

27.7.1 Ballistic expansion of a bosonic gas

As discussed in Sec. 26.6, the atomic density distributions are revealed through their
interaction with a laser beam. The problem with imaging a confined condensate
is, on the one hand, its very high optical density, which inhibits the penetration of
resonant light and, on the other hand, its very small size, which is often below the
diffraction limit and prevents its optical resolution. As discussed in Sec. 26.6, both
problems can be avoided by the time-of-flight imaging technique, which consists in
quickly switching off the trap and dropping the atomic cloud (see Fig. 26.30). If the
switching-off process is fast enough, the potential energy is lost, but in the course of
ballistic expansion, the self-energy is transformed into kinetic energy. Both the self-
energy transformed to kinetic energy and the inherent initial kinetic energy contribute
to blow up the size of the atomic cloud, so that the density rapidly decreases. After
a few 10 ms, when the optical density is sufficiently low (on the order of 1), the cloud
can be imaged via its absorption of a resonant laser beam. The condensate, which is
about 10 times denser than the thermal cloud, has a much larger repulsive self-energy.
When the condensate is suddenly released from its trap, its explosion is accelerated by
this self-energy, and the acceleration is faster in those directions, where the confining
potential was stronger [401, 142]. Therefore, the aspect ratio of the condensate’s
shape is inverted during the flight time [459, 142]. In contrast, the self-energy of the
thermal cloud is relatively insignificant. Therefore, its spatial density after a time of
free expansion reflects the pure velocity distribution of the atomic cloud while it was
trapped. This allows the interpretation of the spatial distribution of the expanded
cloud in terms of a temperature of the trapped cloud.

27.7.1.1 Popov approximation

The Popov decomposition separates the condensed part, described by a c-number
ϕ ≡ ⟨ψ̂⟩ and normalized to the number of condensed atoms N0 from the thermal part

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_ComutadoresMomento01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_ComutadoresMomento02.pdf
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Figure 27.8: Inversion of aspect ratio during time-of-flight. The frequencies of the harmonic
trap were ωr = (2π) · 248 Hz and ωr = (2π) · 16 Hz [459].

ψ̃ ≡ ψ̂ − ϕ, which keeps track of the quantum nature of the Bose-gas [239],

K = K0 +K1 +K†
1 +K2 (27.92)

K0 =

∫
d3rϕ∗(r)

(
− ℏ2

2m
∇2 + Vtrp(r) +

g

2
|ϕ|2 − µ

)
ϕ(r)

K1 = 0 if [L − gn0(r)]ϕ(r) = 0

K2 =

∫
d3r

[
ψ̃+(r)Lψ̃(r) + g

2

(
ϕ(r)2ψ̃+(r)ψ̃+(r) + ϕ∗(r)2ψ̃ + (r)ψ̃(r)

)]

L ≡ − ℏ2

2m
∇2 + Vtrp(r)− µ+ 2gn(r)

n(r) = n0(r) + nT (r) = |ϕ(r)|2 + ⟨ψ̃†(r)ψ̃(r)⟩ .

We perform the Bogolubov transform to the diagonalized Hamiltonian,

KPopov = K0 +
∑

j
εj b̂

+
j b̂j (27.93)

ψ̃(r) =
∑

j
uj(r)b̂j − v∗j (r)b̂+j

δjk =

∫
d3r (uju

∗
k − vjv∗k)

δjk = [b̂j , b̂
+
k ] .

This yields a set of equations for elementary excitations (quasi-particle excitations
in a diagonalized energy space),

Nj = [exp(εj/kBT )− 1]
−1

(27.94)

nT (r) =
∑

j

[(
|uj |2 + |vj |2

)
Nj + |vj |2

]

Luj(r)− gn0(r)vj(r) = εjuj(r) ,

Lvj(r)− gn0(r)uj(r) = −εjvj(r) .

The quantum depletion at T = 0 [last term in the density n(r)] may be neglected.
In this zero-temperature limit, the equations simplify to yield the Gross-Pitaevskii
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equation. We may separate these equations using auxiliary functions [413],

ψ̃
(±)
j (r) ≡ uj(r)± vj(r) (27.95)

ĥ0 ≡ L− gn0(r)
ĥ0ψ̃

(+)
j (r) = Ejψ̃

(−)
j (r) .

The eigenvalue equations that one gets after substituting (III.2.5) into (III.2.4) may

be solved by expanding in a set of eigenfunctions of ĥ0:

ψ̃
(±)
j (r) ≡

∑
α
c(j)α ϕα(r) (27.96)

ĥ0ϕα(r) ≡ εαϕα(r)∑
β
(Mαβ + εαδαβ)εβc

(j)
α = E2

j c
(j)
α

Mαβ = 2g

∫
ϕ∗α(r)n0(r)ϕβ(r)d

3r .

27.7.2 Hartree-Fock approach

27.7.2.1 Two-gas model for T > 0

The two phases of a condensate above T = 0 have a specific interdependence, which
makes it possible to treat the problem with an approximation, where only the con-
densed part influences the non-condensed and not vice versa [238]. The HFB equa-
tion is solved for the condensed part alone, assuming ntherm = 0. The condensate
wavefunction and the chemical potential are derived from that, f.e. using numerical
methods like the method of steepest descent. The effective potential for the thermal
cloud in the presence of a condensate is:

V1,eff(r1) = V1,trap(r1) + g1|ψ1(r1)|2 . (27.97)

Next, we diagonalize the Schrödinger equation:

[−∇2
1 + V1,eff(r1)]ψ1,j(r1) = 2E1,jψ1,j(r1) , (27.98)

maintaining the normalization,

1 =

∫
|ψ1,j(r1)|2d3r1 . (27.99)

This provides us with the energy eigenvalues of the excited trap states and their
eigenfunctions. One can f.e. guess an eigenvalue and numerically solve the Schrödinger
equation using Runge-Kutta integration routines. The eigenfunction will probably
diverge. In this case, we vary the eigenvalue until the solution converges.

Finally, we can calculate the thermal density distribution:,

Nj ≡ [exp((E1,j − µ1)/kBT1)− 1]
−1

(27.100)

ntherm(r1) =
∑

j
Nj |ψ1,j(r1)|2 ,

and all thermodynamic potentials, as shown in Sec. 7.3.2.
A more sophisticated method uses self-consistent recursion [413]. Here, the ther-

mal density is plugged back into the HFB equation, and the whole procedure is
repeated until it converges.
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27.7.2.2 Hartree-Fock approximation

We have already seen that, inside a trap the condensate occupies the lowest vibra-
tional level, whereas the atoms of the thermal gas are distributed among all levels.
The trapping potential is often harmonic, Utrp(r) =

m
2 ω

2
rr

2, with secular frequencies
ωr typically on the order of several tens or hundreds of Hz. The spatial (radial) extent
of the vibration levels varies a lot with their quantum number, rj =

√
(2j + 1)ℏ/mωr.

This naturally produces a separation of the thermal (or normal) and condensate frac-
tions at T > 0, which does not exist for a homogeneous gas and which allows (up
to a certain degree) an individual treatment of the two fractions. The details of the
interaction between the two fractions are very complicated and are still under intense
theoretical investigation. However, to understand the shape of a trapped atomic cloud
and other characteristics, we can use a simple approximate model [?, 413], assuming
that the condensate is only weakly disturbed by the thermal cloud. In contrast, the
presence of the condensate dramatically modifies the potential for the thermal atoms.
Therefore, we must first calculate the density of the condensate n0(r), before calcu-
lating that of the thermal cloud. If this procedure is applied iteratively, it is called
Hartree-Fock method:

i. We start with ntherm(r) = 0;

ii. we solve the GPE
(
− ℏ2

2m∆+ Vtrp(r)− µ+ g
[
|ψ(r)|2 + ntherm(r)

])
ψ(r) numer-

ically with the steepest descent method, we derive µ and ψ, and also n(r) = |ψ(r)|2+
ntherm(r);

iii. assuming that collisions between atoms of the thermal cloud, the density of
which is weak, can be neglected, we can view the cloud as an ideal gas in a potential
modified by the strongly anharmonic mean field of the condensate, Vtrp(r) + 2gn(r),

we calculate the thermal density n′therm(r) = λ−3
dBg3/2

(
exp

Vtrp(r)−µ+2gn(r)
kBT

)
;

iv. we start over at (ii) using the new thermal density.

We can now calculate the total energy,

U =

∫
d3r

(
ψ(r)−ℏ2∇2

2m ψ(r) + Vtrp(r)n(r) +
g
2 [2n(r)

2 − n0(r)]− 1
h3

∫
d3k ℏ2k2

2m n(r,k)

)

(27.101)

=

∫
d3r

(
ψ(r)−ℏ2∇2

2m ψ(r) + Vtrp(r)n(r) +
g
2 [2n(r)

2 − n0(r)] + 3kBT
2λ3

dB
g3/2

[
exp

Vtrp(r)−µ+2gn(r)
kBT

])

and other thermodynamic quantities.

27.7.3 Ideal gas limit

Consider the ideal gas in an isotropic harmonic potential. The excitation spectrum
then takes the form:

f(k, r) = n(k, r) (27.102)

εHF(k, r) = L(k, r) =
ℏ2k2

2m
+ V (r)− µ .
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We can immediately calculate:

g −→ 0 (27.103)

µ
g→0−→ 3

2ℏω

ϕ(r)
g→0−→

√
N0

π3/4a
3/2
trp

exp(− r2

2a2trp
)

Ekin =

∫
ϕ(r)
−ℏ2∆
2m

ϕ(r)d3r = − 9
4N0ℏω

ntherm(r)
g→0−→

∫
f(r · k)d3k =

1

λ3dB
g3/2

[
exp

(
Vtrp(r)−µ
kBT

)]

Ntherm
g→0−→

∫
ntherm(r)d

3r =

(
kBT

ℏω

)3

g3

[
exp

(
µ
kBT

)]

U
g→0−→

∫
εHF f(r · k)d3r · d3k = 3kBT

(
kBT

ℏω

)3

g4

[
exp

(
µ
kBT

)]
.

27.7.4 Exercises

27.7.4.1 Ex: Ballistic expansion of a condensate

Calculate the ballistic expansion of a 87Rb BEC initially confined in a cylindrically
symmetric trap with secular frequencies ωz = 20Hz and ωr = 100Hz.

27.8 Numerical simulations of the Gross-Pitaevskii
equation

To simulate the one-dimensional evolution of a wavepacket following the Gross-Pitaevskii
equation,

ıℏ
∂

∂t
ψ(z, t) =

[−ℏ2
2m

d2

dz2
+ Vtrp(z) + |ψ(z, t)|2

]
ψ(z, t) . (27.104)

we solve iteratively [664],

ψ(z, t+ dt) = ψ(z, t) + dtψ̇(z, t) . (27.105)

As initial state we choose, ψ(z, 0) = e−z
2/2z̄2eıkz, where k ≡

√
2mE/ℏ is the wavevec-

tor.

The numerical propagation is conveniently performed using the time-splitting spec-
tral algorithm [52, 51, 50, 302], which can be easily extended to two dimensions.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_BECExpansion01.pdf
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27.8.1 Crank-Nicholson-Crout algorithm

27.8.1.1 Crank-Nicholson-Crout algorithm for the time-dependent Schrödinger
equation

The Crank-Nicholson algorithm goes as follows. The time-dependent Schrödinger
equation in one dimension,

∂

∂t
ψ(x, t) =

ıℏ
2m

∂2

∂x2
ψ(x, t)− ıV (x)

ℏ
ψ(x, t) (27.106)

is a parabolic partial differential equation. We usually seek a solution on an interval
x ∈ [a, b] and t > 0. The solution is uniquely determined from boundary conditions:
ψ(a, t) = ψ(b, t) = 0 and ψ(x, 0) = g(x). One method for numerical solution solves
for the values of the wavefunction on a regular grid of dimension h = (b− a)/Nx in x
and τ in t:,

ψkj = ψ(a+ jh, kτ) . (27.107)

The derivatives are replaced by simple finite differences. The r.h.s. of the equation at
the grid point (i, j) is then,

ıℏ
2mh2

(
ψkj+1 − 2ψkj + ψkj−1

)
− ıV (a+ jh)

ℏ
ψkj =

N∑

m=0

ıHjmψ
k
j , (27.108)

where H is a real symmetric tridiagonal matrix (provided V (x) is real). The l.h.s. of
the equation can be replaced either by a forward or backward difference,

ψk+1
j − ψkj

τ
or

ψkj − ψk−1
j

τ
, (27.109)

which, when combined with the r.h.s. gives the explicit algorithm,

ψk+1 = (1 + ıHτ)ψk or ψk = (1− ıHτ)ψk+1 . (27.110)

The Crank Nicholson Algorithm averages both,

(1− ıHτ/2)ψk+1 = (1 + ıHτ/2)ψk . (27.111)

This method is a second order algorithm in t, i.e. the discretization error decreases
as τ2. The finite difference representation of the second derivative d2/dx2 is also good
to second order in h2. The Crank-Nicholson Algorithm also gives a unitary evolution
in time. That is especially useful for quantum mechanics where unitarity assures that
the normalization of the wavefunction is unchanged over time. The algorithm steps
the solution forward in time by one time unit, starting from the initial wavefunction
at t = 0. According to the Crank-Nicholson scheme, the time stepping process is half
explicit and half implicit. The implicit part involves solving a tridiagonal system.
That solution is accomplished by Crout reduction, a direct method related to Gaussian
elimination and LU decomposition.

To simplify the algorithm we have chosen units in which the Planck constant ℏ = 1,
time step τ = 1 and the spatial separation h = 1. This can always be arranged by an
appropriate redefinition of mass and potential: m = mSI h

2/τℏ and V = VSI τ/h.
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27.8.1.2 Crank-Nicholson algorithm for the time-dependent Gross-Pitaevskii
equation

The Crank-Nicholson algorithm [6],

ı
(
φn+1
j − φnj

)

∆
= −

φn+1
j+1 − 2φn+1

j + φn+1
j−1 + φnj+1 − 2φnj + φnj−1

2h2
(27.112)

+
1

2

(
c(xj)

2

4
+ n
|φnj |2
(xj)2

)
(φn+1
j + φnj ) .

Introducing abbreviations,

B(φn+1
j −φnj ) = −A

(
φn+1
j+1 − 2φn+1

j + φn+1
j−1 + φnj+1 − 2φnj + φnj−1

)
+Cnj

(
φn+1
j + φnj

)
.

(27.113)
Can be rewritten as,

Aφn+1
j+1+

(
−2A+B − Cnj

)
φn+1
j +Aφn+1

j−1 = −Aφnj+1+
(
2A+B + Cnj

)
φnj−Aφnj−1 = Xn

j .
(27.114)

The set of equations,

−2A−B − Cn1 A 0 · · · 0

A −2A−B − Cn2 A · · · 0

0 A −2A−B − Cn3
. . . 0

...
...

. . .
. . .

...

0 0 · · · A −2A−B − Cnj




φn+1

1

φn+1
2

φn+1
3

...

φn+1
j

 =


Xn

1

Xn
2

Xn
3

...

Xn
j


(27.115)

can be solved by inverting tridiagonal matrix. Set φn+1
0 = φn+1

J+1 = 0. Run a loop

j = 1, .., J . Assume given φn+1
1 = φn+1

j ,

φn+1
j+1 =

Xn
j

A
+

2A−B + Cnj
A

φn+1
j − φn+1

j−1 . (27.116)

27.8.2 Time-splitting spectral algorithm: Coherent propaga-
tion

We write the one-dimensional GPE in the form,

ıℏ
∂ψ(x, t)

∂t
= − ℏ2

2m
∇2ψ(x, t) + V (x)ψ(x, t) +

4πℏ2as
m(2rh)2

|ψ(x, t)|2ψ(x, t) (27.117)

for a < x < b. Choose periodic boundary conditions, ψ(a, t) = ψ(b, t) and ψx(a, t) =
ψx(b, t). Various methods are known to solve the GPE numerically, such as the Crank-
Nicholson algorithm. The time-splitting spectral algorithm (TSSA) consists in solving
the first and the second of the following equations in two distinct steps [52, 51, 50, 302],

∂ψ(x, t)

∂t
= −ıV (x)

ℏ
ψ(x, t)− ı g1D

ℏ
|ψ(x, t)|2ψ(x, t) (27.118)

∂ψ(x, t)

∂t
= i

ℏ
2m

ψxx(x, t) ,
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i.e. we discretize in space using x = a + j(b − a)/M and k = 2πl/(b − a) such that
k (x− a) = 2πlj/M . We propagate half the way, ∆t/2, in time,

φx ≡ e−
ı
ℏ (V (x)+g1D|ψ(x,t)|2)∆t

2 ψ(x, t) (27.119)

for j = 0, ..,M−1. Now we propagate the spectral components, (Fφ)k ≡
∑M−1
j=0 φxe

−2πılj/M ,

in momentum space and transform back, (F−1φ)x ≡M−1
∑M/2−1
l=−M/2 φke

2πılj/M ,

ϕx ≡ F−1
[
eı

ℏ
2mk2∆t(Fφ)k

]
. (27.120)

for l = −M/2, ..,M/2− 1. Finally, we propagate the remaining time, ∆t/2,

ψ(x, t+ dt) = e−
ı
ℏ (V (x)+g1D|ϕx|2)∆t

2 ϕx . (27.121)

Compared to the Crank-Nicholson algorithm time-splitting spectral algorithm has
several advantages:

• TSSA is much much faster, especially, for large arrays;

• No divergence, perfect reversibility;

• Imaginary version yields same density shape as steepest descent.

But there are problems:

• The coherent version changes shape, maybe it’s due to ifft(fft(x))!=x;

• The imaginary version mixes up real and imag parts;

• Don’t know how to generalize to coupled GPEs.

27.8.2.1 Time-splitting spectral algorithm for coupled GPEs

Write the one-dimensional GPE in the form,

ıℏ
∂ψ1(x, t)

∂t
= − ℏ2

2m
∇2ψ1(x, t) + V (x)ψ1(x, t) +

4πℏ2as
m(2rh)2

|ψ1(x, t)|2ψ1(x, t) (27.122)

+
ℏ
2
Ωmwψ2(x, t) + ℏ∆mwψ1(x, t)

iℏ
∂ψ2(x, t)

∂t
= − ℏ2

2m
∇2ψ2(x, t) + V (x)ψ2(x, t) +

4πℏ2as
m(2rh)2

|ψ2(x, t)|2ψ2(x, t)

+
ℏ
2
Ωmwψ1(x, t)
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for a < x < b. Choose periodic boundary conditions, ψ(a, t) = ψ(b, t) and ψx(a, t) =
ψx(b, t). We generalize the time-splitting spectral algorithm,

∂ψ1(x, t)

∂t
= − ı

ℏ
V (x)ψ1(x, t)−

ı

ℏ
g1D|ψ1(x, t)|2ψ1(x, t)− ı∆mwψ1(x, t)−

ı

2
Ωmwψ2(x, t)

∂ψ2(x, t)

∂t
= − ı

ℏ
V (x)ψ2(x, t)−

ı

ℏ
g1D|ψ2(x, t)|2ψ2(x, t)−

ı

2
Ωmwψ1(x, t)

∂ψ1(x, t)

∂t
= ı

ℏ
2m

ψxx1(x, t)

∂ψ2(x, t)

∂t
= ı

ℏ
2m

ψxx2(x, t) , (27.123)

i.e. we discretize in space and propagate half the way, ∆t/2, in time,

φx1 ≡ ψ1(x, t)−
[( ı

ℏ
V (x) +

ı

ℏ
g1D|ψ1(x, t)|2 + i∆mw

)
ψ1(x, t)−

ı

2
Ωmwψ2(x, t)

] ∆t
2

φx2 ≡ ψ1(x, t)−
[( ı

ℏ
V (x) +

ı

ℏ
g1D|ψ2(x, t)|2

)
ψ2(x, t)−

ı

2
Ωmwψ1(x, t)

] ∆t
2
.

(27.124)

Since we here use the first order Taylor expansion of the exponential function, we
introduce an error that we have to keep low by renormalizing the wavefunction after
each step. Now we propagate the spectral components in momentum space and
transform back,

ϕx1 ≡ F−1
[
eı

ℏ
2mk2∆t(Fφx1)k

]
(27.125)

ϕx2 ≡ F−1
[
eı

ℏ
2mk2∆t(Fφx2)k

]
,

for l = −M/2, ..,M/2− 1. Finally, we propagate the remaining time, ∆t/2,

ψ1(x, t+ dt) = ϕx1 −
[( ı

ℏ
V (x) +

ı

ℏ
g1D|ϕx1|2 +

ı

2
∆mw

)
ϕx1 −

ı

2
Ωmwϕx2

] ∆t
2

ψ2(x, t+ dt) = ϕx1 −
[( ı

ℏ
V (x) +

ı

ℏ
g1D|ϕx2|2

)
ϕx2 −

ı

2
Ωmwϕx1

] ∆t
2
. (27.126)

27.8.2.2 Spinor notation

It may be possible to simplify the notation by writing the wavefunction as a spinor,

ψ⃗ ≡
(
ψ1

ψ2

)
. Now the non-kinetic part of the coupled GPE can be written,

∂ψ⃗(x, t)

∂t
=Mψ⃗(x, t) , (27.127)

with the matrix,

M =

(− ı
ℏV (x)− ı

ℏg1D|ψ1(x, t)|2 − ı∆mw − ı
2Ωmw

− ı
2Ωmw − ı

ℏV (x)− ı
ℏg1D|ψ2(x, t)|2

)
, (27.128)
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and the solution,

ψ⃗(x, t) = eMtψ⃗(x, 0) . (27.129)

Let us now abbreviate the matrix by,

M =

(
A B

B D

)
. (27.130)

The matrix is diagonalized with the unitary transforms,

U =
1√
2∆

(
A−D
2B +∆ A−D

2B −∆

1 1

)
and U−1 =

1√
2∆

(
1 −A−D

2B +∆

−1 A−D
2B +∆

)
.

(27.131)
The eigenvalue matrix is,

U−1MU =

(
E1 0

0 E2

)
(27.132)

with E1,2 = 1
2A+ 1

2D±B∆. Here we used the abbreviation ∆ =

√(
D−A
2B

)2
+ 1. The

formal solution now reads,

ψ⃗(x, t) = exp

[
U
(
E1 0

0 E2

)
U−1t

]
ψ⃗ = U

(
eE1t 0

0 eE2t

)
U−1ψ⃗(x, 0) . (27.133)

This formula can easily be computed, because the block matrices of transform U are
diagonal in x.

27.8.3 Wavepacket propagation

27.8.3.1 1D simulations

We want to describe the one-dimensional evolution of an atomic wavepacket according
to the Schrödinger equation. The problem is fully described by [664],

ıℏ
∂

∂t
ψ(z, t) =

−ℏ2
2m

d2

dz2
ψ(z, t) + V (z)ψ(z, t) . (27.134)

Numerically the Schrödinger equation is integrated via,

ψ(z, t+ dt) = ψ(z, t) + dt ψ̇(z, t) . (27.135)

The initial state of the wavepacket is set to ψ(z, 0) = e−z
2/2z̄2eıkz, where k ≡

√
2mE/ℏ

is its wavevector.

The numerical propagation is conveniently done with the time-splitting spectral
algorithm [52, 51, 50, 302].

The flux is,

ψ∇ψ = 0 . (27.136)
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27.8.3.2 2D simulations

We want to describe the two-dimensional evolution of an atomic wavepacket according
to the Schrödinger equation. The problem is fully described by,

−ℏ2
2m

(
d2

dx2
+

d2

dz2

)
Ψ(x, z, t) + V (x, z)Ψ(x, z, t) = ıℏ

∂

∂t
Ψ(x, z, t) . (27.137)

Since the potential is conservative, we separate the time-evolution,

Ψ(x, z, t) = ψ(x, z)e−ıEt/ℏ (27.138)

The initial shape of the wavefunction moving along the y coordinate could be a
Gaussian,

ψ(x, z) = ψx(x, 0)ψz(0, z) = (2πσxσz)
−1/2

e−x
2/4σ2

x−z2/4σ2
y . (27.139)

We can assume σz ≫ σx and obtain an effectively one-dimensional model, E = Ekz.
Set,

ψ(x, z, 0) = ϕ(x, z)e−ıkzz (27.140)

and,

− d2

dz2
ϕ(x, z) + 2ıkz

d

dz
ϕ(x, z) =

d2

dx2
ϕ(x, z) +

[
2m

ℏ2
Ekz −

2m

ℏ2
V (x, z)− k2z

]
ϕ(x, z) ,

(27.141)
and,

d

dz
ϕ(x, z) =

d2

dx2
ϕ(x, z)− 2m

ℏ2
V (x, z)ϕ(x, z) (27.142)

d

dz
ϕ(x, z) =

1

2ıkz

1

dx2
[ϕ(x− dx, z)− 2ϕ(x, z) + ϕ(x+ dx, z)]− m

ıkzℏ2
V (x, z)ϕ(x, z) .

Discretize in steps dz.

27.8.3.3 Reflection from a potential barrier

Now we allow for a change of direction. We assume that a matter wave with wavevec-
tor k0 = k0xêx + k0yêy = k0êx sinα + k0yêy cosα, runs towards a potential step. If
the step is sharp, V (x) = V1θ(−x) + V2θ(x), the following ansatz is reasonable,

ψ0(x, y) = eıxkx+ıyky (27.143)

ψ1(x, y) = re−ıxkx+ıyky

ψ2(x, y) = teıxk
′
x+ıyky

and we have to solve the equations,

−ℏ2
2m

(
d2

dx2
+

d2

dy2

)
(ψ0 + ψ1) = (E − V1) (ψ0 + ψ1) (27.144)

−ℏ2
2m

(
d2

dx2
+

d2

dy2

)
ψ2 = (E − V2)ψ2 .

In the step is smooth, V (x → −∞) = V1 < V2 = V (x → ∞), the situation is more
complicated. Let us set V (x) = (V1 − V2) 1π arctanx+ 1

2 (V1 + V2).
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Figure 27.9: (code) Reflection of a wavepacket at a potential barrier. Do evanescent matter

waves propagate along the barrier? Is there an atomic analogue to the Goos-Hänchen shift?

27.8.4 Exercises

27.8.4.1 Ex: Propagation of wavefunctions

Programs on the propagation of wavefunctions.

27.8.4.2 Ex: Programs on wavepackets reflected from potential barriers

Programs on wavepackets reflected from potential barriers.

27.9 Further reading

E.A. Cornell, Very Cold Indeed: The Nanokelvin Physics of Bose-Einstein Conden-
sation [DOI]

F. Dalfovo et al., Theory of Bose-Condensation in Trapped Gases [DOI]

Ph.W. Courteille et al., Bose-Einstein Condensation of Trapped Atomic Gases [DOI]

A.J. Leggett, Bose-Einstein condensation in the alkali gases Some fundamental con-
cepts [DOI]

C.J. Myatt et al., Production of Two Overlapping Bose-Einstein Condensates by
Sympathetic Cooling [DOI]

W. Ketterle et al., Making, probing and understanding Bose-Einstein condensates
[DOI]
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_WavepacketPropagation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_.pdf
http://doi.org/10.6028/jres.101.045
http://doi.org/10.1103/RevModPhys.71.463
http://doi.org/10.1142/9789812796684_0003
http://doi.org/
http://doi.org/10.1103/PhysRevLett.78.586
http://doi.org/
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Chapter 28

Superfluid and coherent
properties of Bose-Einstein
condensates

Superfluid liquids or gases are distinguished by their ability to sustain flow without
dissipation, i.e. flow which is free of viscous damping. The phenomenon of superfluid-
ity is a well-known property of liquid 4He, but the relationship between superfluidity
and Bose-Einstein condensation in this strongly interacting system is not trivial. The
situation is much simpler in weakly interacting Bose gases, where the superfluid frac-
tion is almost identical with the condensed fraction and the normal phase of the fluid
with the thermal fraction. The availability of dilute gas Bose-Einstein condensates
now offers the unique opportunity to study the complicated interdependence between
superfluidity and condensation.

28.1 Superfluidity in quantum gases

The superfluidity of a gaseous condensate, which is one of its most apparent properties,
is intrinsically linked to interatomic collisions. To characterize this phenomenon, it is
useful to define some parameters. In the local-density approximation, the homogeneity
of a gas of N atoms with the thermal de Broglie wavelength (26.9) confined inside a
harmonic trap with the ground state size defined by (2.94), is characterized by,

kBT

ℏωtrp
=

2πa2trp
λ2therm

. (28.1)

For a typical experimental situation, kBT/ℏωtrp ≈ N1/3 ≈ 100. This shows that the
assumption of a locally homogeneous gas is generally a good approximation. With
the definition of the healing length (27.69), the degree of superfluidity of a condensate
with density n can be cast into the form,

gn

ℏωtrp
=
a2trp
ξ2

. (28.2)
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For a typical experimental situation, a2trp/ξ
2 ≈ 100. A parameter that well charac-

terizes the importance of interatomic forces within a condensate is the gas dilution,

na3s =
a2s

8πξ2
. (28.3)

The typical numerical value na3s ≈ 10−5 shows, that atomic gases are usually very
dilute, although interatomic forces play an important role in the dynamics of con-
densates. In contrast, three-body collisions can be totally neglected, because the
probability to have three atoms close to each other is even lower than the probability
for two atoms.

There are several manifestations of phenomena linked to superfluidity, such as
the behavior of collective elementary excitations, superfluid flow of non-circulating
topological modes, quantized flux in vortices and matter wave solitons, which will be
discussed in the following sections.

28.1.1 Landau’s criterion for superfluidity

According to Landau, the phenomenon of superfluidity is rooted in the particular
character of the Bogolubov spectrum of elementary excitations (27.54). Let us con-
sider a bosonic fluid at a given temperature moving with velocity v. A macroscopic
obstacle in the path of the superfluid can generate elementary excitations. That is, a
fraction of the kinetic energy of the fluid is transferred to these excitations, thereby
decelerating the fluid and causing viscosity. With the excitation energy E(p) and the
momentum p, the total energy of the fluid interacting with the obstacle is,

E = E(p)+ (p+Mv)2

2M
= E(p)+p ·v+ 1

2Mv2+
p2

2M
≃ E(p)+p ·v+ 1

2Mv2 , (28.4)

where M is the total mass of the superfluid. Since the term Mv2/2 is the initial
kinetic energy of the fluid, E(p) + p · v represents the excitation energy. And since
the kinetic energy of the superfluid can only be diminished by the excitation, we need
E(p) + p · v < 0. Finally, as E(p) must be positive, the condition for generating
elementary excitations is,

E(p) ≤ pv , (28.5)

where p and v are antiparallel.
Therefore, there is a relative minimum velocity between the fluid and the obstacle,

called critical Landau velocity, for creating excitations,

vc = min

(E(p)
p

)
. (28.6)

For velocities below vc, it is impossible to generate excitations, and there is no mech-
anism to decrease the kinetic energy of the fluid. As a result, the system becomes
superfluid [499].

The spectrum of elementary excitations for a weakly interacting condensate, is
the Bogolubov spectrum (27.54). The graph Fig. 28.1 shows, that for velocities below
the sound velocity given by (27.56), v < cs, the curve representing the propagation of
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the perturbation does not cross the Bogolubov spectrum. That is, the perturbation
can not be converted into excitations, which is only possible when v > cs.

In an ideal condensate without interactions, as = 0, the Bogolubov spectrum
reduces to the quadratic dispersion relation of free particles, which means that there
is no critical velocity, vc = cs. Consequently, it is always possible to excite the
condensate, that is, an ideal condensate can not be superfluid, and, as first pointed out
by Landau: superfluidity and Bose-Einstein condensation are different phenomena.

0 0.5 1 1.5 2

k/k0

0

10

20

30
E
/h

(H
z)

Figure 28.1: (code) Landau’s criterion for superfluidity. Slow perturbations (blue line)

do not cross the Bogolubov spectrum (red line) and do not generate excitations. Rapid

perturbations (green line) cross the spectrum and can be dissipated.

28.1.2 Impurity scattering

A first hint for the superfluid nature of Bose-Einstein condensates is the fact that
the hydrodynamic theory of superfluidity describes well the collective excitations (see
Sec. 27.5). Moreover, several experiments provided direct evidence for the superfluid
nature of condensates. For example, via a calorimetric measurement [680]: A con-
densate, stirred around by a rotating far blue-detuned laser beam, dissipated atoms
to the thermal fraction of the atomic cloud, provided the stirring velocity exceed a
certain critical velocity vc: At lower velocities, the perturbation did not lead to dis-
sipation. At higher velocities, phonons were excited and the cloud was heated. In
a subsequent experiment, perturbation-induced density fluctuations were observed in
vivo and in situ [633]. When the stirring speed was below the critical velocity, the
density was almost homogeneous, thus indicating superfluid flow. When, however,
the stirring speed exceeded vc, atoms piled up in front of the stirring beam, and the
resulting pressure gradients led to a turbulent flow around the perturbation and to
dissipation.

The critical velocity vc found in the stirring experiments was about ten times
smaller than the local sound velocity cs,

cs ≡
√
gn

m
=

ℏ√
2mξ

. (28.7)

In fact, while the onset of dissipation is accelerated by turbulence around the macro-
scopic object traversing the superfluid, the local sound velocity (28.8) is derived for

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Superfluidity_LandauCriterion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Superfluidity_LandauCriterion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Superfluidity_LandauCriterion.m
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a microscopic object. Puzzled by this discrepancy, Chikkatur et al. [149] studied the
motion of microscopic atomic impurities through a condensate. The impurity was
created by transferring a few atoms out of the original BEC from the trapped state
|F = 1,mF = −1⟩ to the free state |F = 1,mF = 0⟩ via induced Raman transitions.
The initial velocity was adjusted by the laser beams exciting the Raman transition
(polarization, incident angle and relative detuning) to satisfy the Bragg condition (see
Sec. 29.2). After the free impurity passed through the BEC, the trap was switched
off, a Stern-Gerlach magnetic field gradient was pulsed to separate atoms in different
Zeeman states, and finally the atoms were detected via time-of-flight imaging (see
Sec. 26.6.1). When the initial velocity of the impurity was well above a critical value
given by the local velocity of sound, ultracold s-wave collisions between impurity
atoms and the stationary condensate distributed the momenta of the collision part-
ners uniformly. In TOF images this appeared as a circular halo centered around the
center-of-mass momentum of the collision partners (see Fig. 28.2). When, however,
the initial velocity of the impurity was reduced, its collision rate with the stationary
condensate was suppressed and the trajectory became superfluid.

Figure 28.2: (a) Scattering of impurities at velocities above the critical velocity. The presence
of a halo indicates the occurrence of collisions between the impurity and the condensate
dissipating the relative kinetic energy. (b) For velocities below the critical velocity the halo
disappears.

28.1.3 Hydrodynamic theory of superfluidity

For the description of superfluidity a hydrodynamic theory is adequate. Therefore,
we will rewrite the time-dependent Gross-Pitaevskii equation (27.21). We consider
the general case, in which the external potential Vtrp(r, t) depends on time. The
wavefunction can be written by defining the density and the velocity fields,

ϕ(r, t) =
√
n0(r, t)e

ıθ(r,t) (28.8)

vs(r, t) =
j(r, t)

n0(r, t)
=

1

2ım

1

n(r, t)
[ϕ∗(r, t)∇ϕ(r, t)−∇ϕ∗(r, t)ϕ(r, t)] .

This gives,
vs(r, t) =

ℏ
m∇θ(r, t) . (28.9)

From the GPE we derive the continuity and the Navier-Stokes equations:

∂n

∂t
+∇(vsn) = 0 (28.10)

m
∂vs
∂t

+∇
(
Vtrp + gn− ℏ2a

2m
√
n
∇2
√
n− µ+

m

2
v2
s

)
= 0 .
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We can see that the hydrodynamic behavior of a BEC depends greatly on the quan-
tum phase θ. When the kinetic pressure is small compared to the mean-field energy,

m
∂vs
∂t

+∇
(
Vtrp + gn+

m

2
v2
s

)
= 0 . (28.11)

This is the Euler equation for a fluid with a potential flow. This equation and the
continuity equation have the typical structure of equations describing superfluids at
T = 0. This is due 1. to the presence of a Bose-Einstein condensate allowing us
to formulate an equation for a complex order parameter, and 2. to the presence of
interactions, included via the pressure term in the Euler equation, which are necessary
condition for superfluidity.

At zero temperature, the entire fluid is superfluid. Moreover, in the Gross-
Pitaevskii approximation, the whole fluid is condensed. Therefore, vs(r, t) is the
velocity flow of the superfluid 1.

28.2 Topological modes

Significant manifestations of superfluidity are associated with rotational phenomena.
An example is the occurrence of scissor modes [351], which are excited, when an
angular momentum is suddenly applied to a condensate confined in an anisotropic
trap. This can be done via a sudden reorientation of the symmetry axis of the trap
[548, 547]. The condensate responds to this perturbation by an oscillation of its
inclination implemented by an irrotational superfluid flow. The excitation spectrum
reflects the strong reduction of the inertial momentum for superfluids.

The most rigorous manifestation of superfluidity, however, is the occurrence of a
quantized and persistent current, called quantized vortex. In contrast to the elemen-
tary excitations, which must be created by perturbations, the vortex is a stationary
(or topological mode) solution of the Gross-Pitaevskii equation Eq. (27.21).

Work on vortices has been done by [558, 541, 680, 633, 149, 351, 548, 542, 147,
18, 704, 236, 424, 131, 901].

28.2.1 Vortices

From Eq. (28.9) it is easy to see, that the superfluid is non-rotational, that is,

∇× vs(r, t) = 0 . (28.12)

This raises the question, how vortices are possible. The solution to this apparent
contradiction is, that Eq. (28.12) does not apply, when the phase exhibits a singularity.
Consider, for example, a closed loop C around the singularity. In a vortex, the
superfluid current is pulled by the phase gradient, v = ℏ

m∇θ. For the condensate
wavefunction to be well defined, the phase variation ∆θ around the loop must be a
multiple of 2π, that is,

∆θ =

∮

C

∇θ · dl = 2πℓ . (28.13)

1This is not the case for strongly interacting superfluids, such as superfluid helium, where the
normal fluid fraction is considerable.
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where ℓ is an integer. Therefore, we can calculate the circulation Γ around the closed
loop, that is,

Γ =

∮

C

vs(r, t) · dl =
h

m
ℓ . (28.14)

Apparently, the superfluid circulation is quantized in units of ℏ/m. The parameter
ℓ is called charge of the vortex and measures, in unit of h, the quantized angular
momentum of the vortex.

In addition, the flow must be persistent, because its circulation can only be
changed in a discontinuous way, by overcoming a discrete energy barrier, which re-
quires energy coming e.g. from thermal excitations. Clearly, the normal (thermal)
fraction of a gas can also have a circular flow. However, the disordered microscopic
motion of each individual particle causes a viscous drag that prevents the persistence
of the flow in the absence of a torque. This is in contrast to superfluid flow, which
persists even without external torque. The issues of vortex stability, formation, and
topology were addressed in recent experiments [557, 541, 542, 147, 18]. Solve the
Excs. 28.2.6.1 and 28.2.6.2.

The kinetic energy per unit vortex length can be estimated from a semi-classical
approach. First, we define as the mass density ρm of the superfluid. If n is the particle
density, ρm = nm. The kinetic energy of a flux line at the radius r is,

Ekin = 1
2ρmv

2
s =

ℏ2ℓ2

2m

n

r2
. (28.15)

To obtain the kinetic energy per unit length, we integrate the expression (28.21) over
a plane perpendicular to the vortex axis. Note, however, that the velocity field is
vs ∝ r−1 and, therefore, can not be integrated from zero. Instead, we begin the
integration at a radius given by the healing length ξ, which represents a measure of
the vortex core size. Now, the kinetic energy per unit length is,

Esemi =

∫ 2π

0

∫ R

ξ

Ekin(r)rdrdθ = πn
ℏ2ℓ2

m
ln
R

ξ
. (28.16)

Note, that a multiply charged vortex carrying the entire angular momentum ℓ = ℓ0
of the superfluid is energetically less favorable than an ensemble of ℓ0 vortices with
unit charge ℓ = 1. Therefore, a multiply charged vortex is unstable and may decay
to several single charge vortices.

To calculate exactly the energy of a vortex, we do the following ansatz,

Φ0(r) = ϕ(r, z)eıℓϑ , (28.17)

we then solve the Gross-Piatevskii equation (27.21) numerically, and calculate the
expectation value of the energy of the vortex through the expression,

⟨Φ0|Ĥ|Φ0⟩ =
∫
d3r

[
ℏ2

2m |∇Φ0(r, z)|2 + Vtrp|ϕ(r, z)|2 + g|ϕ(r, z)|4
]
, (28.18)

where Ĥ is the Gross-Pitaevskii Hamiltonian.
The calculation yields for energy per unit length of a single charge vortex in a

uniform cylindrical condensate [649],

Eunif = πnℏ2

m ln
(
1.464Rξ

)
, (28.19)
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which is very close to our semi-classical prediction. Although the wavefunction
|ϕ(r, z)| has no analytic form, it can be shown by a variational approach, that the
trial wavefunction,

|ϕ(r, z)| = nr√
2ℓ2ξ2 + r2

(28.20)

is a good approximation [649]. Note that the healing length ξ characterizes the size of
the vortex. For a superfluid, we can calculate the total energy of the vortex exactly,
because the fluid is confined in all directions,

Etot =
4πn0

3
ℏ
m ln

(
0.671Rr

ξ0

)
, (28.21)

where n0 and ξ0 are, respectively, the density and healing length at the center of the
fluid. Rz and Rr are, respectively, the extensions of the cloud along the axial and
radial directions within the Thomas-Fermi approximation.

28.2.1.1 Creation and detection of vortices

The first superfluid vortex was observed 1979 in 4He [894]. For gaseous condensates,
two approaches have been employed to produce vortices. Either one stirs the atomic
cloud in order to impart an angular momentum to it. This can be done by rotating
the (anisotropic) trap during the process of forced evaporation with time-orbiting
magnetic fields or with an optical spoon. The vortex state is formed when the critical
temperature for condensation is crossed. An alternative method is to imprint a 2π
circular phase gradient into a previously created condensate. Indeed, the local phase
of a matter wave can be manipulated via a local modification of the potential depth,
which can be achieved by a Stark shift induced by a far-detuned laser beam [236].
Focused into a tiny spot which is moved across the condensate, the laser beam will
create a phase gradient, which in turn will cause a velocity flow. It is important to
force the local density at the center of the vortex to zero, which can be achieved via
a proper design of the trapping potential (e.g., a Mexican hat-shaped potential), and
let the BEC then relax to the vortex state.

A variation of this method [867] avoids the need for relaxation processes. In this
configuration the phase gradient is created through a local Raman coupling between
two internal atomic states (for example, in 87Rb the two trappable Zeeman states
|F,mF ⟩ = |1,−1⟩ to |2, 1⟩). At the spots, where the focused Raman beams hit the
condensate, atoms were dynamically converted from the ground state to the excited
state. The circular trajectory of the spots and the rotation speed were calculated such
as to generate a toroidal topology for the adiabatic population transfer. The process
was coherent and allowed to directly construct and shape the vortex wave function.
We study this experiment in more detail in the Exc. 28.2.6.3.

In confined single-species condensates the diameter of the vortex core is on the
order of the healing length, 2ξ. With typical values of 2ξ ≈ 0.4 µm it is thus way
too small to be imaged in situ, and ballistic expansion times of several 10 ms are
necessary. On the other hand, in double condensates formed by two repelling species
(e.g. the two states |2, 1⟩ and |1,−1⟩ in 87Rb), one of the species can form a vortex
around the second. In this case, the diameter of the vortex core, is determined by
the diameter of the condensate of the second species and, hence, much larger. When
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We have created vortices in two-component Bose-Einstein condensates. The vortex state was created
through a coherent process involving the spatial and temporal control of interconversion between the
two components. Using an interference technique, we map the phase of the vortex state to confirm
that it possesses angular momentum. We can create vortices in either of the two components and have
observed differences in the dynamics and stability.

PACS numbers: 03.75.Fi, 42.50.Md, 67.57.Fg, 67.90.+z

The concept of a vortex is at the center of our under-
standing of superfluidity. A vortex is a topological fea-
ture of a superfluid—in a closed path around the vortex,
the phase undergoes a2p winding and the superfluid flow
is quantized. Following the experimental realization of a
dilute atomic Bose-Einstein condensate (BEC) [1], much
theoretical effort has been directed towards the formation
and behavior of vortices in atomic BEC [2–4]. This paper
presents the experimental realization and imaging of a vor-
tex in BEC. We use the method proposed by Williams and
Holland [5] to create vortices in a two-component BEC.
An interference technique is used to obtain phase images
of the vortex state and confirm the2p phase winding re-
quired by the quantization condition. We have also carried
out preliminary studies of the stability of the vortices.

Vortices can be created in superfluid helium by cooling a
rotating bucket of helium through the superfluid transition,
and a vortex forms for each unit of angular momentum.
This does not work for BEC because it is formed in a
harmonic magnetic trap. When the condensate first forms
it occupies a tiny cross-sectional area at the center of the
trap and is too small to support a vortex. Eventually, the
condensate grows to a sufficient size so that it can support
vortices, but the time scale for vortices to be generated
in the vortex-free condensate due to coupling with the
rotating environment is unknown, and may well be longer
than the lifetime of the condensate. This is the potential
difficulty with using an optical “stirring beam” or magnetic
field distortion to rotate the cloud during condensation,
as has been frequently proposed. Another proposal has
been to use optical beams with appropriate topologies
to “imprint” a phase on an existing condensate. This
technique must drive the local density to zero at some
point and then rely on uncertain dissipative processes for
the condensate to relax into a vortex state.

We have avoided these uncertainties by creating vortices
using a coherent process that directly forms the desired
vortex wave function via transitions between two internal
spin states of87Rb. The two spin states, henceforth
j1� and j2�, are separated by the ground-state hyperfine
splitting and can be simultaneously confined in identical

and fully overlapping magnetic trap potentials. A two-
photon microwave field induces transitions between the
states. As we have seen in previous experiments, this
coupled two-component condensate is exempt from the
topological rules governing single-component superfluids
[6]—rules that make it difficult to implant a vortex within
an existing condensate in a controlled manner. In the
coupled system, we can directly create aj2� (or j1�) state
wave function having a wide variety of shapes [5] out of
a j1� (or j2�) ground-state wave function by controlling
the spatial and temporal dependence of the microwave-
induced conversion ofj1� into j2�.

We control the conversion by shifting the transition fre-
quency using the ac Stark effect. A spatially inhomoge-
neous and movable optical field (a focused laser beam)
provides the desired spatial and temporal control of the ac
Stark shift. The vortex state is an axially symmetric ring
with a 2p phase winding around the vortex core where
the local density is zero. To create a wave function with
this spatial symmetry, the laser beam is rotated around
the initial condensate as in Fig. 1a. The desired spatial

FIG. 1. (a) A basic schematic of the technique used to create
a vortex. An off-resonant laser provides a rotating gradient
in the ac Stark shift across the condensate as a microwave
drive of detuningd is applied. (b) A level diagram showing
the microwave transition to very near thej2� state, and the
modulation due to the laser rotation frequency that couples
only to the angular momentuml � 1 state whenv � d. In
the figure, the energy splitting (,1 Hz) between thel � 1 and
l � 0 states is exaggerated.

2498 0031-9007�99�83(13)�2498(4)$15.00 © 1999 The American Physical Society

Figure 28.3: (Left) Scheme of the experiment [557]. (Medium) Level system used.
(Right) Density distribution of a vortex state: (a) (the visible atoms are in the upper
hyperfine state), (b) after a π/2-pulse and (c) after a π-pulse (the visible atoms are
in the lower hyperfine state). The images (d) and (e) visualize the phase slip around
the vortex.

the second species is selectively removed (e.g. by the radiative pressure exerted by a
resonant laser), and the vortex in the first species can be studied by in situ imaging
of the confined density distribution [558].

A particularly smart detection method for vortices is based on matter wave in-
terferometry (see Sec. 28.3.3). Here, two matter waves, that is, the vortex state in
|2, 1⟩ and a (reference) ground state BEC in |1,−1⟩ are coherent mixed via a reso-
nant two-photon radiofrequency π/2-pulse. The resulting matter wave interference
patterns reveals the phase profile of the vortex (see Fig. 28.3).

28.2.1.2 Stability

In a topologically ’singly-connected’ trap, for example a potential harmonic, vortices
do not represent the lowest energy eigenstate, and they must decay to the ground
state. If the mean-field energy of the condensate is weak compared to the kinetic
energy, gn0/ℏωz ≪ 1, the healing length will exceed the size of the BEC, ξ ≫ atrp,
and the vortex rapidly decays by dissipating its excess energy to thermal excitation.
Such BECs can not be considered superfluid. If the mean-field interaction is strong,
the vortex spontaneously breaks azimuthal symmetry, moves away from the center
and exits the condensate on a spiral-shaped trajectory [704]. Nevertheless, the decay
time may be quite long.

On the other hand, a vortex can be the ground state of a ’multiply-connected’
trap (for example, a toroidal potential). Such a potential can be realized as the
temporal average of a harmonic potential with a small rotating anisotropy [541]. In
such geometries vortices are extremely stable.

28.2.1.3 Vortex precession

A radial force acting on a vortex results in a radial displacement and a precession
about the symmetry axis. The effect, known as Magnus effect [424], is due to pressure
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imbalances on the vortex surface. A radial force naturally arises, when the core is
displaced from the center, because local pressure gradients will force the vortex out
of the center toward regions with lower densities. Experimentally, a slow precession
(∼ 1 Hz) spiraling the vortex toward the rim of the condensate has been observed
[18] by taking a succession of nondestructive images.

28.2.2 Vortex lattices

Superfluid 4He in a rotating bucket spontaneously develops symmetrically organized
vortex patterns. Similar phenomena can be observed, when a dilute gas Bose-Einstein
condensate is forced to rotate [131] at a given frequency Ω. The energy in the rotat-
ing system receives an additional contribution from the centrifugal term, Urot(r) =
Utrp(r) − ΩLz, where Lz = ℏNlz, and lz = ı(y∂x − x∂y) is the angular momentum
of the individual atoms. If the rotation is slow, the energy ΩLz is too small to force
the condensed wavefunction to rotate. If the rotation frequency is beyond a critical
value Ωc, the time-averaged potential, Urot(r) eventually develops a local minimum
in the center, thus adopting the toroidal shape. For non-interacting gases, the criti-
cal frequency coincides with the radial secular frequency, Ωc = ωr. Then the radial
restoring force of the trap does not balance the centrifugal force, such that atoms can
escape from the trap. However, for superfluid gases the critical frequency is reduced,
Ωc < ωr. Between the rotation frequencies Ω = Ωc and Ω = ωr, the state with the
lowest energy in the toroidal potential is the vortex, whose filament is pinned to the
symmetry axis. For even higher rotation frequencies, we could expect a single vortex
with a larger winding number (more than the phase winding of 2π for a single turn).
However, individual multiple-order vortices in harmonic traps are unstable. Instead,
vortex lattices [131] called Abricosov lattices will form. For a given trapping poten-
tial and mean-field energy, the symmetry of the lattice and the number of vortices
depend on the rotation frequency Ω. Counter-intuitively, the angular momentum of
individual particles lz is not quantized. When we vary Ω, regimes of forbidden lz
(i.e. when no vortex pattern is formed) alternate with allowed regimes. The discon-
tinuous transition from one vortex pattern to another is a first-order phase transition,
which spontaneously breaks one symmetry to form another. An upper limit for the
rotation speed is given by the equilibrium between the centrifugal force and the radial
restoring force of the trapping potential at Ω = ωr.

Figure 28.4: Abricosov vortex lattice.

These patterns of vortex lattices were observed in experiments using the stir-
ring method, which consists in brushing a far-detuned focused laser (’optical spoon’)
around the rim of a condensate [541] at a certain frequency Ω. In this experiment, the
ratio of the mean-field energy to the kinetic energy was gn0/ℏωz = a2trp/2ξ

2 > 100.
Beyond a certain critical rotation frequency, Ωc ≈ 2π×150 Hz, a single central vortex
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was formed. At even higher frequency, a symmetrical vortex lattice appeared in a
transverse plane (see Fig. 28.4). Finally, at rotation frequencies near the radial trap
frequency ωr, the condensate wavefunction became turbulent and finally disappeared.
As soon as the optical spoon was removed, the vortex lattice gradually decayed losing
the vortices one by one.

28.2.3 Solitons

Work on solitons has been done by [899, 866, 557, 867, 601, 690, 423, 612, 129, 42,
251, 124, 223].

28.2.3.1 Dark solitons

Solitons are non-singular solutions of any equation satisfying,

|ψ(r, t)| = |ψ(r− vt)| . (28.22)

Solitons are well known to occur in non-linear optical media, for example in optical
fibers, when dispersion is counterbalanced by self-phase modulation, such that op-
tical signals propagate without spreading. The Gross-Pitaevskii equation is another
example for a nonlinear wave equation supporting soliton-like solutions. States called
dark soliton or twisted state with a dynamically stable density dip are expected in
condensates with repulsive interactions [601, 690, 423, 612]. In contrast to topologi-
cally stable states, for example, vortices, dark solitons are pseudo-defects, the decay
of which, even though it may be slow, is topologically trivial. Due of the greater
freedom of movement of their wavefunctions, solitons can be distorted by complex de-
formations [129]. Soliton-like matter wave states were initially observed in superfluid
3He-B [42]. In dilute gases, the size of the solitons is of the order of healing length.

The first dark solitons in dilute gases were created by applying an inhomogeneous
phase shift to a condensate [124, 223]. One half of the condensate was irradiated by a
far-detuned laser pulse (detuning ∆, Rabi frequency Ω, duration τ ≪ ℏ/gn0) in order
to advance the phase of this part of the condensate by φ = Ω2τ/4∆. When the phase
shift was set to π, an abrupt phase gradient developed at the boundary delimiting
the two halves. The condensate reacted to the phase gradient by developing a deep
density minimum all along the boundary corresponding to a soliton (see Fig. 28.5).
The phase distribution can also be imaged by interferometric techniques based on
Bragg diffraction (see Sec. 29.2). In one dimension, the density dip of the soliton
corresponds to a node of the dipolar topological mode [867, 601, 612].

The abrupt phase gradient at the boundary plane exerts a force trying to increase
the gap, while repulsive interactions work to heal it. At zero temperature, this balance
ensures the dynamic stability of the soliton. While a perfect dark soliton should be
stationary, experiments [124, 223] revealed that solitons with finite contrast propagate
along the direction of the plane’s normal vector with a velocity, which must always
be less than the local sound velocity,

vsol = cs

√
nsol
n

, (28.23)

where n is the peak density of the condensate and nsol the density at the bottom of
the dark soliton [690, 423]. Fig. 28.5 shows that the soliton develops a curvature when
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it propagates. One reason for this is a slower sound velocity, cs =
√
gn0/m, on the

edges of the condensate, where the density is lower. The second reason is, that the
density in the dip, nsol, goes to zero at the edges. In the presence of a thermal cloud,
dissipation reduces the contrast of the density dip and accelerates the soliton, until
it reaches the sound velocity cs and finally disappears.

Figure 28.5: Solitons.

28.2.3.2 Bright solitons

In condensates with attractive interactions bright solitons have been observed, as well
[462, 449].

28.2.4 Description of general topological modes

A coherent topological mode is a stationary solution of the Gross-Pitaevskii equation,

[
− ℏ2

2m
∇2 + Utrp(r) +

4πℏ2as
m

N |ϕn|2
]
ϕn(r) = EnΦ(r) . (28.24)

These modes can be calculated using an optimized perturbation theory [175]. We
separate the Hamiltonian into an unperturbed part and a perturbed part, Ĥ = Ĥ0 +
∆Ĥ, where the unperturbed part now depends on variational parameters,

Ĥ = Ĥ0(u, v, ..) + ∆H . (28.25)

As usual, the first-order energy correction is,

E(1)

n (u, v, ..) = E(0)
n (u, v, ..) + ⟨Φ(0)

n |∆Ĥ|Φ(0)
n ⟩ , (28.26)

where the Φ
(0)
n = Φ

(0)
n (u, v, ..) are the solutions of the unperturbed Hamiltonian Ĥ0.

Once the energies are found, we must minimize them in terms of the variational
parameters,

∂En
∂u

= 0 ,
∂En
∂v

= 0... . (28.27)

With these parameters, we obtain the energies and the wavefunctions 2.

2Excited modes can be understood stationary matter waves with the trap serving as a cavity.
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28.2.4.1 Creation of topological modes

One possibility of creating topological modes is to apply a temporal modulation to the
trapping potential [899]. The modulation frequency must be resonant with the energy
difference between the excited mode and the ground state. Another possibility is to
vary the interaction energy via a modulation of the scattering length in the vicinity
of a Feshbach resonance [179].

The steady-state situation of a cloud in a stationary trap is thermal equilibrium,
that is, inversion is not possible. At a time-dependent (e.g. shaking) potential how-
ever, for example, transitions to excited vibrational levels can be driven. These can
generate inversion, provided collision-induced relaxation is not too fast 3.

28.2.5 Turbulence

The issue of turbulence is one of the most important problems of classical physics
yet to be solved [278]. In superfluids, restrictions imposed by quantum mechanics
constrain the emergence of turbulence, which is then called quantum turbulence. On
the other hand, the study of quantum turbulence can improve our understanding of
classical turbulence [243]. Recently, the study of the dynamics of a ensemble of vortices
in a Bose-Einstein condensate allowed the identification of signatures of quantum
turbulence [386, 370].

Figure 28.6: Turbulence.

28.2.6 Exercises

28.2.6.1 Ex: Comparison between the quantum and the classical vortex

Consider a vortex around a straight line along the z-axis at r = 0. Compare the
radial velocity variation of a quantum vortex with that of a classical one.

28.2.6.2 Ex: Singularity in vortices

Show for the above simple example,

∇× vs(r, t) = ẑ
ℓh

m
δ(x)δ(y) .

3The dynamics of atoms trapped in a harmonic potential is similar to the Jaynes-Cummings dy-
namics of an optical mode. However, the non-linear condensate self-interaction changes the situation
and makes the collisions being collective.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Superfluidity_VorticeQuantico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Superfluidity_SingularidadeVortice.pdf
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28.2.6.3 Ex: Phase-engineering of a vortex state

The first vortex in a dilute gas was created at the JILA [558]. Study the paper and
explain in detail, how the vortex was created.

28.3 Atom optics

Unlike the photons [497], there is no doubt about the fact that atoms are particles.
On the other hand, the deep analogy between light and matter, resulting from the
particle-wave duality, prompted de Broglie in 1924 to ascribe a wave to each massive
particle, whose wavelength would be a function of the particle’s momentum. Whether
an atom behaves more like a particle or a wave depends on the specific experimental
situation. For example, interferometers emphasize its wave nature: Atoms are able
to interfere with themselves, when their Broglie wavelength is coherently split and
then recombined. (Bosonic) atoms are able to interfere with other atoms, if their de
Broglie wavelengths are greater than their distances. For this to happen, it requires
high densities and very low temperatures, that is, high phase space densities. When
the phase space densities are so high that the Broglie waves come into contact, effects
of quantum statistics begin to influence the dynamics of the atoms, and fermions will
behave differently from bosons.

Analogously to the distinction between classical and laser optics, we can separate
the area of conventional atomic optics working with individual, mutually incoherent
atoms, from the area of coherent atomic optics working with Bose-Einstein conden-
sates. Unlike for the study of phenomena related to superfluidity, gases with weak
interatomic interactions are generally more useful for the study of the coherent prop-
erties of condensates and for application in atomic optics. Nevertheless, interatomic
collisions increase the complexity of the dynamics of matter waves interacting with
atom optical devices, by introducing non-linarities analogous to those known from
nonlinear optics and thus raising the field of nonlinear atom optics.

28.3.1 Atomic optical tools

The basic equipment of an atomic optics laboratory [588, 4, 656, 289, 674] comprises
atomic beams, atom traps, lenses and waveguides, various types of mirrors and res-
onators, Stern-Gerlach type matter wave polarizers, de Broglie wave phase shifters
based on Bragg diffraction, and a multitude of atomic beam gratings. Obviously,
gratings allow the construction of atom interferometers, which are used in experi-
ments and high precision devices, for example, atomic gyroscopes and gravimeters.
Other applications for atomic beams controlled by atom optical elements are in atomic
holography for the projection of complex pattern into integrated semiconductor cir-
cuits [602], in lithography [823], and in microscopy [235].

An important feature of atoms (as compared to light) is the existence of a rich
internal structure providing a wealth of additional degrees of freedom, whose dynamics
(of the Bloch vector) is frequently entangled with the motional dynamics (of the
de Broglie wave). This allows to monitor (e.g. in matter wave interferometers) the
evolution of the motional state of the matter wave via an observation of the internal

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Superfluidity_VortexCreation.pdf
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excitation. Moreover, in some interferometers, the de Broglie wave is not even split,
and one does interferometry with completely immobile atoms or ions [411].

The epitome of a coherent light source is the laser, and we may ask whether there
is a material analogue, which would be a source of coherent matter [874, 105, 777, 400,
609, 471] serving for coherent atom optics. In fact, we may already consider a trapped
condensate as a stationary atom laser pulse with the trapping potential playing the
role of the laser resonator. While most atom optical devices (including conventional
atomic interferometers) do not require mutual coherence of atoms, certain applications
take advantage of an intense, highly directional, monochromatic, and coherent atom
source. In this respect, atom lasers are much superior to thermal atomic beams.
While a thermal beam contains about 10−12 atoms per mode and a magneto-optical
trap about 10−6, a condensed mode may contain more than 106 atoms. Condensates
offer the advantage of large de Broglie wave amplitudes and de Broglie wavelengths as
long as their actual size (which can be much longer than optical wavelengths). And for
an atom laser, the coherence length can even be longer than that of the condensate
from which it emerged. This obviously has a major impact on the sensitivity and
resolution of atom optical elements, in particular those, where atomic coherence is
important, for example, atom interferometers. Without doubt atom lasers will replace
conventional atomic beams in precision measurement of fundamental constants and
tests of fundamental symmetries ([Phys. World (mar,97) p.43]). Finally, atom lasers
are crucial for nonlinear optics.

Also of interest are the references [776, 602, 681, 502, 709, 48, 385, 247, 673, 222,
396, 692, 422, 734, 76, 235, 860].

28.3.2 The atom laser

A large number of techniques for making an atom laser has already been developed
[571, 24, 578, 19, 90, 360, 552] and theories on atom lasers have been formulated
[357, 607, 872, 848, 412]. The following sections are devoted to explaining, why the
term atom laser is justified. For the reasoning we will let as guide by the optical laser.

We already mentioned the trapping potential (replacing the resonator in lasers)
as a major ingredients of an atom laser 4. Another necessary feature would be the
availability of an output coupling mechanism, which we still need to discuss in the
following. Apart from these more practical aspects, we need to prove, that atom lasers
are indeed phase-coherent, and we have to clarify the role of bosonic stimulation and
of irreversibility in the production process of a BEC.

28.3.2.1 Bosonic stimulation and irreversibility

The gain mechanism for optical lasers is photonic stimulation of atoms inciting them
to emit other photons into the stimulating mode. The atomic laser operates in a
similar way. Atoms trapped in a potential constitute a thermal reservoir. Binary
collisions redistribute the atoms among the vibrational energy levels of the potential.
If a vibrational level already contains an atomic population, Bose-Einstein quantum

4Coherent reflection of atom laser beams has been demonstrated [98, 26, ?], and an atom laser
cavity with efficient transverse focusing has been built [92]
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statistics will encourage atoms involved in a collision process to join this level. Ulti-
mately, this comes down to an irreversible pumping of a single level, where the atoms
accumulate to build a single degenerate quantum state. Bose condensation is always
the result of bosonic stimulation. However, the dynamics and time scale for the for-
mation of a condensate have been controversially discussed, until some experiments
[578] could directly visualize in vivo the process of nucleation and the exponential
amplification at the center of a thermal cloud (see Fig. 28.7).
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Figure 28.7: (a) Illustration of the idea of bosonic stimulation. (b) The curves show
the growth of a condensate toward thermal equilibrium for different initial numbers
of condensed atoms.

The very high concentration of population in a single phase space cell during the
creation of a condensate represents a dramatic reduction of entropy. Since the total
entropy can not decrease, the condensate must be coupled to a thermal reservoir
receiving the excess entropy. This coupling is necessarily irreversible. In practice, the
reservoir is the cloud of thermal atoms, whose energy is spread over many vibrational
states. Irreversibility is introduced by collisions and the subsequent removal of the
hottest atoms.

28.3.2.2 Phase of a condensate and first and higher-order coherences

First-order coherence and long-range order are necessary conditions for assigning a
single global phase to the condensate. The existence of a single phase, and the possi-
bility of measuring it, were questioned in the past. Certainly, the phase of a BEC is
not observable by itself, but only the relative phase of two condensates.

The intrinsic phase-coherence of condensates has demonstrated in many experi-
ments. An early example [364] employed internal state interferometry by splitting and
remixing 87Rb condensates trapped in the different Zeeman states |F,mF ⟩ = |1,−1⟩
and |2, 1⟩. They found that the phase was remembered for times longer than 150 ms.
In another experiment [21, 459, 848], illustrated in Fig. 28.8, a condensate was spa-
tially split in two halves and then recombined. The interpenetration of the two halves
at a well-defined relative velocity gave rise to a clear matter wave interference pattern.
This ability of ballistically expanding condensates to interfere demonstrated the ab-
sence of a random phase lag during the expansion process and that the preservation
of the condensates’ long range order. However, under the repulsive influence of the
mean-field energy, the phase profile of a released condensate evolves in a non-uniform



1274 CHAPTER 28. SUPERFLUID AND COHERENT PROPERTIES OF BOSE-EINSTEIN CONDENSATES

but well-defined manner [760].

The homogeneity of the phase of a confined condensate was also confirmed experi-
mentally [790, 359, 91] through interferometric techniques based on Bragg diffraction
(see Sec. 29.2.2). The spatial coherence of an output coupled atom laser has been
verified with a double-slit experiment [91]. And the temporal coherence of an atom
laser beam was shown to be Fourier-limited by the finite output coupling time [?].

Similar to Young’s double slit experiment in optics, the observation of matter
wave interference only indicates first-order coherence, i.e. amplitude fluctuations in
the matter field. Signatures for the presence of higher-order coherences in conden-
sates were discovered in other experiments: The second-order correlation function,
which represents a measure for intensity fluctuations (number of particles) in the
matter field, was derived from measurements of the condensate’s release energy [461].
And the third-order coherence can be deduced from a comparison of the three-body
recombination rates for condensed and thermal clouds [128].

optical pumping
beam

interfering BECs
after 40ms TOF

probe laser

trapped split BECs

CCD

(a) (b)

Figure 28.8: (a) Scheme for observation of matter wave interference. (b) Interference
fringes.

A reliable characterization of atom number fluctuations and matter wave phase
fluctuations in condensates is important for the simple reason, that these fluctua-
tions will limit ultimately the resolution of atom interferometers, analogous to the
Schawlow-Townes limit in lasers.

28.3.2.3 Output coupling

The output coupler for a trapped condensate plays a role similar to that of the partially
reflecting mirror of a laser resonator. It transfers a fraction of condensed atoms out
of the trapping potential through a coherent coupling to untrapped states. The cou-
pling can be conveniently implemented via adiabatic potentials (see 20.1.3 and 26.4.3)
generated by radiation (e.g. radiofrequency pulses [571] or continuous radiofrequency
[90]). Also, pairs of laser beams in Raman configuration can create a coherent quasi-



28.3. ATOM OPTICS 1275

continuous and well-collimated atomic beam [360] and tunneling can give rise to a
pulsed mode-locked atom laser (mode-locked laser) [19].

A trapped condensate represents a finite reservoir from which an atom laser can
be fed. For a really cw atom laser, an incoherent pumping mechanism, continuously
feeding the BEC, while it delivers atoms to the atom laser, is still lacking [544].

Figure 28.9: Several types of atomic lasers realized, from left to right at the MIT in 1997,
in Munich in 1999, at Yale in 1998, and at NIST in 1999. The vertical sizes of the images
are, from left to right: 5, 2, 0.5, and 1 mm.

28.3.3 Atomic interferometry with Bose-Einstein condensates

The most obvious use of an atom laser is within an atomic interferometer [791, 779,
99, 359, 91, 760, 461, 128, 639, 220, 585, 604]. Many types of interferometers have
been developed over the years. First of all, we note that the interferometric idea
can be realized in the spatial domain (e.g. an atomic beam passing through a light
wave) or in the time domain (e.g. a trapped atomic cloud or an immobile trapped ion
irradiated by a pulsed light) [104, 411, 682, 321].

Furthermore, depending on the involved degree of freedom (kinetic or internal
excitation), we may distinguish two types of interferometers. Matter wave interfer-
ometers operating with the kinetic degree of freedom often use beam splitters based on
Bragg diffraction [483, 639, 359, 760]. Matter wave interferometers involving internal
degrees of freedom generally couple two species of condensates, that is, two conden-
sates in different states of internal excitation, for example, in different Zeeman [792],
hyperfine [613, 364, 585], or dressed states [506]. The phases of two BECs in different
internal states, which we will call |±⟩, evolve according to their respective chemical
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potentials, φ|±⟩(t) = µ|±⟩t. The accumulated phases are not directly observable, but
their difference, ∆φ(t), can be measured by Ramsey interferometry.

28.3.4 Non-linear atomic optics

In classical nonlinear optics, the interaction between matter (e.g. dilute gases) and
light is described by Maxwell’s equations. The electromagnetic field E creates a
macroscopic polarization,

P(r, t) = χ(E)E(r, t) = χ(1) ·E+ χ(3) : EEE+ ... . (28.28)

which in turn acts back onto the field. Higher-order processes, such as self-focusing,
second-harmonic generation, four-wave mixing, etc. are described by the non-linear
susceptibility χ(3). These processes require the presence of a non-linear medium (the
vacuum polarization itself being too small [450, 348]).

The role of binary collisions in coherent matter wave optics, as described by the
nonlinear term in the Gross-Pitaevskii equation (27.21), is very similar to the role of
the third-order nonlinear susceptibility in quantum optics [509, 483, 221, 326, 828,
451, 372, 453, 511, 191, 374]. For example, if the atomic interaction is repulsive,
the nonlinear term tries to increase the size of the condensate as much as possible
within the limits imposed by the trapping potential. This behavior is analogous to
the phenomenon of self-defocusing known in non-linear optics.

Small-amplitude elementary oscillations are well described by the Bogolubov-de
Gennes equations, which are a linearized version of the Gross-Pitaevskii equation
[175]. On the other hand, large-amplitude oscillations, which are sensitive to the
nonlinear mean-field interaction [769], showed a splitting of the frequency for quasi-
particle excitation, in analogy with the generation of the second-harmonic (SHG) in
quantum optics [374].

Other phenomena, such as matter wave phase conjugation and four waves mixing
(4WM) [326] have been observed in experiments [221]. The three matter wave modes
for the nonlinear mixing were produced out of a single condensate by applying two
short consecutive sequences of Bragg diffraction pulses. The condensates are created
in the same spatial region, but at different times. The nonlinear mixing during the
process of spatial separation was observed by time-of-flight images.

The geometry of the laser beams is shown in Fig. 28.10(a) in the laboratory system.
A first standing wave light pulse is generated by lasers k1 and k2 detuned from each
other by an amount, such that the Bragg condition is satisfied and the momentum
p2 = ℏk1 − ℏk2 is transmitted to the diffracted atoms. Then, a second standing
wave light pulse formed by lasers k1 and k3 = −k1 transmits to the diffracted atoms
the momentum p3 = 2ℏk1. The duration and intensity of the standing waves are
adjusted such as to create an approximately equal distribution ofN0

j atoms in all three
condensate momentum modes, each mode having a different momentum, p1 = 0, p2,
and p3. Initially, the three wavepackets ψ̂j ≡ ψ̂0(r)e

ipjr/ℏ overlap. The nonlinear
term in the Gross-Pitaevskii equation mixes the wavepackets while they separate to
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form other wavepackets, ψ̂4 ∼ gψ̂+
j ψ̂mψ̂ne

ip4·r/ℏ, where,

N4 = −Nj +N0
j = Nm −N0

m = Nn −N0
n =

∑3

κ=1
(N0

κ −Nκ) (28.29)

p4 = −pj + pm + pn

p24 = −p2j + p2m + p2n .

To produce the new momenta, p4 ̸= p1,p2,p3, the corresponding wavepackets must
gather atoms from all three initial packets p1 ̸= p2 ̸= p3.

The experimental observation of a newly emerging wavepacket ψ̂4 has two comple-
mentary interpretations: In the inertial system defined by p1 = −p3 [see Fig. 28.10(b)],

the wavepackets ψ̂1 and ψ̂3 suffer elastic collisions. The direction in which the con-
densates are scattered is, a priori, isotropic. The injection of a third condensate
ψ̂2 bosonically stimulates the formation of a forth one, ψ̂4, in a predefined direction
p4 = −p2. The laws of conservation for the particle numbers, momenta, and ener-
gies (28.29) only allow processes, which can be interpreted as degenerate 4WM in this

inertial system. Each of the wavepackets ψ̂1 and ψ̂3 sacrifice N4 atoms to create a
new wavepacket ψ̂4 and to amplify the wavepacket ψ̂2. The redistribution of atoms
is a coherent process.

Figure 28.10: Matter wave 4WM can be illustrated (a) in the laboratory system, or (b) in
the inertial system defined by p1 = −p3, or (c) in the system defined by p1 = −p2. In each
system the process has a different physical interpretation (see text). The right image shows
the experimental result.

The second interpretation becomes clear in the inertial system, in which p1 =
−p2 [see Fig. 28.10(c)]. The conservation of energy only allows scattering products

satisfying p4 = p3, that is, ψ̂+
1 ψ̂2ψ̂3 and ψ̂+

2 ψ̂1ψ̂3. In this system, the process can

be interpreted as Bragg diffraction of the wavepacket ψ̂3 by the matter wave lattice
formed by ψ̂1 and ψ̂2. The wavepacket ψ̂4 is nothing more than the first diffraction
order. Unlike the Bragg diffraction in an optical lattice (see Sec. 29.2), the Bragg
diffraction by a matter wave lattice requires nonlinear mixing through binary atomic
collisions. Thus, the number of redistributed atoms depends on parameters such as
the interatomic interaction strength, the size of the condensate, and the collision time
between the wavepackets, i.e. the time that the wavepackets spend together before
separating.

Despite the similarity with the optical counterpart, matter wave 4WM is fun-
damentally different: The number of particles must be conserved and the energy-
momentum dispersion relation is not linear. Furthermore, while photons require the
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presence of a nonlinear medium in order to participate in higher-order processes,
atomic matter waves mix through binary collisions.

28.4 Quantum atom optics

When describing a condensate by the Gross-Pitaevskii equation, we specify a phase
and an atom number. However, both are conjugate quantities, which can not be
specified without uncertainty. So, what does the BEC really look like: a Glauber
state or rather a Fock state? We need to be careful. Certainly, it makes no sense
talking about the absolute phase of a single BEC. Only the relative phase between two
BECs matters. The condition for interference is, that we do not know, from which
condensate the interfering atom came ∆N∆φ ≥ 1. So, the relative atom number
must be uncertain.

28.4.1 Quantum transport

Now, let us imagine two BECs in a double-well potential. Atoms may be move
between the wells via Josephson tunneling, even if the height of the barrier is higher
than the atomic energy. Hence, the motion is a type of quantum transport. Be
ψ(r, t) = ψ1(r)e

ıµ1t/ℏ + ψ2(r)e
ıµ2t/ℏ. In elongated traps the Josephson current is

obtained as the expectation value of the flux operator,

I(z, t) =
ıℏ
2m

∫ (
ψ(r, t)

d

dz
ψ∗(r, t)− c.c.

)
dxdy . (28.30)

One obtains,

I(z, t) =
ıℏ
2m

∫ (
ψ1
dψ∗

1

dz
+ ψ2

dψ∗
2

dz
+ ψ1

dψ∗
2

dz
eı(µ1−µ2)t/ℏ + ψ2

dψ∗
1

dz
eı(µ2−µ1)t/ℏ − c.c.

)
dxdy .

(28.31)

Choosing the original phase of the two condensates equal to zero, the time-independent
terms are real and cancel each other, leaving,

I(z, t) =
ıℏ
2m

∫ (
ψ1
dψ2

dz
− ψ2

dψ1

dz

)
2ı sin (µ1−µ2)t

ℏ dxdy (28.32)

≡ I0 sin (µ1−µ2)t
ℏ .

This shows that the current oscillates in time. This feature is well-known for Joseph-
son junction in superconductors.

The question is now, what will be the steady-state of the two BECs [636]. Ex-
periments have shown, that the BECs will gradually evolve into a superposition of
number states, until they are coherent. The time scale is set by Josephson tunneling.
The same interference pattern would result from BECs initially having well-defined
phases 5.

5If two Josephson-coupled BECs are initially in Fock-states, the current must initially be a quan-
tum superposition of all currents corresponding to all possible atom number differences. This quan-
tum superposition decoheres rapidly, leaving behind a semi-classical oscillation.
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28.4.2 Optical lattices and the Mott insulator

We have already pointed out in Sec. 26.3.2, that laser beams tuned far away from
resonances serve to construct trapping potentials for atoms. Laser beams incident
on the atomic cloud under various angles allow the engineering of a large diversity
of geometries for attractive potentials (with red tuned lasers) or repulsive potentials
(with blue tuned lasers). Various cooling methods can be combined with dipolar
traps, for example, Doppler cooling [414], Raman cooling [366], evaporative cooling
[3], or gravitational Sisyphus cooling [620]. A particularly interesting geometry is that
of are optical lattice, which we will discuss in the following sections.

28.4.2.1 Bloch bands with mean field interaction

The deformation of Bloch bands in the presence of mean field interaction has been
discussed in [878, 880]. Under certain circumstances, the bands develop loops at the
edges of a Brillouin zone. This is due to superfluidity overwhelming Bragg reflection.

28.4.2.2 The Hubbard model in 1D

The Hubbard model gives an approximate description of the physics of interacting
particles in a lattice. Depending on the type of particle one distinguishes the Bose-
Hubbard model from the Fermi-Hubbard model used in solid state physics for the
description of superconducting systems and the hopping of electrons between the
atoms of a solid crystalline lattice.

The foundations of the Hubbard model lie in the Bloch-Wannier formalism exposed
in Sec. 4.2.3 for the case one-dimensional sinusoidal potentials. Although we already
define particle creation and annihilation operator in both, the Bloch and the Wannier
basis, there we restricted to individual particles, which dispensed us from taking into
account symmetrization constraints and inter-particle interactions. The presence of
many particles is best described in a second-quantized Fock state notation for Bloch
and Wannier states,

|n, q⟩ −→ |Nn,q⟩ respectively, |n, j⟩ −→ |Nn,j⟩ , (28.33)

where we drop the index n when it is clear that the particles stays in the nth band. In
the Wannier basis, the bosonic field operators must satisfy the commutation relation,

[ŵj , ŵ
†
j′ ]− = 1 with ŵ†

j′ |Nj⟩ =
√
Nj + 1|Nj + 1⟩

ŵj′ |Nj⟩ =
√
Nj |Nj − 1⟩

, (28.34)

while the fermionic field operators must satisfy,

[ŵj , ŵ
†
j′ ]+ = 0 with ŵ†

j′ |Nj⟩ =
√
1−Nj |Nj + 1⟩

ŵj′ |Nj⟩ =
√
Nj |Nj − 1⟩

. (28.35)

In Sec. 4.2.3 we have derived the number operator and Hamiltonian for a given band
n,

N̂
(n)
j = ŵ†

j ŵj , Ĥ(n) = −
∑

j,j′

J(∆j)ŵ†
j ŵj′ , (28.36)
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where,

J(∆j) = −⟨n, zj′ |Ĥ(n)|n, zj⟩ (28.37)

=

∫

R

∫

R
⟨n, zj′ |z′⟩⟨z′|

(
ℏ2

2m

∂2

∂z2
− V0 cos2 klẑ

)
|z⟩⟨z|n, zj⟩dzdz′

=

∫

R
⟨n, zj′ |z⟩

(
ℏ2

2m

∂2

∂z2
− V0 cos2 klẑ

)
⟨z|n, zj⟩dz .

In the tight-binding limit, we only consider tunneling between neighboring sites,
J(j − j′) = J δj,j±1, setting J = J(1).

Example 190 (Link between particle field operators and Wannier states): Many-
particle field operators have been introduced in Sec. 27.2.1,

ψ̂(z) =
∑
n,j

⟨z|n, zj⟩ŵ(n)
j .

We verify the commutator,

[ψ̂(z), ψ̂†(z′)]− = δ(3)(z − z′) =
∑
n,j

⟨z|n, zj⟩⟨n, zj |z′⟩

=
∑

n,j,n′,j′

⟨z|n, zj⟩⟨n′, zj′ |z′⟩δn,n′δj,j′ =
∑

n,j,n′,j′

⟨z|n, zj⟩⟨n′, zj′ |z′⟩[ŵj , ŵ†
j′ ]− ,

the particle number operator,

N̂ =

∫
ψ̂†(z)ψ̂(z)dz =

∑
n,j,n′,j′

ŵ†
j′ ŵj

∫
⟨n′, zj′ |z⟩⟨z|n, zj⟩dz

=
∑

n,j,n′,j′

⟨n′, zj′ |n, zj⟩ŵ†
j′ ŵj =

∑
n,j

ŵ†
j ŵj ,

and the Hamiltonian,

Ĥ =

∫
ψ̂†(z)

(
− ℏ2

2m

∂2

∂z2
+ V0 cos

2 klẑ

)
ψ̂(z)dz

=
∑

n,j,n′,j′

ŵ†
j′ ŵj

∫
⟨n′, zj′ |z⟩

(
− ℏ2

2m

∂2

∂z2
+ V0 cos

2 klẑ

)
⟨z|n, zj⟩dz = −

∑
n,j,n′,j′

J(∆j)ŵ†
j′ ŵj .

28.4.2.3 Additional trapping potential

The presence of an additional trapping potential can also be considered,

V̂ =

∫
ψ̂†(z)Vtrp(z)ψ̂(z)dz (28.38)

=
∑

n1,j1,n2,j2

ŵ†
j1
ŵj2

∫
Vtrp(z)⟨n1, zj1 |z⟩⟨z|n2, zj2⟩dz .

To simplify this expression, we assume that the potential depth of Vtrp does not vary
much between adjacent sites,

V̂ ≃
∑

j

ŵ†
j ŵj

∫
Vtrp(z)|⟨z|0, zj⟩|2dz ≃

∑

j

Vtrp(zj)ŵ
†
j ŵj . (28.39)



28.4. QUANTUM ATOM OPTICS 1281

28.4.2.4 s-wave collisions between bosons

The short-range interaction Hamiltonian (s-wave for bosons) reads, in the pseudo-
potential approximation,

Ĥcoll =
g

2

∫
ψ̂†(z)ψ̂†(z)ψ̂(z)ψ̂(z)dz (28.40)

=
g

2

∑

n1,j1,n2,j2,n3j3,n4,j4

ŵ†
j1
ŵ†
j2
ŵj3ŵj4

∫
⟨n1, zj1 |z⟩⟨n2, zj2 |z⟩⟨z|n3, zj3⟩⟨z|n4, zj4⟩dz .

To simplify this complicated expression, we assume (i) that the energy of a collision
be too low to excite interband transitions, so that atoms being in the lowest band
nα = 0 stay there. (ii) The lattice is so deep, that the Wannier functions of adjacent
sites do not overlap, so that only on-site collisions contribute,

Ĥcoll ≃
g

2

∑

j

ŵ†
j ŵ

†
j ŵjŵj

∫
|⟨z|0, zj⟩|4dz (28.41)

=
g

2

∑

j

N̂j(N̂j − 1)

∫
|⟨z|0, zj⟩|4dz =

U

2

∑

j

N̂j(N̂j − 1) ,

where we defined,

U ≡ g

2

∑

j

∫
|⟨z|0, zj=0⟩|4dz . (28.42)

In the limit of very deep lattices, when the Wannier function can be approximated by
the ground state wavefunction of a harmonic oscillator, ⟨0|0, zj=0⟩ ≃ (πa2ho)

−1/4e−z
2/2a2ho ,

we find,

U = g

∫
⟨z|0, zj=0⟩4dz ≃

g

πa2ho

∫
e−2z2/a2hodz =

g√
2πaho

. (28.43)

28.4.2.5 The Bose-Hubbard model in 3D

The Hubbard model in the tight-binding limit can readily be generalized to 3D [636,
337]. Collecting the Hamiltonian terms (28.36), (28.39), and (28.41), we arrive at,

Ĥ = −J
∑

j,j′

ŵ†
j ŵj′ +

∑

j

εjN̂j +
1

2
U
∑

j

N̂j(N̂j − 1) , (28.44)

where

J =

∫
d3r w∗(r− rj)

[
− ℏ
2m
∇2 + V0(r)

]
w(r− rj) . (28.45)

and

U ≡ 4πasℏ2

m

∫
|w∗(r)|4d3r , (28.46)

and in the presence of an additional external trap,

εj ≡
∫
Vtrp(r)|w(r− rj)|2d3r ≃ Vtrp(rj) , (28.47)
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and w(r) = w(x)w(y)w(z) are the Wannier functions for an individual particle. We
assume for the moment a homogeneous condensate.

The Hilbert space dimension of the Bose-Hubbard model grows exponentially with
the number of atoms N and the number of sites L,

Db =

(
Nb + L− 1

Nb

)
, (28.48)

according to the partition function derived in quantum statistics. For the Fermi-
Hubbard model, the Pauli exclusion principle leads to the Hilbert space dimension,

Df =

(
L

Nf

)
. (28.49)

In three dimensional lattices the Hilbert space grows even faster. Therefore, it is a
difficult computational task to model or simulate such systems, and generally not
possible for more than 20 atoms and 20 lattice sites.

28.4.2.6 The Mott insulator

At zero temperature, the Bose-Hubbard model (in the absence of disorder) predicts
the atomic ensemble to be an a Mott insulating state (MI) when J≪ U , a superfluid
state (SF) when J ≫ U , or a supersolid phase (SS), where both solid and superfluid
phases (diagonal and off-diagonal) coexist. Mott insulation phases are characterized
by integer site occupation numbers, by the existence of an energy gap for particle-
hole excitations, and zero compressibility. In the presence of disorder, a third phase,
the Bose glass exists. This phase is insulation because of the Anderson localization
effects. Bose glass is characterized by a finite compressibility, the absence of a gap,
and an infinite superfluid susceptibility [281]. See also (watch talk).

In the Mott insulating state, the atoms are localized at individual sites of an optical
lattice. On one hand, the localization impedes any phase relation between atoms at
different sites, that is, at a given site the phase uncertainty ∆ϕ is complete. But at
the same time, there is a perfect correlation of the atom number at each site known
as spin squeezing 6, because (in a homogeneous lattice) every site contains exactly the
same number of atoms, that is, the atom number uncertainty ∆N tends to zero. At
a given lattice site, the number of atoms and the phase of the wavefunction can not
be simultaneously fixed: ∆N∆ϕ > 1.

The absence of relative coherence between different sites and of the ability to
interfere prohibits the description of the system by a single global wavefunction and
the use of the Gross-Pitaevskii equation. Nevertheless, the Mott insulating state is
not equivalent to a completely randomized sample. On the contrary, the coherence
only changes its character 7.

The Mott transition of a condensate from a superfluid state and to state of a Mott
insulator occurs as a quantum phase transition, because it is driven by quantum fluc-

6The spin squeezing feature makes the Mott insulator interesting for spectroscopy at the Heisen-
berg limit and for quantum computation.

7Remember, that the Fock state is a complicated superposition of Glauber states. The disap-
pearance and reappearance of coherence is reminiscent to the phenomenon of collapse and revival in
the Jaynes-Cummings model.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/BoseGlasses
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tuations rather than of thermal noise. Therefore, it is a direct result of Heisenberg’s
uncertainty relation.

depth of around 13 Er the interference maxima no longer increase in
strength (see Fig. 2e): instead, an incoherent background of atoms
gains more and more strength until at a potential depth of 22 Er no
interference pattern is visible at all. Phase coherence has obviously
been completely lost at this lattice potential depth. A remarkable
feature during the evolution from the coherent to the incoherent
state is that when the interference pattern is still visible no broad-
ening of the interference peaks can be detected until they completely
vanish in the incoherent background. This behaviour can be
explained on the basis of the super¯uid±Mott insulator phase
diagram. After the system has crossed the quantum critical point
U=J � z 3 5:8, it will evolve in the inhomogeneous case into
alternating regions of incoherent Mott insulator phases and coher-
ent super¯uid phases2, where the super¯uid fraction continuously
decreases for increasing ratios U/J.

Restoring coherence
A notable property of the Mott insulator state is that phase
coherence can be restored very rapidly when the optical potential
is lowered again to a value where the ground state of the many-body
system is completely super¯uid. This is shown in Fig. 3. After only
4 ms of ramp-down time, the interference pattern is fully visible
again, and after 14 ms of ramp-down time the interference peaks
have narrowed to their steady-state value, proving that phase
coherence has been restored over the entire lattice. The timescale
for the restoration of coherence is comparable to the tunnelling time
ttunnel � ~=J between two neighbouring lattice sites in the system,

which is of the order of 2 ms for a lattice with a potential depth of 9
Er. A signi®cant degree of phase coherence is thus already restored
on the timescale of a tunnelling time.

It is interesting to compare the rapid restoration of coherence
coming from a Mott insulator state to that of a phase incoherent
state, where random phases are present between neighbouring
lattice sites and for which the interference pattern also vanishes.
This is shown in Fig. 3b, where such a phase incoherent state is
created during the ramp-up time of the lattice potential (see Fig. 3
legend) and where an otherwise identical experimental sequence is
used. Such phase incoherent states can be clearly identi®ed by
adiabatically mapping the population of the energy bands onto
the Brillouin zones19,21. When we turn off the lattice potential
adiabatically, we ®nd that a statistical mixture of states has been
created, which homogeneously populates the ®rst Brillouin zone of
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Figure 1 Schematic three-dimensional interference pattern with measured absorption

images taken along two orthogonal directions. The absorption images were obtained after

ballistic expansion from a lattice with a potential depth of V 0 � 10E r and a time of ¯ight of

15 ms.
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Figure 2 Absorption images of multiple matter wave interference patterns. These were

obtained after suddenly releasing the atoms from an optical lattice potential with different

potential depths V0 after a time of ¯ight of 15 ms. Values of V0 were: a, 0 Er; b, 3 Er; c, 7 E r ;

d, 10 Er; e, 13 Er; f, 14 Er; g, 16 E r ; and h, 20 E r.
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Figure 3 Restoring coherence. a, Experimental sequence used to measure the restoration

of coherence after bringing the system into the Mott insulator phase at V 0 � 22E r and

lowering the potential afterwards to V 0 � 9E r; where the system is super¯uid again. The

atoms are ®rst held at the maximum potential depth V0 for 20 ms, and then the lattice

potential is decreased to a potential depth of 9 Er in a time t after which the interference

pattern of the atoms is measured by suddenly releasing them from the trapping potential.

b, Width of the central interference peak for different ramp-down times t, based on a

lorentzian ®t. In case of a Mott insulator state (®lled circles) coherence is rapidly

restored already after 4 ms. The solid line is a ®t using a double exponential decay

(t1 � 0:94�7�ms, t2 � 10�5�ms). For a phase incoherent state (open circles) using the

same experimental sequence, no interference pattern reappears again, even for ramp-

down times t of up to 400 ms. We ®nd that phase incoherent states are formed by applying

a magnetic ®eld gradient over a time of 10 ms during the ramp-up period, when the

system is still super¯uid. This leads to a dephasing of the condensate wavefunction due to

the nonlinear interactions in the system. c±e, Absorption images of the interference

patterns coming from a Mott insulator phase after ramp-down times t of 0.1 ms (c), 4 ms

(d), and 14 ms (e).

© 2002 Macmillan Magazines LtdFigure 28.11: Signature of the Mott phase.

In the limit of strong tunneling and weak interactions, J ≫ U , the matter wave
function looks like a Bloch state,

|ψSF ⟩ ∼
(

M∑

i=1

â†i

)N
|0⟩ . (28.50)

The variance of the number of particles per site is Poissonian, σSF ∼
√
Ni, that is, the

wavefunction per lattice site is (quasi)-coherent. However, the total wavefunction is
delocalized over all lattice sites, the local wavefunctions have a rigid phase relationship
and no long-range coherence. Otherwise, the matter wave function is an independent
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product of Fock states,

|ψMI⟩ ∼
M∏

i=1

(â†i )
n|0⟩ . (28.51)

The momentum distribution in terms of Wannier functions is [352, 879],

n(k) = |w(k)|2
∑

i,j

eık(ri−rj)⟨â†i âj⟩ . (28.52)

The atoms are localized in individual sites and there is a perfect correlation of the
particle number in each site, known as spin-squeezed state, i.e. the variance tends to
zero, σMI → 0. The Mott transition is characterized by σ = 1

2 . In a given site, the
atom number and the phase of the wavefunction cannot be known simultaneously:
∆N∆ϕ < 1. Therefore, the on-site wavefunction loose their relative coherence and
capability to interfere. They cannot be described by a single global wavefunction and
do not follow the Gross-Pitaevskii equation. However, this state is not equivalent to a
completely randomized ensemble. Rather the coherence is transferred from inter-site
correlations to inner-site correlations (keep in mind that a Fock state is a complicated
superposition of Glauber states). This is somehow analogous to collaps and revival
in the Jaynes-Cummings model.

The Mott transition between the superfluid and the Mott insulator phase is a
quantum phase transition, since it is driven by quantum fluctuations rather than
themal noise. Thus it is a direct result of Heisenberg’s incertainty relation.

These features make optical lattices in the Mott insulating phase interesting for
spectroscopy at the Heisenberg limit and quantum computing.

Example 191 (Practical Aspects): Normal MOT loaded 3D lattices have

filling factors of 1/10 per site. Sophisticated Raman-sideband cooling schemes

are necessary to achieve higher factors. Alternatively, one may fill 1D or 3D

lattices from a BEC, which offers low temperatures and high densities, so large

filling factors, but quantum degeneracy is not a requirement (what matters is

that only the lowest band is populated).

We may go to 1D configurations. In order to get good signal contrast despite

the small number of sites, large filling factors are necessary. Even though spin-

squeezing is possible, the weak lateral confinement makes it hard to reach the

Mott insulating regime. An improvement could be the use of 1D arrays of annu-

lar traps, because of the tighter lateral confinement. Alternatively, we may fill a

3D lattice with 1 to 3 atoms per site and some 150000 sites. Low atom numbers

make it easier to resolve the Mott transition. Typical numbers are νtrp ≈ 50Hz,

νGauss ≈ 60Hz, νlattice ≈ 30 kHz ≈ 22Erec.

For quantum gate application, spin squeezing is important since the entangling

pulse area depends on the on-site interaction energy 4πasℏ2
m

n, but it is not neces-

sary to have only a single atom per site. What is the deeper relationship of the

Mott spin-squeezing and the entanglement achievable by quantum gates [426]?

Probing is simply done by free expansion and observation of the interference

patterns as the image of the momentum space distribution. The periodic struc-

ture of the density distribution causes a periodic pattern in momentum space,
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and since in the superfluid phase the ....

For inhomogeneous systems, superfluid and Mott insulating phases with dif-

ferent (integral atom number) populations may coexist. The Mott insulating

phase is characterized by a gap in the excitation spectrum (precisely the one

that inhibits the atomic mobility). This may be probed by applying potential

gradients designed to overcome the gap.

The Mott insulating phase is not equivalent to random dephasing in the sites.

The latter one causes a broadening of the interference patterns. If all atoms at

all sites had the same phase (which is possible in a single realization, but highly

unlikely, because such a state cannot be generated on purpose since this would

violate the uncertainty principle) they could constructively interfere.

An important signature of is the incompressibility of a Mott insulator. This

distinguishes it from a superfluid. Even more fundamental [314] is the fact that

particle-hole pairs are localized. The µ−J/U phase diagram is most significant...

Example 192 (Band insulator, Fermi-Hubbard model): The Pauli prin-

ciple gives rise to an energy gap in a Fermi gas and makes it a band insulator

[475], antiferromagnetic phases. Transfer a pure Fermi gas in an optical lattice

[399].

28.4.3 Schrödinger cat BECs

Ruostekoski et al. [708] proposed a double BEC system consisting of two momen-
tum sidemodes and a far-off resonance laser beam that constantly spontaneously
redistributes the atoms between the sidemodes. Homodyne detection of the scattered
photons established relative phase information in such a way, that the relative number
information is blurred in such a way that both sidemodes evolve into a simultaneous
superposition of phase and number states. They disregard thermal excitations and
two-body collisions. The cats are very sensitive to decoherence.

Cirac et al. [156] and Gordon et al. [327] consider Josephson double species
condensates. The relative atom numbers Rabi flop. Mediated by the mean-field the
systems may evolve into cats. The proposals have been reexamined by Dalvit et al.
[197]. Other contributions come from [325, 393, 714, 683, 426]. First experiments on
spin-squeezed states have been made by [636].

28.4.4 Exercises

28.4.4.1 Ex: Superfluid to Mott insulator transition

Consider a condensate trapped in a 3D simple cubic optical lattice with lattice spacing
l. The Hamiltonian can be written as,

Ĥ = −J
∑

i,j

δ
(1)
ij â

†
i âj +

U
2

∑

i

â†i â
†
i âiâi ,

where âi (â
†
i ) is the operator annihilating (creating) one boson in the lattice site i;

δ
(1)
ij = 1 only when i and j are nearest neighbors, otherwise it is zero. Assume a total

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Superfluidity_Walraven.pdf
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ofM ≫ 1 sites, periodic boundary conditions in the x, y, and z directions, and U > 0.
On this lattice we consider the construction operator b̂†s defined in the following way:

b̂†s =
1√
M

∑

i

â†i .

a. Describe the action of this construction operator.
b. Derive the commutation relation,

[âα, b̂
†
s] =

1√
M
.

c. Derive the commutation relation,

[âα, (b̂
†
s)
N ] = N√

M
(b̂†s)

N−1 .

d. Suppose that the following N -atom state exists:

|N,SF ⟩ ≡ 1√
N !

(b̂†s)
N |0⟩ ,

where SF stands for a name label (and not for quantum numbers). Show that for
N =M we have âα|N,SF ⟩ = |N − 1, SF ⟩.
e. Define the density operator for the site i as n̂i = â†i âi. Calculate the density
fluctuation,

∆ni =
√
⟨n̂2i ⟩ − ⟨n̂i⟩2

of the state |N,SF ⟩ with N =M .
f. Calculate the total energy ⟨H⟩ with the state |N,SF ⟩.
g. Next consider the state,

|N,MI⟩ ≡
∏

j

â†j |0⟩ .

Calculate ⟨â†i âj⟩ and the density fluctuations ∆ni for this state.
h. Calculate the total energy ⟨H⟩ with the state |N,MI⟩.
i. Discuss the energy for the states |N,SF ⟩ and |N,MI⟩. Which one is the ground
state? How to make a ground state change from |N,SF ⟩ to |N,MI⟩?

28.5 Further reading

M.R. Matthews et al., Vortices in a Bose-Einstein Condensate [DOI]

K.M. Mertes et al., Nonequilibrium Dynamics and Superfluid Ring Excitations in
Binary Bose-Einstein Condensates [DOI]

I. Bloch, Ultracold quantum gases in optical lattices [DOI]

J. Estève et al., Squeezing and entanglement in a Bose-Einstein condensate [DOI]

http://doi.org/10.1103/PhysRevLett.83.2498
http://doi.org/10.1103/PhysRevLett.99.190402
http://doi.org/10.1038/nphys138
http://doi.org/10.1038/nature07332


Chapter 29

Interaction of Bose-Einstein
condensates with light

Light can essentially be used in two ways for the manipulation of matter waves:
1. Tuned far from resonance, light serves to create conservative optical dipole poten-
tials (see Secs. 26.3.2 and 28.4.2). In such circumstances the states of internal atomic
excitation can be adiabatically eliminated from the description of the center-of-mass
dynamics. 2. Close to resonance the situation is quite different, but even then, the
coherent excitation of internal states may allow for a controlled manipulation of the
atomic motion. Among the examples discussed in the following sections are the adia-
batic sweeps, the Raman output coupler, Bragg pulses, photoassociation, and matter
wave superradiance (see Fig. 29.1).

Figure 29.1: Different types of coherent coupling: (a) coherent coupling of hyperfine levels,
(b) coupling from a confined state to the continuum of free states, (c) mutual coupling of
different velocity states of an atom, and (d) coupling between a (collisional) state of two free
atoms with a bound molecular state.

29.1 Scattering of light by degenerate gases

29.1.1 The structure factor for degenerate quantum gases

We introduced in Sec. 21.1.1 the notion of the structure factor, where it was used to
characterize the scattering of light by thermal distributions of atoms. To characterize
the scattering of matter waves, we must generalize the notion of the structure factor.
We wrote in (21.3) the Fourier transform of the density distribution, which now

becomes, after inserting n̂(r) = ψ̂†(r)ψ̂(r) and the plane wave expansion (27.70),

ρ̂†(q) =
∫
ψ̂†(r)ψ̂(r)eıq·rd3r = V

(2π)3

y
â†k′ âke

ı(k−k′+q)·rd3k′d3kd3r . (29.1)

1287
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With (27.76) and assuming sharp momenta (27.71),

ρ̂†(q) = V 2
x

â†k′ âkδk′,k+qd
3k′d3k =

∑

k′,k

â†k′ âkδk′,k+q . (29.2)

Finally,

ρ̂†(q) =
∑

k

â†k+qâk =
∑

k

|k+ q⟩⟨k| . (29.3)

Hence, ρ̂†(q) describes the scattering of an atom with the momentum k to k+q. We
also find,

ρ̂†(q) = ρ̂(−q) . (29.4)

Understanding the fundamental state |g⟩ as the state without excitations, we define
the static structure factor (21.5) now normalized to the number of particles [779],

S(q) ≡ 1
N ⟨g|ρ̂(q)ρ̂†(q)|g⟩ , (29.5)

as a generalization of the classical structure factor. The static structure factor de-
scribes the probability to excite a condensate by creating a quasi-particle with mo-
mentum k. We will need these notions in the Sec. 29.2.3.

The dynamic structure factor is obtained from S(q) =
∫
S(q, ω)dω and measures

the density of correlations in the ground state with 0 momentum. The formula de-
scribes, how an atom probes its environment by scattering quasi-particles back and
forth,

S(q, ω) = 1
N

∑

f

⟨g|ρ̂(q)|f⟩⟨f |ρ̂(q)|g⟩ℏδ(ℏω − Ef + Eg) . (29.6)

Solve the Excs. 29.1.6.1 to 29.1.6.5.

Example 193 (Spatial coherence and the correlation function): The spa-
tial coherence can be defined by [CCT & Aspect],

F (x) ≡
∫
⟨r|ρ̂|r+ x⟩d3r =

∫
eık·x⟨k|ρ̂|k⟩d3k . (29.7)

We will demonstrate this relationship in Exc. 29.1.6.6. The coherence length ξ is
given by F (ξ) = 1

e
F (0) = 1

e
. A second order correlation function is defined by,

g(2)(r1, r2) =
⟨ψ̂†(r1)ψ̂

†(r2)ψ̂(r2)ψ̂(r1)⟩
⟨n̂(r1)⟩⟨n̂2(r)⟩

g(2)(r) ≡ g(2)(r1, r1 + r)

.

29.1.2 The structure factor in Bragg spectroscopy

29.1.2.1 The Hamiltonian of the Rayleigh scattering process

In Sec. 1.7.3 we saw the Galilei-boost (1.321),

|k+ q⟩ = eıq·̂r|k⟩ . (29.8)
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In the second quantization we generalize to,

|k+ q⟩ =
∫
ψ̂†(r)eıq·rψ̂(r)d3r|k⟩ = ρ̂†(q)|k⟩ . (29.9)

Thus, we can implement the second quantization by simply replacing eıq·r by ρ̂†(q).
Now, the Hamiltonian for the process of a photon absorption from the mode ĉki

,
taking into account the photonic recoil, was introduced in (20.6),

Ĥint = ℏΩ(r̂)e−ıki ·̂rĉki
σ̂+ + c.c. . (29.10)

If the process is followed by the reemission of a photon to the mode ĉkf
,

Ĥint = ℏΩ(r̂)eı(kf−ki)·rĉ†kf
ĉki

. (29.11)

Going to second quantization, as done in (29.9), and doing the Fourier transform 1,

H̃int = C
∑

pf ,pi

ĉ†kf
ĉki â

†
pf
âpiδkf−ki+pf−pi . (29.12)

We assume here, that the light modes ki and kf are predefined, but the velocities
pi are distributed. Otherwise, in the expression (29.12), we must also sum over light
modes 2,

H̃int = C
∑

ki,kf ,pi,pf

ĉ†kf
ĉki â

†
pf
âpiδkf−ki+pf−pi , (29.13)

where C is a normalization constant. This Hamiltonian describes the elementary
scattering process as a process of four wave mixing (4WM) [459, 780]. The light and
the atoms are treated on equal footings as modes which can receive (quasi-)particle
populations, and the scattering corresponds to a redistribution of populations between
the modes 3.

The Hamiltonian (29.13) can be applied to various situations, such as spontaneous
or stimulated Rayleigh scattering or Bragg scattering, depending on which ones of the
modes kf , ki, pf , and pi are populated or filtered by imposed boundary conditions.

Using momentum conservation q ≡ kf − pi = −pf + pi, we obtain the cross
section,
(
dσ

dΩ

)

ki→kf

= C2
∑

f

|⟨f |Ĥint|i⟩|2 = C2
∑

f

|⟨f |
∑

pi

ĉ†ki+qĉki
â†pi−qâpi

|i⟩|2 , (29.14)

Example 194 (Description of Bragg scattering via the structure fac-
tor): In this example we irradiate two plane waves in directions k1 and k2 into
a Bose-Einstein condensate. The total intensity will be,

Imod(r, t) = I cos(q · r− ωt) with q = k1 − k2 . (29.15)

1âp and â†p are the operators of the quantized atomic field, while ĉk and ĉ†k are the operators of
the light fields.

2Note the different form of this Hamiltonian as compared to (21.10).
3This is analogous to the way, in which a ’collision’ redistributes atomic populations between

momentum modes. We will discuss this general concept of 4WM in Secs. 29.3.4 and 28.3.4.
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and the optical potential,

Vmod =
ℏΓ2

8∆
I cos(q · r− ωt) = ℏΓ2

8∆

I

2Isat
(eıq·r−ıωt + e−ıq·r+ıωt) (29.16)

→ V̂mod =
V

2
[ρ̂†(q)e−ıωt + ρ̂†(−q)eıωt] .

Now, the transition rate is [780],

W

N
= 2πΩ2

RS(q, ω) =
2π

Nℏ

(
V

2

)2∑
f

|⟨f |ρ̂†(q)|g⟩|2δ(ℏω− (Ef −Eg)) , (29.17)

with V
2
= ℏΩR.

Resolve Exc. 29.1.6.7.

29.1.3 Bosonic stimulation

We assume in the following weak light intensities (and hence a negligible contribution
of the Mollow fluorescence spectrum). That is, without cooperative effects the light
would be elastically scattered by Rayleigh scattering. Now, we adopt a notation
labeling the multimodal state by the numbers of photons and atoms distributed over
the available light and momentum modes. That is, the initial state consists of np
atoms distributed over momentum atomic states p and Nk photons distributed over
wave vector modes k denoted by |...Nk...⟩rad ⊗ |...np...⟩at:

|i⟩ ≡ |...npi ...npf
...⟩at ⊗ |...Nki ...Nkf

...⟩rad ≡
∣∣∣∣
...npi ...npf

...

...Nki
...Nkf

...

〉
, (29.18)

where we introduced the vector-like notation for notational compactness.
A particular scattering process can be treated like a ’collision’ by redistributing

the initial populations to final populations:

|f⟩ =
∣∣∣∣
...npi − 1...npf

+ 1...

...Nki
− 1...Nkf

+ 1...

〉
. (29.19)

We write the matrix element,

⟨f |Ĥint|i⟩ ∝
〈
...np′′

i
...np′′

f
...

...Nk′′
i
...Nk′′

f
...

∣∣∣∣∣C
∑

k′
i,k

′
f ,p

′
i,p

′
f

ĉ†k′
f
ĉk′

i
â†p′

f
âp′

i
δk′

f−k′
i+p′

f−p′
i

∣∣∣∣
...npi

...npf
...

...Nki
...Nkf

...

〉
.

(29.20)

Assuming that all modes are not degenerate, such that [âpf
, â†pi

] = δpf ,pi
, that is,

â†pf
and âpf

only act on the mode |npf
⟩at, etc.,

∑

p′
i

âp′
i
|...npi

...⟩at =
∑

pi

√
npi
|...npi

− 1...⟩at (29.21)

and
∑

p′
f

â†p′
f
|...npf

...⟩at =
∑

pf

√
npf

+ 1|...npf
+ 1...⟩at ,
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as well as,
∑

k′
i

ĉk′
i
|...Nki

...⟩rad =
∑

ki

√
Nki
|...Nki

− 1...⟩rad (29.22)

and
∑

k′
f

ĉ†k′
f
|...Nkf

...⟩rad =
∑

kf

√
Nkf

+ 1|...Nkf
+ 1...⟩rad .

Let us now assume for a moment, that the photon is scattered to the vacuum,
that is, the final mode of light is initially empty, Nkf

= 0 4,

⟨f |Ĥint|i⟩inel (29.23)

∝
〈
...np′′

i
...np′′

f
...

...Nk′′
i
...Nk′′

f
...

∣∣∣∣∣ ∑
pf ,pi,kf ,ki

√
Nki

√
npf + 1

√
npi

∣∣∣∣∣...npi − 1...npf + 1...

...Nki − 1...1kf ...

〉

=
∑

pf ,pi,kf ,ki

√
Nki

√
npf + 1

√
npiδNk′′

i
,Nki

−1δNk′′
f
,Nkf

+1δnp′′
i
,npi

−1δnp′′
f
,npf

+1

=
√
Nki

√
npf + 1

√
npi .

Obviously, the differential scattering cross-section,

(
dσ

dΩ

)

inel

∝ Nki(npf
+ 1)npi . (29.24)

depends, in addition to the numbers of provided photons Nki and atoms npi in the
initial mode, also on the number of atoms in the final mode npf

. This amplification
of the probability of the scattering process is called bosonic stimulation.

Now, we consider the degenerate case, where the initial atomic momentum mode
coincides with the final mode, npf

= npi
. In this case,

∑

p′
f=p′

i

â†p′
f
âp′

i
|...npi ...npf

...⟩at =
∑

p′
i

â†p′
i
âp′

i
|...npi ...npi ...⟩at =

∑

pi

npi |...npi ...npi ...⟩at ,

(29.25)
and a calculus analogous to (29.23) yields,

⟨f |Ĥint|i⟩el ∝
〈
...np′′

i
...np′′

f
...

...Nk′′
i
...Nk′′

f
...

∣∣∣∣∣ ∑
pi,kf ,ki

√
Nkinpi

∣∣∣∣∣ ...npi ...npi ...

...Nki − 1...1kf ...

〉
(29.26)

=
∑

pi,kf ,ki

√
Nkinpi rad⟨...Nk′′

i
...Nk′′

f
...|...Nki − 1...1kf ...⟩rad at⟨...np′′

i
...np′′

f
...|...npi ...npi ...⟩at

=
∑

pi,kf ,ki

√
NkinpiδNk′′

i
,Nki

−1δNk′′
f
,Nkf

+1δnp′′
i
,npi

δnp′′
f
,npi

=
√
Nkinpi .

Now, the differential scattering cross-section,

(
dσ

dΩ

)

el

∝ Nkin
2
pi

, (29.27)

4We will discuss later the case, where the scattering is (bosonically) stimulated by the number of
photons already present in the final mode prior to the scattering process.
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only depends on the number of provided photons Nki
and the number of atoms npi

in the initial mode.

29.1.3.1 Elastic and inelastic scattering

The interpretation of the result is the following: Light can be scattered in two ways:
(i) with or (ii) without change of atomic moment distribution. The event of a photon
scattering (29.19) then it consists of two terms (29.24) and (29.27) [662],

dσ

dΩ
=

(
dσ

dΩ

)

el

+

(
dσ

dΩ

)

inel

. (29.28)

The first term of (29.28) occurs when the momentum of the scattering atom does
not change, p = q, that is, when the populations of the momentum states np and nq
do not change. The corresponding term (29.27) describes elastic Rayleigh scattering.
This process is coherent, that is, the phase relationship between the incident wave
and the outgoing wave is fixed, because the photon emission is self-stimulated. I.e. it
decays to the original mode via forward scattering within the angle defined by the
phase matching condition ϑ < λ/d, where d is the size of the atomic sample [459].
This contribution is dispersive, reversible, and conservative, and it is at the origin of
the dipole force.

The second term of (29.28) is the inelastic part of Rayleigh scattering, where an
atom with the initial momentum np is scattered to the momentum state nq. This
term is absorptive, dissipative, and spontaneous. The frequency of the photons is
shifted, a momentum is imparted to the atom, such that the process is incoherent.
Hence, a suggestive way of expressing the differential scattering cross-section (29.19)
is,

dσ

dΩ
∝

∣∣∣∣∣
∑

i

ni⟨i|Ĥint|i⟩
∣∣∣∣∣

2

+
∑

i ̸=f
ni(1 + nf )|⟨i|Ĥint|f⟩|2 , (29.29)

where |i⟩ and |f⟩ denote momentum states of the atomic sample.
The bosonic stimulation of inelastic Rayleigh scattering represents a way to over-

come, on one hand the restrictive phase matching condition, and on the other the
incoherence of the scattering into large angles. For non-interacting systems of local-
ized bosons S(q, ω) can be expressed using single particle states |i⟩ with energy Ei
and population Ni [see (21.3) and (21.6)],

S(q, ω) = N

∣∣∣∣∣
∑

i

ni⟨i|Ĥint|i⟩
∣∣∣∣∣

2

δ(ω)+N
∑

i ̸=f
|⟨f |Ĥint|i⟩|2ni(nf +1)δ[ω−(Ef −Ei)/ℏ] ,

(29.30)

with S0(q) = |⟨ρ̂†(q)⟩|2 =
∣∣∣
∑
i ni⟨i|Ĥint|i⟩

∣∣∣
2

.

29.1.4 Playing with bosonic and fermionic states

Here, we want to address the question, whether scattering processes are influenced
by bosonic stimulation or cooperative enhancement. Let us consider the case of N
atoms (bosons or fermions) generated from vacuum by operators â†m(q)|0⟩, where m
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indicates some additional quantum number (for example, the vibrational state of a
loose trapping potential) helping us to enumerate fermionic states, and q indicates
the momentum (considered independent from the trapping potential for short enough
times). The operators respect the rules,

[âm(0), ân(q)]∓ = 0 = [â†m(0), â†n(q)]∓ (29.31)

and [âm(0), â†n(q)]∓ = δm,nδ0,q and âm(q)|0⟩ = 0 ,

where upper signs hold for bosons and lower signs for fermions. Initially the N atoms
are in the bosonic, respectively, fermionic many-body state [599],

|Ψ(N)
b (0)⟩ = 1√

N !
â†0(0)

N |0⟩ resp. |Ψ(N)
f (0)⟩ =

N−1∏

n=0

â†n(0)|0⟩ . (29.32)

Note that |Ψ(N)
b (0)⟩ = |N⟩ is a Fock state satisfying ⟨Ψ(N)

b (0)|Ψ(N)
b (0)⟩ = 1, while

|Ψ(N)
f (0)⟩ is a product state being normalized as well, ⟨Ψ(N)

f (0)|Ψ(N)
f (0)⟩ = 1.

Probing the number of atoms in a many-body state is done by,

N = ⟨Ψ|N̂ |Ψ⟩ where N̂ =

∫
ψ̂†(r)ψ̂(r)d3r =

∑

m,k

â†m(k)âm(k) , (29.33)

or if we are only interested in a particular momentum state k and vibrational state
m,

⟨Ψ|N̂m(k)|Ψ⟩ = ⟨Ψ|â†m(k)âm(k)|Ψ⟩ = ∥âm(k)|Ψ⟩∥2 . (29.34)

Other possible many-body states are bosonic or fermionic product states,

|Ψ(N1)(0)⟩|Ψ(N2)(q)⟩ . (29.35)

We will see in 29.1.6.9 that product states are normalized if the partial states are
normalized. Explicitly,

|Ψ(N1)
b (0)⟩|Ψ(N2)

b (q)⟩ = 1√
N1!N2!

â†0(0)
N1 â†0(q)

N2 |0⟩ (29.36)

|Ψ(N1)
f (0)⟩|Ψ(N2)

f (q)⟩ =
N1−1∏

n=0

â†n(0)
N2−1∏

n=0

â†n(q)|0⟩ .

Note, that product states in the same mode need renormalization when merged,

|Ψ(N1)
b (0)Ψ

(N2)
b (0)⟩ = 1√

N1!N2!
â†0(0)

N1+N2 |0⟩ =
√(

N1 +N2

N1

)
|Ψ(N1+N2)
b (0)⟩ ,

(29.37)

for example, |Ψ(N)
b (0)Ψ

(1)
b (0)⟩ =

√
N + 1|Ψ(N+1)

b (0)⟩.
A π/2-Bragg pulse has the faculty to transfer 50% of the atoms into a momen-

tum mode q, thus creating a new state where every single atom lives in a coherent
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Figure 29.2: Cartoon of (a,b) bosonic stimulation and (c,d) cooperative enhancement.

superposition of two momenta,

|Ψ(brgg,N)
b (0,q)⟩ =

[â†0(0) + â†0(q)]
N

√
2NN !

|0⟩ =
N∑
n=0

(
N

n

)
â†0(0)

N â†0(q)
N−n

√
2NN !

|0⟩

|Ψ(brgg,N)
f (0,q)⟩ =

N−1∏
n=0

[â†n(0) + â†n(q)]√
2N

|0⟩

. (29.38)

In the following, we will study scattering processes, that is, fluctuations, in the
presence of the states (29.35) or (29.38).

29.1.4.1 Bosonic stimulation versus cooperative enhancement by a Bragg
grating

Now, we scatter a photon, whose fate is not of interest here, but which triggers
possible transitions of an atom sitting together with N1 atoms in the momentum
state 0|0⟩ towards another momentum state q|0⟩ initially populated with N2 atoms
via the operator,

Ĥ =
∑

m

â†m(k)âm(0) , (29.39)

which in fact is nothing else than the static structure factor. Applying this process
to bosonic or fermionic clouds, as defined in (29.32), we find bosonic stimulation only
in the case of bosons,

⟨Ψ(N1−1)(0)Ψ(N2)(q)|Ĥ|Ψ(N1)(0)Ψ(N2−1)(q)⟩ = δk,q

{√
N1N2 for bosons

1 for fermions
,

(29.40)
as will be shown in Exc. 29.1.6.10(a). The transition probabilities are then,

dσ

dΩ
= |⟨f |Ĥ|i⟩|2 = δk,q

{
N1N2 for bosons

1 for fermions
. (29.41)

Note, that these results does not change in the presence of a Bragg grating not
participating in the dynamics:

⟨Ψ(M−1)
b (0)Ψ

(brgg,N+1)
b (0,q)|Ĥ|Ψ(M)

b (0)Ψ
(brgg,N)
b (0,q)⟩ = 1 . (29.42)
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However, applying the same scattering process between a BEC withM atoms and
the Bragg state defined in (29.38) consisting of N atoms, we identify two interesting
possibilities for which we find,

⟨Ψ(M−1)
b (0)Ψ

(brgg,N)
b (0,q)|Ĥ|Ψ(M)

b (0)Ψ
(brgg,N−1)
b (0,q)⟩ = (δk,0 + δk,q)

√
MN

⟨Ψ(M)
b (q)Ψ

(brgg,N−1)
b (0,q)|Ĥ|Ψ(M−1)

b (q)Ψ
(brgg,N)
b (0,q)⟩ = δk,q

√
MN

.

(29.43)

Interestingly, we find the same expression for bosons and for fermions,

⟨Ψ(brgg,N−1)
b,f (0,q)Ψ

(1)
b,f (q)|Ĥ|Ψ

(brgg,N)
b,f (0,q)⟩ =

√
N
2

[
δk,0 ± N−1

2 (δk,0 + δk,q)
]
.

(29.44)
as will be shown in Exc. 29.1.6.10(b). The transition probabilities are then for boson
and for fermions,

dσ

dΩ
= |⟨f |Ĥ|i⟩|2 = δk,q

N

2

(N − 1)2

4
. (29.45)

This means that, if k = 0 or k = q, the scattering is subject to cooperative enhance-
ment by a factor of N/2 (which is the number of atoms in each of the momentum state
0 and q) independently on the quantum nature of the atom (boson or fermion). That
is, the probability that the scattered atoms joins one of the two momentum goes, for
large N , like N2, but for N = 1 there is no enhancement possible. Do Exc. 29.1.6.11.

29.1.4.2 Interpretation of bosonic stimulation as cooperative enhance-
ment

The distinction between spontaneous and stimulated processes is not always obvious,
as there is a whole world of cooperative processes in between those two concepts, for
instance, superradiance, Bragg scattering, and enhanced spontaneous emission into
a resonant cavity. All those processes have in common that they are amplified by
fluctuations.

Example 195 (Stimulated emission versus spontaneous emission: Co-

operativity in a cavity): Let us first discuss the case of a cavity. Vacuum

fluctuations (VF) are structured by a cavity (finesse F ) leading to a modified

DOS becoming anisotropic and developing spectral resonances. In resonance

the VFs are enhanced (we get a standing wave of VFs), while off resonance they

are suppressed. Therefore, an excited atom placed inside a cavity will suffer

’spontaneous stimulation’ to decay into the cavity mode. Alternatively, we may

say that the atom not only reacts to the local VFs but to all VFs reflected F

times by the cavity mirrors provided these VFs are in phase (which is the case

when the cavity is resonant). That is, cavity-enhanced VFs amplify scattering

into cavity modes and, as we argued in Sec. 15.3 the VFs are measured by the

structure factor (15.98).

Note, that the presence of photons in the cavity does not stimulate ’additionally’,

because stimulated emission and absorption are reversible processes.

Example 196 (Bragg scattering: Cooperativity in a lattice):
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Figure 29.3: Cartoon of cooperative enhancement in a cavity.

Example 197 (Matter wave superradiance and CARL: Cooperativity

in a BEC ): We have seen that the stimulated processes mentioned above do

not rely on quantum statistics, but rather on symmetry and coherence. Let us

start with a naive picture of bosonic stimulation, a concept which can be ap-

plied to matter waves [460]. The physical process behind bosonically stimulated

scattering is, that the presence of a macroscopically occupied state increases

the density fluctuations of the system, and bosonically enhanced scattering is

simply the diffraction of particles from these density fluctuations measured by

S(q, ω).

29.1.5 Collective scattering for condensates with interactions

Until now we totally disregarded interactions between particles. Correlations are in-
troduced in a BEC by interactions between the atoms. Therefore, collective scattering
effects are influenced by interactions, while on the other hand an ideal gas (gn→ 0)
scatters like an ultra-cool non-degenerate thermal cloud. In this sense, particle-like
excitations (p2/2m ≫ gn) in an interacting BEC behave like thermal atoms. The
mean-field energy can be seen as resulting from excitations of phonon pairs. These
pairwise excitations populate the momentum modes, which modify the scattering of
light via bosonic stimulation. That is, an interacting condensate (gn > 0) gives a col-
lective response to an incident light beam. Note that µ > 0 is possible when V (r) ̸= 0
and gn ̸= 0 even if T → 0, which is the case here considered.

What is the nature of the collective behavior? 1. The Bogolubov spectrum is
modified. In the phononic regime, the absence of dispersion allows the definition of a
speed of sound. 2. The scattering of light can be suppressed by excitation of phonon
pairs. This effect is anisotropic and more pronounced in forward direction. That is,
the resonance at which the light is scattered is shifted and broadened. The latter
effect is understood via destructive interference of two processes: Scattering from a
BEC to the momentum mode k and from the momentum mode −k to a BEC.

It is important to be aware that the notion of bosonic stimulation ∼ ni(1+nf ) and
fermionic inhibition ∼ ni(1 − nf ) also has its limitations, when interatomic interac-
tions are not negligible, that is, when the quantum depletion is remarkable [329, 561].
The effect of interatomic collisions can be taken into account as contributions of pair
correlations to the ground state of the BEC,

|ψ0, n0⟩ = |n0, 0, 0⟩−
∑

k

(v2k/u
2
k)|n0−2, 1, 1⟩+

∑

k

(v2k/u
2
k)

2|n0−4, 2, 2⟩− ... , (29.46)

where |n0, nk, n−k⟩ denotes the state with n0 atoms in the trap’s ground state and n±k

atoms in the momentum mode k, where v2k is the average population of momentum
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mode k. The populated recoil modes result in a increase of spontaneous emission by
a factor of v2k = 1 + u2k. We can also understand the modification of the scattering
rate as resulting from small scale inhomogeneities generated by pair correlations. The
effect is strongest at small scattering angles, that is in forward direction.

29.1.6 Exercises

29.1.6.1 Ex: Sum rules for the dynamic structure factor

Derive the following sum rules for the norm, the kinetic energy, and the compressibil-
ity,

S(q) =

∫
S(q, ω)dω

ℏ2q2

2m
=

∫
ℏωS(q, ω)dω

κ2

2
=

∫
S(q, ω)

ℏω
dω

∣∣∣∣
q→0

.

29.1.6.2 Ex: Interaction energy of a condensate via spatial coherence

Show that the total energy of a condensate is given by ⟨U⟩ = 1
2

∫
n(r1)U(r1 −

r2)g
(2)(r1, r2)n(r2)d

3r1d
3r2.

29.1.6.3 Ex: Structure factor of a condensate in the local density ap-
proximation

Calculate the structure factor of a condensate in the local density approximation
(LDA) [122, 779].

29.1.6.4 Ex: Structure structure of a Fermi gas

Calculate the structure factor for Bragg scattering on a Fermi gas.

29.1.6.5 Ex: Structure factor of a heteronuclear mixture

In this exercise we discuss the structure factor of a heteronuclear mixture (specifically
contemplating 6Li mixed with 87Rb) generalizing the available theory for Li spin
mixtures to heteronuclear mixtures [171, 295, 296, 838]. The total dynamic structure
factor is,

S(q, ω) = S87,87(q, ω) + S6,6(q, ω) + S6,87(q, ω) + S87,6(q, ω) .

Exciting the Bragg resonance for Li, the Rb cloud would stay unaffected,the such that
around ω/2π = 295 kHz, S87,87(q, ω) = 0, as well as, S6,87(q, ω) = S87,6(q, ω) = 0.
For Fermi gas S6,6(q, δ) → 1, except if Bose gas induces Li-Li correlations, as in the
case of BCS-pairing of phonon-mediated Efimov states.
How does Rb influence the Bragg scattering of Li? Via a variation of the apparent

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence05.pdf
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mass as a displacement of the Bragg resonance or as a second peak appearing at a
specific detuning of the Bragg beams at ω6,6 ∗ 6/(6 + 87)?

29.1.6.6 Ex: Spatial coherence of a condensate

Derive the relationship (29.7).

29.1.6.7 Ex: Structure factor for Bragg scattering

Demonstrate the following relationships,

dpcm(q, ω)

dt
= −mω2

zzcm + ℏq
Ω2
br

2

∫
dδ′[S(q, ω′)− S(−q,−ω′)]

sin(ω − ω′)tbr
ω − ω′

p̈cm(q, ω) + ω2
zpcm = ℏq

Ω2
br

2

∫
dω′[S(q, ω′)− S(−q,−ω′)] cos(ω − ω′)tbr −→ 0 .

29.1.6.8 Ex: Commutation expressions for bosons and fermions

Verify the following useful commutation relations:
a. For bosons,

âm(k)â†n(q)
N = Nδm,nδk,qâ

†
n(q)

N−1 + â†n(q)
N âm(k) , (29.47)

which can be generalized to,

âm(k)[â†n(q1) + â†n(q2)]
N (29.48)

= Nδm,n (δk,q1
+ δk,q2

) [â†n(q1) + â†n(q2)]
N−1 + [â†n(q1) + â†n(q2)]

N âm(k) .

b. For fermions do not support macroscopic populations of the type â†n(q)
N . Per-

forming a number P of permutations of the operators and assuming that one fermion
of the product state is in the internal state n, we calculate,

ân(k)

N−1∏

m=0

â†m(q) = (−1)P

δk,q

N−1∏

m ̸=n
â†m(q)−

N−1∏

m=0

â†m(q)ân(k)


 . (29.49)

If none of the fermions of the product state is in state n the first part of the sum
simply vanishes. This expression can also be generalized to,

ân(k)

N−1∏

m=0

[â†m(q1) + â†m(q2)] = (−1)P
N−1∏

m ̸=n
[â†m(q1) + â†m(q2)]ân(k)[â

†
n(q1) + â†n(q2)]

= (−1)P

(δk,q1 + δk,q2)

N−1∏

m̸=n

[â†m(q1) + â†m(q2)]−
N−1∏

m=0

[â†m(q1) + â†m(q2)]ân(k)


 .

(29.50)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence10.pdf
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29.1.6.9 Ex: Extracting the atom number from many-body states

Verify the normalization of (a) the bosonic Fock state (29.32), (b) the fermionic
product state (29.32), (c) the bosonic product state (29.35), (d) the bosonic Bragg
grating state (29.37), and (e) the fermionic Bragg grating state (29.37). Help: Speed
up the calculations by using the results of 29.1.6.8.

29.1.6.10 Ex: Bosonic stimulation and cooperative enhancement by lat-
tices of bosons and fermions

Compare bosons and fermions with respect to (a) bosonic stimulation and (b) coop-
erative enhancement.

29.1.6.11 Ex: Cooperative enhancement versus bosonic stimulation

CARL amplification comes from cooperativity not from bosonic stimulation [599, 460,
739], that is, it should work for fermions and boltzons. To demonstrate this proceed
as follows:
a. Set up the single-atom Hamiltonian for a 3D harmonic potential in which the atoms
(bosons or fermions) are initially placed allowing for the possibility of momentum re-
coil by photon scattering. This disregards the trap’s inhomogeneity, but is a good
assumption for short times. What are the eigenfunction of this Hamiltonian? Calcu-
late the expectation value for the density distribution. Express the field operators in
momentum space. Express the lowest energy states for a bosonic/fermionic cloud in
momentum representation.
b. Now apply a π/2-Bragg-pulse imparting the recoil K to the cloud. What is the
resulting state? Recalculate the expectation value for the density distribution.
c. Now, assume the presence of another free (test) atom (or photon). Write down the
Hamiltonian and the wavefunction for this atom. It is supposed to interact with the
atomic cloud via the (perturbatively treated) interaction potential,

V̂ = λ

∫
d3rψ̂†

1(r)ψ̂
†
2(r)ψ̂2(r)ψ̂1(r) .

Calculate the probability that the atom is scattered at a particular wavevector, i.e. de-
termine the cooperative enhancement factor.
d. Is cooperative enhancement possible with just one atom?
e. How about cooperative enhancement in a cavity, when cooperativity is ensured by
a single atom plus all its mirror images?

29.2 Bragg diffraction

An important technique for manipulating the atomic motion is by Bragg diffraction 5.
It allows the coherent transfer of atoms to other states of motion or to superpositions
of motional states, and is extremely useful for applications, such as the realization of

5The idea is analogous to the manipulation of the k-vector of light waves by acousto-optic mod-
ulators.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence09.pdf
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matter wave beamsplitters [483] and atomic lasers, or for the targeted excitation of
quasi-particles [483, 790, 779].

To implement Bragg diffraction, we consider two laser pulses with different fre-
quencies and propagation directions ω,kω and ω − ∆ω,kω−∆ω, detuned from an
atomic resonance and intersecting at the position of atoms under an angle ϑ, as
shown in Fig. 29.4(a). The superposition of the electric fields of the light beams,

E = E0e
ı(kω·r−ωt) + E0e

ı[kω−∆ω·r−(ω−∆ω)t] = E0e
ı(kω·r−ωt)

(
1 + e−ı(q·r−∆ωt)

)

= 2E0e
ı(kω·r−ωt)e−

ı
2 (q·r−∆ωt) cos q·r−∆ωt

2 , (29.51)

where q ≡ kω−kω−∆ω, produces a standing light wave with an intensity proportional
to,

|E|2 = 4E2
0 cos

2 q·r−∆ωt
2 = 2E2

0 [1 + cos(q · r−∆ωt) , (29.52)

with which the atoms interact.
The Bragg diffraction technique has proven extremely efficient: up to 100% of

the atoms can be transferred to well-defined momentum sidemodes. In general, the
components of a cloud with different momentum modes overlap during the time scale
of the Bragg pulses. They only separate spatially after a ballistic flight time, which
then allows their identification via absorption imaging.

Figure 29.4: Bragg scattering of atoms at a standing light wave. (a) Geometric layout: Short
pulses of two laser beams in Raman configuration enclosing an angle of ϑ and detuned from
each other by ∆ω are simultaneously irradiated into the cloud. (b) Bogolubov dispersion
relation for interacting condensates (blue line). The quadratic dispersion relation (cyan)
holds for free particles, and the linear dispersion relation (magenta) for phonon excitations.

29.2.1 Interpretations of the Bragg diffraction process

Bragg’s diffraction can be treated within the formalism developed in Sec. 29.1.2, as
will be shown later, in Sec. 29.2.3. But before that, let us present a simplified approach
and several simple pictures illustrating the dynamics of Bragg diffraction.

29.2.1.1 Bragg diffraction picture

The first interpretation of this phenomenon is as matter wave Bragg diffraction at a
standing light wave (i.e. an one-dimensional optical lattice) formed by two crossing
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pulsed laser beams 6. We consider atoms initially at rest exposed to the standing
wave (29.51) with ∆ω = 0 and q ≡ qêz, such that the dipolar potential U ∝ |E|2 is,
with (29.52),

U(z) = U0 cos
2 qz

2 . (29.53)

Assuming a given finite interaction time τ , the modulation of the local phase of the
atoms becomes 7,

ψτ (z) = ψ0(z)e
ıU(z)τ/ℏ = ψ0(z)e

ı
2ℏU0τ(cos qz+1) = ψ0(z)e

ıU0τ/2ℏ
∑

n

ınJn(
U0τ
2ℏ )einqz ,

(29.54)
where Jn are the Bessel functions of the first kind 8.

The condensed wavefunction evolves into a superposition of motional modes, which
correspond to the diffraction orders of Bragg scattering and their amplitudes through
the Bessel functions Jn. The diffraction efficiency increases with laser intensity and
with time.

Now, we need to generalize this result to the propagating standing wave of the
expression (29.52). The intensity generates a dipole potential,

U(z, t) ≈ U0 cos
2 qzz−∆ωt

2 , (29.55)

so that the condensate now evolves according to,

ψ(z, t) = ψ0(z)e
ı/ℏ

∫ t0+τ
t0

U(z,t)dt = ψ0(z)e
ı/ℏ

∫ t0+τ
t0

U0 cos2
qzz−∆ωt

2 dt . (29.56)

For short interaction times, τ ≪ 2π/∆ω, ...

29.2.1.2 Compton scattering picture

The second interpretation is that of Compton scattering: Spontaneous Rayleigh scat-
tering of a photon from a mode kω into a solid angle around kω−∆ω leaves an atom
with the recoil momentum ℏq ≡ pf · pi. Of course, one can stimulate the Rayleigh
scattering process by providing the laser mode kω−∆ω at the entrance. By replacing
the spontaneous output mode with a stimulated input mode, we increase the proba-
bility for an atomic recoil in the momentum mode ℏq, which is thus pre-selected by
the choice of kω−∆ω. Since the elementary scattering process must conserve energy
and total momentum,

ℏω +
p2i
2m

= ℏ(ω −∆ω) +
p2f
2m

(29.57)

ℏki + pi = ℏkf + pf ,

we obtain the Bragg condition,

E = ∆ω =
p2f
2m
− p2i

2m
=

(pf − pi)
2

2m
+

(pf − pi) · pi
m

=
q2

2m
+

q · pi
m

. (29.58)

6Note, that the initial population of the recoil mode should be small. Otherwise, since Bragg
diffraction is a coherent and thus reversible process, atoms initially in the recoil mode are transferred
back to the original matter wave mode.

7Using the Jacobi-Anger expansion, eıβ cos x =
∑
n ı
nJn(β)eınx.

8Andreas got ψ0(z)
∑
n J

2
n(U0τ/2ℏ)einqz/2.
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Expressed by the Bragg angle, the condition reads,

q =
√
(pf − pi)2 =

√
ℏ2k2

i + ℏ2k2
f − 2ℏ2kikf ≃ ℏki

√
2− 2 cos θ = 2ℏki sinϑ/2 .

(29.59)
The efficiency for transferring atoms to the recoil mode depends on the fulfillment
of this condition. The Bragg condition can be employed to select higher diffraction
orders.

29.2.1.3 Stimulated Raman scattering picture

A third interpretation is as stimulated Raman scattering between two different kinetic
states of the atom [see 29.4(b)]. In fact, the momentum modes pi and pf have different
energies, which, for a condensate, are determined by the Bogolubov spectrum [322].
By varying the angle ϑ in the Bragg condition (29.58), we can choose the amount
of energy to be transferred and thus probe the spectrum, i.e. measure the excitation
energy E(q, µ) as a function of the momentum q and the chemical potential µ in the
particle regime q2/2m≫ µ, as well as in the phonon regime q2/2m≪ µ. On the other
hand, varying the detuning ∆ω in the Bragg condition (29.58), we selectively address
different velocity classes of a gas or condensate, which allows us to probe its velocity
distribution. This procedure is called spectroscopy of recoil-induced resonances (RIR)
[181, 790]. RIR spectroscopy also provides detailed information on the mean-field
energy and the (inhomogeneous) density distribution of a condensate. Note, finally,
that Bragg scattering is closely related to Kapitza-Dirac scattering of atomic beams,
well-known in conventional atom optics [448, 333].

Figure 29.5: Bragg scattering of atomic clouds. (a) Geometric layout as in 29.4. Here, we
assume pi = 0. (b) Experiment showing coherent splitting by a Bragg pulse.

29.2.1.4 Coherent splitting

There is a general interest in the possibility of dividing phase space by coherent cou-
pling of otherwise independent modes. We are talking, of course, about double slits or
beamsplitters, which represent an essential tool of quantum mechanics. Bragg diffrac-
tion realizes a beamsplitter for atomic clouds analogous to the optical beamsplitter.
In fact, Bragg diffraction has been used for the realization of output couplers for atom
lasers and for atom interferometers. A suggestion that is sometimes made is the fol-
lowing: ’A condensate is a macroscopically populated momentum mode. The Bragg
beamsplitter divides the phase space into two entangled output modes. Shouldn’t it



29.2. BRAGG DIFFRACTION 1303

be possible to generate a macroscopic superposition of two condensates, i.e. a really
macroscopic Schrödinger cat?’ of the type

(|Ψ+⟩+ |Ψ−⟩) . (29.60)

Their is an obvious fundamental interest to study such states and the mechanisms
leading to their decoherence (see Sec. 18.1.1).

To clarify the situation, we first have to say, what we mean by Schrödinger cat.
A Schrödinger cat is a quantum superposition of many-body states. A perfect cat
made of N two-level atoms can be expressed as | + +...⟩ ± | − −...⟩. The Einstein-
Podolsky-Rosen (EPR) and the Greenberger-Horne-Zeilinger states (GHz) belong to
this category. The degree of entanglement of the cat is measured by the information
entropy defined as S = −⟨log2 ρ̂⟩, where ρ̂ is the density operator. The information
entropy measures the amount of classical information that can be encoded in the
quantum state. For example, the entropy of a perfect cat state is S = 1 bit, because
if we find one of the atoms in the state |+⟩, we know that all others are in the same
state.

Second, we have to explain, what we mean by a beamsplitter. Subject to a beam
splitting process, every individual atom has the choice between one of two output
ports. However, if the process is coherent, every atom will evolve into a coherent su-
perposition, but it does so independently from the other atoms. That is, we can write
the state of the atomic cloud as a product state of Schrödinger kittens (|+⟩ ± |−⟩)N ,
but no real cat. The information entropy is S = N bit, as for independent atoms.
Clearly, the state (29.60) is NOT the state generated by a beamsplitter! Nevertheless,
the beamsplitter creates a certain correlation between the two modes (see Sec.14.5).

It may come as a surprise, that a condensate composed of totally delocalized
atoms coherently interacting with a homogeneous light field (the photons of the Bragg
beams are totally delocalized over the field mode including the condensate volume)
increases its entropy from 1 to N bits. This argument, however, would be the same
for a non-condensed thermal cloud being sufficiently cold that the thermal de Broglie
wavelengths exceeds the size of the cloud. That is, even in condensates the photons
are scattered by individual atoms. The interaction with the light localizes one atom
in the condensate before removing it from there by recoil. Nevertheless, cooperative
interaction of several atoms with a light mode is possible, e.g. in superradiance or when
the photons are recycled by means of an optical cavity, as in the Jaynes-Cummings
model.

29.2.2 Bragg interferometry of a thermal gas

Even above the critical temperature the momentum distribution of a dilute ther-
mal gas is (slightly) modified by quantum statistics, i.e. by the classical, bosonic or
fermionic nature of the gas. We have already emphasized that Bragg interferometry
can be used to measure the momentum distribution of a gas via RIR spectroscopy,
whether the gas is condensed or thermal. Now, let us discuss Bragg interferometry
on a thermal gas, based on the articles [555] and [210].
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Figure 29.6: Bragg interferometer.

29.2.2.1 Free evolution of a thermal cloud

To describe the Bragg scattering process quantitatively, we interpret it as a Raman
transition between discrete atomic momentum states governed by a Schrödinger equa-
tion. On the other hand, as long as no radiation is incident the atomic center-of-mass
wavefunctions evolve freely or under the constraint of an external potential. That is,
both processes concern the same motional degree of freedom. In order to derive a
complete quantum model, let us first develop the formalism for the description of the
free evolution of a thermal cloud, then we explain how a resonant radiation can be
included.

We consider a thermal atomic cloud initially distributed over many momentum
classes according to the Maxwell-Boltzmann velocity distribution,

D(kz) =
ℏ

(2πmkBT )1/2
e−ℏ2k2z/2mkBT =

e−πk
2
z/k

2
therm

ktherm
, (29.61)

using ktherm ≡ 2π/λtherm and (26.9). Because of the inhomogeneity of the distri-
bution, any evolution of atoms belonging to specific momentum classes caused by
velocity-selective radiation pulses, must be calculated with individual atoms. The
final momentum distribution (e.g. after a pulse sequence) can then be obtained by
weighing with the individual evolution with the initial momentum distribution 9.

9The procedure neglects interatomic interactions, which is always a good presumption, for exam-
ple, for an ultracold Fermi gas [214] or for 88Sr atoms, which have a very small scattering length.
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Figure 29.7: (a) Geometry for Bragg diffraction. (b) Illustration of a Raman transition be-
tween two points of the free-particle dispersion curve, when the atoms are initially thermally
distributed. (c) Same as (a), but now the detuning ∆ω is adjusted for second-order Bragg
diffraction.

We describe the quantum state of a thermal atom |ψ⟩ as a plane wave, ⟨z|ψ⟩ ∝
eıkzz, which in momentum space corresponds to a Dirac distribution, ⟨kz|ψ⟩ ∝ δ(z −
z0). Without radiative coupling, we describe the evolution in momentum space by
the solution of the Schrödinger equation (or propagator),

⟨kz|ψ(t)⟩ = eıĤt/ℏ⟨kz|ψ(0)⟩ . (29.62)

In free space, with the Hamiltonian Ĥfree = ℏ2k2z/2m, the wavefunction is obviously
constant.

In order to couple two intervals of momentum distribution by resonant radiation,
we first need to duplicate the Hilbert space,

ai,kz (t) ≡ ⟨i|ψkz (t)⟩ = ⟨i|⟨kz|ψ(t)⟩ (29.63)

with i = 1, 2. Note that, in this case, the Hilbert spaces are not disjunct.
To obtain the atomic momentum distribution after the application of a pulse

sequence, we calculate the evolution of the amplitudes aj,kz for a variety of initial
momenta and weigh the final populations of the momentum states with the distribu-
tion function D(kz). The number of atoms expected in the zeroth and first Bragg
diffraction order is, therefore,

Nj(t) =

∫
D(kz)|aj,kz (t)|2dkz . (29.64)

29.2.2.2 Bragg scattering and RIR

For large momentum distributions, T ≫ Trec, the atomic cloud occupies many mo-
mentum states, such that the Bragg scattering produces a RIR-like signal. That is,
the scattering probability is proportional to the population difference of the initial
and final momentum states, as discussed in Sec. 25.3.1. The number of scattered
atoms/photons is, therefore,

Ṅbrg ∝ ΩR
∂D(kz)

∂kz

∣∣∣∣
kz=ℏm∆ν/q

. (29.65)
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where,

ΩR =
Ω1Ω2

2∆a
=

1

∆a

3λ2

4π

Γ

ℏω
√
I1I2 =

3πc2I

ℏω3

Γ

∆a
(29.66)

is the two-photon Rabi frequency. For very narrow momentum distributions, T ≪
Trec, we may assume the atomic cloud to occupy only a single momentum state,

Ṅbrg ∝ ΩRD(kz) . (29.67)

The transition rate per atom is then given by [780],

W

N
=

2πℏ
N

Ω2
R

∑

f

|⟨f |ρ̂†(k)|g⟩|2δ(ℏν − Ef + Eg) ≡ 2πΩ2
RS(k, ν) . (29.68)

As illustrated in Fig. 29.7, to scatter an atom with the initial wavevector kz to the
next higher momentum state kz + 2q, the Bragg condition requires,

∆νR = νR2 − νR1 =
ℏ(kz + 2q)2

2m
− ℏk2z

2m
=

2ℏq
m

(kz + q) . (29.69)

If we tune ∆ν(±∆kz) until the Bragg signal Ṅbrg drops to e−1/2,

∆νR(∆kz)−∆νR(−∆kz) =
4ℏ∆kzq
m

=
4ℏq
m

√
mkBT

ℏ
= 4q

√
kBT

m
. (29.70)

29.2.2.3 Bragg scattering by free atoms

Let us first assume that during the Bragg pulse only two discrete atomic momentum
states j = 0, 1 are coupled [452, 84, 555, 210], and that trapping potentials are
absent or can be neglected. This is justified for Bragg pulse sequences much shorter
than an oscillation period of the trap. We denote the probability amplitudes for the
two momentum states by momentum space wavefunctions aj,kz . They correspond to
atoms with initial momenta ℏkz that are coupled to states with momentum ℏk′z =
ℏ(kz + 2q). The temporal evolution of the amplitudes under the action of the Bragg
light is given by the solutions of the Schrödinger equation [555, 210],

(
a0,kz (t)

a1,kz (t)

)
= e−ıĤRt/ℏ

(
a0,kz (0)

a1,kz (0)

)
, (29.71)

with the Hamiltonian,

ĤR =

(
ℏ2

2mk
2
z

ℏ
2ΩR

ℏ
2ΩR

ℏ2

2mk
′2
z − ℏδ

)
, (29.72)

where ∆ = 2ℏq2/m−δ is the detuning of the Bragg lasers from the recoil shift. When
the Bragg light is switched off, the Hamiltonian simplifies to,

Ĥfree =

(
ℏ2

2mk
2
z 0

0 ℏ2

2mk
′2
z − ℏδ

)
. (29.73)

Concatenating temporal evolutions described by e−ıĤRt/ℏ and e−ıĤfreet/ℏ, the phase
evolution of individual atoms in momentum state superpositions can be calculated
for arbitrary sequences of pulses separated by intervals of free evolution, for example,
Ramsey-type sequences.
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Figure 29.8: (code) (a) Distribution of momentum classes in the direction of kz after irradia-

tion of a 2π Bragg pulse. The width of the structure is determined by the power broadening

of the Raman transition. (b) Temporal evolution of the populations of the momentum states

0 and 2q.

29.2.2.4 Bragg scattering by trapped particles

When trapped atoms are considered, the problem arises that the Hilbert space of mo-
mentum states is simultaneously coupled by two interactions: a moving optical lattice
(generated by the Bragg lasers) and the (harmonic) trap. However, the situation gets
simpler if a separation of the scales is possible. In general, the duration of a pulse
is very short, τ ≪ 2π/ωz. In contrast, the duration of a free evolution period ∆t
(e.g. in a Ramsey cycle) may be such, that it is no more negligible compared to a trap
oscillation period, so that we need to account for the action of the trapping potential
explicitly.

As the trap couples the atomic momenta with the atomic positions (Ekin+Epot =
const), the initial spatial distribution of the atoms must now be considered. For
simplicity, we describe it as a thermal Gaussian, similarly to what has been done in
Eq. (29.61) for the momentum distribution,

G(z) =

√
mω2

z

2πkBT
e−mω

2
zz

2/2kBT =
e−πz

2/a4zk
2
therm

a2zktherm
. (29.74)

Beginning with the positions z and initial momenta kz, after a diffraction pulse trans-
ferring the recoil 2q to part of the atoms and being short enough not to change their
positions, the atoms follow classical trajectories. The atomic momenta (now depend-
ing on time) are simply the solution of the equation of motion ℏk̇z = −mω2

zz with
the initial conditions z(0) = z and kz(0) = kz, respectively, k

′
z(0) = kz + 2q,

k̃z(t) = kz cosωzt−
mωz
ℏ

z sinωzt (29.75)

k̃′z(t) = (kz + 2q) cosωzt−
mωz
ℏ

z sinωzt ,

where the first expression holds for non-diffracted atoms and the second for diffracted
atoms. These momenta are substituted for kz and k′z, respectively, in the Hamilto-
nians (29.72) and (29.73). As the Bragg pulses are short compared to the oscillation
period, τ ≪ 2π/ωz, the effect of the trapping potential may be neglected during
Bragg scattering. This means that the Hamiltonian ĤR depends on k̃z(t), but can be

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggRabi.m
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treated as time-independent for the short intervals τ . In contrast, the Hamiltonian
for free propagation Ĥfree depends on the time, if ∆t is long. In this case, the phase
evolution of the atoms in both coupled states can be described by the time evolution
operator as,

e−ıĤfreet/ℏ =


exp

(
−ı
∫ t
0
dt ℏ

2m k̃
2
z(t)

)
0

0 exp
(
−ı
∫ t
0
dt
[

ℏ
2m k̃

′2
z (t)− δ

])

 . (29.76)

Since the amplitudes aj,z,kz now also depend on the initial atomic positions, the
final populations of the momentum states must be additionally weighted with the
initial spatial distribution. Therefore, the Eq. (29.64) for the expected the numbers
of diffracted and non-diffracted atoms must be replaced by,

Nj(t) =
x

D(kz)G(z) |aj,z,kz (t)|2 dkzdz . (29.77)

In practice, however, it might be a good approximation to assume small displacements
around a δ-shaped position distribution. Note, that the transformation (29.75) must
be repeated for every free evolution pulse of a sequence.

Example 198 (Approximation for small displacements): In practice, we
may neglect the displacements, z ≃ 0. Then the equations (29.75) simplify to,

k̃z(t) = kz cosωzt and k̃′z(t) = (kz + 2q) cosωzt .

Inserting them in (29.76) we obtain for the propagator,

e−ıĤfreet/ℏ

= exp

(
− ıℏk2z
4mωz

(cosωzt sinωzt+ ωzt)

)(
1 0

0 exp
(
− ıℏqkz

2mωz
(cosωzt sinωzt+ ωzt)

)) .

In Exc. 29.2.4.1 we will study the behavior of an ultracold atomic cloud subject to
a gravitational potential during a Ramsey-Bordé sequence.

29.2.2.5 Bloch equations approach

Experimentally, we observe decoherence of the dynamics described above on a very
slow time scale. This phenomenon can be included in a description based on Bloch
equations,

d

dt
ρ⃗kz (τ) =Mj ρ⃗kz (τ) , (29.78)

with

ρ⃗kz (τ) =




ρ00,kz (τ)

ρ01,kz (τ)

ρ10,kz (τ)

ρ11,kz (τ)


 and Mj =




0 Γ ı
2ΩR − ı

2ΩR
0 −Γ − ı

2ΩR
ı
2ΩR

ı
2ΩR − ı

2ΩR −γ − ı∆j 0

− ı
2ΩR

ı
2ΩR 0 −γ + ı∆j




(29.79)
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with the solution,
ρ⃗kz (τ) = eM3teM2teM1tρ⃗kz (0) (29.80)

with,

∆1 =
ℏ
2m

(kz + 2q)
2 −∆ν − ℏ

2m
k2z (29.81)

∆3 =
ℏ
2m

[(kz + 2q) cosωtrτ ]
2 − ℏ

2m
[(kz + 2q) cosωtrτ − 2q]

2 −∆ν .

We weigh populations with the initial momentum distribution,

Nj(τ) ≡
∫
D(kz)ρjj,kz (τ)dkz . (29.82)

29.2.2.6 Kapitza-Dirac scattering

An atomic beam with longitudinal de Broglie wavelength λdB = h/p diffracted by a
solid periodic grating with a slit distance of d receives a transverse amplitude mod-
ulation. In the far field, this generates focuses at angles defined by nλdB/d = sinϑ.
Alternatively, the grating may consist of a standing light wave detuned from reso-
nances. The standing wave will create a periodic optical potential, which imprints
a transverse phase modulation on the atomic beam. In the far field, the result will
be the same as for the solid grating. Each atom will evolve into a superposition of
momentum sidemodes ±n2ℏk, without any momentum having been transferred to
the atoms. The diffraction angle is again sinϑ = ±n2ℏk/p = ±nλdB/(λ/2), where
λ/2 = d is the periodicity of the standing light wave. However, this is only true if
the phase shift is much smaller than π. This scheme is called the Raman-Nath regime
or the regime of Kapitza-Dirac scattering. An equivalent condition for this regime is,
that the interaction time is less than a period of oscillation in the optical potential,
τ ≪

√
ℏ/ωrec/U , or vtransτ ≪ λ.

The Raman-Nath regime is realized by a very focused optical standing wave. A
wave that is not plane can be considered a superposition of many spatial modes. Since
(off-resonant) scattering (absorption followed by induced emission) corresponds to a
photon redistribution between spatial modes, in a tight waist the phase matching
condition is somewhat relaxed and minor corrections to the energy balance are pos-
sible. In a certain sense, Kapitza-Dirac scattering is the inverse process of ’forward
scattering’ of a laser beam passing through an atomic cloud: the roles of light and
atoms are exchanged. The requirement that the interaction time be short implies,
that the light grating is ’optically dilute’ for the atomic beam 10.

For larger Rabi frequencies,

ΩR ≫
2ℏqσkz
m

, (29.83)

with σkz =
√
mkBT/ℏ2 being the width of the momentum distribution, the Doppler

broadening is dominated by power broadening, meaning that Bragg diffraction occurs

10Note, that we usually employ the term of optical diluteness the other way round, i.e. an atomic
cloud can be optically dilute (or dense) for a laser beam.
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Figure 29.9: (code) (a) Distribution of momentum classes in the direction of kz after irra-

diation of a π Bragg pulse. (b,c) Temporal evolution of the populations of the momentum

states nq.

all over the atomic cloud. At some point, however, the Rabi frequency becomes
comparable to the energy difference between adjacent momentum states, and Kapitza-
Dirac scattering sets in. According to [84] the scattering will stay two-state like as
long as the Rabi frequency fulfills the condition,

ΩR ≪
ℏ
m
(4q2 − 2qσkz ) . (29.84)

In the Kapitza-Dirac regime, the large energy uncertainty, connected with the
fast coupling rate, allows several momentum states to be coupled simultaneously. In
particular the Bragg Hamiltonian is replaced by,

Ĥτ =




. . .
. . .

. . . ℏ(kz−2q)2

2m + δ ΩR

2
ΩR

2
ℏk2z
2m

ΩR

2

ΩR

2
ℏ(kz+2q)2

2m − δ . . .

. . .
. . .




. (29.85)

The crossover from the Bragg-diffraction regime to Kapitza-Dirac scattering is a
smooth transition. As we will see below, for intermediate Rabi frequencies (here
1MHz > ΩR/2π > 100 kHz) the neighboring diffraction states, corresponding to mo-
mentum shifts of 4ℏq and −2ℏq (second and minus first order), are scarcely populated.
For higher and higher Rabi frequencies, ΩR/2π > 1MHz, the scattering populates
more and more diffraction orders.

29.2.2.7 Higher-order Bragg scattering

Higher-order Bragg scattering is possible as well. Then the 2n-photon Rabi frequency
must be calculated and inserted in the second diagonal of (29.85).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggKapitza.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggKapitza.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggKapitza.m
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29.2.3 Bragg spectroscopy of a condensate

To measure the Bogolubov spectrum, we need to excite perturbations in a condensate
and study its reaction [780].

Let us now imagine that the potential has the form of a standing wave. Technically
this can be done by two laser beams having the same frequency crossing at the position
of the atoms,

Vtrap(r, t) ≡ V
2 e

ıq1·r−ıωt + V
2 e

ıq2·r−ıωt . (29.86)

Choosing the coordinate system such that, q1 ≡ (kx, 0, kz) and q1 ≡ (kx, 0,−kz),

Vtrap(r, t) =
Vx

2 e
ıkzz−ıωt + Vx

2 e
−ıkzz+ıωt , (29.87)

with Vx ≡ V eikxx. With this weak perturbation applied to the atoms, we make the
ansatz,

ψ(r, t) = e−ıµt/ℏ
(
ψ0(r, t) + u(t)eıkzz−ıωt − v(t)e−ıkzz+ıωt

)
, (29.88)

where the amplitudes of the perturbation, u(t) and v(t), only vary slowly in time. As-
suming that ψ0 is fairly homogeneous, i.e. ⟨ψ0|∇z|ψ0⟩ ≃ 0, the momentum transferred
to the BEC is,

⟨ψ(r, t)| − ıℏ∇z|ψ(r, t)⟩ = ℏkz(|u|2 − |v|2) . (29.89)

We can now solve the Gross-Pitaevskii equation (27.20) in the same way as in
Sec. 27.4.1 inserting the ansatz (29.88). The terms proportional to eıkzz−ıωt are,

ℏ2k2
z

2m
u+

V

2
ψ0+g

(
|ψ0|2 + |u|2 + |v|2

)
u+gψ2

0v+g|v|2u+g|ψ0|2u =

(
ıℏ
∂

∂t
+ ℏω + µ

)
u ,

(29.90)
and the analogously for e−ıkzz+ıωt. Using µ = gn = g|ψ0|2 and assuming that the
perturbation is weak, |u|, |v| ≪ |ψ0|, we obtain,

(
ℏ2k2

2m
+ gn

)
u+

V

2
ψ0 − gnv =

(
ıℏ
∂

∂t
+ ℏω

)
u (29.91)

−
(
ℏ2k2

2m
+ gn

)
v − V

2
ψ0 + gnu =

(
−ıℏ ∂

∂t
+ ℏω

)
v .

This effect is called Bragg diffraction of atoms by a standing light wave.
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Figure 29.10: Spectrum of elementary excitations.
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Figure 29.11: Spectrum of elementary excitations.

Using L ≡ ℏ2k2

2m + Vtrap + 2gn− µ− ıℏ ∂
∂t , we can write,

(L − ℏωk −gn
−gn L+ ℏωk

)(
u

v∗

)
= 0 . (29.92)

These equations can be decoupled using the Bogolubov transform.
We calculate the momentum transferred to the BEC, assuming ψ0 to be fairly

homogeneous,
⟨ψ(r, t)| − ıℏ∇|ψ(r, t)⟩ = ℏq(|u|2 − |v|2) . (29.93)

29.2.4 Exercises

29.2.4.1 Ex: Bragg diffraction in a Ramsey-Bordé interferometer

A Ramsey-Bordé interferometer consists of a π
2 -π-

π
2 laser pulse sequence of Bragg

diffraction pulses leading to a splitting and recombination of an atomic wavefunction
in momentum space. Simulate the behavior of a cold atomic cloud subject to a gravi-
tational potential during a Ramsey-Bordé sequence using the formalism developed in
Sec. 29.2.2. See also Excs. 1.7.6.2 and 1.7.6.3.

29.3 Matter wave superradiance

29.3.1 Classical superradiance

The Bragg beam splitter introduced in the last section does not give rise to collective
scattering, even when the atoms are as strongly correlated as in a condensate. On the
other hand, collective scattering is known to occur in a classical gas: When two atoms
excited to an internal energy level, ∼ hc/λ, are separated by a distance R too large to
form a molecule, but smaller than the wavelength of the excited transition, aB ≪ R≪
λ, the atoms are coupled to the electromagnetic continuum by the same radiation that
they emit (see Fig. 29.12). The dipole moments of the atoms stimulate each other to
emit, and we observe a synchronized and accelerated relaxation, resulting in a coherent

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BraggThermal01.pdf
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and directional burst of radiation [229, 685]. The directionality of the radiation is due
to a destructive interference of the dipolar radiation patterns emitted by the atoms in
all directions except the direction chosen by the first emitted photon. This direction
is random (except when bosonically stimulated). The atomic sample evolves, during
this time, to a state of coherent superposition, until all the atoms are deexcited. This
phenomenon is called Dicke superradiance. A similar effect exists for matter waves,
and will be discussed in the following sections [416].

Figure 29.12: Superradiance assumes small interatomic distances compared to the wave-
length of the excited dipole. Toroidal interference patterns interfering constructively in only
one direction.

29.3.2 Matter wave superradiance & CARL

We consider the process of Rayleigh scattering from a condensate. The scattering
rate obviously depends on the number of atoms and the laser intensity. The crucial
point now is, that this rate can be stimulated by populations in the output modes,
that is, the modes of scattered light and the atomic recoil modes. Matter and light
participate in the scattering process as equal partners. In Sec. 29.2.1 we showed that
Bragg scattering can be interpreted as optical stimulation of matter wave scattering.
By analogy, it is possible to imagine a process of wave matter stimulation of light
scattering. We will now discuss such a process, called superradiant Rayleigh scattering
ormatter wave superradiance (MWSR) [416], with the help of the small cartoon shown
in Fig. 29.13. See also (watch talk).

Figure 29.13: Cartoon for MWSR (see text).

Let us imagine an elongated condensate, subject to a magnetic field directed along
its long axis and illuminated perpendicularly to the long axis by a linearly polarized
laser beam. The scattered light is emitted into a (toroidal) dipolar radiation pattern.
The fraction of the light scattered into the solid angle Ωj , which is inclined by angle ϑj
with respect to the polarization of the incident laser is Ωj sin

2 ϑj/(8π/3). Of course,
the number of scattered photons also depends on the optical cross section σ and
the number of scattering atoms N0. When an atom, recoiling due to the transfer of
one unit of photonic momentum, moves with a speed of a few centimeters per second

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/MatterwaveSuperradiance
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through the condensate, it interferes with other atoms of the condensate, thus forming
a wave matter grating. The grating, the lifetime of which is long in comparison to
the scattering rate, now stimulates subsequent photons to follow the same path Ωj
and receives, in turn, the scattering atoms. In other words, the bosonic stimulation of
the scattering process by the Nj atoms already populating the recoil mode amplifies
the photon scattering rate by a factor of Nj +1. The differential optical cross section
(power Pj scattered into the direction Ωj divided by the laser intensity I) is [416],

dσ

dΩj
=
Pj
I

=
Ωj sin

2 ϑj
8π/3

σN0(Nj + 1) . (29.94)

Each scattering event of a photon into the mode Ωj transfers an atom to the recoil
mode Nj :

Ṅj = Pj/ℏω ≡ GjNj where Gj =
I

ℏω
σ
Ωj sin

2 ϑj
8π/3

N0 . (29.95)

The phase matching condition is satisfied for a solid angle of approximately Ωj =
λ2/Aj , where Aj is the cross-sectional area of the condensate. If lj is the length of
condensate, we can write,

Gj =
I

ℏω
σ
sin2 ϑj
8π/3

n0λ
2lj . (29.96)

With the atomic density n0 = N0/(Aj lj), the factor n0λ
2lj describes the optical

density of the BEC in the direction of the scattering. Therefore, we obtain exponential
gain for the atom number Nj , that is, the process is self-amplifying.

Using the terms of the dressed atom picture, we would say that the excited state
of our system is formed by the BEC and the laser mode. This state relaxes to a
state formed by the recoiled atoms and the scattered photons. The exponential gain
occurs, when this system exhibits inversion. The inversion is maintained, until the
BEC is completely transferred to the momentum recoil modes 11.

Figure 29.14: Observation of matter wave superradiance.

11Superradiant scattering is due to a nonlinear coupling between two matter waves and two optical
waves in a four-wave mixing process (4WM) interpreted as scattering of light from a wave matter
stimulated by a wave matter mode. The process does not require nonlinearity due to collisions, but
it works with an ideal gas, g → 0. This distinguishes it from the 4WM of four matter waves, studied
in Sec. 28.3.4 and interpreted as a scattering of atoms by a matter wave stimulated by matter wave
mode, and 4WM in quantum optics involving four photons. But in all cases bosonic stimulation is
crucial.
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It is instructive to compare Dicke superradiance and matter wave superradiance.
Dicke superradiance is induced by an electronic coherence between adjacent atoms.
It requires a sufficiently long coherence time for the atomic dipoles. On the other
hand, MWSR is a coherence effect between two states of the atomic center-of-mass
motion, i.e. the condensed state and a momentum sidemode. A long lifetime of this
coherence is necessary to allow for correlations between successive scattering events.
The coherence lifetime corresponds to a coherence length, which for a condensate
is equal to its physical size, whereas for a thermal cloud, it only corresponds to its
thermal Broglie wavelength. This explains why it is difficult to observe MWSR with
non-condensed atomic clouds.

Since the scattered photons quickly leave the BEC, there is no feedback or bosonic
stimulation by the optical output mode. This can be interpreted as a fast decaying
cavity mode, and the regime is called the bad cavity limit. Let us now imagine, that
the photons were recycled, for example, via an optical cavity constructed around the
BEC and reflecting back the photons emitted in the solid angle Ωj

12. The mirrors of
the cavity create reflection images of the radiating atoms, which increase the density
of states, the scattering rate, and the gain Gj increase by a factor of 8F/π. An
interesting question now is, what happens in the limit F → ∞. If the decay of the
cavity mode, and therefore the removal of photons from the coherent interaction zone
(which is precisely the volume occupied by the BEC) is slow, the MWSR process
seems to be doubly stimulated, optically and atomically. However, in this case we
also expect the inverse process, where photons are scattered back to the original mode,
to occur and to be stimulated by the number of atoms N0 in the condensate. We see
that the simple picture of bosonic stimulation does not work in this case, and a more
complete model including the possibility of Rabi oscillations amplified by stimulated
emission is necessary 13.

29.3.3 Amplification of matter and light waves

The feedback-induced exponential gain giving rise to the phenomenon of MWSR can
be used to construct a phase-coherent amplifier of matter and light waves. After all,
the momentum side modes observed in the MWSR process [416] already represent
amplified vacuum fluctuations. To experimentally realize a coherent matter wave am-
plifier [486, 418], it is sufficient to replace the vacuum fluctuations of the original
MWSR experiment with a small seed condensate: ∼ 0.1% of the ’mother condensate’
proved sufficient to stimulate the matter wave amplifier. The seed condensate was
created by Bragg diffraction transferring atoms from the mother BEC to another mo-
mentum state (see Sec. 29.2). The matter wave grating formed by interference of the
seed condensate and the mother BEC was subsequently amplified by a MWSR pulse.
The gain for the atom number in the seed condensate was 10 to 100 depending on the

12Alternatively, we may imagine a scheme decelerating of the group velocity of the light pulse.
13The phenomenon of the matter wave superradiance can be understood without quantization of

the atomic motion [?] and, in particular, without quantum degeneracy. A cold and dense thermal
cloud can show the phenomenon of MWSR [897]. The scattered light forms together with the pump
light, a propagating standing light wave, from which the atoms are scattered by Bragg diffraction.
Atoms are accelerated by the CARL effect [181, 101, 503, 598, 597, 486, 418, 417] through a coherent
redistribution of photons between the pump and scattered modes. However, as was shown later-on,
the different recoil modes of the condensate exhibit phase-coherence, which is not explained by a
theories treating the atomic motion semi-classically.
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intensity and duration of the MWSR pulse. Finally, the coherence of the amplification
process was demonstrated by active atom interferometry using the Ramsey scheme:
One of the interferometer arms consisted of the amplified seed condensate and the
other of a reference condensate (local oscillator) especially created by Bragg diffrac-
tion from the mother condensate. The observation of interference between these two
matter waves proved the coherence of the amplification process and the existence of a
well-defined phase relationship between the input and the output of the matter wave
amplifier.

Figure 29.15: Matter wave amplification of a ’seed condensate’ at the expense of a ’mother
condensate’. Time-of-flight imaging visualizes the condensate’s momentum distribution.

In analogy to electronics, we may consider the coherent matter wave amplifier
as an active device complementing the atom optical toolbox of passive devices (see
Sec. 28.3.1).

29.3.4 Four-wave mixing of optical and matter waves

We will now make an attempt to categorize the various scattering processes involving
condensates. Let us first return to the radiation pressure [Fig. 29.16(a)], where an
incident photon is spontaneously scattered into a random direction. The isotropy of
the scattering process can, however, be broken when certain directions (i.e. spatial
modes) are favored by bosonic stimulation. The symmetry of the roles of matter wave
modes and light modes allows us to treat both on the same footing, for example, we
can stimulate scattered modes either by matter of light waves.

Let us first have a look at stimulation by optical modes [Fig. 29.16(b) and (c)].
Fig. (b) describes optical four-wave mixing (4WM) in nonlinear optical media, i.e. op-
tically stimulated scattering of photons from a standing light wave, which is a 4WM
process of 4 photons. Fig. (c) describes Bragg scattering, i.e. an optically stimulated
scattering of atoms by a standing light wave, which is a 4WM process of 2 photons
and 2 atoms.

Similarly, a scattering process can also be stimulated by a macroscopic number of
atoms in a recoil mode [Fig. 29.16(d) and (f)]. Fig. (d) describes superradiant Rayleigh
scattering and matter wave amplification, i.e. scattering of photons stimulated by a
de Broglie wave, which again corresponds to 4WM of 2 photons and two atoms.
Fig. (e) describes amplification of a laser pulse by superradiant Rayleigh scattering,
i.e. scattering of photons in a matter wave with double stimulation by light waves
and de Broglie waves, which once again is a 4WM process of 2 photons and 2 atoms.
Finally, Fig. (f) describes the basic process of nonlinear atom optics, i.e. the scattering
of atoms by a matter wave stimulated by de Broglie waves, which is a 4WM process
of 4 atoms.
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Figure 29.16: Schematic comparison of 4WM processes between light and matter wave
modes. (a) Spontaneous emission, (b) classical 4WM of light modes, (c) Bragg scattering,
(d) superradiant Rayleigh scattering, respectively, matter wave amplification, (e) optical
amplification, and (f) 4WM of matter waves.

29.4 Condensates in electronically excited states

The interaction between condensates and light has, so far, been treated in the limit
where the population of excited states can be neglected or adiabatically eliminated. An
example was the coherent coupling of different kinetic states of an atom by a method
called Bragg diffraction discussed in Sec. 29.2.

On the other hand, atoms can have metastable excited states, which can introduce
new degrees of freedom, and a whole world of new problems emerges that need to
be addressed: How do condensed atoms move, when they are in different states of
internal excitation (or superposition of states), and how do atoms in different states
interact with each other? We will now turn our attention to coherent coupling of
internal states 14.

In Sec. 29.4.1 we will show how to generalize the second-quantized formalism in-
troduced in 27.2.1 in order to deal with coupled condensates in different states of
internal excitation.

In Sec. 29.4.2 we will discuss examples of how coherent coupling of two states can
be accomplished either by radiofrequency/microwave radiation or by two laser beams
in Raman configuration. In order to avoid spontaneous relaxation, we often choose
state with low excitation energy, for example, within the hyperfine structure (Ĥ ∼ I·J)
or the Zeeman structure (Ĥ ∼ µ ·B) of the electronic ground state. But one can also
consider the coupling between different kinetic states of free atoms Ĥ ∼ p2/2m, or
the output coupling of atoms confined to a trapping potential (Ĥ ∼ m

2 ω
2r2), or even

a chemical coupling between a vibrational state of two atoms bound together to form

14We will disregard, for the moment, possible effects due to inhomogeneous broadening caused by
the finite volume of the cloud inside the potential (Zeeman shift in magnetic traps or dynamic Stark
shift optical traps) or effects due to interatomic interactions. But we have to keep in mind, that
interatomic interaction can have a big impact on the dynamics, because the chemical potential of
each condensate depends on its number of atoms. Thus, in view of the inhomogeneity of the trapping
potential, the transfer of atoms can excite oscillations and sound waves in the condensates.
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a molecular and a state, where the same two atoms are free and involved in an elastic
collision.

Finally, in Sec. 29.4.3 we will show how to harness the forces induced by atom-light
coupling in order to design new geometries of trapping potentials.

29.4.1 Theory of the interaction of condensates with light

Let us consider two Bose-Einstein condensates in the mean-field approximation con-
sistent of atoms in two different internal excitation states, ψ1 and ψ2, separated by
the energy ℏω0. We illuminate the BEC by a plane wave of monochromatic light with
the frequency ω. The formal procedure consists of constructing the Hamiltonian of
individual atoms, as done in Eq. (20.2), and then quantizing the field of matter [658],

Ĥatom = |1⟩Ĥ(1)
cm⟨1|+ |2⟩(Ĥ(2)

cm + ℏω0)⟨2| where Ĥ(j)
cm =

p̂2

2m
+ V

(j)
trap(r̂) ,

(29.97)

where we allow for the fact that the trapping potentials can be different for the
two excitation states. We assume that atoms in different states of excitation are
distinguishable, such that their respective wavefunctions commute:

ψ̂j(r) ≡ |j⟩⟨j|ψ̂(r) , [ψ̂j(r), ψ̂j′(r)] = δjj′δ
3(r− r′) . (29.98)

However, we need to consider interatomic collisions which, in the mean-field approx-
imation (27.19) are described by,

Ĥ
(j)
mf =

∫
ψ̂†
j (r)

2πℏ2as
m

ψ̂j(r)d
3r . (29.99)

The total atomic Hamiltonian is then a generalization of the many-body Hamiltonian
(27.6),

Hatom =

∫
ψ̂†
1(r)

(
Ĥ(1)
cm + Ĥ

(1)
mf

)
ψ̂1(r)d

3r +

∫
ψ̂†
2(r)

(
Ĥ(2)
cm + Ĥ

(2)
mf + ℏω0

)
ψ̂2(r)d

3r .

(29.100)

29.4.1.1 Interaction with a single light mode

The normalized annihilation operator for a photon in mode k is,

E⃗+(r) =
√

ℏω
2ε0V

ϵ⃗âeık·r . (29.101)

The semi-classical Hamiltonian (the light not being quantized) of individual particles
is, in the rotating wave approximation,

Ĥfield = ℏωâ†â and Ĥint = −d̂ · ˆ⃗E = −|2⟩d̂+ · ˆ⃗E+⟨1| − |1⟩d̂− · ˆ⃗E−⟨2| . (29.102)
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For a condensate we still need to second-quantize the interaction part of the Hamil-
tonian which, disregarding collisions gives 15,

H = Ĥfield +Hatom −
∫ (

d̂+ · ˆ⃗E+ψ̂†
2(r)ψ̂1(r) + d̂− · ˆ⃗E−ψ̂†

1(r)ψ̂2(r)
)
d3r .

(29.103)
With the Hamiltonian (29.103) we derive the Heisenberg equations for the condensate
respecting the commutation rules (29.98) 16,

˙̂
ψ2 = − ı

ℏ (Ĥcm + ℏω0)
˙̂
ψ2 +

ı
ℏ d̂

+ · ˆ⃗E+ψ̂1 (29.104)

˙̂
ψ1 = − ı

ℏĤcm
˙̂
ψ1 +

ı
ℏ d̂

− · ˆ⃗E−ψ̂2 .

We transform to the non-rotating coordinate system by ψ̃2 ≡ ψ2e
ıωt and

˜⃗E+ ≡ ˆ⃗E+eıωt
introducing the detuning ∆ ≡ ω − ω0:

∂tψ̃2 = ı(∆− 1
ℏĤcm)ψ̃2 +

ı
ℏ d̂

+ · ˜⃗E+ψ̃1 . (29.105)

Making the adiabatic approximation ∂tψ̃2 = 0 and disregarding the external degree
of freedom, Ĥcm = 0, we obtain,

ψ̃2 =
ıd̂+ · ˜⃗E+

ℏ∆
ψ̃1 . (29.106)

29.4.1.2 Heisenberg equation for the light field

Similarly, we can write the Heisenberg equation for the light mode,

dâ

dt
=
ı

ℏ
[H, â] = −ıωâ+ ı

√
ω

2ε0V

∫
êke

−ık·r ·
(
d̂+ψ̂†

2ψ̂1 + d̂+ψ̂†
1ψ̂2

)
d3r . (29.107)

The integration of this gives the distribution of the fields (incident and scattered),
such that,

˜⃗E+(r) = ˜⃗E+in(r) +
∫
K(d, r− r′)ψ̂+

1 (r
′)ψ̂1(r

′)d3r′ , (29.108)

with the kernel:

K(d, r) =
1

4πε0

[
k2(R× d)×Re

ıkR

R
+ [3R(R · d− d)]

(
1

R3
− ık

R2

)
eıkR

]
.

(29.109)
We focus on the first term dominating in the far-field, and neglect the second term
by letting R ≈ r− êR ·r′ and R̂ ≈ r. We also define ks ≡ kêR, and we only retain the
term of order 1/R. In this Born approximation for optically thin media, we obtain,

K(d, r) ≃ 1

4πε0

eikR

r
k2(r× r)× de−ıksr

′
. (29.110)

15Or, by defining the Rabi frequency g1 generated by a single photon, Hint =

−ıℏg1â
∫
d3rψ̂†

2(r)e
ık·rψ̂1(r) + h.c..

16In the first quantization, these equations would simply be the equations of motion for the am-
plitudes of the fundamental and excited states.
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Figure 29.17: Scheme for the light scattering off a condensate.

29.4.1.3 Incident plane waves

When we now excite the condensate by a plane wave,

ˆ⃗E+in(r) = 1
2 ϵ⃗e

ık·r , (29.111)

we derive in the Born approximation of the equation (29.108):

˜⃗E+s (r) =
1

4πε0

eıkR

r
k2r× (r× d̂−)

∫
e−ıksr

′
ψ̂†
1(r

′)ψ̂2(r
′)d3r′ , (29.112)

and from this the fluorescence spectrum.

29.4.2 STIRAP & adiabatic sweep

A frequent problem for experimenters is the need to transfer a magnetically trapped
atomic cloud from one Zeeman or hyperfine state to another. We will present here
two techniques called STImulated Raman Adiabatic Passage and adiabatic sweep.

29.4.2.1 Adiabatic sweep

To discuss the adiabatic sweep, we consider the example of a 87Rb cloud trapped in
the state |F,mF ⟩ = |2,−2⟩. The application of resonant radiofrequency radiation to
the transition |2,−2⟩-|2,−1⟩ also couples all other mF states and causes a diffusion of
the atomic populations toward an uncontrollable mixture of states. An alternative is
the application of a ramp sweeping the radiofrequency from red to blue (or vice versa).
Such a ramp is able to transfer the entire population toward the opposite Zeeman state
|2,+2⟩. To see this, we solve the Schrödinger equation, |ψ(t + dt)⟩ = eıH dt|ψ(t)⟩,
iteratively,

H =




0 1
2Ω 0 0 0

1
2Ω −∆ 1

2Ω 0 0

0 1
2Ω −2∆ 1

2Ω 0

0 0 1
2Ω −3∆ 1

2Ω

0 0 0 1
2Ω −4∆




. (29.113)

The initial population distribution is |ψ(t)⟩ =
(
1 0 0 0 0

)t
. Ω is the Rabi

frequency generated by the radiofrequency, ∆(t) is the instantaneous detuning. The
curves of Fig. 29.18 show the temporal evolution of populations |⟨k|ψ(t)⟩|2.

The disadvantage of this method is that only the external (fully stretched) states
|mF | = F can be interconverted.



29.4. CONDENSATES IN ELECTRONICALLY EXCITED STATES 1321

-10 -5 0 5 10

t (ms)

-50

0

50

Δ
(k
H
z)

(a)

-10 -5 0 5 10

t (ms)

0

0.5

1

ρ
k
k

(b)
ρ11
ρ22
ρ33
ρ44
ρ55

Figure 29.18: (code) Adiabatic sweep through the ground state 87Rb F = 2. The Rabi

frequency is Ω = (2π)8 kHz. The frequency ramp is ∆(t) = t
tm

(2π)50 kHz with tm = 10 ms.

The red line shows the evolution of the population in the state |2,−2⟩, the green line of state

|2,+2⟩, and the blue line is the sum of the populations of all other states.

29.4.2.2 Sweep through a dark resonance

To discuss STIRAP, let us think of how to transfer atoms from the state |1⟩ ≡ |2, 2⟩
to |2⟩ ≡ |2, 1⟩. The general idea consists in applying two radiation fields with Rabi
frequencies Ω13 and Ω23, tuned a bit out of resonance with an intermediate state |3⟩,
∆13 = ∆23 ̸= 0, in a counterintuitive pulse sequence. That is, the field Ω23 is applied
first and then adiabatically turned down, while the field Ω13 is ramped up. This
method is capable of transferring all atoms.

|1 =|2 2>�

|2 =|2 1>�

|3 =|1 1>��13

�23

�hf

�zm

�mw1 �mw2

Figure 29.19: STIRAP.

Considering the example of the preceding section, we will discuss here another
option (see Fig. 29.19). We consider continuous microwave fields with fixed tunings
∆13 to the red of the state |3⟩ ≡ |1, 1⟩ state. Now, we apply a ramp to the second
microwave field ∆23, such that the two radiation fields, at some point, cross the
Raman resonance, for example,

νmw1 = νhf + 3νzm +∆13 and νmw2(t) = νhf + 2νzm +∆23(t) . (29.114)

The evolution of the populations can be simulated by iterative solution of the Schrödinger

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticSweepFive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticSweepFive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticSweepFive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticSweepFive.m
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equation, |ψ(t+ dt)⟩ = eiH dt|ψ(t)⟩ with,

Ĥ =




0 0 1
2Ω13

0 ∆23 −∆12(t)
1
2Ω23

1
2Ω13

1
2Ω23 ∆23


 . (29.115)

The initial population distribution is |ψ(t)⟩ =
(
1 0 0

)t
. The curves of Fig. 29.20

show the temporal evolution of the populations |⟨k|ψ(t)⟩|2.
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Figure 29.20: (code) STIRAP ramp through a dark resonance. Here, the Rabi frequencies

are Ω13 = Ω23 = 2π10 kHz. The frequency of the first microwave is ∆13 = (2π)10 kHz and

the frequency ramp of the second microwave is given by ∆23(t) =
2t−tm
tm

(2π)100 kHz, where

tm = 10 ms.

29.4.3 Condensate in adiabatic potentials

Adiabatic potentials have already been introduced in Secs. 20.1.3 and 26.4.3. Here,
we will focus on the dynamics of condensed atoms in different states of electronic
excitation, when these states are subject to different potentials and radiation fields
that can induce transitions between the states. In particular, we consider paramag-
netic atoms in different Zeeman states placed in inhomogeneous static magnetic fields
and subject to single-mode or multi-mode radiofrequency radiation fields [177]. To
simplify the problem, let us concentrate on two-level systems, e.g. a system with the
total spin F = 1

2 [906], and only consider the one-dimensional case.

29.4.3.1 Coupled Gross-Pitaevskii equations

For a single atom the Hamiltonian is the one given in (20.13),

Ĥ(r) = |1⟩
(
1
2µBgFB(r)− 1

2ℏω
)
⟨1|+|2⟩

(
− 1

2µBgFB(r) + 1
2ℏω

)
⟨2|+|1⟩ 12ℏΩ⟨2|+|2⟩ 12ℏΩ⟨1| .

(29.116)
With the definition,

ψ̂k(r) ≡ ⟨k|ψ̂(r)⟩ , (29.117)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_StirapSweep.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_StirapSweep.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_StirapSweep.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_StirapSweep.m
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and the abbreviation ℏ∆(r) ≡ µBgFB(r)− ℏω(r) we proceed to the second quantiza-
tion via,

H =
∑

k ̸=m

∫
d3r ψ̂†

k

[−ℏ2∇2

2m
+ 1

2ukkψ̂
†
kψ̂k +

1
2uk,mψ

†
mψ̂m

]
ψ̂k

+
[
(−1)k ℏ

2∆(r)ψ̂†
kψ̂k +

ℏ
2Ω(r)(ψ̂

†
kψ̂m + ψ†

mψ̂k)
]

. (29.118)

The total energy of the system is the sum of the energies of the individual conden-
sates (kinetic, potential, and collisional interaction) plus the interspecies collisional
interaction energy. The coefficients ukl = 4πℏ2akl/m with the scattering lengths akl
govern the impact of the collisions.

The interaction with the radiofrequency field leads to Rabi oscillations with fre-
quency Ω 17 The tuning of the radiofrequency depends on the position, due to the
non-homogeneous Zeeman shift ∆. Also, to simplify the model, we assume ukl = 0
for k ̸= l,

Ĥ =
∑

k ̸=m

∫
d3r ψ̂†

k

[−ℏ2∇2

2m
+ 1

2ukkψ̂
†
kψk

]
ψk+

[
(−1)k ℏ

2∆(r)ψ̂†
kψ̂k +

ℏ
2Ω
(
ψ̂†
kψm + ψ̂†

mψ̂k

)]
.

(29.119)
From the Heisenberg equations of motion for the field operators of the matter wave
and the light, we obtain [906],

ı
˙̂
ψ1 = − 1

ℏ [Ĥ, ψ̂1] =
δĤ

ℏδψ̂†
1

=

(−ℏ2∇2

2m
+ u11ψ̂

†
1ψ̂1 − ℏ

2∆(r)

)
ψ̂1 +

ℏ
2Ωψ̂2 (29.120)

ı
˙̂
ψ2 = − 1

ℏ [Ĥ, ψ̂2] =
δĤ

ℏδψ̂†
2

=

(−ℏ2∇2

2m
+ u22ψ̂

†
2ψ̂2 +

ℏ
2∆(r)

)
ψ̂2 +

ℏ
2Ωψ̂1 .

The adiabatic potentials follow from a point-wise diagonalization of the Hamiltonian,
assuming that the atomic movement evolves in sufficiently small steps.

29.4.3.2 One-dimensional case

The reduction of the dimensionality of the Gross-Pitaevskii equation is shown in
Sec. ??. Applying this to our case, we consider a one-dimensional potential V (r) =
V (z) and assume condensates being radially homogeneous within the radial diameter
rh. In this case, we can neglect the radial kinetic energy. As normalization then
requires,

∫ rh

−rh

∫ rh

−rh

∫ ∞

−∞
|ψ̂(r)|2d3r = (2rh)

2

∫ ∞

−∞
|ψ̂(z)|2dz = 1 , (29.121)

replacing ψ̂(r) = ϕ̂(z)
2rh

and gkk = ukk

(2rh)2
, the Gross-Pitaevskii equation and the nor-

malization condition adopt a particularly simple form,

ıℏ
∂

∂t
ϕ̂(z) =

(
− ℏ2

2m

∂2

∂z2
+ Vtrap(z) +Ng1D|ϕ̂(z)|2

)
ϕ̂(z) . (29.122)

17We are neglecting the possibility, that the coupling force may, in principle, be inhomogeneous,
if the orientation of the magnetic field is not uniform.
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The coupled equations are now,

ı
˙̂
ϕ1 =

(−∂2z
2m

+ g11ϕ̂
†
1ϕ̂1 −

m

4
ω2
zz

2 − 1
2∆0

)
ϕ̂1 +

1
2Ωϕ2 (29.123)

ı
˙̂
ϕ2 =

(−∂2z
2m

+ g22ϕ̂
†
2ϕ̂2 +

m

4
ω2
zz

2 + 1
2∆0

)
ϕ̂2 +

1
2Ωϕ̂1 .

with, ∫ ∞

−∞
|ϕ̂1(z)|2 + |ϕ̂2(z)|2dz = 1 . (29.124)

This set of equations can be solved numerically by first identifying the ground state
using the ’steepest descent’ method and then propagating it in real time while slowly
varying ∆(r, t) or Ω(t).

Figure 29.21: (code) Two coupled condensates.

29.4.3.3 Damping

A heuristic way of introducing damping could be as follows: We write down the
condensate velocity field as,

mv(r, t) = ℏ
ϕ̂∗(r, t)∇ϕ̂(r, t)−∇ϕ̂∗(r, t)ϕ̂(r, t)

2ın(r, t)
, (29.125)

and subject it to a friction force,

Efr = −γrv . (29.126)

The problem with the coupled GPE approach is that in the absence of damping
any even small modification of the coupling triggers collective oscillations, so that
the ground state is not found. A numerical method to minimize the total energy
cannot be used, because the minimum is the untrapped state, so that all atoms are
lost. It seems that a master equation approach is necessary to introduce damping.
An alternative (but cheap) way is the following. The coupled GPEs were written in
the dressed states basis. Thus, if the Rabi frequency is strong enough to completely

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticpotsBecCoupled.m
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decouple the dressed states, the dressed states represent good quantum numbers, and
the GPEs are appropriately written in a diagonal basis, i.e. the GPEs decouple on
adiabatic potentials 18,

Vad,k(z) = −(−1)k
1

2

√
ℏ2Ω2 + [µBgFB(z)− ℏω]2 , (29.127)

and we obtain,

ı
˙̂
ϕk =

(−∂2z
2m

+ Vad,k(z) + gkkϕ̂
†
kϕ̂k

)
ϕ̂k . (29.128)

29.4.3.4 Ex: Multiple BECs coupled by radiation via GPEs

Programs on multiple BECs coupled by radiation via GPEs.

29.5 Interaction between condensates and optical
cavities

In 29.4.1 we have set up the many-body Hamiltonian (29.103) describing the inter-
action of a matter wave (treated in mean-field approximation) with an incident light
field. We emphasized the role of photonic recoil in (29.128). In the following sections
we aim at applying this theory to the particular case of atoms interacting with two
counterpropagating modes of an optical ring cavity. The system has already been
studied in Chp. 25 in the context of CARL, where the atomic motion, as well as the
light fields, have mostly been treated classically.

CARL is based on a coherent redistribution of photons between the two coun-
terpropagating modes of a moving standing light wave mediated by atoms which
are located in the mode volume. Cooperative Compton scattering induces a collec-
tive atomic recoil and a self-bunching of the atoms, which results in an exponen-
tial gain for the optical mode receiving the scattered photons. The recent observa-
tion of the MWSR [416] in a BEC raises the question about an ultra-cold version
of CARL [598, 393]. In MWSR the long coherence time of a BEC establishes a
strong correlation between subsequent elastic Rayleigh scattering events mediated
by very stable quasi-particle excitations. The feedback of these excitations on the
laser creates an exponential gain for the optical mode receiving the scattered photons
[417, 181, 101, 503, 598, 597, 486, 418, 417].

We have discussed the classical CARL earlier in the superradiant as well as the
good-cavity regime. We have also generalized the problem to the case of quantized
atomic motion (see Sec. 25.4) and to quantized radiation fields (see Sec. 25.5). The
internal states were always adiabatically eliminated. In the following, we will fully
quantize the bosonic atomic particle field.

The advantages of this second quantization is that interatomic interactions, quan-
tum fluctuations, and decoherence of the matter wave can be taken into account.
Various proposals have been made focusing on either one of the above three aspects.
Fundamental aspects of the BEC-in-a-cavity-system lead into two directions: 1. quan-
tum synchronization and 2. quantum correlations.

18Gravitation can be included by Vad,k(z) → Vad,k(z) +mgz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_.pdf
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The system under consideration is a BEC of two-level atoms with transition res-
onance frequency ω0 trapped in an external magnetic trap, located inside the mode
volume of a ring cavity and interacting with its light modes. The atomic field opera-
tors obey the commutation relations,

[ψ̂k(r), ψ̂
†
m(r′)] = δkmδ

(3)(r, r′) (29.129)

[ψ̂k(r), ψ̂m(r′)] = 0 = [ψ̂†
k(r), ψ̂

†
m(r′)] ,

where k,m = 1, 2 label the internal state of the atoms. In general, the light field
consists of only two counterpropagating monochromatic modes with Rabi frequencies
2gâ†±â±. Choosing the coordinate system properly, we can set the wavevectors of
the modes as k+ · êr = kẑ = −k− · êr. The second-quantized Hamiltonian is a
generalization of (25.4),

H = Hatom +Hatom−atom +Hatom−cav + Ĥcav + Ĥlaser−cav , (29.130)

where,

Hatom =

∫
d3rψ̂†

1(r)

(
p̂2

2m
+ V1(r)

)
ψ̂1(r)

+

∫
d3rψ̂†

2(r)

(
p̂2

2m
+ V2(r)−∆a

)
ψ̂2(r)

Hatom−atom =
∑
i=1,2

∫
d3rψ̂†

i (r)ψ̂
†
i (r)

uii

2 ψ̂i(r)ψ̂i(r)

+

∫
d3rψ̂†

1(r)ψ̂
†
2(r)

u12

2 ψ̂2(r)ψ̂1(r)

Hatom−cav =
∑

± gâ±

∫
d3rψ̂†

2(r)e
±ıkzψ̂1(r) + h.c.

Ĥcav = −∑± ∆câ
†
±â±

Ĥlaser−cav = −∑± ıη±(â± − â
†
±)

, (29.131)

with uij ≡ 4πℏ2as,ij/m.
Various approximations can be made depending on the subject of interest. For

example, if only one cavity mode, â+, is strongly pumped, such that the field becomes
intense, we may remove the term Ĥlaser−cav and describe the field mode classically
by a Rabi frequency Ω. The interaction between the pump mode and the cavity is
then, Ĥatom−pump = ℏΩ

2 e
−ıω2t

∫
d3rψ̂†

2(r)e
ıkẑψ̂1(r) + h.c..

A talk on this subject is available at (watch talk).

29.5.1 Ideal gas Hamiltonian after adiabatic elimination

Assuming the light fields to be tuned far from resonance we disregard spontaneous
emission, as explained in Sec. 25.1.2, and adiabatically eliminate the internal states,
as shown in Sec. 25.1.3 [668, 165]. On the other hand, we treat the light field and the
atomic motion in second quantization. The canonical way to describe a BEC interact-
ing with two optical modes â± is to second-quantize the single-particle Hamiltonian

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/UltracoldFusion
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(25.26),

H ≃
∫
d3rψ̂†(r)

(
p̂2

2m
+ Vtrap(r) +

u

2
N̂(r)

)
ψ̂(r) + (N̂U0 −∆c)

∑

±
â†±â±

+ U0â
†
+â−

∫
d3rψ̂†(r)e−2ıkzψ̂(r) + h.c.− ı

∑

±
η±(â± − â†±)

,

(29.132)

where ψ̂(r) is now the ground-state wave function of the matter wave, u = 4πℏ2as/m
in the mean-field approximation and,

U0 =
g2

∆a
, (29.133)

when the mode to mode coupling strength. This adiabatically approximated Hamil-
tonian looks very similar to (25.26).

29.5.2 Expansion into momentum states

It is useful to convert the Hamiltonian to momentum space via a plane wave expansion
of the BEC according to (27.70),

ψ̂(r) =
√

V
(2π)3

∫
ĉqe

ıq·rd3q with [âq, âq′ ] = δq,q′ . (29.134)

The conversion of that Hamiltonian part Hbec to momentum space has been demon-
strated in (27.78),

Hbec =
∑

q

q

2m
ĉ†qĉq +

∑

q,q′

ĉ′†qVq′,qĉq +
u

2

∑

q,q′,q′′

ĉ†qĉ
′†
q ĉ

′′
qĉq + q′ − q′′ . (29.135)

The light field part Ĥcav remains unchanged and the atom-light interaction becomes
using (29.3),

Hbec−cav = U0

∫
ψ̂†(r)â†+â−e

−ı(k+−k−)·rψ̂(r)d3r + h.c. (29.136)

= ıℏU0â
†
+â−V

∫ ∫
ĉ†(q′)ĉ(q)δ3(q− q′ − 2kêz)d

3qd3q′ = U0â
†
+â−

∑

q

ĉ†q−2kĉq .

All in all,

H =
∑

q

q2

2m
ĉ†qĉq +

∑

q,q′

ĉ†q′Vq′,qĉq +
u

2

∑

q,q′,q′′

ĉ†qĉ
†
q′ ĉq′′ ĉq+q′−q′′

+ (N̂U0 −∆c)
∑

±
â†±â± + U0â

†
+â−

∑

q

ĉ†q−2kĉq − ı
∑

±
η±(â± − â†±)

.

(29.137)
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The BEC-CARL equations of motion are readily obtained from the Heisenberg
equations,

ı
dĉp
dt

= [ĉp,H] =
q2

2m
ĉp +

∑

q

Vp,qĉq + u
∑

q,q′

ĉ†qĉq′ ĉq−q′+p + U0â
†
+â−ĉp+2k + h.c.

ı
dâ±
dt

= [â±,H] = (N̂U0 −∆c)â± + U0â∓
∑

q

ĉ†q∓2kĉq + ıη± . (29.138)

29.5.2.1 Discretization of the momentum space

Assuming the BEC to be initially at rest with 0 temperature, its momentum state can
be written as ĉ0. And if the dynamics only involves the z-axis, then all momentum
states are separated by multiples of 2ℏk, such that we may replace the labeling by
integer numbers: ĉq → ĉn. We get,

H =
∑

n

n2q2

2m
ĉ†nĉn +

∑

n,n′

ĉ†n′Vn′,nĉn +
u

2

∑

n,n′,n′′

ĉ†nĉ
†
n′ ĉn′′ ĉn+n′−n′′ (29.139)

+
∑

±

(
N̂U0 −∆c

)
â†±â± + U0â

†
+â−

∑

n

ĉ†n−1ĉn + h.c.− ıη±(â± − â†±) .

Neglecting the external trapping potential and collisions the Heisenberg equations
for the field and the atomic motion now read,

dĉn
dt

= −ı[ĉn,H] = −ı
n2k2

2m
ĉn + U0â

†
+â−ĉn+1 + h.c. (29.140)

dâ±
dt

= −ı[â±,H] = (N̂U0 −∆c)â± + U0â∓
∑

n

ĉ†n∓1ĉn + ıη± .

These equations look identical to those found in (25.114).

29.5.3 BECs in two internal states coupled by a cavity

A lossy cavity can act as an effective zero temperature reservoir. One possible imple-
mentation [428] realizes a three-level cycling scheme, with two BECs in two ground
states |g1⟩ and |g2⟩ coherently coupled by a two-photon transition (Raman-lasers or
microwave-radiofrequency combination). The ground states are additionally coupled
by an irreversible Raman transition via an intermediate spontaneously decaying level
|e⟩. One transition is not driven but stimulated by a ring cavity mode â.

The Hamiltonian consists of three parts, the BEC energy Hbec, the interaction
energy with the coherent coupling assumed to be classical Hcpl and the interaction
with the mode of a ring cavity Hcav treated quantum mechanically (ℏ = 1),

H = Hbec +Hcpl +Hcav (29.141)

=

∫
d3r ψ̂†

1

(
−∇2

2m + V + u11

2 ψ̂†
1ψ̂1 +

u12

2 ψ̂†
2ψ̂2

)
ψ̂1+

+

∫
d3r ψ̂†

2

(
−∇2

2m + V + u12

2 ψ̂†
1ψ̂1 +

u22

2 ψ̂†
2ψ̂2

)
ψ̂2+

+

∫
d3r

(
−∆mwψ̂

†
1ψ̂1 +

Ωmw

2 ψ̂†
1ψ̂2 + h.c.

)
+

∫
d3r

(
gcvâψ̂

†
1ψ̂2 + h.c.

)
−∆cvâ

†â .
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Figure 29.22: (code) (a) Level scheme with a microwave-driven hyperfine structure, a laser-

driven optical transition, and a cavity-enhanced Raman deexcitation. (b) Ring cavity used

for the experiment. (c) Scheme for coupling the Zeeman states |2, 1⟩ and |1,−1⟩ with a

two-photon transition in a magnetic trap.

The BEC energy consists of the two energies (kinetic, potential, self) of the individual
BECs and the cross-species interaction proportional to ukl = 4πℏ2akl/m. The interac-
tion energy with the classical microwave frequency (mostly we will assume ∆mw = 0)
leads to Rabi flopping with frequency Ωmw. Finally, the incident light field is treated
classically with a Rabi frequency Ωlf and a detuning ∆lf , while the cavity field is
treated quantum mechanically with a coupling constant Ωcv and a detuning ∆cv. The
irreversible coupling leads to an energy contribution where gcv ≡ ΩlfΩcv/2∆lf is the
two-photon Rabi-frequency if the auxiliary state is adiabatically eliminated. From the
Heisenberg equations of motion for the matter wave and the optical field operators
we obtain,

˙̂
ψ1 = ı[H, ψ̂1] = −ı

δH

δψ̂†
1

(29.142)

= −ı
(−∇2

2m
+ V + u11|ψ̂1|2 + u12|ψ̂2|2

)
ψ̂1 − ı

(
Ωmw

2 + gcvâ
)
ψ̂2 − ı∆mwψ̂1 ,

˙̂
ψ2 = ı[Ĥ, ψ̂2] = −ı

δH

δψ̂†
2

= −ı
(−∇2

2m
+ V + u12|ψ̂1|2 + u22|ψ̂2|2

)
ψ̂2 − ı

(
Ωmw

2 + gcvâ
†) ψ̂1 ,

˙̂a = ı[Ĥ, â]− κ
2 â = −ı δH

δâ†
− κ

2 â

= −ı
∫
d3r gcvψ̂1ψ̂

†
2 −

(
ı∆cv +

κ
2

)
â .

Example 199 (Single atoms in two states interacting with a cavity): As
a first example, we start from the matter wave Hamiltonian (29.141) for two
coupled BECs and neglect the center-of-mass motion (and consequence the con-
densate part, i.e. self-interaction, kinetic energy and the external potential).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionIdea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionIdea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionIdea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionIdea.m
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Furthermore, we assume ψ̂i(r) = ĉiδ
3(r),

H = Hbec +Hclp +Hcav (29.143)

= −∆mw ĉ
†
1ĉ1 +

Ωmw
2
ĉ†1ĉ2 + gcvâĉ

†
1ĉ2 + h.c.−∆cvâ

†â .

Consequently, the Heisenberg equations of motion are simply,

˙̂c1 = −ı
(
Ωmw

2
+ gcvâ

)
ĉ2 − ı∆mw ĉ1 (29.144)

˙̂c2 = −ı
(

Ωmw
2

+ gcvâ
†
)
ĉ1

˙̂a = −ıgcv ĉ1ĉ†2 −
(
ı∆cv +

κ
2

)
â .

Obviously, since the matter wave degree of freedom is ignored, the dynamics

only concerns the Bloch vector. Simulations of these equations are exhibited in

Fig. 29.23 and in movies that can be watched under (watch movie) and (watch

movie).
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Figure 29.23: (code) Bloch vector phase stabilization in the cavity. (a) Populations and (b)

coherences.

Example 200 (Interpretation of the ultracold fusion via analogy with

two-level system): The chemical potential of the BECs in both states shifts

the energy levels up depending on the inversion, µ2−µ1 ∝ N2−N1. If the inver-

sion oscillates the spontaneous Raman cycle periodically meets resonance, and

takes place. Note that, since atomic motion is not considered, the energy gap

due to the finite cavity detuning can only be bridged in resonance, µ2−µ1 = κ.

Oscillation simulates Doppler shift of thermal motion in Doppler cooling. Ra-

man scattering takes the role of spontaneous emission in the cooling process.

The only role of the cavity is to introduce irreversibility. Raman scattering is

only supported in one direction: However, it is not relevant to have a ring cavity.

29.5.4 Exercises

29.5.4.1 Ex: BEC damping in cavities

Programs on BEC damping in cavities.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AO_Radiation_FusionSingleatom_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AO_Radiation_Fusion_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AO_Radiation_Fusion_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionSingleatom.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionSingleatom.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_.pdf


29.6. FURTHER READING 1331

29.5.4.2 Ex: Second-quantized CARL equations

Calculate the commutators [ψ̂j(r),H] and [â±,H], whereH is the Hamiltonian (29.131)

and ψ̂1 and ψ̂2 the ground and excited state wave functions, respectively.

29.5.4.3 Ex: Second-quantized adiabatically approximated CARL Hamil-
tonian

a. Derive the adiabatically approximated CARL Hamiltonian in second quantization.
b. Derive the CARL equations of motion from the adiabatically approximated Hamil-
tonian in second quantization.
c. Show that the derived Hamiltonian simplifies to (25.26) in the single atom limit.

29.5.4.4 Ex: BEC-CARL equations from the adiabatically approximated
CARL Hamiltonian

Derive the BEC-CARL equations from the adiabatically approximated CARL Hamil-
tonian (29.134).

29.5.4.5 Ex: Origin of quantum correlations

The BEC-CARL Hamiltonian has been shown to generate quantum correlations be-
tween optical and matter wave modes [598, 658]. Discuss whether they are a many-
body effect (bosonic stimulation) or just due to coherences between motional states
of single atoms.

29.5.4.6 Ex: Ultracold fusion

Derive from Eqs. (29.144) using the definitions (??) and (??) the Eqs. (??).

29.6 Further reading

29.6.1 on Ramsey-Bordé interferometry

F. Riehle, Optical Ramsey Spectroscopy in a Rotating Frame: Sagnac Effect in a
Matter-Wave Interferometer [DOI]

M. Kasevich et al., Atomic Interferometry Using Stimulated Raman Transitions
[DOI]

M. Kasevich, Measurement of the Gravitational Acceleration of an Atom with a
Light-Pulse Atom Interferometer [DOI]

29.6.2 on BEC-light interaction

H.D. Politzer, Light incident on a Bose-condensed gas [DOI]

A. Görlitz et al., Enhancement and Suppression of Spontaneous Emission and Light
Scattering by Quantum Degeneracy [DOI]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl05.pdf
http://doi.org/10.1103/PhysRevLett.67.181
http://doi.org/10.1103/PhysRevLett.67.181
http://doi.org/10.1007/BF00325375
http://doi.org/10.1103/PhysRevA.43.6444
http://doi.org/10.1103/PhysRevA.63.041601
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P.C. Bons et al., Quantum Enhancement of the Index of Refraction in a Bose-
Einstein Condensate [DOI]

O. Zobay et al., Dynamics of matter-wave and optical fields in superradiant scattering
from Bose-Einstein condensates [DOI]

Y. Yoshikawa et al., Observation of Superradiant Raman Scattering in a Bose-
Einstein Condensate [DOI]

Y. Yoshikawa et al., Superradiant light scattering from thermal atomic vapors [DOI]

M.M. Cola et al., Theory of Collective Raman Scattering from a Bose-Einstein Con-
densate [DOI]

M.M. Cola et al., Robust Generation of Entanglement in Bose-Einstein Condensates
by Collective Atomic Recoil [DOI]

M.M. Cola et al., A Condensate in a Lossy Cavity: Collective Atomic Recoil and
Generation of Entanglement [DOI]

M.M. Cola et al., Entanglement in a Bose-Einstein condensate by collective atomic
recoil [DOI]

D.M. Stamper-Kurn et al., Spinor Condensates and Light Scattering from Bose-
Einstein Condensates [DOI]

D. Schneble et al., The Onset of Matter-Wave Amplification in a superradiant Bose-
Einstein-Condensate [DOI]

M.G. Moore et al., Quantum optics of a Bose-Einstein condensate coupled to a
quantized light field [DOI]

M.G. Moore et al., Atomic Four-Wave Mixing Fermions versus Bosons [DOI]
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Part VIII

Instrumentation of a
Quantum Optics Lab
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Preface to the part

This part of the script is issued from a practical lab course in Quantum Optics
given at São Carlos Physics Institute of the University of São Paulo in the years
between 2010 and 2025. It treats part of the knowledge that any student working in
a modern quantum optics laboratory needs with emphasis in electronics and optics.
The topics are certainly not exhaustive. For instance, many labs work with ultrahigh
vacuum, cryogenics, or advanced instrumentation and experimental hardware control,
which are beyond the scope of this course.

In chapter 30 we set the show how to work with Gaussian laser beams. In Chp. 31
we review some basic knowledge of applied electronics useful for the lab. In Secs. 32
and 33 we discuss some basic applications and finally in Sec. 34 we give a very brief
introduction into control theory.
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Chapter 30

Gaussian optics and the
polarization of light

The objective of this part of the course is to introduce the student into the basics
of Gaussian optics and polarizations optics. The student will learn how to transform
the diameter and the divergence of a Gaussian beam using lenses and telescopes and
to analyze and manipulate the polarization of a laser beam.

30.1 Some more basic notions

30.1.1 Definition of photometric quantities

The radiant energyW is the total energy emitted from a source. The radiant power P
(or radiant flux) is the total energy emitted per second. The radiance L(Ω) is defined
as the power radiated (emitted, reflected, transmitted or received) under an angle
θ through a surface element dA into a solid angle element dΩ = sin θdθdϕ. It is a
directional quantity indicating how much of the power will be received by an optical
system looking at that surface from a specified angle of view,

P =

∫
L(Ω)dAndΩ . (30.1)

Spectral densities are denoted by an index ν, e.g. P =
∫
Pν(ν)dν. In (30.1), dAn ≡

n̂ · dA = dA cos θ is the projection of the surface element onto the surface normal.
The quantity,

I∗ =

∫
L(Ω)dΩ (30.2)

is called radiant intensity.

Example 201 (Angular distribution of thermal radiation): In a black-
body in thermal equilibrium with its surroundings (e.g the walls of a cavity)
the radiation is isotropic with a spectral energy distribution given by Planck’s
law. This means that at any point of the volume of the blackbody radiator an
imaginary volume element radiates energy in all directions of space, such that
the radiance into a specific solid angle element is,

L(Ω) = ū
c

4π
. (30.3)
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Radiation passing under an angle θ through a hole of size dA = dAn/ cos θ into
a specific solid angle element dΩ generates the radiance,

∂2P

∂Ω∂A
= L(Ω) cos θ . (30.4)

In any direction we get,

∂Pν
∂A

=

∫
half sphere

Lν(Ω) cos θdΩ = ū
c

4π

∫ 2π

0

dϕ

∫ π/2

0

cos θ sin θdθ =
cū

4
.

(30.5)
Summing up over all surface elements of a sphere of radius R,

P =

∫
∂P

∂A
dA =

cū

4
R2

∫ 2π

0

dϕ

∫ π

0

sin θdθ = πR2cū . (30.6)

Accordingly, the spectral distribution is, using Planck’s law,

Pν = P
8πhν3

c3
1

eβℏω − 1
=

8π2R2hν3

c2
1

eβℏω − 1
. (30.7)

A detector covers itself a finite solid angle dΩ = dA′ cos θ′

r2 . The radiant flux for
r2 ≫ dA, dA′ can then be expressed as,

dΦ = L(Ω)dA cos θdΩ = L(Ω)dA cos θ
dA′ cos θ′

r2
(30.8)

that is Φ =

∫

A

∫

A′

L(Ω)

r2
cos θ cos θ′dAdA′ .

Note that for isotropic sources (30.8) is symmetric upon interchanging emitter and
detector with regard to θ and θ′ or dA and dA′. Furthermore, the formula demon-
strates that the radiant flux emitted into the unit solid angle is proportional to cos θ
(Lambert’s law). An example for such a source is a hole with the area dA in a
blackbody radiation cavity (see Fig. 30.1). Solve Excs. 30.1.2.1 and 30.1.2.2.

Figure 30.1: Illustration of the radiance.

Note that it is impossible to increase the radiance of a source by any sophisticated
imaging optics [219]. This means that the image dA∗ of a radiation source dA never
has a larger radiance than the source itself. It is true that the flux density can be
increased by focussing the radiation. The solid angle, however, into which radiation
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from the image dA∗ is emitted is also increased by the same factor. Therefore, the
radiance does not increase. In fact, because of inevitable reflection, scattering, and
absorption losses of the imaging optics, the radiance of the image dA∗ is, in practice,
always less than that of the source. A strictly parallel light beam would be emitted
into the solid angle dΩ = 0. With a finite radiant power this would imply an infinite
radiance L, which is impossible. This illustrates that such a light beam cannot be
realized. The radiation source for a strictly parallel beam anyway has to be a point
source in the focal plane of a lens. Such a point source with zero surface cannot emit
any power.

Example 202 (Radiance of the sun): An area A = 1m2 of the Earth’s
surface receives at normal incidence from the sun about P/A = 1.35 kW/m2 of
intensity. Since the sun covers an angle of θ = 0.53◦ seen from the Earth, we
can estimate the sun’s radiance as,

L =
P

AΩ
=

P

A
∫ 2π

0

∫ θ
0
sin θdθdϕ

≃ P

Aπθ2
≈ 2 · 104 kWm-2 ster-1 .

The total power received by the Earth is P
A
πR2

Earth. The total power emitted

by the sun is P
A
4πd2sun−Earth.

Example 203 (Radiance of a HeNe laser): We consider a HeNe laser emit-
ting P = 1mW of power from a w0 = 1mm beam waist into an angle of
2θ = 0.067◦. With a typical emission bandwidth of ∆ν = 1MHz the spectral
radiance is,

Lν =
Pν
AΩ
≃ P

πw2
0 πθ

2 ∆ν
≈ 1 kW sm-2 ster-1 .

For comparison, the sun’s radiance at it’s surface (T = 6000K) at the same
wavelength as the HeNe laser is,

Lν =
Luν
ū
≈ 5 nW sm-2 ster-1 .

30.1.2 Exercises

30.1.2.1 Ex: Emission of an argon laser

The angular divergence of the output from a P = 1W argon laser is assumed to be
α = 4 · 10−3 rad.
a. Calculate the radiance L and the radiant intensity I1 of the laser beam and the
irradiance I (intensity) at a surface 1m away from the output mirror, when the laser
beam diameter at the mirror is 2ws = 2mm.
b. What is the spectral power density u(ν) if the laser bandwidth is 1MHz?

30.1.2.2 Ex: Photosynthetically active radiation

The photon flux density and the photosynthetically active radiation (PAR) are defined
as,

ηphoton ≡
∫ λ2

λ1
u(λ, T ) λ

hcNA
dλ

∫ λ2

λ1
uPl(λ, T )dλ

and ηPAR =

∫ λ2

λ1
u(λ, T )dλ

∫∞
0
u(λ, T )dλ

,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_LaserRadiance01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_LaserRadiance02.pdf
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where λ1 = 400 nm and λ2 = 700 nm delimit the range, where photosynthesis takes
place. Calculate both quantities for a blackbody at T = 5800K temperature. Plot
them as a function of temperature in the range T = 300..6000K.

30.1.2.3 Ex: Power calibration of a Czerny-Turner spectrometer

Spectrometers are designed to measure power spectral densities Pλ(λ), such that, in-

tegrated over a finite wavelength interval, one obtains the power, Ptot =
∫ λ2

λ1
Pλ(λ)dλ.

Figure out how to calibrate the power spectral density measured by a spectrometer
with finite resolution ∆λres using a HeNe laser with known power.

30.2 Introduction to Gaussian optics

30.2.1 Wave equation and beam parameters

At first sight, one might think that the propagation of laser light is well described by
the laws of geometrical optics. On closer inspection it turns out, however, that laser
beams behave in many respects more like plane waves with their energy is concentrated
near an optical axis. The electro-magnetic fields satisfy the wave equation,

k2u+∇2u = 0 . (30.9)

For waves propagating in z direction, u = ψ(x, y, z)e−ıkz, one obtains a Schrödinger-
like equation [474],

2ık
∂ψ

∂z
− ∂2ψ

∂x2
− ∂2ψ

∂y2
= 0 , (30.10)

where ∂2ψ/∂z2 has been neglected.
To describe a Gaussian beam, we choose an exponential ansatz and introduce two

parameters, which can vary along the propagation axis z: P (z) is a complex phase
shift and q(z) a complex parameter, whose imaginary part describes the diameter of
the beam. The ansatz,

ψ = e−ı[P (z)+k(x2+y2)/2q(z)] (30.11)

leads to 1,

0 = (q′ − 1)
ık(x2 + y2)

q2
− 2ıP ′ +

2

q
. (30.12)

In order for Eq. (30.12) to hold for all x and y, we need q′ = 1 and P ′ = −ı
q . Integrating

q′, we find
q = q0 + z . (30.13)

It is useful to introduce real beam parameters,

1

q
≡ 1

R
− ı λ

πw2
. (30.14)

Inserting these into Eq. (30.10),

ψ = e−ıP−ı k(x2+y2)
2R − (x2+y2)

w2 , (30.15)

1See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 7.4.2..

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_LaserRadiance03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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it becomes clear that R(z) is the radius of curvature and w(z) the beam diameter.
Evaluating q0 at the position of the focus (waist of the beam), where R = ∞, we
obtain from (30.13) and (30.14)

w2(z) = w2
0

[
1 +

(
λz

πw2
0

)2
]

and R(z) = z

[
1 +

(
πw2

0

λz

)2
]
. (30.16)

Normalizing the intensity to the total power, we may write the radial intensity dis-
tributions as,

Iz(x, y) =
2P

πw(z)2
e−2(x2+y2)/w(z)2 . (30.17)

Figure 30.2: (Left) Propagation of the beam along the optical axis. (Right) Cross section of
a Gaussian laser beam.

30.2.2 Transfer matrices

For the practical work with Gauss beams it is helpful to introduce transfer matrices,
which describe the transformation of a Gauss beam through optical components along
the optical axis. The matrix

M =

(
a b

c d

)
(30.18)

transforms the beam parameter q in the following way:

q(z) =
aq(0) + b

cq(0) + d
. (30.19)

Transfer matrices allow to calculate, how the parameters R and w transform along
the optical axis across the optical elements or in free space. The most common optical
elements are lenses, crystals, prisms, mirrors and cavities. For example, the matrix
for propagation in free space of a beam over a distance d is,

M =

(
1 d

0 1

)
(30.20)

and the matrix for transformation through a thin lens with focal distance f ,

M =

(
1 0

−1/f 1

)
. (30.21)
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It is interesting to note that the transfer matrices are the same as those, which in
classical beam optics transform the vector, whose components are the distance of the
beam from the optical axis y and its divergence y′(z):

(
y(z)

y′(z)

)
= M

(
y(0)

y′(0)

)
. (30.22)

Figure 30.3: Coupling a Gaussian beam of light into cavity requires matching of the phase
fronts.

Fig. 30.3 shows that coupling a Gaussian beam of light into a cavity requires
matching of the phase fronts. Solve the Excs. 30.2.3.1 to 30.2.3.16 [219, 474, 859].

30.2.3 Exercises

30.2.3.1 Ex: Imaging through a thin lens

In classical ray optics the equations describing the focusing of a thin lens are given
by,

1

f
=

1

g
+

1

b
and

b

g
=
B

G
,

where f is the focal distance of the lens, g the distance between the object and the
lens, b the distance between the image and the lens, G the size of the object, and B
the size of the image.
At what distance from an object of size G = 1 mm do you have to place a thin lens
with focal distance f = 100 mm in order to obtain a ten times larger image? Test
your result in practice.

30.2.3.2 Ex: Image of a convex lens

Show that with a convex lens of focal distance f the smallest distance between object
and image should be s = 4f .

30.2.3.3 Ex: Telescope with ray optics

In classical optics the transfer matrix for the propagation of a beam through free
space and through a thin lens are given, respectively, by

Mfree =

(
1 d

0 1

)
and Mlens =

(
1 0

−1/f 1

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics03.pdf
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The transfer between a point z0 of the optical axis and a point z1 is described by
(
y(z1)

y′(z1)

)
=Mfree

(
y(z0)

y′(z0)

)
.

Here, y is the distance of a beam ray from the optical axis and y′ = dy
dx its divergence.

Use this formalism to design a 3 times magnifying telescope with two lenses have,
respectively, the focal lengths f1 = 100mm and f2 = 300mm.

30.2.3.4 Ex: Ray tracing

Simulate the trajectory of a ray of light traversing under an angle a layer of a material
with a refraction index characterized by a Gaussian profile.

30.2.3.5 Ex: The eye

The effective distance between the cornea and the lens of the eye is 2.5 cm, and the
lens is in contact with the eye. To resolve two very close points, their images on
the retina must be on two non-adjacent cone cells (i.e. there must be at least one
non-activated cone cell between the images). The cone cells are about 1µm apart.
a. What is the smallest angle ϵ under which two points are still separately perceptible?
Assume that the direct beams P, P’ are not refracted.
b. How close can the two points P1 and P2 be, at a distance of 20m from the eye, so
that they are still separately perceptible?
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Figure 30.4: The eye.

30.2.3.6 Ex: Microscope

A simple homemade microscope consists of two convex lenses, each one with a diffrac-
tive power of 20 dpt, fixed at the extremities of a 30 cm long tube.
a. Wie groß ist die Tubuslänge dieses Mikroskops?
b. Wie groß ist der Abbildungsmaßstab des Mikroskops?
c. Welche Vergrößerung erreicht das Mikroskop? Gehen Sie davon aus, dass die deut-
liche Sehweite 25 cm beträgt.
d. Wie weit muss sich der Gegenstand vor dem Objektiv befinden, damit er im Auge
des Betrachters scharf abgebildet wird?

30.2.3.7 Ex: Classical cloaking with four lenses

Can you design a system of four lenses (focal distances f1, f2, f3 = f2, and f4 = f1)
separated by three distances t1 = f1 + f2, t2, and t3 = t1, such that the system
appears to be invisible for an observer looking through the lenses [150]?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics035.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics06.pdf
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30.2.3.8 Ex: Diameter of a Gaussian beam

You are blocking part of a laser beam with a razor blade mounted on a translation
stage allowing you to vary the horizontal position. At the same time, you observe the
transmitted power P . You observe that, for varying the power between 16% and 84%,
you need to vary the translation by 140µm. What is the diameter of the Gaussian
beam?

Figure 30.5: Diameter of a Gaussian beam.

30.2.3.9 Ex: Diffraction of a Gaussian beam at a slit

a. Determine the power loss suffered by a Gaussian beam passing through a one-
dimensional slit, assuming that the beam hits the slit in its center.
b. Calculate the diffraction pattern produced by the slit.
c. A laser beam (λ = 633 nm) looses 50% of its power after being passed through a
slit. At a distance of L = 1m behind the slit appear diffraction patterns exhibiting
first minima at ∆x = 1mm to both sides of the central peak. Determine the diameter
of the Gaussian beam.

30.2.3.10 Ex: Diffraction of a Gaussian beam at a pinhole

a. Determine the power loss suffered by a Gaussian beam passing through the center
of a a pinhole of radius R.
b. A laser beam (λ = 633 nm) looses 50% of its power after being passed through a
slit. At a distance of L = 1m behind the slit appear diffraction patterns exhibiting a
first minimum at a distance ∆b = 1mm from the optical axis. Determine the diameter
of the Gaussian beam. Help: The first ring of destructive interference occurs under
an angle of sin θ = 1.22 λ

2R .

30.2.3.11 Ex: Focusing a HeNe laser

The output beam from an HeNe laser with a confocal resonator (ρ = L = 30 cm) is
focused by a lens of f = 30 cm, 50 cm away from the output mirror. Calculate the
location of the focus, the Rayleigh length, and the beam waist in the focal plane.

30.2.3.12 Ex: Spatial filtering

A nearly parallel Gaussian beam with λ = 500 nm is expanded by a telescope with
two lenses of focal lengths f1 = 1 cm and f2 = 10 cm, illustrated in the figure. The

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics11.pdf
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spot size at the entrance lens is w = 1mm.
a. Why does an aperture in the focal plane improve the quality of the wave fronts
in the expanded beam by eliminating perturbations due to diffraction effects by dust
and other imperfections on the lens surfaces?
b. What is the diameter of this aperture, if 95% of the intensity is transmitted?

Figure 30.6: Beam-expanding telescope with an aperture in the focal plane.

30.2.3.13 Ex: Transverse mode selection in an Ar laser

An argon laser oscillating at λ = 488 nm with resonator length d = 100 cm and two
mirrors with radius R1 = ∞ and R2 = 400 cm has an intracavity circular aperture
close to the spherical mirror to prevent oscillation on transversal modes. Estimate
the maximum diameter of the aperture that introduces losses γdiffr < 1% for the
TEM00 mode, but prevents oscillation of higher transverse modes, which without the
aperture have a net gain of 10%.

Figure 30.7: Transverse mode selection in an Ar laser.

30.2.3.14 Ex: Anamorphic prism

A prism can be used for expansion of a laser beam if the incident beam is nearly
parallel to the prism surface. Calculate the angle of incidence α for which a laser
beam transmitted through a rectangular glass prism with an ε = 45◦ base angle is
expanded tenfold.

30.2.3.15 Ex: Anamorphic prism pair

An anamorphic prism pair is a setup consisting of two prisms through which a laser
beam is passed under specific angles. The angles can be chosen such as to change the
beam diameter only in the p-plane.
a. Calculate, for a single prism with refractive index n = 1.5, the beam expansion for

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics12.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_SpectroMonochrom01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics13.pdf
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an incidence angle of θ1 = 57◦ and an exit angle of 0◦. How large must the base angle
β of the prism be for this to be possible?
b. How must the second prism be aligned in order for the beam transmitted to this
second prism to remain parallel to the incident beam? Note, that an anamorphic

Figure 30.8: (Left) Anamorphic prisms (Thorlabs, PS870). (Right) Geometry of the
beam transformation. The entrance side of a prism is often chosen close to the
Brewster angle, while the exit side treated carries an anti-reflexion coating.

prism pair does not allow to correct for astigmatism. This requires cylindrical lenses.

30.2.3.16 Ex: Beam steering with two wedged substrates

The wavevector of a laser beam is generally aligned with one or more adjustable
reflective mirrors. Alternatively, one may use a pair of rotatable transmissive wedged
substrates. Calculate the wave vector of a laser beam after its transmission through
two ϵ = 3◦ wedged, 2mm thick, AR-coated substrates with the refraction index
nrfr = 1.5134 at 689 nm, each one rotated by θ1,2 from some normal position.

Figure 30.9: Beam steering with two rotatable wedged substrates (see Thorlabs, PS810).

30.2.4 Experiment: Measuring the diameter of a Gaussian
laser beam

Most laser beams exhibit a Gaussian shape transverse intensity distribution, as we
will study in this experiment.

https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=149
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics14.pdf
https://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=147
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1. Measure the phase profile of a helium-neon laser. To this end fix a razor blade
on a translation stage and move it sideways into the beam. From the power
of the partially blocked beam

∫
F
I(x, y)dxdy, where F is the cross section of

the unblocked part of the beam, w(z) can be determined (see Excs. 30.2.3.8 to
30.2.3.10).

30.2.5 Experiment: Measuring the parameters of a Gaussian
laser beam

Once a Gaussian beam has been characterized at a given position z, the transfer
matrix formalism allows us to calculate its shape at any position along the optical
axis. In this experiment, we will study the propagation of a Gaussian beam through
free space [see Eqs. (30.16)] and its transformation through a thin lens with focal
distance f . For the latter one, we obtain directly after the lens,

1

R(z ↘ 0)
=

1

R(z ↗ 0)
− 1

f
. (30.23)

1. Focus the beam with a lens. Measure the beam diameter at 3 different locations.
Compare with the prediction of Gaussian optics.

2. Set up a 1:3 telescope and verify that the outgoing beam is collimated.

30.2.6 Experiment: Spatial filtering with a pinhole

Laser light emitted from diode lasers is often astigmatic and has an irregular beam
profile. The beam profile can be purified by passing it through an optical fiber or a
pinhole, however, at the price of losing power.

1. Focus the beam of a HeNe laser with a lens of f = 100mm focal distance onto
a pinhole. Observe the interference fringes and, from their distance from the
optical axis, infer the diameter of the pinhole.

2. Remove the higher-order diffraction rings with an iris and compare the beam
profile with that of a Gaussian beam. What are the divergence and the waist
of the spatially filtered beam (see Exc. 30.2.3.10)?

30.3 Introduction to polarization optics

A laser usually has a well-defined polarization, e.g. , linear or circular. The polariza-
tions can be transformed into one another through a quarter waveplate (λ/4) or a half
waveplate (λ/2) by a Fresnel rhomb or other birefringent elements. Superpositions of
polarizations can be separated by a polarizing beam splitter.

Waveplates consist of thin sheets of birefringents crystals, which are transparent
material characterized by anisotropic refraction indices. Cut in a particular way, a
birefringent crystal can exhibit a polarization-dependent refraction index, allowing to
control the retardation of a light beam as a function of its polarization. The thickness
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Figure 30.10: (Left) Transmission through a birefringent crystal. (Right) λ/2-waveplate
mounted in a rotation stage.

of a waveplate determines the retardation of one polarization axis with respect to the
other.

In practice, the degree of freedom of polarization is often used for separating coun-
terpropagating light fields, e.g. in ring lasers, by means of elements called optical diode
or optical isolator, which consist of a Faraday rotator and λ/2 waveplate. Another
practical example is the use of λ/4 in double passage. An incoming beam can be
separated from a returning beam by using a λ/4 waveplate and a polarizing beam
splitter.

30.3.1 Jones matrices

The term polarization is defined in relation to a fixed coordinate system, while the
term helicity denotes the direction of rotation of the polarization vector with respect to
the direction of propagation of the light beam. The polarization of a beam propagating
in z-direction can easily be expressed by a vector of complex amplitude,

E⃗(r, t) =



a

b

0


 eıkz−ıωt =




1

e−ıϕ|b|/|a|
0


 |a|eıkz−ıωt . (30.24)

The angle ϕ = arctan Im ab∗

Re ab∗ determines the polarization of the light beam. A polar-
ization is linear when ϕ = 0 and circular when ϕ = π/2. |b|/|a| is, hence, the degree
of ellipticity. A polarization rotator for linearly polarized light (e.g., a sugar solution)
is described by the following Jones matrix (we will restrict to the x-y-plane)

Mrotator(ϕ) =

(
cosϕ sinϕ

− sinϕ cosϕ

)
, (30.25)

where ϕ is the rotation angle. For the Faraday rotator the sign of the rotation angle
depends on the propagation direction of the laser beam. A polarizer projects the
polarization onto a specific axis. In the case of the x-axis Jones matrix is,

Mpolarizer =

(
1 0

0 0

)
. (30.26)
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If the rotation angle is ϕ,

Mpolarizer(ϕ) =

(
cosϕ sinϕ

− sinϕ cosϕ

)(
1 0

0 0

)(
cosϕ sinϕ

− sinϕ cosϕ

)−1

. (30.27)

Other components, such as electro-optical modulators or phase plates are birefringent
crystals, which act only on one of the two optical axes. If only the y axis is optically
active, the Jones’ matrix is,

Mθ-waveplate =

(
1 0

0 eıθ

)
. (30.28)

For θ = 2π/n we obtain a λ/n-waveplate. When we rotate the waveplate and therefore
the optically inactive axis to an angle ϕ, the Jones matrices are,

Mθ-waveplate(ϕ) =

(
cosϕ sinϕ

− sinϕ cosϕ

)(
1 0

0 eıθ

)(
cosϕ sinϕ

− sinϕ cosϕ

)−1

(30.29)

=

(
cos2 ϕ+ eıθ sin2 ϕ − sinϕ cosϕ+ eıθ sinϕ cosϕ

− sinϕ cosϕ+ eıθ sinϕ cosϕ sin2 ϕ+ eıθ cos2 ϕ

)
.

In most cases, we use quarter waveplates λ/4,

Mλ/4(ϕ) =

(
cos2 ϕ+ ı sin2 ϕ (−1 + ı) sinϕ cosϕ

(−1 + ı) sinϕ cosϕ sin2 ϕ+ ı cos2 ϕ

)
(30.30)

and half waveplates λ/2,

Mλ/2(ϕ) =

(
cos 2ϕ − sin 2ϕ

− sin 2ϕ − cos 2ϕ

)
. (30.31)

Figure 30.11: (a) Rotation of the polarization by a birefringent waveplate. (b) Illustration
of a circularly polarized light wave.

Combinations of λ/2 waveplates and Faraday rotators are used as optical isolator,
also called optical diode.
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30.3.2 Fresnel formulae

Reflection and transmission of a beam of light at a surface depend on the polarization
of the light and the angle of incidence. They are described by the Fresnel formula:

(
I0t
I0i

)

s

= Ts =

(
2 sin θt cos θi
sin(θi + θt)

)2

(30.32)

(
I0r
I0i

)

s

= Rs =

(
− sin(θi − θt)
sin(θi + θt)

)2

(
I0t
I0i

)

p

= Tp =

(
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)

)2

(
I0r
I0i

)

p

= Rp =

(
tan(θi − θt)
tan(θi + θt)

)2

.

The angles of incidence and transmission are related by Snell’s law: n1 sin θi =
n2 sin θt.
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Figure 30.12: (code) (Left) Fresnel formulae showing the angular dependence of ts
(red solid), rs (green dash-dotted), tp (blue dashed), and rp (cyan dotted) for reflec-
tion from and transmission through a piece of glass-air interface. (Right) Interfaces
between optical media with different reflection indices can act like polarizers: Light
reflected from a glas surface under the Brewster angle is completely s-polarized, while
the transmitted light is partially p-polarized. The notation s comes from senkrecht,
i.e. perpendicular to the plane spanned by the incident and reflected light beams,
while p means parallel to this plane.

The Brewster angle θi,B is reached, when θi,B + θt = 90◦, i.e., when following
Snell’s law,

n1 sin θi,B = n2 sin(90
◦ − θi,B) = n2 cos θi,B . (30.33)

Hence, the Brewster angle is given by,

tan θi,B =
n2
n1

. (30.34)

Resolve the exercises 30.3.4.1 to 30.3.4.5.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Gaussian_FresnelFormulae.m
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30.3.3 Stokes parameters

In quantum mechanics the Stokes parameters of a light beam with horizontal and
vertical polarizations, âh and âv, satisfying,

[âk, â
†
m] = δkm , (30.35)

with k,m = h, v are defined by,

Ŝ0 ≡ â†hâh + â†vâv

Ŝ1 ≡ â†hâh − â†vâv

Ŝ2 ≡ â†hâve
ıθ + â†vâhe

−ıθ

Ŝ3 ≡ −ı(â†hâveıθ − â†vâhe−ıθ)

. (30.36)

The Stokes parameters exhaustively describe the polarization state of a light beam.
It is interesting, that the vector Ŝ with components Sj with j = 1, 2, 3 satisfies the
SU(2) spin algebra,

[Ŝk, Ŝm] = 2ıϵkmnŜn and Ŝ2 = Ŝ2
0 + 2Ŝ0 , (30.37)

as will be shown in Exc. 30.3.4.6. It is conveniently pictured on a Poincaré sphere or
as a polarization ellipse. In the classical limit we get,

Ŝ0 = I (30.38)

Ŝ1 = Ip cos 2ψ cos 2χ

Ŝ2 = Ip sin 2ψ cos 2χ

Ŝ3 = Ip sin 2χ ,

with I the light intensity (eventually normalized to the single-photon light intensity),
the degree of polarization p. Obviously,

Ŝ2
1 + Ŝ2

2 + Ŝ2
3 = p2Ŝ2

0 . (30.39)

30.3.4 Exercises

30.3.4.1 Ex: Light power control using polarization optics

The power of a laser beam can be regulated by a combination of a half-wave plate and
a polarizing beam splitter. By how many degrees do you have to rotate the waveplate
in order to reduce the light power by a factor of 2? Use the Jones matrices to justify
your response. Advice: Look up the Jones matrices (30.31) and (30.26). Test your
result in practice.

30.3.4.2 Ex: Jones matrices

Consider a linearly polarized laser beam passing twice through a λ/4, first in direc-
tion of the optical axis, the second time in opposite direction. Calculate the final
polarization.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics02.pdf
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30.3.4.3 Ex: Intensity transmitted through a polarizer

Unpolarized light of intensity I0 is transmitted through a polarizer with thickness
d = 1mm. Calculate the transmitted intensity when the absorption coefficients for
the two polarizations are α∥ = 100 cm−1 and α⊥ = 5 cm−1.

30.3.4.4 Ex: Thickness of a half-waveplate

A birefringent quartz crystal is characterized by different refraction indices of the
ordinary beam no = 1.544 and the extraordinary beam ne = 1.553. Calculate the
necessary thickness of a quartz waveplate to be used as a λ/2 retarder at 633 nm.
Choose an appropriate waveplate from the Thorlabs catalogue. How thick would a
calcite waveplate (no = 1.658, ne = 1.486)?

30.3.4.5 Ex: Faraday isolator

A Faraday rotator is a device exploiting the Faraday effect to rotate the polarization
of a light beam according to the Jones matrix,

MFaraday(ϕ) =

(
cosϕ −k · êz sinϕ

k · êz sinϕ cosϕ

)
, (30.40)

where k is the wavevector of the light beam. An optical diode is composed by a
ϕ = 45◦ Faraday rotor sandwiched between two polarizers rotated by ϕ = 45◦ with
respect to each other.
a. How is the polarization of a light beam changed after a double passage (back and
forth) through a Faraday rotator?
b. Calculate what happens to a light beam upon a single passage through a Faraday
rotator in either direction k and −k?

30.3.4.6 Ex: Stokes parameters

For the Stokes parameters defined in (30.42) prove the following relationships,

[Ŝk, Ŝm] = 2ıϵkmnŜn and Ŝ2 = Ŝ2
0 .

30.3.5 Experiment: Polarization of a helium-neon laser

We will now analyze and manipulate the polarization of a laser beam in practice.

1. Pass the beam of a helium-neon laser through a polarizer and a quarter- resp.
half-waveplate. Analyze the polarization using a rotatable second polarizer for
various rotation angles of the waveplate. Sketch the transmitted intensity as a
function of the rotation angle of the beamsplitter in a polar diagram. How good
can you achieve linear and circular polarization?

2. Characterize the polarization of a helium-neon laser by sketching the transmit-
ted intensity through a polarizing beamsplitter as a function of the rotation

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics06.pdf
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angle of the beamsplitter in a polar diagram. Now couple the laser beam to a
Fabry-Pérot interferometer. What do you observe? Place a quarter-waveplate
at the output of the helium-neon laser and characterize again the polarization.
What do you observe at the Fabry-Pérot interferometer?

3. Use a quarter-waveplate to separate a beam of light from a counterpropagating
beam according to Fig. 30.13.

Figure 30.13: (a) Power control of a light beam and (b) separation of counterpropagating
beams through polarization optics.

4. Characterize an optical insulator. Optimize its extinction.

30.3.6 Experiment: Measuring the Brewster angle

Any interface between two transparent materials with different refraction indices re-
flects a part of incident light depending on the polarization and the angle of incidence,
as predicted by Fresnels formulae (30.32).

1. Measure the transmission by a glass plate as a function of the angle of incidence
for two orthogonal polarizations and determine the Brewster angle.

2. Mirrors can change the polarization of a light beam and, for example, transform
a linear polarization into elliptical. Determine the degree of ellipticity for a given
mirror.

3. How does a mirror transform the polarization and the helicity of a reflected
laser beam?

Figure 30.14: Measuring the Brewster angle by varying the tilt of a glas plate.
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30.3.7 Experiment: Pockels cell

Pockels cells are birefringent crystals allowing to manipulate the polarization of a
laser beam by application of a voltage.

1. Prepare a laser beam by passing it through a polarizer followed by a half-
waveplate and a second polarizer. Observe the intensity transmitted and re-
flected through the last polarizer as a function of the rotation angle of the
half-waveplate.

2. Use the EOM as a Pockels cell by placing it between the half-waveplate and
the second polarizer. Supply a voltage between 0V and 350V to the EOM.
Measures the intensity of reflected and transmitted light as a function of the
supplied voltage and prepare a diagram. What do you observe when you rotate
either the half-waveplate or the EOM?

Figure 30.15: Scheme for using an EOM as a Pockels cell.

30.4 Laguerre-Gaussian light modes

Light beams not only possess polarization, but can also have orbital angular momen-
tum. This property of light can impressively demonstrated at the so-called Laguerre-
Gaussian modes.

These modes can be produced by means of masks resembling Fresnel zone plate.
Fresnel zone plates are masks consisting of concentric sequences of bright (transmit-
ting) and dark (absorbing) rings. The diameters of the rings are selected in such a
way that the diameters of the rings defined by the bright rings interfere constructively
at a certain distance f1 on the optical axis and form a ’focus’ there. For this purpose,
the distance dn of the nth ring must satisfy the condition,

dn =
√
(f1 + nλ)2 − f21 ≃

√
2f1nλ . (30.41)

For a given zone plate there are other focuses at smaller distances,

fk =
d2n − k2n2λ2

2knλ
≃ d2n

2knλ
=
f1
k
. (30.42)

In order to separate the beams diffracted by the zone plate into a given focus from
those diffracted into other focuses or not being diffracted at all, we pass the beam
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through an iris diaphragm localized at the desired focus and recollimate the beam by
means of a lens, as shown in Fig. 30.16.

The phase profile of the beam can be viewed interferometrically (see Fig. 30.16)
by overlapping a plane wave laser beam. With a neutral density filter the intensities
of the overlapping beams can be adjusted to maximize the contrast.

Zonenplatte

Laser

f 50 f 250

f 50 f 100

f 100

Lochblende
Schirm

Graukeil

Figure 30.16: Creation of Laguerre-Gaussian modes.

Now, for realizing Laguerre-Gaussian light modes, we use Fresnel zone plates
with spiral patterns, instead of concentric rings. In contrast to the Gaussian mode,
the Laguerre-Gauß modes exhibit an intensity minimum on the optical axis (doonat
mode). Their phase profiles can be viewed by interferometry [14].

30.4.1 Experiment: Generating a Laguerre-Gaussian mode

In this experiment, we will...

1. Construct the interferometer sketched in Fig. 30.16 using adequate Fresnel zone
plates. What do you observe in the diffracted beam and in the interferogram,
when instead of filtering the principal focus f1 you filter a higher order focus?

2. Pass a Laguerre-Gauß laser beam through a λ/2 waveplate. How does the an-
gular orbital momentum change when you change the rotation? What happens
upon reflection from a mirror?

3. Slightly misalign the mode-matching between the Laguerre-Gauß beam and the
Gaussian reference beam until you observe multiple fringes. What do you ob-
serve?

30.5 Further reading

M. Born, Principles of Optics [ISBN]

H. Kogelnik et al., Laser Beams and Resonators [DOI]

W. Demtröder, Atoms, Molecules and Photons: An Introduction to Atomic, Molec-
ular, and Quantum Physics [ISBN]

http://isbnsearch.org/isbn/978-1-108-47743-7
http://doi.org/10.1364/AO.5.001550
http://isbnsearch.org/isbn/978-3-642-10298-1
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J. Weiner et al., Light-matter interaction, Fundamentals and applications [DOI]

G.A. Fowles, Introduction to Modern Optics [ISBN]

J.S. Choi et al., Paraxial ray optics cloaking [DOI]

30.5.1 on Stokes parameters

W.P. Bowen et al., Polarization Squeezing of Continuous Variable Stokes Parameters
[DOI]

30.5.2 on Laguerre-Gauss modes

L. Allen et al., Orbital Angular Momentum of Light and the Transformation of
Laguerre-Gaussian Laser Modes [DOI]

http://doi.org/10.1002/9783527617883
http://isbnsearch.org/isbn/978-0-486-65957-2
http://doi.org/10.1364/OE.22.029465
http://doi.org/10.1103/PhysRevLett.88.093601
http://doi.org/10.1103/PhysRevA.45.8185


Chapter 31

Electronics and
radiofrequency

For the control and regulation of important quantum optical devices, such as EOMs,
AOMs, laser diodes, photodiodes, piezos etc., electronic circuits are necessary. The
aim of this chapter is to provide practical know-how in the basics of electronics.

31.1 Introduction to electronic circuits

31.1.1 Passive electronic components

Electronic components which are characterized by a fixed impedance are called pas-
sive. The most common devices are resistors, capacitors, and inductances. For their
handling, it is useful to be able to identify their impedance from their labeling.

The values of the resistances of resistors are generally codified by colored rings.
The first ring to be considered is the one closest to a terminal. In case of 4 rings, the
first two rings are to be considered as digits, the third ring gives the exponent 10.
With five rings, the first three are digits and the forth gives the exponent of 10. The
last ring, in both cases specifies the tolerance of the value of the resistance.

There are various types of capacitors depending on the employed materials for
the dielectric medium (paper, ceramics, polyester, electrolyte made of aluminum and
electrolyte made of tantalum). Electrolyte capacitors have a defined polarity, and an
reversion of their voltage supply can result in their explosion. The value of the capac-
itance is generally written on their body, as well as their maximum allowed operating
voltage. Also the polarity of electrolyte capacitors is always indicated (although there
can be some confusion with regard to the physical and technical direction of the cur-
rent flow). Ceramic and polyester capacitors can have their values either written in
letters or color coded. The color code sequence is similar to that of resistors, with the
first two digits devoted to the digits, the third to the multiplier exponent, the forth
to the tolerance, and the fifth for the maximum voltage. In case of printed numbers,
the first two numbers represent the first two digits, and the third one represents the
numbers of 0 before the decimal point. In all cases (colors or digits), the value is given
in picoFarads. With more modern serigraphic techniques, some capacitors have their
values printed directly in Farads (micro, nano and pico). In these cases, the letter
denoting the unit also serves to mark the decimal point. For example, 2n2 means
2.2 nF.

1359
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Figure 31.1: Color code for resistors with 4 and 5 rings.

Figure 31.2: (Left) Electrolyte aluminum capacitors. (Center) Polyester capacitor and color
code. (Right) Ceramic capacitor.

31.1.2 Active electronic components and the pn-junction

Diodes, transistors, photodiodes, operational amplifiers are called active components,
because their current-to-voltage curve is non-linear, their response I = I(U) cannot
be described by a single constant value, but depends on the applied voltage.

During this course we will work a lot with operational amplifiers (OpAmp), which
are integrated circuits designed to amplify input signals with characteristics that are
entirely determined by external components. This feature makes them easy to use
and extremely versatile.

OpAmps are generally found encapsulated in DIL type housings (dual in line),
which means that they have two lines of 4 pins. The sequence of pins is numerated
in counter-clockwise orientation, and they have a mark on the side of pin 1. It is
always recommend to obtain the datasheet of the OpAmp since, despite a usual pin
compatibility ensured by the various OpAmp manufacturers, deviations are frequent.
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Figure 31.3: (Left) Schematic symbol of an OpAmp; (Right) Pin layout of a standard
OpAmp.

31.1.3 Electronic circuits

Amplification or control circuits are nowadays mostly realized with operational ampli-
fiers (OpAmp). The advantage of an OpAmp compared to circuits based on transistors
is, that their properties are almost independent of their internal structure. Hence,
their properties can be personalized via an external feedback realized with external
components. The input of an OpAmp does not require current. OpAmps amplify
the voltage difference between the non-inverting input (+) and the inverting (-). For
most practical matters we can assume, that the OpAmp has infinite amplification and
negligible input impedance.

Figure 31.4: (Left) Principle scheme of a standard OpAmp. (Center) Non-inverting amplifier.
(Right) Inverting amplifier.

OpAmps can be used as inverting amplifiers or non-inverting amplifiers. Using
Kirchhoff’s rules for the loops and nodes of the circuit, we find for a non-inverting
amplifier,

Ue
R1

= − Ua
R1 +Rn

, G = 1 +
Rn
R1

. (31.1)

This becomes clear noting that, since no voltage is dropped between the inputs (+)
and (-), the input voltage must be equal to the voltage drop at R1. And since the
non-inverting input does not deliver current, the currents traversing the resistances
Rn and R1 must be equal. For the inverting amplifier, we find,

Ua
Rn

= −Ue
R1

, G = −Rn
R1

. (31.2)

This becomes clear noting that, since the input (-) does not drag current, the currents
traversing the resistances Rn and R1 must cancel each other.
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Changing the resistancesR to inductances L or capacitances C, it becomes possible
to influence the frequency response of the amplifying circuit. The impedance are,

ZL = ıLω , ZC =
1

ıCω
. (31.3)

For the calculation of the amplification wit complex impedances, we just take the
absolute value of the gain G.

31.1.4 The thermoelectric effect

31.1.4.1 Seebeck effect

The Seebeck effect is a classic example of an electromotive force (EMF) and leads to
measurable currents or voltages in the same way as any other EMF. The local current
density is given by,

J = σ(−∇V +Eemf ) , (31.4)

where V is the local voltage, and σ is the local conductivity. In general, the Seebeck
effect is described locally by the creation of an electromotive field,

Eemf = −S∇T , (31.5)

where S is the Seebeck coefficient (also known as thermopower), a property of the
local material, and ∇T is the temperature gradient.

The Seebeck coefficients generally vary as function of temperature and depend
strongly on the composition of the conductor. For ordinary materials at room tem-
perature, the Seebeck coefficient may range in value from −100µV/K to +1000µV/K.

If the system reaches a steady state, where J = 0, then the voltage gradient is
given simply by the emf:

−V = S∆T . (31.6)

This simple relationship, which does not depend on conductivity, is used in the ther-
mocouple to measure a temperature difference; an absolute temperature may be found
by performing the voltage measurement at a known reference temperature. A metal
of unknown composition can be classified by its thermoelectric effect if a metallic
probe of known composition is kept at a constant temperature and held in contact
with the unknown sample that is locally heated to the probe temperature. It is used
commercially to identify metal alloys. Thermocouples in series form a thermopile.
Thermoelectric generators are used for creating power from heat differentials.

Figure 31.5:
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31.1.4.2 Peltier effect

When an electric current is passed through a circuit of a thermocouple, heat is evolved
at one junction and absorbed at the other junction. This is known as Peltier Effect
and is named after a physicist. The Peltier effect is the presence of heating or cooling
at an electrified junction of two different conductors. When a current is made to
flow through a junction between two conductors, A and B, heat may be generated or
removed at the junction. The Peltier heat generated at the junction per unit time is,

Q̇ = (ΠA −ΠB)I , (31.7)

where ΠA and ΠB are the Peltier coefficients of conductors A and B, and I is the
electric current (from A to B). The total heat generated is not determined by the
Peltier effect alone, as it may also be influenced by Joule heating and thermal-gradient
effects (see below).

The Peltier coefficients represent how much heat is carried per unit charge. Since
charge current must be continuous across a junction, the associated heat flow will
develop a discontinuity if ΠA and ΠB are different. The Peltier effect can be considered
as the back-action counterpart to the Seebeck effect (analogous to the back-EMF in
magnetic induction): if a simple thermoelectric circuit is closed, then the Seebeck
effect will drive a current, which in turn (by the Peltier effect) will always transfer heat
from the hot to the cold junction. The close relationship between Peltier and Seebeck
effects can be seen in the direct connection between their coefficients [406, 822]:

Π = TS . (31.8)

Figure 31.6: (a) Peltier cooler, (b) voltage generator or heat sensor, and (c) heat or radiation
sensor with thermocouples connected in parallel.

31.1.5 Exercises

31.1.5.1 Ex: Integrator with operational amplifier

Based on the two golden rules for operational amplifiers, (1) I+ = I− = 0 A and (2)
U+ = U−, show that the output voltage Ua at the integrated circuit shown in the
figure is: Ua = 1

RC

∫
Uedt.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_OpAmp01.pdf
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Figure 31.7: Integrator with operational amplifier.

31.1.5.2 Ex: Low-pass filter using an OpAmp

Using an inverting operational amplifier design a simple low-pass filter with a constant
amplification of 10 at low frequencies and diminishing gain above 10 kHz. Calculate
the Bode diagram (i.e. the frequency-dependent gain and phase-shift of your circuit.
What is the gain reduction per octave?

31.1.6 Experiment: Amplifiers and active filters

Here, we will learn how to use OpAmps: We will start mounting a 10-fold inverting
amplifier on a breadboard and then modify the external passive components, such as
to build a low-pass filter.

1. Assemble on a breadboard a simple inverting amplifier using an OpAmp. Use
10 kΩ resistors at the input aim for an amplification factor of 10.

2. Test the circuit with a frequency generator and an oscilloscope.

3. Modify the circuit such as to obtain a low-pass filter with fg = 50 kHz bandwidth
and test the circuit again.

31.1.7 Experiment: Peltier element and thermistor

Here, we will learn how to use a Peltier element and a thermistor. A thermistor
is nothing else than a well-calibrated resistor with temperature-dependent resistance
(see Fig. 31.9).

1. Connect a Peltier element to a 1A current source and bring one of the two
surfaces of the Peltier element into thermal contact with a heat sink. What do
you observe?

2. Bring a 10 kΩ thermistor in thermal contact with either of the two surfaces of
the Peltier element and measure its resistance. What do you observe?

3. Can you imagine a feedback logic evaluating the measured resistance in order to
control the current applied to the Peltier element such as to maintain constant
the temperature of the surface not connected to the heat sink.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_OpAmp02.pdf
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Figure 31.8: Pictures of Peltier elements, a thermistor, and an AD590 temperature trans-
ducer.
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Figure 31.9: Calibration curve for a 10 kΩ thermistor from Thorlabs.

31.2 Detectors

31.2.1 Photodiodes

Most active components are many of semiconductor characterized by a relatively large
band gap between the valence band and the conduction band. By appropriate doping
of the material with donors (p-type) or acceptors (n-type) a semiconductor can be
made conductive. The most basic semiconductor element, which is the diode consists
of a junction of two types of semiconductors, as shown in Fig. 31.10.

Our first task will be to construct a photo detector. The central part of a pho-
todetector is the photodiode. We have at our disposal silicium pin-photodiodes of the
type C30822E of the company Perkin Elmer and of the type FFD100.

Photodiodes exploit an intrinsic photoeffect of semiconductor pn-junctions. In the
transition region, free electrons of the n-type semiconductor and excess holes of the
p-type semiconductor are drifting into the respective opposite semiconductor, where
they recombine. The consequence is a transition zone with a charge carrier depletion,
which acts as a barrier and has an intrinsic capacitance. The charge carrier imbalance
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Figure 31.10: Joining a p-type and a n-type doped semiconductor (left) one observes a charge
carrier redistribution across the pn transition (right).
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Figure 31.11: Circuit with photodiode.

gives rise to an electric field across the junction. The energy liberated during the
recombination process can be dissipated via emission of light.

The reverse process is also possible: Via the intrinsic photoeffect, light irradiated
into the pn-junction can lift electrons from the valence into the conduction band, thus
generating pairs of charge carriers. Under the influence of the electric field across the
junction, the holes flow to the edge of the p domain and the electrons flow to the n
domain. This part of the current is called drift current. A smaller part, called the
diffusion current, has its origin in the diffusion of the electron-hole pairs formed in
the edge regions. Since these minority charge carriers have only a limited lifetime
before they recombine, only the part of the current generated within a few units
of the diffusion lengths near the charge carrier zone contributes. This results in an
external photovoltaic voltage at the electrodes of the photodiode. If the photodiode
is connected to a load, a photocurrent will flow, which is composed, as mentioned
above, by the drift current of the charge carrier zone and the diffusion current from
its edges.

The principal scheme of a pin diode is illustrated in Fig. 31.12(left): A weakly
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doped intrinsic layer separates the p and the n conductor. This reduces the capacity
of the barrier. The current at short circuit is proportional to the light power. A
photodiode is always operated in blocking direction. A negative offset voltage reduces
the capacity of the pn-junction.

Figure 31.12: (code) U -I dependence of a photodiode.

Despite all measures the pn-junction capacity remains finite. One can model the
impact of the pn-junction capacity via a replacement diagram. The voltage drop is

U(ω)

U0
=

RL|| 1
ıωC

Ri +
(
RL|| 1

ıωC

) =

Ri||RL

Ri

1 + ıωC(Ri||RL)
. (31.9)

For high load resistances the frequency response obviously becomes load-independent.
For small loads, RL < Ri, the band width of the photodiode is dramatically increased
to ωg = 1/RLC. In the same time, however, the amplification drops to V = RL/Ri.

31.2.2 Exercises

31.2.2.1 Ex: Photomultiplier

The anode of a photomultiplier tube is connected by a resistor of R = 1kΩ to ground.
The stray capacitance is 10 pF, the current amplification 106, and the anode rise time
1.5 ns. What is the peak amplitude and the halfwidth of the anode output pulse
produced by a single photoelectron? What is the dc output current produced by
10−12 W cw radiation at λ = 500 nm, if the quantum efficiency of the cathode is η =
0.2 and the anode resistor R = 106 Ω? Estimate the necessary voltage amplification
of a preamplifier (a) to produce 1V pulses for single-photon counting; and (b) to read
1V on a dc meter of the cw radiation?

31.2.2.2 Ex: Optical image intensifier

A manufacturer of a two-stage optical image intensifier states that incident intensities
of 10−17 W at λ = 500 nm can still be ’seen’ on the phosphor screen of the output
state. Estimate the minimum intensity amplification, if the quantum efficiency of the
cathodes and the conversion efficiency of the phosphor screens are both 0.2 and the
collection efficiency of light emitted by the phosphor screens is 0.1. The human eye
needs at least 20 photons/s to observe a signal.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_PhotodiodeKennlinie.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_Demtroeder4_14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_Demtroeder4_15.pdf
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31.2.2.3 Ex: Photovoltaic detector

Estimate the maximum output voltage of an open photovoltaic detector at room
temperature under 10µW irradiation when the photocurrent of the shortened output
is 50µA and the dark current is 50 nA.

31.2.3 Experiment: Taking the response function of a pho-
todiode

In this part of the lab course, we will learn to solder and set up simple electronic
circuits. We will also learn how to identify the connections of a photodiode and
mount into a case with BNC connectors. Finally, we will characterize the photodiode
for use in future applications. Initially, we will work without offset voltage, later we
will apply a voltage and identify its impact 1.

1. Connect an LED to a function generator and make it blink at low frequencies
adjusting the offset and the amplitude of the output voltage. Shine the light
onto your photodiode and monitor the signal on an oscilloscope. Explain your
observations.

2. Reduce the amplitude and adjust the offset until you observe a sinusoidal signal.
Increase the frequency and explain your observations. (Note that the response
of LEDs is extremely fast (MHz).) Determine the bandwidth of your detector.

3. Measure the current at short circuit. Connect a R = 10 kΩ resistive load in
parallel to the photodiode output and measure the voltage drop into this load.

4. Characterize the photodetector with respect to its sensitivity (in A/W) by vary-
ing the load.

5. How is the frequency response of the photodiode modified by the load? Measure
bandwidth as a function of the load. Adjust the load until the detector (circuit
including photodiode and resistor) has a bandwidth of 10 kHz (which is sufficient
for many applications).

6. Apply a 10V voltage in reverse direction and analyze again the sensitivity and
the bandwidth of your photodetector. Note that the blinking LED can be
replaced by a rotating chopper wheel.

Example of a measured characterization of a photodiode.

31.3 Introduction to radiofrequency components

31.3.1 VCOs and the generation of rf-sidebands

Voltage-controlled oscillators (VCO) serve to generate variable radiofrequencies. They
are the basis for most function generators. A useful particularity of VCOs is the

1Datasheet for the Photodiode FFD100 see appendix Fig. 35.21,
data sheet for the Photodiode C30822E see appendix Fig. 35.22.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_Demtroeder4_16.pdf
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Figure 31.13: (a) Calibration of a photodiode, measured voltage as a function of the incident
light power. (b) Low-pass behavior of a resistive charge of 90 kΩ.

possibility modulate the frequency and phase of an optical carrier wave by modulating
the control voltage of a VCO at low frequency.

The modulation of the carrier wave generates sidebands. This can be seen by
expanding the signal which carries the phase modulation into a Fourier series,

Aeıωt+ıβ sinΩt = Aeıωt
∞∑

k=−∞
Jk(β)e

ıkΩt ≃ Aeıωt + J1(β)Ae
ıωt+ıΩt + J−1(β)Ae

ıωt−ıΩt

(31.10)
when the modulation index β is small. Here, J−k(β) = (−1)kJk(β) are the Bessel
functions. This is in contrast to amplitude modulation, which is described by only
two symmetric sidebands,

A(1 + β sinΩt)eıωt = Aeıωt
(
1 +

β

2ı
(eıΩt − e−ıΩt)

)
. (31.11)

For amplitude modulation (AM) the beat signals between the carrier frequency
and the two sidebands are in phase, i.e.,

∣∣∣eıωt + eı(ω±Ω)t
∣∣∣
2

= 2 + eıΩt + e−ıΩt . (31.12)

For phase modulation (PM) the beat signal are in counter-phase, i.e.,

∣∣∣eıωt + eı(ω±Ω)t+ıπ/2
∣∣∣
2

= 2 + ıe±ıΩt − ıe∓ıΩt . (31.13)

In the case of AM, the amplitude is blurred, but the phase at zero-crossing is well
defined. In the case of PM, the amplitude in the antinode is sharp, but the phase of
the zero-crossing is blurred.

It is not easy to transform AM into PM, and vice versa. In fact, the phase
between carrier and sidebands can be varied, for example by adding an AC voltage,√
2eıωt+3ıπ/4 to the signal; however, it is not easy to transform synchronized phases

into opposite phases.
As shown in Eq. (31.10), the spectrum of a signal with phase modulation (PM)

consists of discrete lines, called sidebands, whose amplitudes are given by Bessel
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Figure 31.14: (code) Frequency spectra of a phase-modulated carrier frequency for ∆ω =

5MHz modulation excursion and (red) ω = 100 kHz modulation frequency (β = ∆ω
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functions,

S(ω) =

∞∑

k=−∞
|AJk(β)|2δ(ω + kΩ) . (31.14)

In real systems, the sidebands have finite widths γ due to frequency noise or the finite
resolution of the detectors. In the case of Lorentzian line profiles, we have,

S(ω) =

∞∑

k=−∞
|AJk(β)|2

β2

(ω − kΩ)2 + β2
. (31.15)

31.3.2 Mixers

A frequency mixer is a nonlinear electrical circuit that creates new frequencies from
two input signals, e.g. the sum and difference of the input frequencies. A device that
has a non-linear (e.g. exponential) characteristic can act as a mixer. Passive mixers
use one or more diodes and rely on their non-linear relation between voltage and
current. Active mixers use an amplifying device (such as a transistor) to increase the
strength of the product signal.

Mixers may be classified by their topology: An unbalanced mixer, in addition to
producing a product signal, allows both input signals to pass through and appear as
components in the output. A single-balanced mixer is arranged with one of its inputs
applied to a balanced (differential) circuit so that either the local oscillator (LO) or
signal input (RF) is suppressed at the output, but not both. A double-balanced mixer
has both its inputs applied to differential circuits, so that neither of the input signals
and only the product signal appears at the output. Double balanced mixers are more
complex and require higher drive levels than unbalanced and single-balanced designs.

In practice, mixers are widely used to shift signals from one frequency range to
another, a process known as heterodyning, in order to facilitate signal transmission or
further signal processing. Frequency mixers are also used to modulate a carrier signal
in radio transmitters, as product detectors, phase detectors, or frequency multipliers.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_Modulationsindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_Modulationsindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_Modulationsindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_Modulationsindex.m
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31.3.2.1 Diode

The non-linearity (or non-Ohmic behavior) of a diode can be used to create a simple
unbalanced mixer producing the original frequencies as well as their sum and their
difference. The current I through an ideal diode as a function of the voltage U across
it is given by an exponential function,

I = I0(e
qU/kBT − 1) . (31.16)

The exponential can be expanded as ex−1 ≃ x+ x2

2 . Suppose that the sum of the two
input signals U1 + U2 is applied to a diode, and that an output voltage is generated
that is proportional to the current through the diode [e.g. by providing the voltage
that is present across a resistor in series with the diode, as shown in Fig. 31.15(a)].
Then, disregarding the constants in the diode equation, the output voltage will have
the form,

U0 = (U1 + U2) +
1
2 (U1 + U2)

2 + ... (31.17)

= (U1 + U2) +
1
2 (U

2
1 + 2U1U2 + U2

2 ) + ... .

The ellipsis represents all the higher powers of the sum which we assume to be
negligible for small signals.

Figure 31.15: (a) Mixing two signal at a diode. (b) Schematic diagram of a double-balanced
passive diode mixer (also known as a ring modulator). There is no output unless both f1
and f2 inputs are present, though f2 (but not f1) can be DC.

Suppose that two input sinusoids of different frequencies, U1 = sinω1t and U2 =
sinω2t are fed into the diode. The signal U0 becomes:

U0 = (sinω1t+ sinω2t) +
1
2 (sin

2 ω1t+ 2 sinω1t sinω2t+ sin2 ω2t) + ... . (31.18)

Ignoring all terms except for the sinω1t sinω2t term we get,

U0 = 2 sinω1t sinω2t+ ... = cos(ω1t− ω2t)− cos(ω1t+ ω2t) + ... , (31.19)

demonstrating how new frequencies are created from the mixer.

31.3.2.2 Switching

Another form of mixer operates by switching, with the smaller input signal being
passed inverted or non-inverted according to the phase of the local oscillator (LO).
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This would be typical of the normal operating mode of a packaged double balanced
mixer, with the local oscillator drive considerably higher than the signal amplitude.

The aim of a switching mixer is to achieve linear operation over the signal level by
means of hard switching, driven by the local oscillator. Mathematically, the switching
mixer is not much different from a multiplying mixer. Instead of the LO sine wave
term, we would use the signum function. In the frequency domain, the switching mixer
operation leads to the usual sum and difference frequencies, but also to further terms,
e.g. ±3fLO, ±5fLO, etc.. The advantage of a switching mixer is that it can achieve
(with the same effort) a lower noise figure and larger conversion gain. This is because
the switching diodes or transistors act either like a small resistor (switch closed) or
large resistor (switch open), and in both cases only a minimal noise is added. From
the circuit perspective, many multiplying mixers can be used as switching mixers,
just by increasing the LO amplitude.

31.3.2.3 Modulation and demodulation

Mixers are often used for modulation or demodulation purposes. Suppose we have on
one hand a carrier signal, Ucarrier = cosωt, also called local oscillator. This may be a
constant radiofrequency emitted by an antenna or a microwave. On the other hand,
we have a reference signal which we want to transport somewhere else, Uref = cosΩt.
Used as a modulator the mixer will simple multiply,

Umod = UcarrierUref = cosωt cosΩt = 1
2 cos[(ω − Ω)t] + 1

2 cos[ω +Ω)t] . (31.20)

Thus the mixer output contains two frequencies, the sum and the difference. Sup-
posing that ω is a frequency in a range that can be radiated by antenna and Ω an
acoustic frequency, both frequency components ω ± Ω ≃ ω will be radiated.

Figure 31.16: Picture of a radiofrequency mixer.

On the side of the receiver, who also has access to a synthesizer generating a signal
Ucarrier = cosωt, we will use the mixer as a demodulator,

Udemod = UcarrierUmod = cos2 ωt cosΩt = 1
2 (cos 2ωt+ 1) cosΩt . (31.21)

If ω ≫ Ω, the carrier oscillation can easily be removed by a low-pass filter,

Ufiltered =
1
2 cosΩt ∝ Uref . (31.22)
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That is, we recover the original information. And this holds even when the reference
signal is (slowly) varying in amplitude or frequency, such as in the case of an acoustic
signal 2. Resolve Exc. 31.3.3.1.

31.3.2.4 Filtering with a mixer

Suppose we have a signal containing many frequency components (which may vary
slowly in time), Unoisy(t) =

∑
nA(ωn)e

ıωnt in complex notation, and that the sig-
nal we are interested in is an amplitude at a known particular frequency ω0. By
demodulating,

Usig(t) = Unoisy(t)e
−ıω0t =

∑

n

A(ωn)e
ıωnte−ıω0t =

∑

n

A(ωn)e
ı(ωn−ω0)t , (31.23)

and low-pass filtering the lowest frequency component, i.e. ωn − ω0 ≃ 0,

Ufiltered = A(ω0) . (31.24)

This even holds for continuous noise spectra, Unoisy(t) =
∫
A(ω)eıωtdω, since,

Usig(t) = Unoisy(t)e
−ıω0t =

∫ ∞

−∞
A(ω)eıωte−ıω0tdω =

∫ ∞

−∞
A(ω+ω0)e

ıωtdω , (31.25)

and low-pass filtering with a filter bandwidth ∆ω,

Ufiltered =

∫ ∆ω

−∆ω

A(ω + ω0)e
ıωtdω ≃ A(ω0)2∆ω . (31.26)

Such techniques are widely used in lock-in amplifiers (see Sec. 31.4.3).

31.3.3 Exercises

31.3.3.1 Ex: Phase modulation

a. Show that it is not possible to construct a periodic phase modulation function such
that the signal has only two sidebands.
b. Compare the spectra

∑∞
k=−∞ Jk(M)eıkΩt = eıM sinΩt and

∑∞
k=−∞ |Jk(M)|eıkΩt.

Can you detect phase modulation of a photodetector signal on a spectrum analyzer?
How about amplitude modulation?

31.3.4 Experiment: Creating sidebands on a radiofrequency

In this exercise, we will understand the origin of sidebands as we’ll see them emerge
from a modulation spectrum when we gradually increase the modulation index 3.

1. Take a VCO, for example, ZOS-100+ from MiniCircuits. Study the datasheet
and drive the VCO with an AC voltage. Vary the amplitude and the frequency
of the voltage and observe the output signal of the VCO on a spectrum analyzer.

2In complex notation, Uin = eıωt, Umod = Uine
ıΩt = eı(ω+Ω)t, Udemod = Umode

−ıωt = eıΩt.
3Datasheet for the VCO see appendix Fig. 35.16,

data sheet for the variable attenuator see appendix Fig. 35.17,
data sheet for the mixer see appendix data sheet Fig. 35.19.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_DifferentPhaseModulation.pdf
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2. Try to understand the spectrum observing the limiting cases Ω ≫ ∆ω and
Ω≪ ∆ω. How can you read Ω and ∆f from the spectra in both cases?

3. Write a MATLAB program to simulate the spectrum.

31.4 Measurement instrumentation

31.4.1 Sample-and-hold circuit

sample-and-hold circuit Solder on euroboard

31.4.2 Box-car integrator

box-car integrator Solder on euroboard

31.4.3 Lock-in amplifier

An lock-in amplifier (also called a phase-sensitive rectifier or mixer) is an amplifier
that can measure a weak electrical signal by modulating the signal by a reference
signal with a known frequency and phase. The device represents a bandpass filter
with an extremely narrow bandwidth and, therefore, improves the signal-to-noise
ratio (SNR). DC or AC noise components are efficiently filtered.

Download an illustration of the working principle of a lock-in amplifier here.

31.4.4 Experiment: Building a lock-in amplifier

Let’s now build a lock-in amplifier. The principle is illustrated in Fig. 31.17(a). The
sinusoidal signal discriminated at a non-linear line is switched on and off in the lock-
in by a switch. At the same time, the inverted signal (i.e., phase shifted by 180◦) is
turned off and on. Both signals are combined and low-pass filtered. As Fig. 31.17(b)
shows, the sign of the filtered signal depends on the phase between the discriminator
and the TTL signal controlling the switch 4

1. Create the circuit sketched in Fig. 31.17(a) on a circuit board and test it by
varying the phase between the modulated output signal and the TTL signal
provided by a function generator.

31.5 Further reading

P. Horowitz et al., The art of electronics [DOI]

U. Tietze et al., Halbleiterschaltungstechnik [DOI]

4Datasheets for the operational amplifier see appendix Fig. 35.24,
data sheet for the switch see appendix Fig. 35.23.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Electronics_LockInIllustration.m.
http://doi.org/
http://doi.org/
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Figure 31.17: (a) Principal scheme of a lock-in amplifier. (b) Mode of operation.
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Chapter 32

Quantum optics and optical
interferometry

The objective of this chapter is to introduce the basics of optical interferometry. We
will see, how to match the light modes in optical cavities and fibers, and to phase-
match the wavefronts of two laser beams in order to detect their frequency beating
with a photodetector. Furthermore, he will learn how to handle essential tools of
quantum electronics, such as a piezo-electric transducer, an electro-optic modulator,
and an acousto-optic modulator, used in interferometry, as discussed in Secs. 32.4.1
to 32.4. Interferometers have versatile applications such as 1. for the detection of very
small length variations (as for example caused by gravitational waves), 2. as vibration
and inertial sensors, or in 3. the transmission of information (radio).

32.1 Introduction to interferometry

32.1.1 Beam splitter in S-representation
The essential component of any interferometer is the (non-polarizing) beam splitter.

We consider a classical lossless beam splitter with electric fields incident at both
its inputs. The two output fields Ec and Ed are linearly related to the inputs through

(Ec
Ed

)
=

(
tac rbc
rad tbd

)(Ea
Eb

)
, (32.1)

where the 2× 2 element is the beam splitter matrix. r and t are the reflectance and
transmittance along a particular path through the beam splitter, that path being
indicated by the subscripts.

Figure 32.1: Beam splitter.

1377
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Assuming the beam splitter removes no energy from the light beams, the total
output energy can be equated with the total input energy, reading

|Ec|2 + |Ed|2 = |tacEa + rbcEb|2 + |radEa + tbdEb|2 = |Ea|2 + |Eb|2 . (32.2)

Factorizing the expression in the center we obtain terms in |Ea|2, |Eb|2, |EaE∗b |, and
|E∗aEb|2. Comparing with the terms in the right-hand side expression we find that
the equation can only be true for any field amplitudes, if the following relationships
between reflectance and transmittance are satisfied,

|tac|2 + |rad|2 = 1 = |tbd|2 + |rbc|2 and tacr
∗
bc + radt

∗
bd = 0 . (32.3)

We write each r and t as a complex number having an amplitude and phase factor
accounting for possible phase shifts of a beam as it reflects or transmits at the beam
splitting surface. From the second equation (32.3) we obtain,

tacr
∗
bc + t∗bdrad = |tac||rbc|eı(ϕac−ϕbc) + |tbd||rad|eı(ϕad−ϕbd) = 0 . (32.4)

This expression can only be true if,

ϕad − ϕbd + ϕbc − ϕac = π and
|rbc|
|tbd|

=
|rad|
|tac|

. (32.5)

Comparing the second equation (32.5) with the first two equations (32.3) we conclude,

|rac| = |rbd| ≡
√
R and |tad| = |tbc| ≡

√
T , (32.6)

where we defined the reflection and the transmission of the beam splitter. It follows
that

R+ T = 1 . (32.7)

Without loss of generality, we may set ϕbd ≡ 0, so that ϕac = ϕad − ϕbc − π. Then,

S =

(
tac rbc
rad tbd

)
=

(−
√
Teı(ϕad−ϕbc)

√
Reıϕbc√

Reıϕad
√
T

)
. (32.8)

Until, now the calculations were totally general, so that the above results hold for
any type of beam splitting device. Let us now give a concrete example.

Example 204 (Beam splitters): For beam splitting at dielectric interfaces in
particular we know that the electric field amplitude does not suffer phase shifts
upon transmission, ϕac ≡ 0, implying ϕad − ϕbc = π. Hence,

S =

( √
T

√
Reıϕbc√

Reı(ϕbc+π)
√
T

)
. (32.9)

Thus, the two off-diagonal elements are 180◦ out of phase. For the situation de-
picted in Fig. 32.1 one of the reflections occurs at an optical more dilute medium.
For this reflection the phase shift is 0. But the other reflection occurs at an opti-
cal denser medium and therefore suffers a 180◦ phase shift. With this constraints
the matrix describing a lossless beam splitter reads,(

Ec
Ed

)
=

( √
T

√
R

−
√
R
√
T

)(
Ea
Eb

)
. (32.10)
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32.1.2 Piezo-electric actuator

The piezo-electricity effect describes the reciprocal action between mechanical pres-
sure (from Greek: piézein - press) and electrical voltage in solids. It is based on the
phenomenon that occurs in the regular deformation of certain piezoelectric materials:
at the surface occur displacements of electric charges creating microscopic dipoles
inside the unit cells. The sum over all the unit cells of the crystal leads to a macro-
scopically measurable electrical voltage. The deformation should be directed, which
means, that the pressure is not applied from all sides on the crystal, but for example
only on opposite sides.

On the other hand, by applying an electric voltage, a crystal (or piezo-ceramic
element) may be deformed. Like any other solid body, piezo-electric crystals can
execute mechanical vibrations. In a piezo-electric actuator (or piezo transducer PZT),
these vibrations can be electrically excited. The frequency of the vibrations depend
only on the speed of sound (which is a constant of the material) and the dimensions
of the actuator. Therefore, actuators are also suitable for realizing oscillators (for
example, quartz crystals). The piezo-electric effect can only occur in non-conductive
materials (e.g., lead titanate zirconate).

When a voltage is applied to the piezo-ceramic in the direction of polarization, we
observe an expansion in this direction and a perpendicular contraction. Depending
on the employed material and the coefficient for piezo-electric strain d, stretches up
to ∆l/l = 0.15% can be obtained:

∆l = dEl0 , (32.11)

where l0 is the length of the actuator and E = U/l0 the amplitude of the electric
field. The elongation effect is therefore proportional to the field strength and the
overall length of the actuator. To achieve large stretches with manageable electrical
voltages, actuator discs are often stacked (mechanical circuit in series and electric
circuit in parallel).

piezo
mirror

U

piezo
mirror

U

ll

Figure 32.2: (Left) Scheme of mirrors mounted on a piezo actuator having the shape
of a disc or a ring. (Right) Photos of a ring piezo and a piezo stack.

Negative voltages with respect to the orientation of the discs cause a contraction.
However, negative voltages can also cause a change in the polarization state of the
piezo and should therefore be avoided! In electrical circuits, piezoelectric actuators
introduce a capacitance with a relative dielectric constant between 600 and 5000 and
an internal resistance of about 108 Ω depending on the material. See Exc. 32.1.10.1.

32.1.3 Michelson and Mach-Zehnder interferometer

Interferometry is a technique exploiting the interference of waves coherently split and
recombined by beam splitters. Sufficiently stable interferometers allow to visualize
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variations of the path lengths of two or more partial waves following different pathways
as an alteration of constructive and destructive interference.

The two most common types of interferometers are the Michelson interferometer
and the Mach-Zehnder interferometer are depicted in Fig. 32.3. The advantages of the
Michelson interferometer are an easy alignment and the need of only one beamsplitter.
The advantage of the Mach-Zehnder interferometer is a direct optical access to both
output ports of the interferometer. The following treatment applies to both types.

The field amplitude of a laser beam, Ei, with frequency, ω = ck, is divided by a
beam splitter (reflectivity

√
R) into a transmitted Et and a reflected beam Er,

Er =
√
R1Ei and Et =

√
1−R1Ei , (32.12)

where we disregard possible phase-shifts upon reflection at optically dilute interface.
The energy is obviously conserved, |Er|2 + |Et|2 = E2i .

Figure 32.3: Principle of a two-beam interferometer: (a) Michelson interferometer and (b)
Mach-Zehnder interferometer using non-polarizing beamsplitters. (c) Michelson interferom-
eter using a polarizing beamsplitter.

We consider the Mach-Zehnder interferometer sketched in Fig. 32.3 with one arm
of length Lr, which can be varied by a piezo, and the other arm of length Lt,

E ′r = Ere2ıkLr and E ′t = Ete2ıkLt . (32.13)

The beams are recombined on a second beam splitter and sent to a photodetector,
whose signal is,

I ∝ |
√
R2E ′r +

√
1−R2E ′t|2 (32.14)

= |
√
R2

√
R1e

2ıkLr +
√

1−R2

√
1−R1e

2ıkLt |2E2i .

Hence,

I ∝ R2R1+(1−R2)(1−R1)+2
√
R2

√
R1

√
1−R2

√
1−R1 cos[2k(Lt−Lr)] . (32.15)

For reflectivities of R1 = R2 = 50%, we get,

I ∝ 1
2 + 1

2 cos[2k(Lt − Lr)] . (32.16)

It is important to realize that, while superpositions of light field amplitudes in
the same mode interfere, superpositions of light field amplitudes in different modes
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do not. For example, the superposition of two plane waves with equal frequency and
polarization interferes, ∣∣∣∣

(E1 + E2
0

)∣∣∣∣
2

= |E1 + E2|2 , (32.17)

while the superposition of two plane waves with equal frequency but different polar-
izations does not, ∣∣∣∣

(E1
0

)
+

(
0

E2

)∣∣∣∣
2

= |E1|2 + |E2|2 . (32.18)

Solve the Excs. 32.1.10.2 to 32.1.10.4.

32.1.4 Coherence and spectrum of a light field

We have seen above that interferometers probe the electric field amplitude rather than
the intensity. For this reason, they are suited to measure the first-order correlation
function g(1)(τ) and the emission spectrum, which are defined by,

g(1)(τ) ≡ ⟨E
−(t)E+(t+ τ)⟩
⟨E−(t)E+(t)⟩ and SE(ω) ≡ F [g(1)(τ)] . (32.19)

As an example, Fig. 32.4 shows the aurocorrelation function and spectrum of a si-
multaneously amplitude- and phase-modulated laser beam, E(t) = (1+n cosωnt)e

ım sinωmt.
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Figure 32.4: (code) (a) Amplitude and (b) phase of the electric field, with n = 0.2, m = 1,

and ωn = ωm = (2π) 1Hz. (c) Aurocorrelation function and (d) spectrum of the light field.

32.1.5 Birefringent interferometer

A birefringent interferometer or Lyot filter consists of one or more birefringent crystals
mounted onto a rotation frame between two polarizers. Let no and ne = no + ∆n
be the refractive indices of the normal and the extraordinary axis, respectively. The
corresponding Jones matrix is then,

M =

(
1 0

0 0

)(
cosϕ sinϕ

− sinϕ cosϕ

)(
eık0L 0

0 eıkeL

)(
cosϕ − sinϕ

sinϕ cosϕ

)(
1 0

0 0

)
, (32.20)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_G1Spectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_G1Spectrum.m
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Such that,

(Eout
0

)
=M

(Ein
0

)
=

((
eık0L cos2 ϕ+ eıkeL sin2 ϕ

)
Ein

0

)
. (32.21)

By trigonometric transformations it is possible to show, that the transmission T ≡
|Eout/Ein|2 is,

T (λ, ϕ) = |eık0L cos2 ϕ+ eıkeL sin2 ϕ|2 = 1− sin2 2ϕ sin2 πL∆nλ . (32.22)

For ϕ = 45◦ the transmission becomes simply,

T (λ, π4 ) = cos2 πL∆nλ . (32.23)

In practice Lyot filters are often used, placed under the Brewster angle inside ring
cavity lasers, as frequency selective elements. Frequently, birefringent plates of differ-
ent thicknesses are stacked,

T (λ) = T1(λ)T2(λ) , (32.24)

in order to increase the frequency selectivity. Furthermore, when the axis of the
birefringent plates are rotated by fixed angles ∆α with respect to each other,

T (λ, α) = T1(λ, α)T2(λ, α+∆α) , (32.25)

the frequency of maximum transmission can be tuned by simply rotating the stack as
a whole by an angle α. See 32.1.10.5.

A Lyot filter can be considered an interferometer, because it splits and recombines
the polarization vector of a light beam in two parts following the ordinary and the
extraordinary axis of the birefringent crystal. This is somewhat analogous to the
Michelson interferometer depicted in Fig. 32.3(c).

32.1.6 Optical resonators

Optical cavities consist of an arrangement of mirrors reflecting the light beams in such
a way, that they form a closed path. Since light that entered the cavity is performing
there many round trips before it is transmitted again or absorbed, the light power is
considerably enhanced, i.e. cavities can store light.

Light which is to resonate in the cavity must satisfy the boundary condition,
that the mirror surfaces coincide with standing wave nodes. Therefore, in a cavity
with length L only a discrete spectrum of wavelengths N λ

2 = L can be resonantly
amplified, where N is a natural number. Because of this property, cavity are often
used as frequency filters or optical spectrum analyzers: Only frequencies ν = Nδfsr
are transmitted, where

δfsr = c/2L (32.26)

is the free spectral range of the cavity.
Cavities are characterized on one hand by their geometry, i.e. the curvature and

the distance of their mirrors, and on the other hand by their finesse, which is given by
the reflectivity of their mirrors. Let us first study the finesse. Regarding the cavity
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Figure 32.5: Multiple interference in an optical cavity.

as a multipass interferometer [218], we can derive expressions for the reflected and
transmitted intensity as a function of frequency 1. The so-called Airy formula for
transmission and reflection are,

Erefl
Ein

= r1 −
t21r2e

2ıkL

1− r1r2e2ıkL
and

Etrns
Ein

=
t1t2e

ıkL

1− r1r2e2ıkL
. (32.27)

In terms of intensity, assuming identical mirrors, r1 = r2 =
√
R and t1 = t2 =

√
T ,

and neglecting possible absorptive losses, A = 1−R− T = 0,

Irefl
Iin

=
( 2Fπ )2 sin2 ∆

2δfsr

1 + ( 2Fπ )2 sin2 ∆
2δfsr

and
Itrns
Iin

=
1

1 + ( 2Fπ )2 sin2 ∆
2δfsr

, (32.28)

where R is the reflectivity of a mirror and δ = 4πL/λ = 2πν/δfsr. The transmission
curve of a cavity has a finite transmission bandwidth ∆ν, which depends on the
reflectivity of the mirrors. The finesse of a cavity is defined by

F ≡ 2πδfsr
κ

=
π
√
R

1−R . (32.29)
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Figure 32.6: (code) Transmission and reflection through a resonator.

Note that factors others than the finite reflectivity may degrade the finesse of a
cavity. For example, an imperfect mirror flatness (commonly specified as λ/Fsurf )

1See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Exc. 7.3.6.16.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_AiryFormel.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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reduces the finesse to [218],

Ftot =

(
1

F
+

1

Fsurf

)−1

. (32.30)

.
The geometry of a cavity must satisfy certain conditions, in order to be stable

[474]. Besides the main longitudinal modes a cavity possesses transverse modes of the
order TEMmn, whose frequencies are given by 2,

ν/δfsr = (q + 1) +
m+ n+ 1

π
arccos

√(
1− L

ρ1

)(
1− L

ρ2

)
. (32.31)

A confocal cavity with degenerate transverse modes, ρ1 = ρ2 = L, is particularly
suited as optical spectrum analyzer.

The diameter of the beam waist in the cavity is,

w0 =
4

√(
λ

π

)2
L(ρ1 − L)(ρ2 − L)(ρ1 + ρ2 − L)

(ρ1 + ρ2 − 2L)2
. (32.32)

For an optimal coupling of the light into the cavity the Gaussian laser beam must be
matched to the cavity’s geometry of the cavity, i.e. diameter and divergence of the
laser beam must be adapted to the cavity mode with a suitable arrangement of lenses
[219, 474]. See Excs. 32.1.10.6 to 32.1.10.11.

32.1.7 Dielectric mirrors and filters

Dielectric mirrors and filters are multiple beam interferometers in a similar sense as
Fabry-Pérot cavities. They consist of stacks of thin dielectric layers with alternating
refraction indices 3.

500 600 700 800
λ (nm)

0

0.5

1

R

Figure 32.7: (code) Reflection by a high reflecting mirror made of 10 layers with
n1 = 2.4 and ∆z1 = 80nm alternating with 10 layers with n2 = 1.5 and ∆z2 = 500 nm.
The absorption coefficient for each layer is supposed to be α = 0.2%. The beam
impinges from vacuum, n0 = 1.

Reflections of R = 99.999% can be reached which, applied of superpolished mir-
rors, allow for the construction of cavities with finesse F > 300000. On the other

2See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 7.4.2.2.
3See script on Electrodynamics: Electricity, Magnetism and Radiation (2025), Sec. 7.1.7.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Interferometry_MultiHR.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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anti-reflection coatings can be applied to surfaces reducing their reflections to below
R = 0.1%. See Excs. 32.1.10.12 and 32.1.10.13 [219, 518].

32.1.8 Optical fibers

An optical fiber is a waveguide in which light is guided by internal total reflection.
The total reflection occurs between layers with different refractive indices called fiber
core and fiber cladding. The core is the central region of the optical fiber where the
light is guided. In order to create guiding conditions, the refractive index of the core
must be higher than the one of the cladding. The cladding diameter is typically 8 to
10 times the mode field diameter (MFD) of the fundamental mode. In general, MFD
is greater than the physical diameter of the fiber core, which means that some optical
power is always guided by the fiber cladding as an evanescent wave.

The cut-off wavelength λco of an optical fiber is the wavelength above which a
guided mode of a waveguide ceases to exist. For wavelength longer than λco an
optical fiber becomes single-mode. At wavelengths shorter than λco several optical
modes may propagate and the fiber becomes multi-mode. The cut-off wavelength is
directly related to the core diameter of the fiber λco ∝ ∅. For

λ
2 < ∅ < λ or equivalently ∅ < λ < 2∅ (32.33)

the fiber is single-mode. For λ > 2∅ no guided mode exists and for ∅ > λ the fiber
becomes multimode.

Figure 32.8: Mono-mode waveguiding by optical fibers.

The numerical aperture is a measure of the acceptance angle of the fiber. It is
very important because it determines how strongly a fiber guides light, and so how
resistant it is to bend-induced losses. The numerical aperture can be defined by the
acceptance angle of the fiber, though as this is highly diverging in space it is rather
complicated to reach a simple definition. It is most convenient to define the NA in
terms of the relative indices of core and cladding glass forming the fiber waveguide:

NA = sin θa
2 =

√
n2core − n2clad ≃

√
2n2coreδn , (32.34)

where δn is the index difference between the core and cladding. An optical fiber with
’high’ numerical aperture will confine light more strongly in the core, and so support
guidance further above cut-off. This attribute has two important effects: (a) it will
be single-mode over a greater range of wavelengths than is possible with a fiber with
a ’low’ numerical aperture fiber and (b) it will still guide a single-mode when coiled
or bent to a smaller diameter.

32.1.8.1 Multi-mode, mono-mode, and polarization maintaining fibers

Many types of fibers are currently available for a large variety of applications.
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Figure 32.9: (Left) Fiber patch cord, (center) cross section of a bow-tie polarization main-
taining fiber, and (right) cross section of a photonic crystal fiber.

32.1.9 Laser gyroscope and the Sagnac effect

Figure 32.10: (a) Principle scheme of a fiber-based Sagnac interferometer. (b,c) Laser
gyroscope realized with a HeNe gain tube.

Gyroscopes are based on the Sagnac effect. They are based on a ring cavity
mounted on a rotating stage, as shown in Fig. 32.10(a). Let us, for simplicity first
consider a circular path for the light beam (e.g. a fiber-based ring cavity) rotating at
an angular velocity Ω. Then the time needed for the light beam to travel in either
one of the two directions is,

t± =
(2π ± Ωt±)r

c
=

2πr

c∓ Ωr
, (32.35)

that is,

∆t ≡ t+ − t− =
4πr2Ω

c2 − Ω2r2
≃ 4πr2Ω

c2
≡ 4AΩ

c2
, (32.36)

where A is the area enclosed by the path. This formula can be generalized to arbitrary
paths.

For example, assuming an interferometer with A = 1m2 at rest in an Earth-based
system, Ω ≃ 2π/24 h, the time difference for light propagating along the two directions
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is ∆t ≈ 3 · 10−21 s and the path difference ∆L = c∆t ≈ 100 fm. The frequency shift
is,

∆v = k(v+ − v−) = k(2Ωr) =

√
4πAΩ

λ
, (32.37)

yielding for the given example of an Earth-based interferometer ∆ν ≈ 400Hz.

32.1.10 Exercises

32.1.10.1 Ex: Characterizing a piezo actuator

In order to characterize a recently purchased piezo actuator (Thorlabs, TA0505D024W)
a Scientific Initiation student sets up a Michelson interferometer driven by a HeNe
laser beam. Scanning the voltage applied to the piezo through the entire permit-
ted range, he observes 8.8 oscillations of the interference fringes. What is the piezo
displacement per volt?

32.1.10.2 Ex: Michelson interferometer

The figure 32.11 shows a Michelson interferometer containing in one arm an airtight
5 cm long cell with glass windows. Light with wavelength λ = 500 nm is used. After
the cell has been evacuated, the interference pattern shifts by 60 fringes. Use this
information to calculate the refractive index of air at atmospheric pressure. With
what accuracy can you determine the refractive index with this method?G ��HI�J�!�K	Ì9
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Figure 32.11:

32.1.10.3 Ex: Michelson interferometer

Assume that a signal-to-noise ratio of 50 has been achieved in measuring the fringe
pattern of a Michelson interferometer with one continuously moving mirror. Estimate
the minimum path length ∆L that the mirror has to travel in order to reach an
accuracy of ∆λ = 10−4 nm in the measurement of a laser wavelength at λ = 600 nm.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter03.pdf
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32.1.10.4 Ex: Rotating the polarization with a Mach-Zehnder interfer-
ometer

Using the Jones matrix formalism demonstrate how to use the Mach-Zehnder inter-
ferometer setup sketched in the figure to rotate the polarization of a linearly polarized
laser beam in an electronically controlled way using a piezo actuator mounted in ones
of the interferometer arms.

Figure 32.12:

32.1.10.5 Ex: Lyot filter

Consider a Lyot filter with two plates (L1 = 1mm and L2 = 4mm) with the refraction
indices no = 1.40 in the fast axis and ne = 1.45 in the slow axis.
a. Calculate the transmission peaks of the Lyot filter as a function of λ for the rotation
angle ϕ = 45◦.
b. Determine the transmitted intensity I(ϕ) as a function of the rotation angle ϕ for
a fixed wavelength λ. What is the contrast of the transmitted intensity for arbitrary
values of λ if the absorption losses are 2%?

32.1.10.6 Ex: Wedge-shaped etalon

A beam of light of wavelength λ = 683 nm with large diameter is incident perpendic-
ularly on the first of two quadratic plates. Each plate has the edge length 120mm;
at the left edge the plates touch each other, at the right edge they are separated by a
wire of dw = 0.048mm in diameter. The air between the plates acts as a thin layer.
a. How many interference fringes does an observer see from above this arrangement?
b. Now suppose that the incident light be white. Will the interference pattern at the
far left be bright or dark?
c. Starting from the left edge there will be a series of interference minima, whose
position depend on the wavelength of the light. For what light color (blue or red) will
the minimum be closer to the edge?

32.1.10.7 Ex: Fabry-Perot interferometer

The dielectric coatings of each plate of a Fabry-Perot interferometer have the follow-
ing specifications: R = 98%, A = 0.3%. The flatness of the surfaces is λ/100 at
λ = 500 nm.
a. Estimate the finesse from (32.27) and (32.30), the maximum transmission, and the
spectral resolution of the FPI for a plate separation of 5mm.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_GuiaOnda06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_GuiaOnda07.pdf
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Figure 32.13:

b. Show that, for a given absorption, the transmitted intensity decreases with in-
creasing reflectivity. Explain why. Note: A trade-off between high finesse and high
transmission at a given absorption A > 0, called impedance matching, is reached by
maximizing the intracavity intensity. For a symmetric cavity, it can be shown that
impedance matching is reached for A = T .

32.1.10.8 Ex: Confocal and concentric cavities

a. Calculate the spectrum of longitudinal and transverse modes for (i) a confocal
cavity (ρa = ρb = L) and (ii) a concentric cavity (ρa = ρv = L/2). Interpret the
results.
b. Assuming radii of curvature ρa = ρb = 5 cm and a finesse of F = 500 for the
cavity, how precise must the length of the cavity be adjusted in order to observe only
longitudinal modes in the transmission spectrum?

Figure 32.14: (a) Confocal cavity and (b) concentric cavity.

32.1.10.9 Ex: Thermal drift of a laser cavity

Estimate the frequency drift of a laser oscillating at λ = 500 nm because of thermal
expansion of the resonator at a temperature drift of 1◦ C/h, when the resonator
mirrors are mounted on distance-holder rods a. made of invar and b. made of fused
quartz.

32.1.10.10 Ex: Stability of a supercavity

Consider a non-confocal optical cavity of 10 cm length whose spacer is made of
(i) aluminum, (ii) stainless steel, (iii) invar steel, (iv) fused quartz, (v) Zerodur,
and (vi) ULE. The cavity is maintained at constant temperature with a precision of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_GaussCavity01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_GaussCavity02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter06.pdf
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0.001C. What maximum drift do you estimate for its resonance frequency at 633 nm?

32.1.10.11 Ex: Fabry-Perot interferometer as optical spectrum analyzer

A confocal FPI shall be used as optical spectrum analyzer, with a free spectral range
of δfsr = 3GHz. Calculate the mirror separation L and the finesse that is necessary
to resolve spectral features in the laser output within ∆ν = 10MHz. What is the
minimum reflectivity R of the mirrors, if the surface finesse is FS = 500?

32.1.10.12 Ex: Interference and colors filters

Strontium atoms resonantly driven by two lasers at 461 nm and 689 nm emit fluores-
cence light at both wavelengths. Because the red transition is 5000 times narrower
than the blue one, the red fluorescence is much weaker and difficult to detect. Find
a suitable low-pass filter in the Thorlabs R⃝ catalogue suppressing the blue light suffi-
ciently to be sure that any fluorescence recorded after the filter must be resulting from
the red transition. What signal ratios can you achieve with a single filter? Consider
interference filters as well as color filters.

32.1.10.13 Ex: Interference filter

An interference filter shall be designed with peak transmission at λ = 550 nm and
a bandwidth of 5 nm. Estimate the reflectivity R of the dielectric coatings and the
thickness of the etalon, if no further transmission maximum is allowed between 350
and 750 nm.

32.1.10.14 Ex: Cut-off wavelength of a single-mode fiber

You want to transport 461 nm light via a polarization maintaining single-mode fiber.
How do you need to choose the cut-off wavelength of the fiber? Assuming a 50%
coupling efficiency, how much power can you get through the 5 nm long fiber? Choose
a model from the Thorlabs catalog and justify your choice.

32.1.10.15 Ex: Exc Numerical aperture of a fiber

Calculate the numerical aperture of a step-index fiber with core refraction index ncore
and cladding refraction index ncladding considering the scheme 32.15.

Figure 32.15:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter13.pdf
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32.1.10.16 Ex: Tuning by tilting an etalon

a. It is a common method to tune an etalon (or dielectric mirror or waveplate) to a
certain transmission wavelength by tilting it as a whole with respect to the optical
axis (without changing its intrinsic alignment. Does the tilt increase or decrease the
wavelengths of the transmission peaks? Justify your answer. What is the implication
for a dielectric mirror to be used under a non-normal angle of incidence?
b. A narrow band interference filter consisting of a glas plate coated on both surfaces
has the following characteristics: thickness L = 0.5mm, refractive index nrfr = 1.45,
central wavelength λeff = 706 nm, and bandwidth ∆λ = 0.3 nm. Considering the
filter as Fabry-Pérot etalon, calculate its free spectral range, its finesse, and the
reflectivity of its surfaces.
c. Assuming that the filter of part (b) can be tilted from normal incidence up to an
angle θmax = 35◦, how far will the center frequency shift. Prepare a graph showing
λeff as a function of θ.

32.1.10.17 Ex: Double MZI as a model for Coherent Back-Scattering

Consider the setup shown in Fig. 32.16 and calculate the signal observed on the pho-
todetector for arbitrary phase shifts ϕ and arbitrary rotation angles α by the λ/2-
waveplate.

Figure 32.16: Double Mach-Zehnder interferometer.

32.1.11 Experiment: Mach-Zehnder interferometer

The Mach-Zehnder interferometer and the Michelson interferometer are the two most
common two-beam interferometers. For the realization of the following project prior
knowledge of 1. Gaussian beams (see Sec. 30.2), 2. photodetectors (see Sec. 31.2.1),
and 3. piezo-electric transducers (see Sec. 32.1.2) is required.

1. Set up a Mach-Zehnder interferometer with a piezo in one of the arms accord-
ing to Fig. 32.3(a). Optimize the phase matching of the two beams onto a
photodetector and the rotation of the λ/2-waveplates until you obtain visible
interference patterns.

2. Vary the length of one arm of the interferometer using the piezo. Measure
the contrast of the interference fringes and discuss from which parameters it
depends and how it can be maximized.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter12.pdf
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3. Rotate the first λ/2-waveplate (behind the laser). What do you observe? Ex-
plain the observation!

4. Remove the PBS in front of the photodetector. What do you observe? Explain
the observation!

5. If a piezo is used, vary the voltage applied to the piezo-electric actuator and
measure the voltage expansion coefficient d.

Figure 32.17: Setup for (a) a Mach-Zehnder interferometer or (b) a Michelson in-
terferometer. (BS) non-polarizing beamsplitter, (PBS) polarizing beamsplitter. (c)
Signal on the photodetector as a function of the length variation of an arm of the
interferometer.

32.1.12 Experiment: Fabry-Pérot cavity

A Fabry-Pérot cavity is a typical multi-beam interferometer.

1. Set up a Fabry-Pérot cavity according to Fig. 32.18 and mode-match a laser
beam into the cavity. Scan the cavity length using a piezo and observe the
transmitted spectrum on an oscilloscope. What do you observe?

2. If an ECDL is used, vary the current and the temperature of the laser diode.
What do you observe? Vary the frequency of the diode laser by scanning the
piezo transducer of the laser cavity. Observe the mode spectrum of the laser
in the transmission signal of the cavity. Measure its free spectral range, the
transmission linewidth, and the finesse of the cavity.

Optical cavities are frequently used as optical spectrum analyzers. For this application,
it is helpful to simplify the intrinsic mode spectrum of the cavity by using a confocal
design, where all transerse modes are degenerated. We will now set up an optical
cavity and characterize it by its free spectral range and its finesse. Then we will
analyze its mode spectrum and modify its geometry to make it confocal.
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Figure 32.18: (a) Setup for aligning a confocal resonator. (b) Transmission spectrum of the
cavity for non-confocal alignment. (c) Same as (b) but for the case of confocal alignment.

1. Couple a laser beam into a cavity as shown in Fig. 32.18. The cavity provided
by this tinker course consists of a plane incoupler (ρ1 = ∞, R1 = 98%) and
a high reflector (ρ2 = 25mm, R2 = 99.8%). Position the mirror at a distance
L, where the cavity is stable. Calculate the free spectral range, the finesse, the
diameter of the beam waist.

2. Optimize the phase-matching of the laser beam to the cavity. In order to do
this, (a) measure the diameter of the diode laser beam, (b) determine the lens
which can be used to focus down to the beam waist of the cavity. How does the
transmission spectrum change upon the beam matching?

32.1.13 Experiment: Fizeau interferometer

A Fizeau interferometer is a device allowing to analyze the rugosity of surfaces.

1. Set up a Fizeau interferometer according to Fig. 32.18.

32.1.14 Experiment: Coupling light into an optical fiber

Coupling a laser beam into an optical fiber is a delicate task, requiring a good col-
limation optics and full control over the 6 degrees of freedom defining a laser beam:
horizontal and vertical position, horizontal and vertical tilt, beam diameter and di-
vergence.

1. Redirect the light of a HeNe laser via two adjustable mirrors into a fiber colli-
mator in such a way that the beam is not deviated from the optical axis by the
collimator.

2. Now connect (a) a multimode fiber and (b) a single mode fiber to the collimator.
Optimize the coupling by walking the laser beam and by adjusting the focus
of the fiber collimator. What differences do you observe for multi- and single
mode fibers?
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Figure 32.19: Principle of operation of a Fizeau interferometer.

32.2 Conventional light sources and lasers

For the first half of the 20-th century these assumptions matched the available light
sources, usually incandescent, arc or plasma discharge lamps. After the invention
of the laser in 1958, single mode and pulsed lasers quickly replaced the lamps as a
source for optical excitation. These new light sources initiated a revolution in optical
science, the consequence of which continue to reverberate through modern sciences
and applied technologies. The characteristics of laser sources are far superior to the
old lamps in all respects. They are intense, collimated, spectrally narrow and phase
coherent. The laser gave rise to a multitude of new spectroscopic techniques and new
disciplines, such as quantum electronics, the study of statistical properties of light in
quantum optics, optical cooling and trapping of microscopic particles, the control of
chemical reactivity, and new technologies for imaging and high resolution microscopy.
The impact the laser had on technology is only comparable to that of to the invention
of the transistor. See also (watch talk).

The laser produces light through an optical quantum amplification process based
on the stimulated emission of electromagnetic radiation. The term ’laser’ is an
acronym for ’Light Amplification by Stimulated Emission of Radiation’. A laser
differs from other light sources in that it emits coherent light. Its spatial coherence
allows the light to be focused on a very tiny spot, where the concentration of energy is
sufficient for applications such as laser cutting and lithography. The spatial coherence
also allows it to collimate a laser beam over large distances, that is, the light forms
a concentrated beam propagating in a straight line. Lasers can also have a very high
temporal coherence, which corresponds to a very narrow spectrum, that is, lasers
usually emit a single very well defined color of light. The extreme temporal coherence
can be used to produce pulses of light as short as a femtosecond. In addition, laser
light is polarized.

In 1917, Albert Einstein established the theoretical foundations of the laser in an
article ’Zur Quantentheorie der Strahlung’ through a rederivation of Max Planck’s ra-
diation law. He proposed a mechanism explaining how light is absorbed and emitted
from atoms. The fundamental ingredient is that the photon can be emitted in two

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/Lasers
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different ways, by spontaneous emission, an indeterministic process that occurs with-
out physical reason, or by stimulated emission. This latter emission process occurs
because of stimulation by light, which is already present in the system and represents
the fundamental mechanism of the laser. In the following decade German and Amer-
ican researchers experimentally confirmed the phenomena of stimulated emission and
negative absorption, that is, gain. In 1950, Alfred Kastler (French physicist and No-
bel Prize in Physics of 1966) proposed the method of optical pumping, confirmed
experimentally two years later by other French physicists.

In 1953, Charles Townes produced the first microwave amplifier called maser, a
device that operates similarly to the laser but amplifies microwave radiation instead
of visible or infrared radiation. However, Townes’ maser was unable to emit light
continuously. In 1955, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov
solved the problem of continuous operation using atoms with more than two energy
levels. These level systems were able to sustain a permanent population inversion of
an energetic level decaying to a less energetic system by releasing light via stimulated
emission. Despite the fact that several prominent physicists, including Niels Bohr,
John von Neumann, and Isidor Rabi, argued that the maser violates Heisenberg’s
uncertainty principle and therefore could not work, in 1964, Charles Townes, Nikolay
Basov and Aleksandr Prokhorov shared the Nobel Prize in Physics for fundamental
work in the field of quantum electronics that led to the realization of oscillators and
amplifiers based on the maser principle.

In 1957, Charles Townes and Arthur Schawlow, from the Bell labs, began to seri-
ously study feasibility of an ’optical maser’. In 1958, the Bell labs submitted a patent
proposing a scheme for optical radiation, and Schawlow and Townes presented a sci-
entific paper. Simultaneously, at the Columbia University, the PhD student Gordon
Gould was working on the energy levels of excited thallium. In 1957-8, Gould and in-
dependently Prokhorov, Schawlow and Townes proposed the use of an open resonator,
which later became an essential component of the laser. Gould also proposed several
possible applications for a laser, such as spectrometry, interferometry, the radar, and
nuclear fusion. He continued to develop the idea, and filed a patent application in
April 1959. The United States Patent Office dismissed his application, and granted
a patent to the Bell Labs in 1960. Gould won his first minor patent in 1977 after
a 28-year fight, and it took him until 1987 to win his first significant process in the
struggle, when a federal judge ordered the United States Patent Office to issue to
Gould patents for optical pumping and the invention of a laser based on the principle
of electrical gas discharge.

It was Theodore Maiman, who on May 16, 1960, operated the first working laser at
the Hughes Research Laboratories, Malibu, California, evincing several other research
teams, including the ones of Townes at Columbia University, of Schawlow at Bell Labs,
and Gould at the company TRG (Technical Research Group). Maiman’s laser used a
synthetic solid-state ruby crystal pumped by a flash lamp to produce red laser light
at 694 nm wavelength; however, the device was only capable of pulsed operation due
to its three-level pumping scheme. Later in 1960, the first gas laser was built, using
a helium-neon mixture, which was capable of continuous operation in the infrared
spectrum. Basov and Javan proposed the concept of a semiconductor laser diode.
In 1962, the first laser diode device, made of gallium arsenide, was realized emitting
near-infrared light. Nowadays, laser diodes are available in various spectral regimes
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up to the UV.

Figure 32.20: First suggested application in 1964 of a (left) HeNe laser and (right) a
diode laser.

Interestingly, despite many attempts, it has not yet been possible to manufacture
yellow or green laser diodes.

32.2.1 Features and operation of lasers

To understand how a laser operates, we consider the process of absorption and emis-
sion of light by an atom. Following Bohr’s model an absorbed photon raises an
electron from a lower orbit to a higher orbit, and when the electron returns back to
the ground state, it re-emits a photon in an arbitrary direction.

When we illuminate a sample of N atoms, N1 atoms of which are in the ground
state, by a radiation field, the absorption rate depends on the field intensity I(ν) and
a constant B12, which is characteristic for the transition,

Rabs ∝ B12I(ν)N1 . (32.38)

Figure 32.21: Bohr’s model of photon absorption.

The emission rate depends on the number of atoms N2 in the excited state, such
that,

Rsp ∝ A21N2 . (32.39)
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As the excited state has more energy, it can decay by itself (i.e. spontaneously) to
a lower energy state. Einstein’s brilliant idea now was to postulate a third process,
which he called stimulated emission,

Rst ∝ B21I(ν)N2 . (32.40)

In this process, an incident photon stimulates an excited atom to transfer the electron
to a lower orbit. The released energy is then used to form a second photon, which
is in all respects identical to the first. This process is necessary to ensure that, in
thermal equilibrium, the population of the states follows Boltzmann’s law.

Figure 32.22: Einstein’s model of absorption and spontaneous and stimulated emission.

Obviously, absorption decreases the intensity of a light beam crossing the atomic
sample, while stimulated emission amplifies it. In order to amplify incident light,
the gain in intensity must overcome the losses. Therefore, we need the absorption
processes to be less frequent than the stimulated emission processes, i.e. the number
of atoms in the excited state N2 must exceed the number of atoms in the ground state
N1 < N2.

We can easily write the rate equation,

dN2

dt
= −A21N2 −B21I(ν)N2 +B21I(ν)N1 = −dN1

dt
, (32.41)

with N = N1 +N2. It is easy to solve this equation. The result is,

N2 =
I(ν)B21N

A+ 2B21I(ν)
[1− e−(A21+2B21I(ν))t] < N1 . (32.42)

The graphical representation 32.23 shows the temporal behavior of the populations
N1 (in green in the figure) and N2 (in blue), reaching a state of equilibrium after a
certain time. By increasing the intensity of the incident light, we observe that the
curves approach each other but never cross. That is, in a two-level system, we always
get N1 > N2 and the populations are never inverted. Therefore, amplification of light
as in the laser does not happen.

Fortunately, we can resort to a trick by inserting a third level. Ensuring that the
decay rate of the (metastable) state E3 is much slower than the optical pumping to
this state via the driven transition E1 → E2 followed by a rapid decay E2 → E3,
we can reach the situation N3 > N1. Now it is possible to amplify light, which is
resonant with the transition E2 → E3.

What are the minimum requirements for the realization of a laser? The first
condition is that the pumping cycle is irreversible to ensure that the processes of
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Figure 32.23: (code) Impossibility of achieving inversion in a two-level system.

Figure 32.24: Basics of a laser: (a) Level system and (b) principle scheme.

stimulated emission and absorption do not compensate. Spontaneous emission is
irreversible and can be incorporated into a three-level system.

The second condition is the existence of a stimulated emission process, because we
want the amplified photon to be an exact copy of the incident photon.

The third requirement is a feedback mechanism that synchronizes the amplification
processes by different atoms in a disordered environment, such as a gas. Mirrors are
ideal because they increase the effective gain path, i.e. the distance within which
inverted atoms can amplify light. Also, the mirrors define the phase of the light wave,
since the standing wave formed by the counterpropagating light fields must have nodes
on the surfaces of the mirrors.

32.2.1.1 Threshold condition

According to the Lambert-Beer law the intensity of a monochromatic laser beam
evolves, on its way through a gas of two-level atoms with energies E2−E1 = ℏω0 like,

I(z, ν) = I(0, ν)e−α(ν)z , (32.43)

where the frequency-dependent absorption coefficient,

α(ν) = [N1 − g1
g2
N2]σ(ν) , (32.44)

is determined by the absorption cross section σ(ν) for the transition and by the
inversion,

∆N ≡ g1
g2
N2 −N1 , (32.45)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_LaserPumping.m
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which determines whether stimulated emission prevails or absorption: For ∆N > 0,
the absorption coefficient α(ν) becomes negative and the incident wave is amplified
instead of attenuated [218].

If the active medium is placed between two mirrors [Fig. 32.24(b)], the wave is
reflected back and forth, and traverses the amplifying medium many times, which
increases the total amplification. With the length L of the active medium the total
gain factor per single round-trip without losses is,

G(ν) =
I(ν, 2L)

I(ν, 0)
= e−2α(ν)L . (32.46)

A mirror with reflectivity R reflects only the fraction R of the incident intensity.
The wave therefore suffers at each reflection a fractional reflection loss of (1 − R).
Furthermore, absorption in the windows of the cell containing the active medium,
diffraction by apertures, and scattering due to dust particles in the beam path or due
to imperfect surfaces introduce additional losses. When we summarize all these losses
by a loss coefficient γ, which gives the fractional energy loss ∆W/W per round-trip
time T , the intensity I decreases without an active medium per round-trip as,

I(2d, ν) = I(0, ν)e−γ . (32.47)

Including the amplification by the active medium with length L, we obtain for the
intensity after a single round-trip through the resonator with length d, which may be
larger than L:

I(2d, ν) = I(0, ν)e−2α(ν)L−γ . (32.48)

The wave is amplified if the gain overcomes the losses per round-trip. This implies
that,

−2Lα(ν) = 2L∆Nσ(ν) > γ , (32.49)

which yields the threshold condition for the population difference,

∆N > ∆Nthr =
γ

2Lσ(ν)
. (32.50)

If the inverted population difference ∆N of the active medium is larger than
∆Nthr, a wave that is reflected back and forth between the mirrors will be amplified
in spite of losses, therefore its intensity will increase.

The wave is initiated by spontaneous emission from the excited atoms in the active
medium. Those spontaneously emitted photons that travel into the right direction
(namely, parallel to the resonator axis) have the longest path through the active
medium and therefore the greater chance of creating new photons by induced emission.
Above the threshold they induce a photon avalanche, which grows until the depletion
of the population inversion by stimulated emission just compensates the repopulation
by the pump. Under steady-state conditions the inversion decreases to the threshold
value ∆Nthr, the saturated net gain is zero, and the laser intensity limits itself to a
finite value IL. This laser intensity is determined by the pump power, the losses γ,
and the gain coefficient α(ν).

The frequency dependence of the gain coefficient α(ν) is related to the line profile
g(ν − ν0) of the amplifying transition. Without saturation effects (i.e. for small
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intensities), α(ν) directly reflects this line shape, for homogeneous as well as for
inhomogeneous profiles. According to (32.44) and (??) we obtain with the Einstein
coefficient Bik,

α(ν) = ∆Nσ(ν) = −∆N(hν/c)B12(ν − ν0) , (32.51)

which shows that the amplification is largest at the line center ν0. For high inten-
sities, saturation of the inversion occurs, which is different for homogeneous and for
inhomogeneous line profiles.

The loss factor γ also depends on the frequency ν because the resonator losses are
strongly dependent on ν. The frequency spectrum of the laser therefore depends on
a number of parameters.

32.2.1.2 Applications of lasers in industry and fundamental research

Among their many applications, lasers are nowadays used in compact disc players,
laser printers, and bar code scanners, optical fibers and optical communication, laser
surgery and skin treatments, welding, cutting and machining, military devices, dis-
tance and velocity measurements, projectors, laser pointers, etc..

In fundamental research (in particular on atomic gases, metamaterials, etc.), the
laser plays elementary roles in the areas of photonics, quantum computers, metrology,
frequency combs, and atomic clocks (laser-based clocks are up to 1000 times more
stable than the best state-of-the-art microwave clocks).

We all know that light is a wave. With the invention of the laser we found a process
and a device to make this light coherent. On the other hand, since de Broglie’s
assertion we know that matter is a wave, as well. Is it conceivable to construct a
matter laser? Yes, it is! The first coherent matter wave was in fact observed in 1995.
This state of matter, also called Bose-Einstein condensate, was predicted by Bose
and Einstein in 1924. To create a Bose-Einstein condensate, we need, similarly to the
laser, that the matter waves interfere constructively in a way that they amplify each
other. For this, the Broglie wavelength of the particles, which constitute the matter,
must be longer than the distance between them. Assuming a typical average distance
on the order of µm, this corresponds to an average velocity of the particles of mm/s
or a temperature of some 100 nK.

32.2.2 HeNe laser

HeNe lasers are gas lasers, whose gain medium consists of a mixture of 90% helium and
10% neon at a total pressure of about 1Torr excited by a small electrical discharge.
The most widely used transition wavelength is at 632.8 nm.

Fig. 32.25(a) shows the principle scheme of a commercial HeNe laser. The distance
between the high-reflecting mirror (Rhr) and the output coupler (Roc) determines the
free spectral range δfsr. Typically, a HeNe laser operates on two or three longitudinal
modes separated by δfsr. As illustrated in Fig. 32.25(b), the numbers of lasing modes
above threshold depends on the ratio of gain-to-loss. Fig. 32.25(c) shows the optical
pumping scheme to reach inversion on three of the lasing transitions at 632.8 nm,
1.15µm, and 3.39µm.
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Figure 32.25: (a) Construction scheme of a HeNe laser. (b) Gain and emission profile. (c)
Optical pumping scheme.

32.2.3 Diode laser

A laser diode is electrically a pin-diode. The active region of the laser diode is in
the intrinsic (i) region, and the carriers (electrons and holes) are pumped into that
depletion region from the n- and p-doped regions respectively. The depletion region,
devoid of any charge carriers, forms as a result of the difference in electrical potential
between n- and p-type semiconductors wherever they are in physical contact. Unlike
a regular diode, the goal for a laser diode is to recombine all carriers in the i region,
and produce light.

Figure 32.26: (Left) Laser diode with protective housing removed, e.g. using a can
opener. (Right) Laser diode collimator.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1830
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1830
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32.2.3.1 Generation of light

Electrons and holes present in the same region may recombine or ’annihilate’ by spon-
taneous emission of photons with energy equal to the difference between the electron’s
original state and hole’s state (see Fig. 31.10). This is in contrast to a conventional
semiconductor junction diode, where the energy released from the recombination is
carried away as phonons, i.e. lattice vibrations. Spontaneous emission below the lasing
threshold is the operating mode of an LED. While spontaneous emission is necessary
to initiate laser oscillation, it contributes to reduce the efficiency of a laser operating
above threshold.

One condition for lasing is that, in the absence of stimulated emission, electrons
and holes may coexist in proximity to one another without recombining immediately.
For typical diode laser materials the ’upper-state lifetime’ or ’recombination time’ is
on the order of a nanosecond. A nearby photon with energy equal to the recombina-
tion energy can cause recombination by stimulated emission. This generates another
photon of the same frequency, polarization, and phase, traveling in the same direction
as the first photon. In this way stimulated emission will cause gain for an optical wave
in the injection region, and the gain increases as the number of electrons and holes
injected across the junction increases.

32.2.3.2 Optical cavity and laser modes

As in other lasers, the gain region needs to be surrounded by an optical cavity pro-
viding optical feedback. In its simplest form, a laser diode is made in the shape of a
narrow optical waveguide on a the surface of a crystal. The two ends of the crystal
are cleaved to form perfectly smooth, parallel edges, forming a Fabry-Pérot resonator.
Emitted photons will travel along the waveguide, be amplified by stimulated emission
and reflected several times from each end face before exiting. If the losses due to
absorption and incomplete reflection from the end facets are smaller than the gain,
the diode begins to ’lase’.

Important properties of laser diodes are determined by the geometry of the optical
cavity. If the waveguide is thick compared to the wavelength of the light, it can
support higher-order transverse optical modes. The laser is then called ’multi-mode’.
These transversely multi-mode lasers are adequate for application where high power
is needed, for example, in printing, activating chemicals, or pumping other types of
lasers.

Figure 32.27: Typical beam profile of a multimode laser diode (Thorlabs, L450P1600MM.

https://www.thorlabs.com/thorproduct.cfm?partnumber=L450P1600MM
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For applications requesting small focused beams the waveguide must be made
narrow, on the order of the optical wavelength, such that only a single transverse
mode is supported, and one ends up with a diffraction-limited beam. Such single
spatial mode devices are used for optical storage, laser pointers, and fiber optics.
Note that these lasers may still support multiple longitudinal modes, and thus can
lase simultaneously at multiple wavelengths. The wavelength emitted is a function of
the band-gap of the semiconductor material and the modes of the optical cavity. In
general, the maximum gain will occur for photons with energy slightly above the band-
gap energy, and the modes nearest the peak of the gain curve will lase most strongly.
The width of the gain curve will determine the number of additional ’side modes’
that may also lase, depending on the operating conditions. Single spatial mode lasers
that can support multiple longitudinal modes are called Fabry-Pérot (FP) lasers. A
FP laser will lase at multiple cavity modes within the gain bandwidth of the lasing
medium. The number of lasing modes in an FP laser is usually unstable, and can
fluctuate due to changes in current or temperature.

Single spatial mode diode lasers can be designed so as to operate on a single lon-
gitudinal mode. These single frequency diode lasers exhibit a high degree of stability,
and are used in spectroscopy and metrology, and as frequency references. Single
frequency diode lasers are classed as either distributed feedback (DFB) lasers or dis-
tributed Bragg reflector (DBR) lasers.

Due to diffraction, the beam diverges (expands) rapidly after leaving the chip,
typically at 30 degrees vertically by 10 degrees laterally. A lens must be used in order
to form a collimated beam like that produced by a laser pointer. If a circular beam is
required, cylindrical lenses and other optics are used. For single spatial mode lasers,
using symmetrical lenses, the collimated beam ends up being elliptical in shape, due
to the difference in the vertical and lateral divergences.

32.2.3.3 Distributed Bragg reflector lasers and distributed feedback lasers

The simple diode described above has been heavily modified in recent years to ac-
commodate modern technology, resulting in a variety of types of laser diodes. One
example is the distributed Bragg reflector laser (DBR). It consists of a monolithic
single frequency laser diode, characterized by an optical cavity consisting of an elec-
trically or optically pumped gain region between two mirrors to provide feedback.
One of the mirrors is a broadband reflector and the other mirror is wavelength se-
lective so that gain is favored on a single longitudinal mode, resulting in lasing at
a single resonant frequency. The broadband mirror is usually coated with a low re-
flectivity coating to allow emission. The wavelength selective mirror is a periodically
structured diffraction grating with high reflectivity. The diffraction grating is etched
into the semiconductor within a non-pumped, or passive region of the cavity.

A distributed feedback laser (DFB) is a monolithic single frequency laser diode
with a diffraction grating etched close to the pn-junction of the diode aiming at
stabilizing the lasing wavelength. This grating acts like an optical filter, causing
a single wavelength to be fed back to the gain region and lase. Since the grating
provides the feedback that is required for lasing, reflection from the facets is not
required. Thus, at least one facet of a DFB is anti-reflection coated. The DFB laser
has a stable wavelength that is set during manufacturing by the pitch of the grating,
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and can only be tuned slightly with temperature. DFB lasers are widely used in
optical communication applications, where a precise and stable wavelength is critical.

32.2.3.4 ECDL

An extended-cavity diode laser (ECDL) is an optical setup based on a laser diode
chip, which typically has one end anti-reflection (AR) coated, and the laser resonator
is completed with a collimating lens and a mirror, as shown in Fig. 32.28(a). The
extended external laser resonator introduces various new features and options: Com-
pared to a standard laser diode, the longer resonator increases the damping time of the
intracavity light according to Eq. (32.29), and thus allows for lower phase noise and
a smaller emission linewidth (in single-frequency operation). Furthermore, it opens
the way for inserting frequency-selective optical components into the extended laser
resonator, such as narrow-band Fabry-Pérot etalons or diffraction gratings, which can
further reduce the linewidth and even allow to tune and control the frequency of the
laser.

Figure 32.28: (a) ECDL with an AR-coated laser diode and an external mirror. (b) Littrow
configuration. (c) Littmann configuration.

Tunable ECDLs based on diffraction grating as the wavelength-selective element
are also called grating-stabilized diode lasers. The common Littrow configuration
Fig. 32.28(b) generates optical feedback to the laser diode chip by retro-reflecting the
first-order diffracted beam from the grating. The emission wavelength can be tuned
by slightly tilting the diffraction grating. A disadvantage of this configuration is, that
the tilt also changes the direction of the output beam, which is inconvenient for many
applications.

In the Littman-Metcalf configuration Fig. 32.28(c), the grating angle is held fixed,
and an additional mirror is used to reflect the first-order beam back into the laser
diode. The wavelength can be tuned by rotating that mirror. This configuration offers
a fixed direction of the output beam, and also tends to exhibit a smaller linewidth, as
the wavelength selectivity is stronger, because the wavelength-dependent diffraction
occurs twice per resonator round trip. A disadvantage is that the zero-order reflection
of the beam reflected by the tuning mirror is lost, so that the output power is lower
than that of a Littrow laser.
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Figure 32.29: (Left) Side view of a ’free-running’ laser diode mounted in a collimator
(Thorlabs, LT110P-B) clamped in an aluminum block cooled by a Peltier element
(Thorlabs, TEC3-6) and whose temperature is measured by a thermistor (Thorlabs,
TH10K). (Right) Top view of a home-built ECDL laser in Littrow configuration. The
diode collimator is clamped into the left mount. a holographic grating (Newport,
10HG2000-475-1) is glued to the right mount, whose angle can be adjusted mechani-
cally and via a piezo. The whole setup is cooled by a Peltier element mounted on the
bottom of the base plate.

New concepts have recently become popular, such as the so-called cat-eye laser [47,
320, 70], where the frequency-selective element is an extremely narrow-band (0.3 nm)
optical filter 4.

By adjusting the tilt angle of a grating or a narrow-band filter by means of a piezo
an extremely fine tuning of the emission frequency is possible, while coarse tuning of
the frequency over a range of several nanometers is typically achieved by changing
the temperature and the laser current. Typical linewidths of free-running ECDLs are
well below 5MHz. Controlling the laser temperature, current, and piezo voltage by
active feedback circuits (e.g. within a Pound-Drever-Hall servo electronics) emission
bandwidths in the milliHertz range have been achieved, which corresponds to quality
factors of the laser oscillator of up to 1018.

Figure 32.30: (Left) Construction plan of a home-built ECDL lasers in cat-eye config-
uration. (Right) Side view of the cat-eye laser.

In comparison to other laser types, a diode laser exhibits, the advantage of a very
small size and a compact design. They are, in general, easy to handle and can be

4Available from Semrock or Laseroptik.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1379
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=305
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=305
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=305
https://www.semrock.com/
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controlled conveniently via current and temperature. However, they also have the
disadvantage of a large beam divergence and a broad emission spectrum. The beam
divergence can be compensated by a collimation optics in front of the laser diode.

The temperature has an impact on the band structure of the pn-transition of
the laser diode and hence on the frequency. Therefore, it is stabilized via a Peltier
element, which is mounted underneath the laser diode holder. The degree of freedom
is used for tuning the laser frequency in wide steps.

32.2.3.5 Pulsed diode lasers

Diode lasers can be used for generating ultrashort pulses either with various techniques
of mode locking or with gain switching. Typically, pulses with durations between
0.5 and 5 ps and pulse repetition rates between 1 GHz and hundreds of giga-Hertz
are generated with mode locking. In extreme cases, the repetition rate can even
be above 1 THz. The main application of ultrafast diode lasers is in optical fiber
communications systems, where such lasers function as pulse sources of fast data
transmitters or for all-optical signal processing.

Common techniques for mode locking of diode lasers are active ore passive mode
locking. Active mode locking can be accomplished with an optical modulator in the
laser resonator. This is usually either an electro-absorption modulator in the form of
an unpumped region with some modulated voltage, or an amplifying section where
the drive current is modulated. Passive mode locking relies on a saturable absorber in
the resonator. This can simply be an unpumped section of the device. It is common to
apply an electrical bias for adjusting the absorber properties. However, the recovery
time of that kind of absorber is fairly long. Shorter recovery times are achieved e.g.
by implanting nitrogen (N+ or N+

2 ) ions from one facet. This introduces crystal
defects, where carriers can recombine. The absorber is often placed at a resonator
end, but it can also be placed somewhere within the resonator so that different pulses
can meet in the absorber (colliding pulse mode locking).

For pulse repetition rates roughly below 10 GHz, an external cavity setup is usually
required, as a monolithic device would become too long. The extended cavity may be
an ECDL setup. Another technical approach is to incorporate the semiconductor chip
into a ring laser resonator made of optical single-mode fiber. In the latter case, the
resonator is typically much longer, and allows the use of fiber-optic components. The
semiconductor device may then be a fiber-coupled semiconductor optical amplifier
(SOA).

External-cavity lasers have various advantages: The pulse repetition rate can be
chosen in a wide range, and can easily be tuned e.g. by moving the end mirror, or with
a fiber resonator by stretching a piece of fiber with a piezo transducer. It is possible
to insert an optical filter for fixing the emission wavelength, or use a diffraction
grating as the end mirror (Littrow configuration; see the article on external-cavity
diode lasers). Even for higher pulse repetition rates, where harmonic mode locking is
required, external-cavity devices can be advantageous, because they have a potential
for lower laser noise, e.g. in the form of timing jitter. Therefore, mode-locked external-
cavity diode lasers sometimes compete with mode-locked fiber lasers in areas where
monolithic laser diodes would not be suitable. On the other hand, a monolithic setup
with fundamental mode locking can be very compact, much cheaper to manufacture,
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and can exhibit very robust pulse emission.

On the other hand, mode-locked diode lasers are subject to various limitations,
which do not allow them to reach the full performance potential of, e.g., mode-locked
fiber lasers: The pulse energy is fairly limited often far below 1 pJ. Average output
powers are often below 1 mW. Due to the short upper-state lifetime, ultrafast semi-
conductor lasers are generally not suitable for lower repetition rates of e.g. well below
1 GHz, except with synchronous pumping. Although the gain bandwidth of semicon-
ductors would be compatible with pulse durations of a few tens of femtoseconds, the
pulse durations achieved are usually much longer at least hundreds of femtoseconds,
and often picoseconds. The pulse formation dynamics are relatively complicated,
e.g. due to nonlinear phase changes associated with gain saturation, and difficult to
optimize. The pulse quality is normally not as good as e.g. for mode-locked fiber
lasers. In particular, there are often additional satellite pulses, caused e.g. by im-
perfections of the anti-reflection coating. Also, the pulses are often chirped, i.e. they
are not bandwidth-limited. The timing jitter and the noise of other pulse parameters
are higher than for other mode-locked lasers. This is partly a consequence of the low
power level.

32.2.3.6 Tapered amplifiers and injection locking

Other ways to amplify a the power of a laser without altering its coherence properties
are using a tapered amplifier or via injection locking also called master-slave locking
[123, 527] (see Fig. 32.31).

Figure 32.31: (a) Tapered amplifiers are available e.g. from Eagleyard. (b) Principle of
injection locking.

The description presented here uses semi-classical laser rate equations [526]. As-
suming that the master and the slave laser field are given by, respectively,

Einj = Ainje
−ıωinjteıϕinj(t) and E = Ae−ıωsteıϕs(t) , (32.52)

The phase difference between the both fields is denoted by ϕ(t) = ϕs(t)−ϕm(t). Now,
Considering the semi-classical laser rate equations we can describe the impact of the

https://www.eagleyard.com/products/tapered-amplifiers/
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master laser field in the slave laser,

dA(t)

dt
=

1

2
g[N(t)−Nth]A(t) + κAinj cosϕ(t) (32.53)

dϕ(t)

dt
=
α

2
[N(t)−Nth]− κ

Ainj

A(t)
sinϕ(t)−∆ω

dN(t)

dt
= J − γNN(t)− [γp + g[N(t)−Nth]A(t)

2 ,

where A(t) is the field amplitude normalized as A2(t) = S(t), and S(t) is the photon
number. N(t) is the number of carriers in the slave laser, and the other parameters
are g laser gain coefficient, Nth threshold carrier number, κ coupling coefficient, α
linewidth enhancement factor, γp photon decay rate, N carrier recombination rate,
J pump current normalized by electron charge, ∆ω frequency difference between the
master and the free running slave ωm − ωs. The parameter κ describes the rate at
which the photons of the master laser enter into the slave laser cavity and is given in
terms of the cavity quality factor,

κ =
ωs
2Q

. (32.54)

From the steady state solutions of above equations, we can obtain the frequency
locking range,

−κ
√

(1 + α2)

√
Pinj

Ps
< ∆ω < κ

√
Pinj

Ps
, (32.55)

where Pinj/Ps is the master laser fraction power used for the injection locking and Ps
is the power of slave laser. From equation 4.25 we can see that the locking range is
determined by the amplitude ratio between the fields and by the cavity quality factor
since κ ∝ Q−1. Therefore, lasers with low Q are easier to lock. On the other hand,
this leads to increased laser linewidth that reduces the phase noise performance of
the injection locking systems. For higher injection ratio Pinj/Ps also results in a large
locking range, which also makes the lock easier to achieve.

32.2.4 Exercises

32.2.4.1 Ex: Conventional light sources and lasers

Compare the properties of an incandescent light and a laser.

32.2.4.2 Ex: Threshold inversion for lasing 1

Calculate the necessary threshold inversion of a gas laser transition at λ = 500 nm
with the transition probability Aik = 5·107 s-1 and a homogeneous linewidth ∆νhom =
20MHz. The active length is L = 20 cm and the resonator losses per round-trip are
γ = 5%.

32.2.4.3 Ex: Threshold inversion for lasing 2

A laser medium has a Doppler-broadened gain profile of halfwidth δν = 2GHz and
central wavelength λ = 633 nm. The homogeneous width is 50MHz, and the transition

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight03.pdf
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probability Aik = 108 s-1. Assume that one of the resonator modes (L = 40 cm)
coincides with the center frequency ν0 of the gain profile. What is the threshold
inversion for the central mode, and at which inversion does oscillation start on the
two adjacent longitudinal modes if the resonator losses are 10%?

32.2.4.4 Ex: Mode pulling in an active resonator

The frequency of a passive resonator mode (L = 15 cm) lies 0.5∆νD away from the
center of the Gaussian gain profile of a gas laser at λ = 632.8 nm. Estimate the mode
pulling if the cavity resonance width is 2MHz and ∆νD = 1GHz.

32.2.4.5 Ex: Spatial hole-burning

Assume a laser transition with a homogeneous width of 100MHz, while the inhomo-
geneous width of the gain profile is 1GHz. The resonator length is d = 200 cm and
the active medium with length L≪ d is placed a = 20 cm from one end mirror. Esti-
mate the spacing of the spatial hole-burning modes. How many modes can oscillate
simultaneously if the unsaturated gain at the line center exceeds the losses by 10%?

32.2.4.6 Ex: Optimizing the transmission of laser output mirrors

Estimate the optimum transmission of the laser output mirror if the unsaturated gain
per round trip is 2 and the internal resonator losses are 10%.

32.2.4.7 Ex: Mode selection in a HeNe laser

A HeNe laser with an unsaturated gain of G(ν0) = 1.3 per round trip at the center
of the Gaussian gain profile with halfwidth ∆νD = 1.5GHz has a resonator length
of d = 50 cm and total losses of 4%. Single-mode operation at ν0 is achieved with a
coated tilted etalon inside the resonator. Design the optimum combination of etalon
thickness and finesse.

32.2.4.8 Ex: Mode hopping in a HeNe laser

A single-mode HeNe laser with resonator length L = 15 cm is tuned by moving a
resonator mirror mounted on a piezo. Estimate the maximum tuning range before
a mode hop will occur, assuming an unsaturated gain of 10% at the line center and
resonator losses of 3%. What voltage has to be applied to the piezo (expansion
1 nm/V) for this tuning range?

32.2.4.9 Ex: Mode selection with an intracavity etalon

Mode selection in an argon laser is often accomplished with an intracavity etalon.
What is the frequency drift of the transmission maximum
a. for a solid fused quartz etalon with thickness d = 1 cm due to a temperature change
of 2◦ C?
b. For an air-space etalon with d = 1 cm due to an air pressure change of 4mbar?
c. Estimate the average time between two mode hopes (cavity length L = 100 cm) for
a temperature drift of 1◦ C/h or a pressure drift of 2mbar/h.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight09.pdf
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32.2.4.10 Ex: Frequency and intensity noise of a laser

A single-mode laser is frequency stabilized onto the slope of the transmission max-
imum of an external reference Fabry-Perot interferometer made of invar with a free
spectral range of 8GHz. Estimate the frequency stability of the laser
a. against temperature drifts, if the FPI is temperature stabilized within 0.01◦C,
b. against acoustic vibrations of the mirror distance L in the FPI with amplitudes of
100 nm.
c. Assume that the intensity fluctuations are compensated to 1% by a difference
amplifier. Which frequency fluctuations are still caused by the residual intensity fluc-
tuations, if a FPI with a free spectral range of 10GHz and a finesse of 50 is used for
frequency stabilization at the slope of the FPI transmission peak?

32.2.5 Experiment: Analyzing the mode structure of a HeNe
laser

Here we will analyze the mode structure of a HeNe laser via (i) an optical spectrum
analyzer and (ii) a radiofrequency spectrum analyzer. We will also try to unravel the
polarization of the laser light.

1. Couple the light of a HeNe laser simultaneously into an optical spectrum ana-
lyzer and a radiofrequency spectrum analyzer. What do you observe when you
slightly heat the laser housing? Calculate from your observations the length of
the laser cavity.

2. Pass the light through a λ/4-plate and then through a polarizing beam splitter.
What do you observe in the two output ports of the PBS?

32.2.6 Experiment: Adjusting the threshold of an ECDL laser

Here we will construct a diode laser in Littmann configuration.

1. Take a laser diode, a Peltier cooler, a thermistor, a piezo transducer, and a
diffraction grating. Put everything together.

2. Optimize the threshold. Analyze the emission spectrum with an optical spec-
trum analyzer.

32.3 Introduction to optical phase and frequency
modulation

32.3.1 Acousto-optic modulator

The acousto-optic modulator AOM permits fast frequency and amplitude variations
of a laser beam. Because it does not incorporate mechanical parts, it works without
fatigue. AOMs are used, for instance, in laser printers, where the gray tone of a
pixel can be adjusted via the intensity of the laser beam, while its position (rows and

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight10.pdf
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columns) is varied by a rotating mirror and the drum propagating the paper sheet. In
quantum optics labs they are frequently used for fast (down to µs) switching on and
off, intensity control, and super-fine frequency-tuning of laser beams. The angular
deflection of the first-order diffracted beam upon frequency tuning, which is often
perceived as an inconvenience, can be circumvented by double-passage through the
AOM.

Figure 32.32: (a) Principle of the acousto-optic modulator. (b) Scheme of the diffraction
in an acousto-optic modulator: A photon with wavevector k is scattered by a phonon with
wavevector k1 resulting in a photon with wavevector kf .

The acousto-optic modulator consists of a piece of crystal (or glass) excited by an
acoustic wave with frequency f produced by a piezo-electric transducer (see Sec. 32.3.1)
mounted perpendicularly to propagation direction of the laser beam. The sound
waves propagate through the crystal as density fluctuations periodically changing the
refraction index n. The incident light is diffracted through Brillouin scattering at
the spatial modulation of the refraction index. In a wave picture, the process can be
interpreted as Bragg scattering of a light wave (with its wavelength inside the crystal
λn = 2π/kn = c/nν) from a density grating. c/n is the propagation velocity of light
inside the crystal. Since phonons (with their wavelength λf = 2π/kf = cf/f , where
cf is the sound velocity in the crystal) are quantized and can only be emitted and
absorbed entirely, the frequency of the first-order diffraction is ν1 = ν + f . In case
of an ideal adjustment of the Bragg angle, the Bragg condition results in θ1 = θ (see
Fig. 32.32),

sin θ =
kf
2k

=
fλn
2cf

. (32.56)

Since the laser beam is refracted when it enters the crystal, the relation between
the incidence and exit angle is given by Snell’s law, sinα = n sin θ. With this, the
Bragg condition can be written,

sinα =
fλ

2cf
. (32.57)

The angle between the 0th and the 1st order is, hence, 2α.
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In a corpuscular picture, the process can be understood as a four-wave mixing
(4WM) between photons and phonons. The deflection of the laser beam is a con-
sequence of momentum, k1 = k + kf . The frequency shift corresponds exactly to
the Doppler shift induced by the Brillouin scattering (absorption and reemission of a
phonon in reverse direction), and we obtain a relationship that is equivalent to the
Bragg condition,

f = ν1 − ν = 2ν
cf sin θ

c/n
. (32.58)

From the Bragg condition, knowing the deflection angle and the (fixed) frequency
shift, we can calculate the sound velocity. A typical value is cf ≃ 4200 m/s 5

Figure 32.33: Image of an AOM without cover.

An AOMworks best (highest diffraction efficiency in to the first Bragg order, which
may reach more than 90%) at a specific radiofrequency, which typically is located
somewhere in the range f = 40...800MHz, the most common one being 80 MHz.
Deviations from this ’center frequency’ are possible within a range of typical ±10%
of the center frequency.

32.3.2 Electro-optic modulator

An electro-optic modulator is an optical device with which, by an applied voltage, the
phase, frequency, amplitude or direction of a light beam can be modulated. Modu-
lation bandwidths in the GHz regime are possible. In the simplest case, the EOM
consists of a crystal (e.g., lithium niobate), whose refractive index depends on the am-
plitude of the local electric field. That is, when a lithium niobate crystal is exposed
to an electric field the speed of light propagation is reduced. One can thus control the
phase of a light beam at the output of a crystal by inserting it into a plate capacitor
and applying a voltage. The phase shift of the light depends linearly on the applied
voltage.

EOMs are often used to generate sidebands in a monochromatic laser beam. They
are also used as Pockels cell, i.e., as a voltage-controlled phase-plate. The Pockels

5The result (32.58) can be derived from conservations laws for energy ω1 = ω+ωf and momentum
k1 = k+ kf . Defining ω ≡ 2πν, ω1 ≡ 2πν1 and ωf ≡ 2πf we find,

ω2
f

cf
= k2

f = (k1 − k)2 = k21 + k2 − 2k1 · k =
ω2
1

c2n
+
ω2

c2n
− 2ωω1

c2n
cos(2θ) ≃ 4ωω1

c2n
sin2 θ .

With ω1 ≃ ω we reproduce the result [892, 893].
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Figure 32.34: Electro optic modulator.

effect produces in a medium a birefringence, which depends linearly on the applied
electric field. This is in contrast to the Kerr effect, in which the birefringence depends
in a quadratic form of the electric field.

Suppose the optically inactive axis is x. In this case, the influence of EOM on the
polarization of a laser beam is described by

MEOM (θ) =

(
1 0

0 eıθ

)
. (32.59)

For operation as a Pockels cell, the EOM is inserted between two crossed polarizers
oriented, e.g., along the x and y axis. The EOM itself is rotated by an angle ϕ,

MPockels(θ, ϕ) =

(
0 0

0 1

)(
cosϕ sinϕ

− sinϕ cosϕ

)(
1 0

0 eıθ

)(
cosϕ − sinϕ

sinϕ cosϕ

)(
1 0

0 0

)

= 2ıeıθ/2 sin θ
2 sinϕ cosϕ

(
0 0

1 0

)
, (32.60)

For ϕ = π/4 we get,

MPockels(θ,
π
4 ) = ıeıθ/2 sin θ

2

(
0 0

1 0

)
. (32.61)

That is, an incident beam of light, E = Eêx, linearly polarized in x-direction is rotated
into the y-direction and, depending on the phase shift θ, it is completely blocked or
transmitted through the Pockels cell [see Fig. 32.35(a)],

Itr = I0 sin
2 θ

2 . (32.62)

32.3.3 Optical phase modulation

The frequency and the phase of a laser beam can be influenced and modulated sim-
ilarly to radiofrequency signals. We can therefore use the calculation of Sec. 31.3.1
completely, only changing the carrier frequency to be the frequency of the light: The
Fourier expansion of a complex-valued periodic function s(x) into a series is defined
as,

sN (x) =

N∑

k=−N
cke

ıkx where ck =
1

2π

∫

2π

s(x)e−ıkxdx . (32.63)
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Figure 32.35: (code) (a) Effect of a Pockels cell. The solid line was calculated with the

Eq. (32.60), the dotted was measured experimentally. (b) Lowest-order Bessel functions.

Applying this to the modulated phase shift factor s(Ωt) = eıθ(t) with θ(t) ≡ β sinΩt,
we get,

sN (Ωt) =

∞∑

k=−∞
cke

ıkΩt where ck =
1

2π

∫ π

−π
eıβ sinΩte−ıkΩtdΩt , (32.64)

but the Fourier coefficients are nothing else than the integral definition of the k-th
order Bessel function,

Jk(β) ≡
1

2π

∫ π

−π
eı(β sin τ−kτ)dτ , (32.65)

where J−k(β) = −Jk(β). Hence, we may write the electric field,

E(t) = eı[kz−ωt+ıθ(t)] = eı(kz−ωt)
∞∑

k=−∞
Jk(β)e

ıkΩt

≃ J0(β)e
ıωt + J1(β)e

ıωt+ıΩt + J−1(β)e
ıωt−ıΩt

. (32.66)

For small modulation indices β only the lowest-order Bessel function contribute no-
ticeable amplitudes, as illustrated in Fig. 32.35(b).

The interpretation of this is, that phase modulation imprints sidebands onto a
monochromatic laser beam. These sidebands are independent modes which can be
resolved, e.g. with an optical spectrum analyzer, as illustrated in Fig. 32.36.

Technically the phase can be modulated by means of an electro-optical modulator,
as shown in Fig. 32.37(b). Alternatively, one may apply a periodic modulation of the
current which controls a diode laser, as shown in Fig. 32.37(a), which can be done
e.g. by inductive coupling using a bias-T.

From (32.66) we immediately see that phase modulation remains invisible for a
photodetector measuring |E(t)|2. Imagine, however, that the light passes through a
frequency-selective absorber, as illustrated in Fig. 32.37(b), such that the sidebands
suffer unequal losses. Then the photodetector will record (apart from a constant
offset) a signal oscillating at the frequency Ω,

|E(t)|2 =
∣∣J0(β)eıωt + aJ1(β)e

ıωt+ıΩt + bJ−1(β)e
ıωt−ıΩt∣∣2 (32.67)

= J0(β)
2 + (a+ b)J1(β)

2 + (a− b)J0(β)J1(β)2 cosΩt+ ... .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_EOMJonesMatrizen.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_EOMJonesMatrizen.m
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Figure 32.36: (code) Phase modulation sidebands with high (left) and low (right) modulation

index resolved by a narrow (red) or broad (blue) filter.

Figure 32.37: (a) Scheme for phase modulation of a diode laser by modulating the drive cur-
rent. (b) Phase modulation with an external EOM followed by frequency-selective absorption
of the lower sideband.

This idea is at the heart of powerful spectroscopic techniques, such as frequency
modulation spectroscopy, modulation transfer spectroscopy, and the Pound-Drever-
Hall frequency stabilization technique.

32.3.4 Exercises

32.3.4.1 Ex: Response time of an AOM

A beam of light at 689 nm focused to a waist of 100µm passes through the crystal of
an 80MHz AOM, characterized by a sound velocity of cs = 4200m/s.
a. By how much the first diffraction order is deflected by the AOM? Regarding the
beam divergence of the Gaussian beam, will it be possible to spatially separate the
diffraction orders?
b. An experimentalist ramps the driving frequency between 70 and 90MHz by means
of a voltage-controlled oscillator. What is the range of diffraction angles covered?
c. Estimating the response time of the AOM by the time that the traveling sound
wave needs to cover a distance corresponding to the focus of the light beam, how fast
can the experimentalist switch off the light beam by suddenly interrupting the driving
signal? What is the modulation bandwidth of the AOM?
d. The light beam passes through the AOM at a distance of d = 2mm from the piezo
transducer generating the sound wave. How will this fact limit response time?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_Sidebands.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_Sidebands.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation00.pdf
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32.3.4.2 Ex: Intensity stabilization with a Pockels cell

Assume that the output power of a laser shows random fluctuations of about 5%.
Intensity stabilization is accomplished by a Pockels cell with a halfwave voltage of
600V. Estimate the ac output voltage of the amplifier driving the Pockels cell that is
necessary to stabilize the transmitted intensity if the Pockels cell is operated around
the maximum slope of the transmission curve.

32.3.4.3 Ex: Generating sidebands with an EOM

An EOM (e.g. Thorlabs, EO-PM-NR-C1) characterized by a half-wave voltage of
Uhwv = 230V at 689 nm is to be used to generate optical sidebands at 20MHz.
a. Estimate numerically, how much voltage amplitude at what frequency a frequency
generator must provide in order to generate optical sidebands having half the light
power as the carrier?
b. How high must the finesse of a 5 cm confocal Fabry-Pérot spectrum analyzer be in
order to resolve the sidebands.

32.3.4.4 Ex: Reflection of a phase-modulated signal from an optical
cavity

A phase-modulated light beam (modulation frequency f = 20MHz) is reflected from
an optical cavity and recorded by a fast photodetector, whose bandwidth is larger
than f . Using the Airy formulae for the electric field of a light beam reflected from a
cavity (32.27) calculate the reflection spectrum, that is, the intensity of reflected light
as a function of detuning ∆ = ω − ωc, where ω is the frequency of the light and ωc a
resonant frequency of the cavity. What frequency components does the photodetector
signal contain.

32.3.4.5 Ex: Switching time for an EOM

a. Describe what happens to a laser beam passing through an EOM when its refraction
index n is suddenly changed.
b. Estimate the transient time for the phase shift to take place.
c. For a length of the EOM crystal of L = 1 cm and a laser wavelength of λ = 689 nm
estimate the change ∆n required to achieve a phase shift of 180◦.

32.3.5 Experiment: Characterizing an AOM

Fig. 32.38 illustrates the setup, use, and test of an AOM. It is recommended fa-
miliarizing with the operation principle of a voltage-controlled oscillator (VCO) (see
Sec. 31.3.1) and a voltage-controlled variable attenuator. We will also learn how to
use a spectrum analyzer 6.

1. Optimize a diffraction efficiency of the AOM. What are the impacts of the Bragg
angle, the radiofrequency power, and the laser beam diameter.

6Data sheet for the VCO see appendix Fig. 35.16,
data sheet for the AOM see appendix Fig. 35.20

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation02.pdf
https://www.thorlabs.com/thorproduct.cfm?partnumber=EO-PM-NR-C1
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation05.pdf
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2. Measure the deflection angle as a function of the applied radiofrequency. Based
on this result, calculate the sound velocity in the crystal.

3. Measure the diffraction efficiency as a function of the applied radiofrequency
power at a fixed Bragg angle. Repeat the measurement optimizing the Bragg
angle for every value of the radiofrequency.

4. Reduce the radiofrequency power using the variable voltage-controlled attenua-
tor. Determine the diffraction efficiency as a function of radiofrequency power.

Figure 32.38: Setup for testing an acousto-optic modulator.

See Fig. 32.39.
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Figure 32.39: Example of measured efficiency curves.

32.3.6 Experiment: EOM in a Mach-Zehnder interferometer

Here we will learn to operate an EOM as Pockels cell and as phase modulator.
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1. Align a laser beam through an electro-optic modulator. Supply a voltage be-
tween 0V and 500V to the EOM. Test its operation by beating the ordinary
with the extraordinary beam. Modulate the supply voltage at a low frequency.

2. Set up a Mach-Zehnder interferometer by phase-matching the exit beam of the
EOM with a part of the input beam.

3. The interferometer provides a mean to convert a phase modulation into an
amplitude modulation. Describe this feature theoretically using the Eqs. (31.12)
and (31.13).

4. Use the EOM as a Pockels cell. Rotate the EOM by 45◦ around the optical
axis. Probe the polarization of the outgoing beam with a polarization filter.

5. Modulate the EOM and show that the light acquires sidebands.

32.3.7 Experiment: Creating sidebands with an EOM

EOMs can be used to generate optical sidebands 7.

1. Apply the required voltages to a VCO (MiniCircuits, ZOS100), until it generates
a variable frequency between 40 and 60MHz. Attenuate the power with a
variable attenuator up to −20 dBm. Check the amplitude and frequency with a
spectrum analyzer.

2. Add a bias-T to the power supply of a laser diode. Observe the transmission
spectrum of a Fabry-Pérot cavity for various frequencies and modulation am-
plitudes. Determine the modulation index. Use the known distance of the
sidebands to estimate the finesse of the Fabry-Pérot cavity.

32.4 Radiofrequency techniques and the transfer of
information

It often happens that information is coded within a frequency band corresponding to
wavelengths which are not easily transported to other locations. For example, audio
frequencies (speech or music), ones they are converted to electromagnetic vibrations,
correspond to wavelengths of hundreds of kilometers. Such waves are very difficult to
radiate and are subject to diffraction.

For this reason, audio frequencies are often used to modulate so-called carriers,
which in turn are chosen in frequency ranges which are easy to radiate by antennas.
This is the basic idea of the radio, where the carrier frequencies are typically chosen
in the MHz regime. But information can as well be encoded into laser beams, as
illustrated in Fig. 32.40.

7Datasheet for the VCO see appendix Fig. 35.16,
data sheet for the power divider see appendix Fig. 35.18,
data sheet for the mixer see appendix Fig. 35.19
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Figure 32.40: Analogy between radio transmission (a) and heterodyne techniques with a
laser (b).

32.4.1 Measurement of a frequency beat

Interferometry is always based on the splitting and recombination of a wave, e.g., a
laser beam or a matter wave. The recombination of laser beams is always a little
technical challenge, as it requires a perfect phase matching of the Gaussian laser
modes. Let us consider two plane waves E1 = Aeıω1t and E2 = Aeıω2t impinging on
a photodiode. We suppose that they are phase-matched, such that their wavevectors
are parallel. The photodiode then generates a beat signal,

I = |E1 + E2|2 = AB[2 + 2 cos(ω1 − ω2)t] . (32.68)

Figure 32.41: Principle of a beat frequency measurement.

In practice, laser beams are usually not plane waves, but have a finite diameter
and radius of curvature. In order to get a high contrast signal, a good phase-matching
of the beams is important in order to obtain a strong photodiode signal.
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32.4.2 Homodyne method

For the homodyne method the field amplitude of a laser beam, Ei, with frequency,
ω = ck, is divided by a beam splitter (reflectivity R = |η|2 ≃ 50%) into a reference
beam (reflection at an optically dilute medium) and a probe beam, exactly as we have
done for the Michelson interferometer in Sec. 32.1.3, when we obtained the formula
(32.16) 8,

I ∝ 1 + cos[k(Lt − Lr)] . (32.69)

However, we will now modulate the path length of one interferometer arm, e.g. using
an EOM, Lr = Lr(t). The modulation can, but does not need to be sinusoidal. In
fact it may be an arbitrary radiofrequency signal, e.g. generated by acoustic sound.
Restricting to small modulation amplitudes, kLr ≪ π, and choosing the length of the
interferometer arms such that,

I(t) ∝ sin kLr ≃ kLr(t) , (32.70)

we see, that the photodetector signal will reproduce the modulation signal. In other
words, we encoded information on a laser beam, which carries it (e.g. through an
optical fiber) to another place.

Figure 32.42: Principle scheme of the (a) homodyning and (b) heterodyning technique at
the example of a Mach-Zehnder interferometer. The components in the yellow area of (b)
constitute a Lock-In amplifier.

32.4.3 Heterodyne method

The heterodyne method is similar to the homodyne one, except that the probe beam
is frequency-shifted (e.g., by the passage through an AOM operated at frequency Ω),

E ′t = EteıkLt+ıΩt . (32.71)

8Here, we call Lt,r the total length of the interferometer arm (back and forth for Michelson,
one-way for Mach-Zehnder).
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The photodetector signal generated by the beams after their recombination at the
beam splitter is,

I ∝
∣∣(1− η)EreıkLr + ηEteıkLt+ıΩt

∣∣2 (32.72)

=
∣∣−(1− η)ηEieıkLr + η(1− η)EieıkLt+ıΩt

∣∣2

= |(1− η)ηEi|2
∣∣−e2ıkLr + eıkLt+ıΩt

∣∣2 .

This signal is now demodulated with the AOM frequency,

IeıΩt ∝
∣∣−eıkLr + eıkLt+ıΩt

∣∣2 eiΩt = e2ıΩt − eık(Lt−Lr)+2ıΩt − e−ık(Lt−Lr) . (32.73)

A low-pass filter cuts all ac-components of the signal,

Ifiltered(t) ∝ −e−ık(Lt−Lr) ≃ −1 + ık[Lt − Lr(t)] , (32.74)

for small signal amplitudes Lr(t).

32.4.4 Measuring the quadrature components of an electric
field

Photodetectors measure intensities I ∝ |E⃗|2. Sometimes, however, we are interested
in the electric field itself, for example, when we want to get the correlation function
g(1)(τ) and the spectrum SE(ω) of a signal. A frequently used procedure consists in
beating the signal of interest with a frequency-shifted local oscillator and demodulat-
ing the quadrature components of the beat signal.

Let us consider a signal of interest Esig(t) = |Esig|eıϕ(t) with information encoded
in the temporal behavior of the phase ϕ(t). The first step consists in beating this
signal on a photodetector with a frequency-shifted local oscillator Elo(t) = |Elo|eıωlot,
yielding a photocurrent,

S ∝ |Esig + Elo|2 = |Esig|2 + |Elo|2 + 2|Elo||Esig| cos[ωlot− ϕ(t)] . (32.75)

Now, demodulating this signal simultaneously with the local oscillator frequencies
cosωlot and sinωlot, we get,

Uc = S cosωlot = |Elo||Esig| cosϕ(t) + oscillating terms (32.76)

Us = S sinωlot = |Elo||Esig| sinϕ(t) + oscillating terms ,

where the oscillating terms can be removed by a low-pass filtering. Finally, we
calculate,

|Esig| =
√
U2
c + U2

s

|Elo|
and tanϕ(t) =

Us
Uc

, (32.77)

and obtain the electric field via,

Esig = |Esig|eıϕ(t) =
√
U2
c + U2

s

|Elo|
eı arctan

Us
Uc . (32.78)
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32.4.5 Exercises

32.4.5.1 Ex: Pound-Drever-Hall signal

Consider the photodetector signal of Exc. 32.3.4.4. What signal do you observe when
demodulating the signal with an oscillation of frequency f? Calculate the derivative
of the signal close to resonance; from which parameters does the slope depend, and
how must you choose the modulation index to maximize it?

32.4.6 Experiment: Beating two lasers

In this exercise, we will ...

1. Take two independent lasers operating at nearly the same frequency (within
∼ 1GHz) and overlap them at a (non-polarizing) beam splitter.

2. Focus one of the ports of the beam splitter on a photodetector with large band
width (∼ 1GHz).

3. Analyze the beat signal on a spectrum analyzer.

4. Focus a helium-neon laser onto a fast photodetector and determine the free
spectral range of the laser resonator.

32.4.7 Experiment: Homo- and heterodyning with a Michel-
son interferometer

In this exercise, we will ...

1. Set up a Michelson interferometer.

Figure 32.43: Homo- and heterodyning with a Michelson interferometer.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation04.pdf
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Chapter 33

Optical spectroscopy

Modern ’optics’ is to be understood as ’physics of light-matter interaction’ in the
optical energy regime. In this sense, this area of physics comprises quantum optics,
photonics, atomic physics, and atom optics. Since the invention of the laser the
field of optics has seen a huge technological progress leading to the development of
extremely powerful and precise tool for investigating and manipulating matter. The
femtosecond laser, the frequency comb, atomic interferometers and clocks, and Bose-
Einstein condensation are just a few examples.

Spectroscopy is the art of taking and interpreting spectra, i.e. frequency-dependent
response functions. The variety of spectroscopic techniques is so overwhelming that
a survey is hopeless. As the course also aims at familiarizing the student with ap-
plications, a major part of this course will concentrate on techniques employed and
available in quantum optics labs. These techniques are mostly oriented toward ultra-
high resolution spectroscopy and techniques of manipulating the motion of atoms.

In Sec. 33.1 to 33.4.3, we will try various spectroscopic techniques applied to atomic
or cavity resonances.

33.1 Spectrometer and monochromator

Typical dispersive devices are prisms and gratings.

• lateral displacement as a function of λ

• spectral resolving power R = |λ/∆λ| = |ν/∆ν|

• Rayleigh criterion

33.1.1 Prism spectrometer

For a symmetrical arrangement (α1 = α2 = α) it is easy to see from Fig. 33.1 that,
β = 1

2ϵ and θ = 2(α− β). Snell’s law the yields,

n =
sinα

sinβ
=

sin 1
2 (θ + ϵ)

sin 1
2ϵ

. (33.1)

Hence,
dn

dθ
=

1

2

cos 1
2 (θ + ϵ)

sin 1
2ϵ

, (33.2)

1425
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or
dθ

dn
=

sin 1
2ϵ

1− n2 sin 1
2ϵ

. (33.3)

The angular dispersion is therefore,

dθ

dλ
=

sin 1
2ϵ

1− n2 sin 1
2ϵ

dn

dλ
. (33.4)

The spectral dispersion of typical transparent materials is on the order of −dn/dλ ≈
10−4.

Figure 33.1: Illustration of (a) the prism spectrometer and (b) the grating spectrometer.

Example 205 (Prism spectrometer): We calculate the angular dispersion for
an equilateral prism (sin 1

2
ϵ = 0.5) made of BK7 for two superposed wavelength

λ1 = 461 nm (nλ1 = 1.5243) and λ2 = 633 nm (with nλ2 = 1.5151) to be,

dθ =
1√

1− (n/2)2
dn ≈ 0.8◦ .

The resolving power can be calculated, once we have expressed the limiting aper-
ture a = d cosα where d = g/(2 sin ϵ

2 ),

∣∣∣∣
λ

∆λ

∣∣∣∣ = a
dθ

dλ
=

g cosα

1− n2 sin 1
2ϵ

dn

dλ
= g

dn

dλ
. (33.5)

Solve Exc. 30.2.3.14.

33.1.2 Grating spectrometer

Destructive interference occurs for,

∆s = mλ = a− b = d sinα− d sinβ . (33.6)

Frequently used is the so-called Littrow configuration for which α = −β.
The grating represents a multiple beam interferometer, because the beams re-

flected from every groove of the grating are phase-shifted by amounts (setting α = 0,

δ = 2π
λ ∆s = −2π d

λ
sinβ . (33.7)
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The sum of the reflections from N grooves of an incident plane wave Ein = E0e
ı(k·r−ωt

is therefore,

Er =
√
RE0

N∑

m=0

eıkr·r−ωteimδ =
√
RE0e

ıkr·r−ωt 1− eıNδ
1− eıδ . (33.8)

Consequently, the intensity is,

Ir = RI0
sin2 N2 δ

sin2 1
2δ

. (33.9)
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Figure 33.2: (code) Reflection curve of a diffraction grating.

The angular dispersion is, using Eqs. (33.7) and (33.6),

dβ

dλ
=

(
dλ

dβ

)−1

= − m

d cosβ
= − sinα− sinβ

λ cosβ
. (33.10)

The resolving power is,

∣∣∣∣
λ

∆λ

∣∣∣∣ =
Nd(sinα− sinβ)

λ
= mN . (33.11)

Solve Exc. 33.1.3.1, 33.1.3.2, and 33.1.3.3.

33.1.3 Exercises

33.1.3.1 Ex: Resolution of a grating spectrometer

Calculate the spectral resolution of a grating spectrometer with an entrance slit width
of 10µm, focal lengths f1 = f2 = 2m of the mirrors M1 and M2, a grating with
1800 grooves/mm and an angle of incidence α = 45◦. What is the useful minimum
slit width if the size of grating is 100× 100mm2?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_DiffractionGrating.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_SpectroMonochrom02.pdf
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33.1.3.2 Ex: Grating spectrometer

The spectrometer in Exc. 33.1.3.1 shall be used in first order for a wavelength range
around 500 nm. What is the optimum blaze angle, if the geometry of the spectrometer
allows an angle of incidence α about 20◦?

33.1.3.3 Ex: Littrow grating

Calculate the number of grooves/mm for a Littrow grating for a 25◦ incidence at
λ = 488 nm (i.e., the first diffraction order is being reflected back into the incident
beam at an angle α = 25◦ to the grating normal).

33.1.3.4 Ex: Combining spectrometers

A fluorescence spectrum shall be measured with a spectral resolution of 10−2 nm. The
experimenter decides to use a crossed arrangement of grating spectrometer (linear dis-
persion: 0.5 nm/mm) and FPI of Exc. 32.1.10.7. Estimate the optimum combination
of spectrometer slit width and FPI plate separation.

33.1.4 Experiment: Separating bichromatic light by prisms
and gratings

In this experiment we will study the dispersive power of a prism and a grating.

1. Combine the beams of a helium-neon laser and a laser at 461 nm via a beam-
splitter. Pass this combination through a prism and quantify the dispersion.

2. Calculate the minimum angle between the two beams.

3. Shine the combination onto a reflection grating and quantify the dispersion.

33.1.5 Experiment: Thorlabs optical spectrum analyzer

CCS175, characterization, Thorlabs R⃝ tour.

Figure 33.3: Principle of operation of a Czerny-Turner monochromator.

Czerny-Turner CCD spectrometer

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_SpectroMonochrom03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_SpectroMonochrom04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_SpectroMonochrom05.pdf
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1. Irradiate light on OSA and observe the spectrum.

33.1.6 Experiment: HighFinesse wavemeter

Wavemeters measure the wavelength of monochromatic light sources by interference.
One type of wavemeter is based on a Michelson interferometer, where the length of one
interferometer arm is uniformly increased while the interference fringes are counted.
Counting the fringes of a known reference laser simultaneously and comparing the
counts of the unknown and the reference laser, the wavelength of the unknown laser
can be determined with high precision (down to 2MHz resolution).

Figure 33.4: Principle of operation of a Michelson-type wavemeter.

1. HighFinesse WSU30, characterization.

33.2 Fluorescence, excitation, and absorption spec-
troscopy

Depending on the information we want to extract from a sample and on the available
instrumentation various types of spectroscopic techniques are possible, which will be
discussed on the following sections.

33.2.1 Classification of spectroscopic methods

It is important to distinguish fluorescence spectra from excitation spectra: Fluores-
cence spectra are taken by processing the light emitted from a radiator in a monochro-
mator. That is, the light is shone onto a spectral band filter, which only transmits
a narrow fraction of the fluorescence spectrum. The power of the transmitted light
is measured with a detector. Upon changing the center frequency of the band filter,

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3482
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different components of the fluorescence spectrum are measured, thus yielding a curve
u(ν), which represents the spectral energy density of the radiator [see Fig. 33.5(a,d)].

Figure 33.5: (a) Taking a fluorescence spectrum, (b) an excitation spectrum, and (c) an ab-
sorption spectrum. Typical level schemes for (d) fluorescence spectroscopy and (e) excitation
or absorption spectroscopy.

In contrast to fluorescence spectroscopy, excitation or absorption spectra are taken
by varying the frequency of the light exciting a sample. The reemitted light is then
measured by a detector without discriminating its frequency components. Obviously,
both method yield very different information about the scatterer [see Fig. 33.5(b,c,e)].
Depending on whether the scattered of the transmitted light is detected, we speak of
excitation and absorption spectroscopy.

33.2.2 Saturated absorption spectroscopy

One of the most popular spectroscopic technique is saturation spectroscopy, as it is
simple, robust, and allows to avoid Doppler-broadening. There are, however, many

Figure 33.6: (a) Experimental scheme for saturated absorption spectroscopy. (b) Spectral
hole burning by the counter-propagating saturation and probe beams for (red) detuned and
(blue) resonant light.

possible implementations of saturation spectroscopy, f.ex. frequency modulation spec-
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troscopy or modulation transfer spectroscopy, which we will present in the following.

33.2.2.1 Calculation of the Lamb-dip

The scheme known as Lamb-dip spectroscopy and which is illustrated in Fig. 33.6(a),
consists in a cell filled with a gas [for example, atomic rubidium whose resonance
frequency is ω0 = ck = 2πc/780 nm and decay rate is Γ = (2π) 6MHz] and two laser
beams with the same frequency ω, but propagating in opposite directions. One is
called the saturating beam, the other probe beam.

The basic idea is that, if the laser frequency is detuned from resonance, ω ̸= ω0,
the counter-propagating beams will interact with different velocity classes (i.e. atomic
velocities projected on the optical axis, v = v ·êk), which results in two distinct ’holes’
in the excitation profile [red curve in Fig. 33.6(b)]. Only for resonant light, ω = ω0,
will the counter-propagating beams interact with the same velocity class (i.e. atomic
velocities with v = 0). The ’holes’ in the excitation profile then overlap thus leading
to a deeper depression called Lamb-dip [blue curve in Fig. 33.6(b)].

For a quantitative description of the Lamb-dip we consider Maxwell’s one-dimensional
and normalized velocity distribution,

ρ(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv . (33.12)

As an example, we consider a gas at T = 300K temperature, where the partial
pressure of rubidium is about P = 10−1 mbar, such that the particle density is,

n(T ) =
P

kBT
. (33.13)

We also assume a cell length of L = 10 cm.
The probe laser intensity is below saturation, such that the optical cross section

for an atom moving with velocity v, isaccording to (??),

σ(v) =
6π

k2
Γ2

4(ω − ω0 − kv)2 + Γ2
, (33.14)

where we considered the fact that the atoms moving with the velocity v along the
optical axis perceive the probe laser beam as Doppler-shifted by an amount kv.

The saturating laser now has high intensity. Let us suppose here, Ω ≡ 10Γ, where
Ω is the Rabi frequency caused by the saturating laser. In this way, it creates a
population of Ne atoms in the excited state. Since this population is missing in the
ground state, Ng = N−Ne, the absorption is reduced for the probe beam by a factor,

Ne
N

=
Ω2

4(ω − ω0 + kv)2 + 2Ω2 + Γ2
. (33.15)

In contrast to (33.14), we now have to consider saturation broadening, as shown in
the derivation of (??).

We will now calculate the spectrum of the optical density for the probe laser,
OD(ω), and the light intensity transmitted through the cell, I

I0
= e−OD , according to

the Lambert-Beer law(??).
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Figure 33.7: (code) (a) Optical density and (b) absorption. (Blue) Integral formula and

(green) approximation for high temperature and high saturation.

The optical density with Doppler broadening is,

OD(T, ω) = Ln(T )

∫ ∞

−∞

Ng−Ne

N σ(v)ρ(v)dv (33.16)

= L
P

kBT

√
m

2πkBT

6π

k2

∫ ∞

−∞

(
1− 2Ω2

4(∆ + kv)2 + 2Ω2 + Γ2

)
Γ2

4(∆− kv)2 + Γ2
e−mv

2/2kBT dv ,

with ∆ ≡ ω − ω0 and substituting Ng − Ne = N − 2Ne. The widths of the three
distribution functions are, respectively,

δνsat =
√

1
2Ω

2 + 1
4Γ

2 ≈ (2π) 68MHz for the saturating beam

δνDpp = k
√

kBT
m ≈ (2π) 217MHz for the Doppler broadening

δνprb = 1
2Γ ≈ (2π) 3MHz for the probe beam

(33.17)

where v̄ =
√
kBT/m is the mean atomic velocity (or the rms width) of Maxwell’s

distribution. Since the spectral width of the probe laser spectrum is much smaller,
we can replace it by a δ-function,

Γ2

4(∆− kv)2 + Γ2
−→ πΓ

2
δ(∆− kv) , (33.18)

which gives,

OD(T, ω) ≃ L
P

kBT

√
m

2πkBT

6π

k3

∫ ∞

−∞

(
1− 2Ω2

4(∆ + kv)2 + 2Ω2 + Γ2

)
× (33.19)

× πΓ

2
δ(∆− kv)e−mv2/2kBT dkv

= L
P

kBT

√
m

2πkBT

6π

k3
πΓ

2

(
1− 2Ω2

8∆2 + 2Ω2 + Γ2

)
e−m(∆/k)2/2kBT .

The Lamb dip is the narrow (Doppler-free) feature in the center of the the spectrum
exhibited in Fig. 33.7. Lamb-dip spectra are commonly serve as frequency references
for laser frequency stabilization schemes.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_LambDip.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_LambDip.m


33.2. FLUORESCENCE, EXCITATION, AND ABSORPTION SPECTROSCOPY1433

33.2.3 Frequency modulation and modulation transfer spec-
troscopy

Variations of the saturation spectroscopic idea are the frequency modulation spec-
troscopy (FMS) and the modulation transfer spectroscopy (MTS). The basic scheme
of those techniques is shown in Fig. 33.8. As in saturation spectroscopy, two coun-
terpropagating beams interact with the same atoms of a molecular gas, but now one
of the beams is frequency-modulated (e.g. using an electro-optic modulator). In the
FMS configuration, the probe beam is modulated, and the sidebands are discrimi-
nated at the spectral feature generated by the saturation beam in a very similar way
as for the Pound-Drever-Hall technique. The profile of the FMS signal is calculated
in Exc. 33.2.4.3 [514, 83, 365, 770, 447, 137, 249, 757, 732, 402, 540].

In the MTS configuration, the saturation beam is modulated, and the sidebands
are transferred to the probe beam via nonlinear four-wave mixing processes. In both
cases, the sidebands are demodulated with the local oscillator frequency driving the
EOM.

Figure 33.8: Schemes of frequency-modulation and modulation transfer spectroscopy.

The advantages of both techniques is, that they generate dispersive Doppler-free
lineshapes. The FMS signal appears as a sharp feature on top of a large Doppler
background (similarly to the Lamb-dip). In contrast, the MTS signal is free from
Doppler background. The MTS signal recorded by the photodetector is given by,

I(∆) =
∑

a,b

µ2
ab

γj + ıδ

(
1

γab + ı(∆ + δ/2)
− 1

γab + ı(∆ + δ)
(33.20)

+
1

γab − ı(∆− δ)
− 1

γab − ı(∆− δ/2)

)
,

where a and b denote the lower and upper levels, µ2
ab is the electric dipole moment,

γab is the optical relaxation rate, γj is the decay of the energy level j of the molecule,
and δ is the modulation frequency. Behind the mixer we see the electric signal,

S(∆, ϑ) = Re [I(∆)e−ıφ] , (33.21)

where ϑ is the demodulation phase [539]. The curves are shown in Fig. 33.8.

Example 206 (Modulation transfer spectroscopy): Modulation transfer
spectroscopy is caused by four-wave mixing (4WM) processes, which have the
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Figure 33.9: (code) (a) Calculated FMS signals and (b) MTS signals as a function of detuning

for various modulation indices.

general form P (ω+Ω) = χ(3)(ω+Ω)Es(ωs)Ep(ωs)E
∗
s (ωs−Ω), or similar. When

the beams ω and ωs are counter-propagating, and the atoms are moving, their
resonances shift toward ω∓k·v, respectively in the atomic rest system. Resonant
enhancement of 4WM occurs, when one of the intermediate levels coincides with
ω0:

ω − k · v = ω0

(ω − k · v)− (ω + k · v − Ω) = 0

(ω − k · v)− (ω + k · v − Ω) + (ω + k · v) = ω0

(ω − k · v)− (ω + k · v − Ω) + (ω + k · v)− (ω − k · v +Ω) = 0 .

Assuming ω = ωs = ω − 0, these resonances reduced to,

k · v = 0,±Ω ,

and similarly for the other 4WM processes. This means, that the saturation

beam burns holes in the velocity distribution at k · v = 0,± 1
2
Ω,±Ω, which

modulate the probe beam.

Figure 33.10: Levels involved in 4WM upon MTS.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_FMSandMTSCalcs.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_FMSandMTSCalcs.m
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33.2.4 Exercises

33.2.4.1 Ex: Width of the absorption band

The resonator of a dye laser with a large emission bandwidth additionally contains an
absorbing (dense) gas. The absorption spectrum of the gas is Lorentzian with a width
of 3GHz, and the absorption coefficient has, in the middle of the absorption line (at
600 nm), the value of 0.2. What are the maximum and minimum relative spectral
distances ∆f/∆f0 of the axial modes within the spectral range of the absorption,
compared to the distances ∆f0 of the empty resonator?

33.2.4.2 Ex: Lorentz and Gaussian profiles

At which detuning is a Doppler-broadened line dominated by Lorentzian profile of
the transition?

33.2.4.3 Ex: Frequency-modulation spectroscopy

Calculate the FMS spectrum for a rubidium gas (describing the atoms as a two-
level system) under the conditions specified in Sec. 33.2.2 and assuming a modulation
frequency of f = 10MHz and a modulation index of β = 1.

33.2.5 Experiment: Rubidium Lamb-dips

In this exercise, we will spectroscopically identify the various lines of the rubidium
D2-transition of the isotopes 87Rb and 85Rb. The hyperfine splittings of the ground
and excited states are reproduced in Fig. 33.11.

1. Set up the optics for a Lamb-dip spectroscopy as shown in Fig. 33.11.

Figure 33.11: Saturation spectroscopy.

2. Fig. 33.12 shows a typical spectrum recorded with a rubidium gas cell. Find an
interpretation for the various lines of the spectrum.

33.3 Polarization spectroscopy

The Hänsch-Couillaud technique uses the birefringence of certain materials, devices,
or gases.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_Transiclassica02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_LorentzGauss01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_LorentzGauss02.pdf
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Figure 33.12: (Black) Lamb-dip spectroscopy of a rubidium gas (natural isotope mixture of
85Rb and 87Rb) showing the hyperfine structure transitions of the D2-line. (Red) Derivative
of the spectrum in (a).

33.3.1 Birefringent cavity

We consider a birefringent cavity exhibiting slightly different path lengths for two
axis that we will call, respectively, ordinary andextraordinary. Fig. 33.13(a) shows
the optical setup. The detector signals may be calculated via a concatenation of
the Jones matrices for a λ/2-plate, the transmissive response of the cavity, another
λ/2-plate, and finally a polarizing beam splitter,

(
Eo
Ee

)
=M

(
1

0

)
with (33.22)

M ≡
(

cosβ sinβ

− sinβ cosβ

)( T
1−Re2ıkoL 0

0 T
1−Re2ıkeL

)(
cosα sinα

− sinα cosα

)
. (33.23)

For the particular polarization angles α = π
4 and β = 0, we derive the difference of

the photodetector signals,

∆I = |Eo|2 − |Ee|2 = T 2

2

[
1

1−R2 − 2R cos 2koL
− 1

1−R2 − 2R cos 2keL

]
. (33.24)

As Fig. 33.13(b) demonstrates, the spectra corresponding to the axis, obtained by
ramping the laser frequency are slightly shifted with respect to each other. Their
subtraction leads to a dispersive lineshape that suits for laser locking purposes in the
so-called Hänsch-Couillaud stabilization.
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Figure 33.13: (code) (a) Generating a Hänsch-Couillaud error signal by transmission
of a birefringent linear cavity. (b) Signals recorded by the two photodetectors (blue
and green) and their difference (red).

33.3.2 Experiment: Birefringence of a ring cavity

Birefringence automatically occurs in a ring cavities. In this exercise, we will analyze
the birefringence observed in reflection of a such a ring cavity. In a ring cavity, the
resonance frequencies of the s-polarized and the p-polarized modes are slightly shifted
from one another due to the different penetration depth of the s- and p-polarized light
modes into the layers of the dielectric mirrors. For a moderate finesse of the cavity
(say F = 2000), the modes actually overlap. This leads to a birefringence used in the
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Figure 33.14: (code) (a) Generating a Hänsch-Couillaud error signal by (a) reflec-
tion from a ring cavity and (b) transmission of a linear cavity containing a Brew-
ster plate. (b) Signals recorded by the two photodetectors (blue and green) and
their difference (red). (a) Reflection signals |Es|2 and |Ep|2 from a birefringent
cavity with δfsr = 8.2GHz, φs = 0, Rhr,s = 99.97%, Ric,s = 99.74%, Fs =
π(R2

hr,sRic,s)
1/6/[1 − (R2

hr,sRic,s)
1/3], φp = 0.01, Rhr,p = 99.92%, Ric,p = 99.34%,

and Fp = π(R2
hr,pRic,p)

1/6/[1− (R2
hr,pRic,p)

1/3]. (b) Difference |Es|2 − |Ep|2.

famous Hänsch-Couillaud locking scheme. The detector signal in the scheme shown
in the figure may calculated via a concatenation of the Jones matrices for a λ/2-plate,
the reflective response of the ring cavity, another λ/2-plate, and finally a polarizing

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Spectroscopy_BirefringentCavityCalcs.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Spectroscopy_BirefringentRingcavityCalcs.m
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beam splitter,

(
Es
Ep

)
=M

(
1

0

)
with (33.25)

M ≡
(

cosβ sinβ

− sinβ cosβ

)


1−e−2πıω/δfsr+ıϕs

1−Rse−2πıω/δ+ıϕs
0

0 1−e−2πıω/δfsr+ıϕp

1−Rpe
−2πıω/δ+ıϕp



(

cosα sinα

− sinα cosα

)
.

Calculating |Es|2 and |Ep|2 as a function of the laser frequency ω reproduces the
curves plotted in Fig. 33.14(a).

1. x

33.4 Other spectroscopic techniques

33.4.1 Mode-locked femtosecond laser

Mode-locking is a technique in optics by which a laser can be made to produce pulses
of light of extremely short duration, down to the order of femtoseconds. The basis of
the technique is to induce a fixed-phase relationship between the longitudinal modes
of the laser’s resonant cavity. Constructive interference between these modes can
cause the laser light to be produced as a train of pulses.

In a simple laser, each of these cavity modes amplified within the bandwidth of
the gain medium oscillates independently, with no fixed relationship between each
other. The individual phase of the light waves in each mode is not fixed, and may
vary randomly due to such things as thermal changes in materials of the laser. In
lasers with only a few oscillating modes, interference between the modes can cause
beating effects in the laser output, leading to fluctuations in intensity; in lasers with
many thousands of modes, these interference effects tend to average to a near-constant
output intensity.

If instead of oscillating independently, each mode operates with a fixed phase rela-
tion to the other modes. Instead of a random or constant output intensity, the modes
of the laser will periodically constructively interfere with one another, producing an
intense burst or pulse of light. Such a laser is said to be mode-locked or phase-locked.
These pulses occur separated in time by τ = 2L/c, where τ is the laser cavity round
trip time and corresponds to the cavity’s inverse free spectral range.

33.4.1.1 Active mode-locking

The most common active mode-locking technique places a standing wave electro-optic
modulator (EOM) into the laser cavity. When driven with a sinusoidal electrical
signal, this produces an amplitude modulation of the light in the cavity. Considering
this in the frequency domain, if a mode has optical frequency ν, and is amplitude-
modulated at a frequency f , the resulting signal has sidebands at optical frequencies
ν ± f . The modulation frequency is now chosen to coincide with the cavity’s free
spectral range, f = δfsr, and since the sidebands are driven in-phase, the central
mode and the adjacent modes will be phase-locked together. Further operation of the
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modulator on the sidebands produces phase-locking of the ν ± 2f modes, and so on
until all modes in the gain bandwidth are locked.

This process can also be considered in the time domain. The amplitude modulator
acts as a weak ’shutter’ to the light bouncing between the mirrors of the cavity,
attenuating the light when it is ’closed’, and letting it through when it is ’open’. If
the modulation rate f is synchronized to the cavity round-trip time τ , then a single
pulse of light will bounce back and forth in the cavity. The actual strength of the
modulation does not have to be large; a modulator that attenuates 1% of the light
when ’closed’ will mode-lock a laser, since the same part of the light is repeatedly
attenuated as it traverses the cavity.

Related to this amplitude modulation (AM), active mode-locking is frequency
modulation (FM) mode-locking, which uses a modulator device based on the acousto-
optic effect. This device, when placed in a laser cavity and driven with an electri-
cal signal, induces a small, sinusoidally varying frequency shift in the light passing
through it. If the frequency of modulation is matched to the round-trip time of the
cavity, then some light in the cavity sees repeated upshifts in frequency, and some
repeated downshifts. After many repetitions, the upshifted and downshifted light is
swept out of the gain bandwidth of the laser. The only light which is unaffected is
that which passes through the modulator when the induced frequency shift is zero,
which forms a narrow pulse of light.

The third method of active mode-locking is synchronous mode-locking, or syn-
chronous pumping. In this, the pump source (energy source) for the laser is itself
modulated, effectively turning the laser on and off to produce pulses.

33.4.1.2 Passive mode-locking

Passive mode-locking techniques are those that do not require a signal external to the
laser to produce pulses. Rather, they use the light in the cavity to cause a change in
some intracavity element, which will then itself produce a change in the intracavity
light. A commonly used device to achieve this is a saturable absorber.

A saturable absorber is an optical device that exhibits an intensity-dependent
transmission. For passive mode-locking, ideally a saturable absorber will selectively
absorb low-intensity light, and transmit light which is of sufficiently high intensity.
When placed in a laser cavity, a saturable absorber will attenuate low-intensity con-
stant wave light (pulse wings). However, because of the somewhat random intensity
fluctuations experienced by an un-mode-locked laser, any random, intense spike will be
transmitted preferentially by the saturable absorber. As the light in the cavity oscil-
lates, this process repeats, leading to the selective amplification of the high-intensity
spikes, and the absorption of the low-intensity light. After many round trips, this
leads to a train of pulses and mode-locking of the laser.

Considering this in the frequency domain, if a mode has optical frequency ν, and is
amplitude-modulated at a frequency nf , the resulting signal has sidebands at optical
frequencies ν ± nf and enables much stronger mode-locking for shorter pulses and
more stability than active mode-locking, but has startup problems.

Saturable absorbers are commonly liquid organic dyes, but they can also be made
from doped crystals and semiconductors. Semiconductor absorbers tend to exhibit
very fast response times (∼100 fs), which is one of the factors that determines the
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final duration of the pulses in a passively mode-locked laser. In a colliding-pulse
mode-locked laser the absorber steepens the leading edge while the lasing medium
steepens the trailing edge of the pulse.

There are also passive mode-locking schemes that do not rely on materials that di-
rectly display an intensity dependent absorption. In these methods, nonlinear optical
effects in intracavity components are used to provide a method of selectively ampli-
fying high-intensity light in the cavity, and attenuation of low-intensity light. One of
the most successful schemes is called Kerr-lens mode-locking (KLM), also sometimes
called ’self mode-locking’. This uses a nonlinear optical process, the optical Kerr ef-
fect, which results in high-intensity light being focussed differently from low-intensity
light. By careful arrangement of an aperture in the laser cavity, this effect can be
exploited to produce the equivalent of an ultra-fast response time saturable absorber.

33.4.2 Frequency comb

In optics, a frequency comb is a laser source whose spectrum consists of a series of
discrete, equally spaced frequency lines. Frequency combs can be generated by a
number of mechanisms, including periodic modulation (in amplitude and/or phase)
of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of
the pulse train generated by a mode-locked laser. The invention of the frequency comb
represents a breakthrough in ultrahigh resolution spectroscopy, which was honored
with the Nobel price attributed to Theodor Hänsch in 2005 [896, 441, 403, 404, 610,
8, 812].

The frequency domain representation of a perfect frequency comb is a series of
delta functions spaced according to,

fn = fceo + nfrep , (33.26)

where n is an integer, frep is the comb tooth spacing (equal to the mode-locked laser’s
repetition rate or, alternatively, the modulation frequency), and fceo is the carrier
offset frequency, which is less than frep. Combs spanning an octave in frequency (i.e.,
a factor of two) can be used to directly measure (and correct for drifts in) fceo. Thus,
octave-spanning combs can be used to steer a piezoelectric mirror within a carrier-
envelope phase-correcting feedback loop. Any mechanism by which the combs’ two
degrees of freedom (frep and fceo) are stabilized generates a comb that is useful for
mapping optical frequencies into the radio frequency for the direct measurement of
optical frequency.

33.4.2.1 Spectrum of a frequency comb

The field emitted by a pulsed laser characterized by its pump laser frequency ν, the
repetition rate frep, and the pulse width T , can be given as a temporal sequence of
Gaussian shaped pulses. The repetition is mathematically described as a convolution
of the Gaussian profile with a sum of temporal δ-functions displaced in time,

E(t) = cos 2πνt

(∑

n

δ(t− n
frep

) ⋆ e−t
2/T 2

)
= cos 2πνt

∑

n

e
−(t− n

frep
)2/T 2

. (33.27)
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Figure 33.15: (code) Pulse train (a,b) and spectrum (b,c).

The carrier under each pulse is phase-shifted with respect to the adjacent pulse, except
when the laser is mode-locked, that is, when,

cos 2πνt = cos 2πν(t+ 1
frep

) . (33.28)

The Fourier transform of the laser field (33.27) is,

F [E(t)] =

∫ ∞

−∞
e−ıωt cos 2πνt

∑

n

e−(t−n/frep)2/T 2

dt (33.29)

= 1
2

∑

n

∫ ∞

−∞
e−ı(ω−2πν)te−(t−n/frep)2/T 2

dt ,

where neglect negative frequency components. Using the rules,

F [f(t)eıΩt] =
∫ ∞

−∞
e−ıωtf(t)eıΩtdt = (Ff)(ω − Ω) (33.30)

and F [f(t− T )] =
∫ ∞

−∞
e−ıωtf(t− T )dt = e−ıωT (Ff)(ω)

and F [e−t2/T 2

] =

∫ ∞

−∞
e−ıωte−t

2/T 2

dt = T
√
πe−T

2ω2/4

we get,

E(ω) = F [E(t)] = 1
2T
√
πe−T

2(ω−2πν)2/4
∑

n

e−ı(ω−2πν)n/frep . (33.31)

We now write the pump laser frequency as,

ν ≡ mfrep + fceo , (33.32)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_FrequencyComb.m
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where we set m ∈ N and call |fceo| < frep the carrier envelope offset. We also express
the Fourier frequency by,

ω ≡ 2π(ηfrep + fceo) , (33.33)

firstly without specifying that η be an integer number. The spectrum is,

|E(ω)|2 = 1
4πTe

−T 2(ω−2πν)2/2

∣∣∣∣∣
∑

n

e−2πın(η−m)

∣∣∣∣∣

2

, (33.34)

which only gives contributions for,

η =
ω − 2πfceo
2πfrep

∈ N . (33.35)

I.e. the spectrum of comb frequencies is,

|E(ω)|2 = 1
4πTe

−T 2(ω−2πν)2/2
∑

n

δ[ω − (nfrep + fceo)] . (33.36)

The δ-function comes from the fact that the sum of (33.35) over many oscillations
e−2πin(η−m) vanishes by destructive interference, except when they are in phase, which
is just the case when ω = nfrep + fceo.

Figure 33.16: (a) Scheme and (b) operation principle of a frequency comb with control of
the repetition rate and the carrier envelope offset.

33.4.2.2 Mode-locking of a frequency comb

From Eq. (33.28) we see that mode-locking is achieved when,

ν

frep
= m+

fceo
frep

∈ N , (33.37)

which implies fceo = 0. Eq. (33.36) then becomes,

|E(ω)|2 =
πT

4
e−T

2(ω−2πν)2/2
∑

n

δ(ω − nfrep) , (33.38)

which means that all comb frequencies are locked.
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33.4.2.3 Referencing radio and optical frequencies

In a frequency comb frep is easy to measure, as one just has to filter the beat of the
comb light with a low pass filter cutting off frequency components higher than frep,
as illustrated in Fig. 33.16. In contrast, measuring fceo is more complicated. Unless
we have an octave spanning frequency comb, i.e. there are two frequencies in the
comb,

ν1 = m1frep + fceo and ν2 = m2frep + fceo , (33.39)

such that ν2 = 2ν1 +∆ν with |∆ν| < |fceo|, i.e. m2 = 2m1. We get,

m2frep + fceo = 2m1frep + 2fceo +∆ν , (33.40)

or,

fceo = −∆ν . (33.41)

33.4.2.4 Dual comb spectroscopy

Optical sensors are based on the interaction of light with matter and are often im-
plemented like some kind of spectrometer. The ideal sensor should detect a given
substance with great sensitivity, identify it (especially in the presence of many other
substances or a noisy background) and quantify it. Add to these features the ability
to perform measurements in real time, if possible remotely, in a compact and easy-
to-use assembly at affordable price, and we have an absolutely non-trivial problem.
Broadband sources allow to detect multiple substances, but have limitations in reso-
lution, calibration or acquisition time. Monochromatic sources allow good resolution,
but in general have limitations on tunability and spectral coverage. The sensitivity
can be increased by increasing the optical path of interaction, requiring multi-pass
cells or resonant optical cavities, which augment the complexity of the setup. Finally,
the detection method places limits on the acquisition rate and also on the sensitiv-
ity. Particularly the Fourier transform spectroscopy uses broadband incoherent light
sources and the time of acquisition and resolution are limited by the speed of trans-
lation of a mechanical stage, as well as the range of its displacement. Here, the use of
optical frequency combs replacing the incoherent sources, combined with dual comb
spectroscopy, brings important advantages [839, 389].

33.4.3 Multi-photon spectroscopy

33.4.4 Raman spectroscopy

Raman spectroscopy is a spectroscopic technique typically used to determine vibra-
tional modes of molecules, although rotational and other low-frequency modes of
systems may also be observed. Raman spectroscopy is commonly used in chemistry
to provide a structural fingerprint by which molecules can be identified. Raman spec-
troscopy relies upon inelastic scattering of photons, known as Raman scattering. A
source of monochromatic light, usually from a laser in the visible, near infrared, or
near ultraviolet range is used, although X-rays can also be used. The laser light inter-
acts with molecular vibrations, phonons or other excitations in the system, resulting
in the energy of the laser photons being shifted up or down. The shift in energy
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Figure 33.17: Principle of dual comb spectroscopy.

gives information about the vibrational modes in the system. Infrared spectroscopy
typically yields similar, complementary, information.

Figure 33.18: Energy-level diagram showing the states involved in Raman spectra.

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation
from the illuminated spot is collected with a lens and sent through a monochromator.
Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh
scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter,
while the rest of the collected light is dispersed onto a detector.

Spontaneous Raman scattering is typically very weak; as a result, for many years
the main difficulty in collecting Raman spectra was separating the weak inelastically
scattered light from the intense Rayleigh scattered laser light (referred to as ’laser re-
jection’). Historically, Raman spectrometers used holographic gratings and multiple
dispersion stages to achieve a high degree of laser rejection. In the past, photo-
multipliers were the detectors of choice for dispersive Raman setups, which resulted
in long acquisition times. However, modern instrumentation almost universally em-
ploys notch or edge filters for laser rejection. Dispersive single-stage spectrographs,
for example Czerny-Turner (CT) monochromators (see Sec. 33.1.5), paired with CCD
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detectors are common.
The name ’Raman spectroscopy’ typically refers to vibrational Raman using laser

wavelengths which are not absorbed by the sample. Raman spectroscopy is used
in chemistry to identify molecules and study chemical bonding and intramolecular
bonds. Because vibrational frequencies are specific to a molecule’s chemical bonds
and symmetry (the fingerprint region of organic molecules is in the wavenumber range
500− 1500 cm−1, Raman provides a fingerprint to identify molecules.

In solid-state physics, Raman spectroscopy is used to characterize materials, mea-
sure temperature, and find the crystallographic orientation of a sample. As with single
molecules, a solid material can be identified by characteristic phonon modes. Informa-
tion on the population of a phonon mode is given by the ratio of the Stokes and anti-
Stokes intensity of the spontaneous Raman signal. Raman spectroscopy can also be
used to observe other low frequency excitations of a solid, such as plasmons, magnons,
and superconducting gap excitations. Distributed temperature sensing (DTS) uses
the Raman-shifted backscatter from laser pulses to determine the temperature along
optical fibers.

33.4.5 Time-resolved spectroscopy

pump-probe spectroscopy

33.5 Further reading
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Chapter 34

Locking circuits

In a laboratory we are often confronted with the need to control the value of a physical
parameter, f.ex., room temperature, currents and voltages, or the frequency and in-
tensity of laser beams. The physical discipline dealing with the fundamental concepts
of this field is called control theory and its application to development of automatic
control systems is called control engineering.

In this chapter, after a brief introduction into control theory, we will design and
construct a few automatic control systems, which are common in quantum optics labs.

34.1 Introduction to control theory

The minimum ingredients of a control system are 1. a sensor measuring the actual
value of the parameter to be controlled (e.g., a thermometer), 2. an actuator capable
of correcting the value (e.g., a heater or cooler), and 3. a suitable controller (servo
system) linking sensor and actuator thus providing a feedback.

The controller comprises a comparator comparing the measured value with a ref-
erence and delivers the difference to a controller, which may be implemented elec-
tronically by proportional control, PID control, bistable hysteretic control, or pro-
grammable logic control. Older controller units have been mechanical, as in a carbu-
retor. Finally, the value computed by the controller is delivered to an actuator, which
manipulates and changes a variable in the controlled system (or plant).

34.1.1 Open- and closed-loop control

Fundamentally, there are two types of control loop: open loop control, and closed loop
(feedback) control.

In open loop control, the control action from the controller is independent of the
’process output’ (or ’controlled process variable’). An example of this is a central
heating boiler controlled only by a timer, so that heat is applied for a constant time,
regardless of the temperature of the building. The control action is the switching
on/off of the boiler. The process output is the building temperature.

In closed loop control, the control action from the controller is dependent on the
process output. In the case of the boiler analogy, this would include a thermostat
to monitor the building temperature, and thereby feed back a signal to ensure the
controller maintains the building at the temperature set on the thermostat. A closed
loop controller therefore has a feedback loop which ensures the controller exerts a

1447
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control action to give a process output the same as the ’reference input’ or ’set point’.
For this reason, closed loop controllers are also called feedback controllers.

The definition of a closed loop control system is a control system capable of can-
celing the deviation of a system variable from a reference value by means of a feedback
signal computed from a measured value of the variable and used to act on the system
in a controlled way [787]. Automatic feedback control has revolutionized all areas of
human activities.

To overcome the limitations of the open-loop controller, control theory introduces
feedback. A closed-loop controller uses feedback to control states or outputs of a
dynamical system. Its name comes from the information path in the system: process
inputs (e.g. voltage applied to an electric motor) have an effect on the process outputs
(e.g. speed or torque of the motor), which is measured with sensors and processed
by the controller; the result (the control signal) is ’fed back’ as input to the process,
closing the loop.

Closed-loop controllers have the following advantages over open-loop controllers:

• disturbance rejection (such as hills in the cruise control example above)

• guaranteed performance even with model uncertainties, when the model struc-
ture does not match perfectly the real process and the model parameters are
not exact

• unstable processes can be stabilized

• reduced sensitivity to parameter variations

• improved reference tracking performance

In some systems, closed-loop and open-loop control are used simultaneously. In such
systems, the open-loop control is termed feedforward and serves to further improve
reference tracking performance.

34.1.1.1 Closed-loop transfer function

Due to noise the variables of the system become time-dependent. The output of the
system y(t) is fed back through a sensor measurement F to a comparison with the
reference value r(t). The controller C then takes the error e(t) (difference) between
the reference and the output to change the inputs u(t) to the system under control
P . This is shown in the figure. This kind of controller is a closed-loop controller or
feedback controller. We will restrain here to single-input-single-output control systems
(SISO) disregarding the possibility of having multiple and interdependent inputs and
outputs.

If we assume the controller C, the plant P , and the sensor F are linear and time-
invariant (i.e. elements of their transfer function C(s), P (s), and F (s) do not depend
on time), the systems above can be analyzed using the Laplace transform on the
variables, U(s) = Lu(t), Y (s) = Ly(t), and R(s) = Lr(t). Here,

s ≡ ıf (34.1)

is an abbreviation for the imaginary Fourier frequency component f of the noise. In
the following sections we will, however, characterize the transfer functions in terms
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Figure 34.1: (a) General schematic diagram of a feedback loop. (b) Possible implementation
for the frequency stabilization of a laser to a cavity resonance,

of real Fourier frequencies. The theoretical foundation of Linear Time-Independent
(LTI) systems is outsourced to Sec. 35.2.

For a control to work, it needs to know in which direction to act and when the
control point is reached. Therefore, each control needs a slope (discriminator) cross-
ing zero. This can be implemented by comparing the signal Y (f) delivered by the
detector (for simplicity assumed to be frequency-independent) with a reference sig-
nal R. The error signal E(f) = R(f) − Y (f) is then processed by a controller C,
and the control signal U(f) is passed, via an actuator (for simplicity assumed to
be frequency-independent), to the controlled device P . The controlled device (and
obviously all other components of the circuit) are subject to perturbations Z. The
transfer functions form a closed control circuit described by the following relations:

Y (f) = P (f)U(f) and U(f) = C(f)E(f) and E(f) = R(f)−Y (f) . (34.2)

Solving the system of equations (34.2) for Y (f) in terms of R(f) gives,

Y (f) =
P (f)C(f)

1 + P (f)C(f)
R(f) ≡ H(f)R(f) . (34.3)

H(s) is referred to as the closed-loop transfer function of the system. The numerator
V (f) ≡ P (f)C(f) is called the forward gain (open-loop gain) from R to Y , and the
denominator is one plus the gain in going around the feedback loop, the so-called
loop gain. If |P (f)C(f)| ≫ 1, i.e. it has a large norm with each value of f , and then
Y (f) ≃ R(f) and the output closely tracks the reference input.

34.1.1.2 Noise reduction via feedback circuits

We have seen that the idea of locking, whether mechanical or electronic, is to bring
a given physical signal Y to a predetermined value R and lock it there, which is the
role of the control circuit or regulator. Now, considering a possible perturbation of
the plant (see Fig. 34.1) by noise Zp and also of the regulator by noise Zc, the result
(34.3) must be generalized,

Y (f) =
P (f)C(f)

1 + P (f)C(f)
R(f) +

P (f)C(f)

1 + P (f)C(f)
Zc(f) +

1

1 + P (f)C(f)
Zp(f) , (34.4)
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or,

Y (f) =
1

1 + V (f)−1
[R(f) + Zc(f)] +

1

1 + V (f)
Zp(f) . (34.5)

This shows that, provided the open loop gain is high enough, perturbations affecting
the plant can be efficiently be neutralized. In contrast, noise entering via the control
cannot be suppressed, and this fact is independent on the chosen controller transfer
function: Perturbations entering between the measurement point and the input of the
regulator are not eliminated ! Consequently, the detector (which generally works with
very low signals) should not introduce or let penetrate noise, because this affects the
variable to be controlled: Any variation of the steering variable at the regulator will
be transmitted 1 to 1.

In the following, we will discuss the most common controller called PID-servo.

34.1.2 PID feedback control

A PID controller continuously calculates an error value e(t) as the difference between
a desired setpoint and a measured process variable and applies a correction based
on proportional, integral, and derivative terms. PID is an acronym for Proportional-
Integral-Derivative, referring to the three terms operating on the error signal to pro-
duce a control signal.

Figure 34.2: A block diagram of a PID controller in a feedback loop, r(t) is the desired
process value or ’set point’, and y(t) is the measured process value. A proportional-integral-
derivative controller (PID controller) is a control loop feedback mechanism control technique
widely used in control systems.

The theoretical understanding and application dates from the 1920s, and they
are implemented in nearly all analogue control systems; originally in mechanical con-
trollers, and then using discrete electronics and latterly in industrial process comput-
ers. The PID controller is probably the most-used feedback control design.

If u(t) is the control signal sent to the system, y(t) is the measured output and
r(t) is the desired output, and tracking error e(t) = r(t)− y(t), a PID controller has
the general form,

u(t) = KP e(t) +KI

∫
e(τ)dτ +KD

de(t)

dt
. (34.6)
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The desired closed loop dynamics is obtained by adjusting the three parameters KP ,
KP , and KI , often iteratively by ’tuning’ and without specific knowledge of a plant
model. Stability can often be ensured using only the proportional term. The integral
term permits the rejection of a step disturbance (often a striking specification in
process control). The derivative term is used to provide damping or shaping of the
response 1.

Applying Laplace transformation results in the transformed PID controller equa-
tion,

U(f) =

(
KP +KI

1

ıf
+KDıf

)
E(f) ≡ C(f)E(f) , (34.7)

defining the PID controller transfer function C(f).

From equations (34.6) or (34.7) we immediately see that the PID transfer functions
can readily be implement in electronic circuits using resistors (P), capacitors (I), and
inductances (D).

Example 207 (Comparing servo controllers): We now assume a low-pass
behavior for the plant,

P (f) =
1

1 + ıf/fc
,

and analyze the feedback circuit for four cases.

• The first one is that of a proportional servo, C(f) = KP . Then, Eq. (34.5)
reads,

Y =
KP

1 + ıf/fc +KP
(R+ Zc) +

1 + ıf/fc
1 + ıf/fc +KP

Zp{
s→0−→ KP

1+KP
(R+ Zc) +

1
1+KP

Zp
s→∞−→ KP fc

ıf
(R+ Zc) + Zp

.

We see that, for limited open-loop gain, noise affecting the plant Zp is not
eliminated at low frequencies. Additionally, at high frequencies, the gain
for the error signal R drops like −6dB/oct.

• The second case is that of an integral servo C(f) = KI/ıf . Then Eq. (34.5)
reads,

Y =
KI/ıf

1 + ıf/fc +KI/ıf
(R+ Zc) +

1 + ıf/fc
1 + ıf/fc +KI/ıf

Zp{
f→0−→ R+ Zc +

ıf
KI
Zp

→∞−→ KIfc
(ıf)2

(R+ Zc) + Zp
.

Apparently, the noise Zp is now eliminated at low frequencies. However,
the gain for R drops even faster at high frequencies.

1PID controllers are the most well established class of control systems: however, they cannot be
used in several more complicated cases, especially if MIMO systems are considered.
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• The third case is that of a PI-servo, C(f) = KP +KI/ıf . Then Eq. (34.5)
reads,

Y =
KP +KI/ıf

1 + ıf/fc +KP +KI/ıf
(R+ Zc) +

1 + ıf/fc
1 + ıf/fc +KP +KI/ıf

Zp
f→0−→ R+ Zc +

ıf
KI
Zp

f→∞−→ fcKP
ıf

(R+ Zc) + Zp
,

which represents a viable compromise, since it has the same low-frequency
behavior as the I-servo, but at high frequencies the gain for R drops only
like −6dB/oct.

• Finally, the forth case is that of a PID-servo, C(f) = KDıf +KP +KI/ıf .
Then Eq. (34.5) reads,

Y =
KDıf +KP +KI/ıf

1 + ıf/fc +KDıf +KP +KI/ıf
(R+ Zc) +

1 + ıf/fc
1 +KDıf +KP +KI/ıf

Zp
f→0−→ R+ Zc +

ıf
KI
Zp

f→∞−→ 1
1+1/fcKd

(R+ Zc) +
1

fcKD
Zp

.

The low-frequency behavior remains still the same, but at high frequencies
the gain for R stays constant.

A time domain analysis shows that P regulators have little phase lag, but the
controlled variable can not be zeroed. On the other hand, I regulators have finite
control bandwidth, but the controlled variable can be zeroed. PI regulators (parallel
circuit of P and I regulators) have a reaction time Tn = KP /KI ; that is, the jump
response is advanced by Tn in comparison to the regulator I.

In the time domain we can summarize that regulators

• D are characterized by the absence of memory, but they are very fast,

• P have no idea of the strength of their impact,

• I increase their impact in time until the error disappears.

For practical PID controllers, a pure differentiator is neither physically realizable nor
desirable due to amplification of noise and resonant modes in the system. Therefore,
a phase-lead compensator type approach is used instead, or a differentiator with low-
pass roll-off [406, 287, 288, 822]. See Excs. 34.2.3.1 and 34.2.3.2.

Like any real system, the controlled device behaves as a low-pass for manipulations
or perturbations at high frequency. In other words, the device can only respond to
external perturbations with finite speed. This delay of the response leads to a phase
shift that can reverse the sign of the error signal E(f) and transform a negative
feedback into a positive feedback. Now, in the case that there are high frequency
perturbations, for which the amplification of the closed control circuit is > 1, these
perturbations can be amplified to form oscillations. These oscillations, which occur
at the bandwidth of the closed loop gain are called servo oscillations.
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Fig. 34.3 illustrates the necessity of optimizing the gain and the frequency response
of the servo circuit: A proportional servo simply providing a frequency-independent
gain C(f) = KP will lead to a forward gain R(f) ∝ P (f) exhibiting a low-pass
behavior, i.e. a phase-shift ϕ = −π/2 transforming negative to positive feedback.
The gain at the frequency where this happens need to be lower than 1, otherwise
the feedback servo will generate servo-oscillations, i.e. it will oscillate at the lowest
Fourier frequencies where noise is amplified. A PI-servo alleviates this problem by a
phase shift in opposite direction.
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Figure 34.3: (code) Bode diagram for a plant subject to low-pass behavior and for a PI-servo.

(blue solid) Low-pass filter with 100 Hz bandwidth; (blue dash-dotted) another low-pass filter

at 100 kHz; (cyan) same as blue, but amplified by 20 dB; (red) PI-servo; (magenta) open-loop

amplification.

34.1.3 Noise transfer in feedback loops

In order to develop a model for noise transfer we must understand what noise is
and how it can be measured. This is not a simple task and we therefore outsourced
a proper discussion to Sec. 35.3. Here, we will only use the information that noise
affecting a signal y(t) is quantified by a spectral noise density defined as the Fourier
transform of the signal’s autocorrelation function (35.59),

Sy(f) ≡ F [y∗(t)y(t+ τ)] . (34.8)

Now, we can see how noise is transmitted through an LTI device P (f):

Y (f) = P (f)X(f) ⇒ Sy(f) = |P (f)|2Sx(f) . (34.9)

This result can be applied to our formula (34.5) describing a feedback loop,

Sy(f) =

∣∣∣∣
1

1 + V (f)−1

∣∣∣∣
2

Sc(f) +

∣∣∣∣
1

1 + V (f)

∣∣∣∣
2

Sp(f) . (34.10)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PIDidea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PIDidea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PIDidea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PIDidea.m
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This formula describes how a servo control shapes the noise spectrum of a feedback-
controlled variable y(t).

Example 208 (Noise reduction by feedback): As an example, let us study
the control circuit for stabilizing a laser to a cavity mode depicted in Fig. 34.1(b)
using the following additional background information: The laser frequency ω
be perturbed by 1/f noise described by the power spectral density,

Sp(f) ≡ 2 · 10−24/f .

This noise enters the feedback loop via the fluctuations zp(t) depicted in
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Figure 34.4: (code) Spectral density of frequency fluctuations of the servo system exhibited in

Fig. 34.2. Shown is the spectral noise density Sy(f) of the laser light for 4 different feedback

gain curves: (black solid) no feedback control C(f) = 0, (blue) P-regulator with C(f) = 4,

(red) I-regulator with C(f) = 5 · 106/ıf , and (green) PI-regulator C(f) = 4 + 5 · 106/ıf .

Fig. 34.1(a). The black solid line in Fig. 34.4 traces the noise spectrum Sp(f),
which is also the noise expected for the laser without feedback loop. Further-
more the optical cavity, which constitutes the essential part of the regulator,
is itself afflicted by acoustic noise and thermal drifts which, for simplicity, we
describe by a white Fourier frequency spectrum given by,

Sc(f) ≡ 2 · 10−30 Hz-1 ,

and represented by the black dotted line in Fig. 34.4. As we have seen, servos
systems always have a finite bandwidth beyond which noise is fully coupled to
the system. For example in laser frequency locks, the weakest point of a servo
chain is often the small bandwidth of a piezo transducer used to correct the
length of the laser cavity. We describe this behavior by a low-pass filter for the
transfer function of the laser,

P (f) =
1

1 + ıf/fc

with a bandwidth of fc = 10 kHz.

Fig. 34.4 demonstrates how the 1/f noise Sp(f) can be efficiently suppressed at

frequencies below the low-pass filter cut-off fc to a value limited by the white

noise Sc(f) entering through the regulator. As predicted by the formula (34.10),

the suppression of the noise Sp(f)becomes all the better, as the open-loop gain

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_WholeModelNoise.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_WholeModelNoise.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_WholeModelNoise.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_WholeModelNoise.m
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V (f) gets higher. However, with the amplification of the controller, also the

gain of the closed control circuit increases, and this necessarily causes phase

shifts, which lead to (servo-)oscillations in the circuit appearing as a strong

peak of strong noise around a certain Fourier frequency fbw characterizing the

bandwidth of the closed loop servo system. Note that high-frequency noise, to

which the cavity might be subject, is not coupled to the laser, because it is

filtered by the low-pass filter P (f) to the same extend as the error signal itself.

The next example, exhibited in Fig. 34.5, shows the experimental characterization
of a dye laser locked via the Pound-Drever-Hall technique (see Sec. 34.3.3) to an optical
cavity.
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Figure 34.5: Characterization of a Pound-Drever-Hall stabilization of a dye laser. (a) PDH
error signal (red) and cavity transmission signal (blue), (b) spectral density of frequency
fluctuations, (c) Allan variance. (d-e) Beat signals of Mach-Zehnder interferometers. In (d)
one interferometer arm is passed through an optical fiber attached to a piezo transducer
to which a sinusoidal 5 kHz modulation of is applied. This demonstrates the sensitivity of
optical fibers to acoustic noise. In (e) one interferometer arm is send to another optical table
and back. This demonstrates how mechanical vibrations of optical components in the beam
path can broaden the spectrum of a laser field.

34.2 Amplitude stabilization circuits

34.2.1 Laser intensity stabilization with an AOM

The light emitted from lasers is generally subject to frequency fluctuations and in-
tensity fluctuations, which are unacceptable for many applications. In this section we
will construct an intensity stabilization for a laser beam.
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One way of stabilizing the light intensity of a laser beam consists in using the an
acousto-optic modulator, as shown in Fig. 34.6. The first Bragg diffraction order (see
Sec. 32.3.1) is focused onto a photodiode. Intensity fluctuations of the light recorded
by the photodiode are converted into voltage fluctuations, processed by an electronic
circuit fed back to the AOM. The intensity of light diffracted into the first order can
be controlled via the power of the radiofrequency alimenting the AOM. The control
circuit can now be conceived such as to neutralize the intensity fluctuations recorded
by the photodiode.

Figure 34.6: (a) Layout of the intensity control. The variable attenuator controls the am-
plitude of the radiofrequency driving the AOM: low voltage (0V) increases the attenuation,
high voltage (+16V) reduces it. The sketched control circuit realizes a negative feedback,
when the photodetector produces a positive signal. (b-d) Signals recorded at the test points
of the circuits shown in (a). See text for explanations.

34.2.1.1 Operation principle and adjustment procedure

The idea of the intensity stabilization is illustrated in Fig. 34.6(b-d): The laser inten-
sity scattered into the first diffraction order is recorded by a photodiode (test point
1 in the figure). The signal is then amplified (and inverted) by a first OpAmp (test
point 2). The trimmer T1 (test point 3) is now adjusted to a positive voltage com-
pensating the DC part of the signal (2), i.e., the sum (2+3) after being inverted and
amplified by the second OpAmp (test point 4), should be around zero DC. The signal
(2+3) is called error signal, since it is this signal which tells us in which direction
the control circuits has to work to counteract the power fluctuation. In the present
design, the second OpAmp also incorporates the PI servo (see Sec. 34.1), which can
be adjusted via the amplification of the trimmer T2 and the capacity C.
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It is now important to realize, that the variable attenuator works best around a
given control voltage, which is provided by adding via the trimmer T3 (test point
5) and a third OpAmp an appropriate offset. Furthermore, we note that variable
attenuator reduces its attenuation with increasing control voltage. Thus, the control
signal (test point 6) works to enhance the efficiency of the AOM, when the photodiode
signals a power drop, and vice versa. As a result, the light power in the first diffraction
order is stabilized, however, at a level inferior to the unstabilized power [822, 288].

The trimmers of the servo circuits can be adjusted using the following procedure:

1. Observe the light intensity and its fluctuations at test point (1), set test point
(4) to ground (e.g. short-circuiting the trimmer T2), and adjust trimmer T3 until
the light intensity level is at bit lower than the lowest fluctuations.

2. Reconnect test point (4) to the circuit and adjust trimmer T1 until the voltage
at test point (4) cancels to zero.

34.2.2 PI servo for a current stabilization

Many applications in quantum optics require very stable high currents, for instance, in
coils generating magnetic field for atomic trapping potentials. Here, we will construct
a PI servo to para realize a current stabilization.

1k
1k

BC107

R L

Figure 34.7: Current stabilization.

34.2.3 Exercises

34.2.3.1 Ex: Integrator

Determine the transfer function of the circuit depicted in Fig. 34.8. What kind of
control circuit is it?

34.2.3.2 Ex: PID controller

Consider the PID controller transfer function in series,

C(f) = K

(
1 +

1

ıfTI

)
(1 + ıfTD) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Control_ServoLoop01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Control_ServoLoop02.pdf


1458 CHAPTER 34. LOCKING CIRCUITS
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wcFigure 34.8:

a first-order low-pass filter in the feedback loop,

F (f) =
1

1 + ıfTF
,

and a linear actuator with low-pass behavior,

P (f) =
A

1 + ıfTP
.

How do you have to choose the various time constants in order to let the closed-loop
transfer function be H(f) = 1.

34.2.4 Experiment: Development of an intensity stabiliza-
tion

We will now set up up an intensity stabilization. For the realization of the project
prior knowledge of 1. photodetectors (see Sec. 31.2.1), 2. acousto-optic modulators
(AOM) (see Sec. 32.3.1), 3. electronic circuits (see Sec. 31.1.3), and 4. control circuits
(see Sec. 34.1) is required.

1. Realize the optical setup illustrated in Fig. 34.6. Optimize the alignment of the
AOM (in particular, the focus and the Bragg angle) in order to maximize the
efficiency of the AOM. Take care not to saturate the photodiode, if necessary
adapt the load resistance (see Sec. 31.1.). Study the data sheet of the variable
attenuator.

2. Derive and plot the transfer function for ac-signals of the electronic circuit.
What kind of control circuit is it?

3. Set up the electronic circuit exhibited in Fig. 34.6. Test it by observing the
signals at the six test points marked in the circuit diagram. Understand and in-
terprete the roles of the three adjustable parameters: input offset, amplification,
and output offset.

4. Incorporate the servo circuit into the optical setup as shown in Fig. 34.6. How
to make sure the circuit is operating properly? 2.

2Datasheet for the VCO see appendix Fig. 35.16,
data sheet for the variable attenuator see appendix Fig. 35.17,
data sheet for the amplifier see appendix Fig. 35.15.
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34.2.5 Experiment: PI servo for a current stabilization

How to control high currents? How to dramatically increase the switching speed
despite inductive loads and eddy currents?

1. Connect a resistive charge to a voltage source. Insert a MOSFET into the
circuit and a small resistor. Control the gate of the MOSFET with a voltage
and measure the current of the circuit via the voltage drop at the small resistor
as a function of the gate voltage.

2. Now control the gate voltage via the voltage measured at the small resistor and
measure again the dependency voltage-to-current.

34.3 Frequency stabilization circuits

Although lasers are often monochromatic, they generally have a poor intrinsic fre-
quency stability, that is, the frequency of the light field E(t) = sinωt drifts in time,
ω = ω(t) on a time scale, which is slow in comparison to the oscillation period 1/ω.
The reasons for these drifts are typically acoustic noise or thermal drifts to which the
laser device is subject and which are difficult to avoid.

Often it is much easier to guarantee the mechanical and thermal stability of a
passive device exhibiting resonances, such as an optical cavity. Furthermore, nature
provides intrinsically stable resonances, such as narrow atomic transitions. These
resonances can be used to actively stabilize the frequency of lasers via feedback servo
circuits. In the following sections we will present a few common techniques.

34.3.1 Side-of-fringe stabilization to/of a Fabry-Pérot cavity

Resonances are generally characterized by peaked profiles symmetrically centered
about a resonance frequency ω0. Excited by a laser field of frequency ω, they respond
by an oscillation whose amplitude depends on the detuning ω − ω0. Unfortunately,
the amplitude of the response signal does not tell us, whether the detuning is positive
or negative. We have to invent techniques allowing us to extract this information
from the response signal and to generate a true error signal.

One of these techniques is the side-of-fringe stabilization technique illustrated in
Fig. 34.9. Here, the laser tuned to one side of the optical resonance such that, when
the laser frequency drifts, the response signal increases or decreases correspondingly.
Technically, this is achieved by comparing (i.e. subtracting) the response signal with
a stable reference signal.

34.3.2 Lock-in method for frequency stabilizing to/of a cavity

One method of stabilizing a laser on a resonator consists in modulating the frequency
slightly and then demodulating the transmission signal of the resonator at the same
frequency. This is the so-called lock-in method. Frequency modulation of the laser
beam can be done by modulating the laser diode feed current, the piezo of the extended
laser cavity or using an AOM. Fig. 34.10 shows the layout of the optical assembly.
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Figure 34.9: (a) Frequency stabilization to a cavity using the side-of-fringe method. (b) The
laser is tuned to rising (or falling) slope of a transmission curve of a Fabry-Pérot cavity. The
error signal is compared with reference voltage.

Figure 34.10: (a) Frequency stabilization to a cavity using the lock-in method. (b)
Frequency-modulated signals applied to a resonance suffer a period doubling, when the
signal frequency is close to resonance. By demodulating the signals discriminated at the
resonance profile, we obtain, after averaging over a period, a DC voltage that is proportional
to the frequency detuning. The yellow area denotes the components constituting the lock-in
amplifier.

The principle of control through modulation is explained in Fig. 34.10(a). A laser
beam passes twice (round-trip) through an acousto-optic modulator fed by a radiofre-
quency voltage with modulated frequency, ω(t) = ωc+M cos ft. Here, the modulation
frequency is much lower than its amplitude (or frequency excursion), f ≪ M . The
laser beam is now injected into an optical cavity and the frequency of the laser tuned
near a resonance of the cavity. The dependence of the transmission on the frequency
is described in good approximation of the Airy formula by a Lorentzian,

I(ω) =
γ2

4(ω − ω0)2 + γ2
. (34.11)

The signal transmitted through the cavity [see Fig. 34.10(b)],

Ud(t) = I(ω(t)) =
γ2

4 (ωc +M cos ft− ω0)
2
+ γ2

, (34.12)

is demodulated by a lock-in amplifier [see Fig. 34.10(c)],

Us(t) = Ud(t) cos(ft+ ϕ) , (34.13)
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integrated with a locking electronics [see Fig. 34.10(d)]

Ūs(t) =
1

T

∫ T

0

Us(t)dt . (34.14)

and used to control the piezo of the laser’s extended cavity.

34.3.3 Pound-Drever-Hall stabilization

When the frequency of a carrier wave ω is modulated by a frequency Ω 3, the spectrum
consists of sidebands the frequencies and phases of which can be calculated from an
expansion of the wave in Bessel functions. Let N be the modulation excursion and
Jk(x) the Bessel function of the order k. Higher-order sidebands k > 1 are usually
dropped in the calculation,

eı(ωt+N sinΩt) = eıωt[−J1(N)eıΩt + J0(N) + J1(N)e−ıΩt] . (34.15)

From the latter expression, it can be seen that the spectrum of sidebands is formed

Figure 34.11: Frequency stabilization to a cavity using the Pound-Drever-Hall method.

by the frequencies ω and ω ± Ω. A resonator responds to a field of incident light
E0(ω) oscillating with frequency ω by reflecting the field (R: reflectivity of mirrors,
δfsr: free spectral range)

Er(ω) = E0(ω)
√
R

1− e−ıω/δfsr

1−R e−ıω/δfsr
, (34.16)

where the amplitude and the phase of the reflected light field follow from the relation
Er(ω) = |Er(ω)|eıϕ(ω). Obviously the field of the reflected light is strong only, when
the laser frequency is close to one mode of the resonator (when ω/δ is an integer
number). By inserting Eq. (34.16) into Eq. (34.15), we obtain the response of the
resonator to a field containing sidebands as a function of the frequency of light ω, of
the modulation frequency Ω, and of the cavity finesse,

|Etot|2 = |eıωt[J1(N)Er(ω +Ω)eıΩt + J0(N)Er(ω)− J1(N)Er(ω − Ω)e−ıΩt]|2

= J0(N)J1(N)Er(ω +Ω)eıΩt + J0(N)J1(N)E∗
r (ω − Ω)eıΩt + ...+ c.c. . (34.17)

The contributions of the reflected field to the current in the photodetector, |Er|2,
oscillating with frequency Ω and extracted by the alternating current e−iΩt+iθ (θ is

3Remember that we specify all frequencies except the free spectral range δfsr in radians.
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an arbitrarily chosen phase angle), are

SPDH = |Etot|2e−iΩt+iθ (34.18)

= J0(N)J1(N)Re {eıθ[E∗
r (ω)Er(ω +Ω)− Er(ω)E∗

r (ω − Ω)]}+ ... .
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Figure 34.12: (code) (Left) Pound-Drever-Hall reflection signal for θ = 0, π/2. (Right)

Transmission signal.

By a suitable choice of the modulation index, the pre-factor containing Bessel
functions (and therefore the signal amplitude) can be maximized. That is the case,
for M ≃ 1.1 (see Exc. 32.4.5.1). Each of the two parts of the summation in the above
equation is the result of a beating of the carrier Er(ω) with one of the sidebands
Er(ω ± Ω). Only those optical sidebands being close to a mode of the resonator
provide, along with the radiofrequency sidebands, contributions to the reflection signal

The dependence of the reflection signal SPDH on the frequency ω is shown in
Fig. 34.12(a). The antisymmetric shape and the zero-crossing slope are ideal for use as
a discriminator generating an error signal for a frequency stabilization. This method
is called Pound-Drever-Hall method.

34.3.4 Phase stabilization of standing waves

For the stabilization of the phase of a standing wave one can use the following scheme.
It is similar to the homodyne method used with the Michelson interferometer with the
difference that laser beam separation and recombination are done at different beam
splitters.

34.3.5 Frequency-offset locking with phase-locked loops

Many application in spectroscopy require two stable lasers emitting at different but
well-defined and tunable frequencies. Examples are stimulated Raman transitions, or
the spectroscopy of atoms interacting with optical cavities [133]. In the following we
will discuss and compare different approaches to locking one laser to another laser
using a phase-locked loop (PLL). See also (watch talk).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PoundDreverHallSignal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PoundDreverHallSignal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/PhaselockedLoop
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Figure 34.13: Phase stabilization.

34.3.5.1 VCO and mixing

In a phase-locked loop one tries to synchronize a self-sustained oscillator, in general
realized by a VCO, with a local oscillator. The VCO generates an ac-voltage Urf ,
whose frequency is tuned via a dc-control-voltage Uct around a center frequency ω0,
as shown in Fig. 34.14(a). It can be modeled by,

Urf (t) = 2B cosϕ(t) with
dϕ

dt
= ω0 +KUct(t) . (34.19)

The local oscillator produces an ac-voltage, Ulo(t) = A sinϕlo(t). A mixer multiplies
both signals,

Ud(t) = AB (sin[ϕlo(t)− ϕ(t)] + sin[ϕlo(t) + ϕ(t)]) . (34.20)

See also Exc. 34.3.7.1.

Figure 34.14: (a) PLL to lock a VCO to a reference oscillator LO. (b) PLL to lock the
difference frequency of two lasers to a LO.

34.3.5.2 Low-pass filtering

The multiplied signal Ud contains all information about frequency deviations of the
VCO from the LO. To extract them, we low-pass filter this signal, cutting off all high
frequency components, i.e. apply the filter transfer function,

F (f) = (1 + sRC)−1 . (34.21)
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The signal of the filter is Ulp(f) ≡ F (f)Ud(f). In time domain, which is obtained by
a Laplace transform, F (t) = (RC)−1θ(t)e−t/RC , such that

Ulp(t) = F ⋆ Ud(t) =

∫ ∞

−∞
F (t− τ)Ud(τ)dτ =

e−t/RC

RC

∫ t

−∞
eτ/RCUd(τ)dτ . (34.22)

The derivative is obviously,

dUlp
dt

+
Ulp
RC

=
Ud(t)

RC
=
AB

RC
sin [ϕlo(t)− ϕ(t)] , (34.23)

inserting the above expression for Ud. Note, that we would have obtained the same
result using control theory (see Sec. 34.1).

34.3.5.3 Phase synchronization

The phase synchronization servo is closed by setting Uct = Ulp. Thus we may substi-
tute Ulp(t) and define ψ ≡ ϕ− ϕlo,

d2ψ

dt2
+

1

RC

dψ

dt
+
KAB

RC
sinψ = −d

2ϕlo
dt2

− 1

RC

(
dϕlo
dt
− ω0

)
. (34.24)

In most cases the LO frequency varies slowly, so that we may assume ˙ϕlo = ωlo,

d2ψ

dt2
+

1

RC

dψ

dt
+
KAB

RC
sinψ = − 1

RC
(ωlo − ω0) . (34.25)

Hence, a PLL generates a signal Urf (t) having approximately the same (time-dependent)
frequency as the local oscillator Ulo(t). The equation is identical to that of an over-
damped rotator or a resistively shunted Josephson junction [655].

We observe that the PLL is locking to servo oscillations. The spectrum of signal
produced by the VCO exhibits sidebands as soon as the loop is closed. Their ampli-
tude depends on the gain, their frequency varies with the offset voltage controlling
the VCO.
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Figure 34.15: (code) Simulation of (a) the phase and (b) frequency difference in a PLL for

(red) ωlo − ω0 = (2π) 2 kHz and (blue) 4 kHz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_LaserServoOscillations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_LaserServoOscillations.m
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34.3.6 Frequency-offset locking using transfer cavities

Sometimes we want to take a ultra-high resolution spectrum in a frequency region,
where there is no reference frequency available nearby. By nearby we mean frequency
regimes which can be reached by PLLs based on frequency beats on fast photode-
tectors, as studied in Sec. 34.3.5. A possible method consists in the use of an optical
transfer cavity.

Here, a reference laser stabilized to a known frequency ωref , e.g. via a saturation
spectroscopy to an atomic transition, is used to lock a piezo-tunable optical cavity
(called transfer cavity), as shown in Fig. 34.16. The cavity in turn is used to lock the
spectroscopy laser ωblu−las, e.g. via the Pound-Drever-Hall method.

Figure 34.16: Schematic view of a transfer cavity locking system involving three cascaded
servo systems for (i) the stabilization of the reference laser to a known frequency; (ii) of the
transfer cavity to the reference laser, and (iii) of the spectroscopy laser to the transfer cavity.

Two issues need to be considered when using the transfer cavity scheme:

• The scheme does not permit tuning of the spectroscopy laser; this feature
must be included using, e.g. AOMs (see Sec. 32.3.1) of PLL offset locks (see
Sec. 34.3.5).

• The use of piezo in the transfer cavity is incompatible with its high-level thermal
and mechanical stabilization. This means that special care must be taken in
the design of the reference laser in order to avoid degradation of the stability of
the transfer cavity via the servo lock.

The whole locking scheme consists of three cascaded servo loops (see Fig. 34.16).
To model the transfer of stability from the reference to the spectroscopy laser, we
write down the following relations,

ωred−las = Hsat(f)ωref (34.26)

Nred−trnsδfsr = Htrns(f)ωred−las
ωblu−las = Hpdh(f)Nblu−transδfsr .

In the absence of noise or for perfect servos, Hx → 1, we get,

ωblu−las =
Nblu−trans
Nred−trans

ωred−las . (34.27)
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We assume specific transfer functions for the closed-loop gains of the three servos
and describe the impact of noise by adding frequency deviations ∆ω entering at
various points.

34.3.7 Exercises

34.3.7.1 Ex: Schemes for laser tuning

Discuss the two PLL-setups shown in Fig. 34.17.

Figure 34.17: Two schemes for laser tuning.

34.3.8 Experiment: Stabilizing a laser to a cavity

Here is, how we are going to stabilize a laser to a cavity:

1. Stabilize a helium-neon laser to a Fabry-Pérot cavity, generating a frequency
modulation by modulating the laser diode current or the piezo of the extended
cavity. Choose a modulation frequency in the range of f ≃ 1 kHz and a modu-
lation amplitude in the range of M ≃ 5 MHz. Adjust the reference voltage of
the control electronics until the error signal is symmetrical.

2. If you do not have a lock-in amplifier available, construct one following the
project Sec. 31.4.3.

3. Now, do the opposite, stabilizing the optical cavity to the laser frequency using
the resonator piezo as control element.

4. Vary the optical setup now modulating the frequency using an AOM (see Fig. 34.18).

34.3.9 Experiment: Pound-Drever-Hall locking

Now we will stabilize a laser to a cavity using the Pound-Drever-Hall technique [106,
245]:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Control_PLLTuning01.pdf
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Figure 34.18: Variations on the same theme: (a) Frequency stabilization of a cavity to a
laser frequency using the lock-in method. This method is often used for spectral filtering of a
laser beam by a transmission etalon. (b) Frequency stabilization of a laser to a cavity using
an AOM. The advantage of using an AOM compared to the scheme shown in Fig. 34.10 is,
that only the beam injected into the cavity is modulated, but not the beam used for the
main experiment.

1. Consider the reflected signal. To do this, separate the beam injected into the
resonator from the reflected beam by means of a λ/4 waveplate and a polarizing
beam splitter.

2. Now analyze the reflected signal with a fast photodetector at a spectrum ana-
lyzer.

3. Demodulate the signal with the modulation frequency. Vary the length of the
cables. Optimize the slope of the error signal by a suitable choice of frequency
and modulation excursion 4.

34.4 Further reading

34.4.1 on frequency noise description

D.W. Allan, Statistics of atomic frequency standards [DOI]

J.A. Barnes et al., Characterization of frequency stability [DOI]

J.L. Stewart, The power spectrum of a carrier frequency modulated by Gaussian noise
[DOI]

D.S. Elliott et al., Extracavity laser band-shape and bandwidth modification [DOI]

L.S. Cutler, Some Aspects of the Theorv and Measurement of Frequency Fluctuations
in Frequency Standards [DOI]

D.B. Sullivan et al., Characterization of Clocks and Oscillators [ISBN]

4Datasheet for the VCO see appendix Fig. 35.16,
data sheet for the power splitter see appendix Fig. 35.18,
data sheet for the mixer see appendix Fig. 35.19.

http://doi.org/10.1109/PROC.1966.4634
http://doi.org/10.1109/TIM.1971.5570702
http://doi.org/10.1109/JRPROC.1954.274758
http://doi.org/10.1103/PhysRevA.26.12
http://doi.org/10.1109/PROC.1966.4627
http://isbnsearch.org/isbn/978-1-528-41916-1
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Figure 34.19: Setup of a frequency regulator following Pound-Drever-Hall. VCO: Voltage-
Controlled Oscillator, LT: power splitter, dB: variable attenuator, LP: low-pass filter.

G. Di Domenico et al., Simple approach to the relation between laser frequency noise
and laser line shape [DOI]

J. Appel et al., A versatile digital GHz phase lock for external cavity diode lasers
[DOI]

L. Ricci et al., A compact grating-stabilized diode laser system for atomic physics
[DOI]

G. Ritt et al., Laser frequency offset locking using a side of filter technique [DOI]

A.S. Arnold et al., A simple extended-cavity diode laser [DOI]

E.C. Cook et al., High passive-stability diode-laser design for use in atomic-physics
experiments [DOI]

C.J. Hawthorn et al., Littrow configuration tunable external cavity diode laser with
fixed direction output beam [DOI]

Huanqian Loh et al., Influence of grating parameters on the linewidths of external-
cavity diode lasers [DOI]

Y. Shimada et al., A simplified 461-nm laser system using blue laser diodes and a
hollow cathode lamp for laser cooling of Sr [DOI]

R.J. Steed, Derivations of the Phase Noise Spectra of Lasers and of Lasers Passing
Through Interferometers [ISBN]

34.4.2 on laser stabilization

J. Alnis et al., Stable diode lasers for hydrogen precision spectroscopy [DOI]

http://doi.org/10.1364/AO.49.004801
http://doi.org/10.1088/0957-0233/20/5/055302
http://doi.org/10.1016/0030-4018(95)00146-Y
http://doi.org/10.1007/s00340-004-1559-6
http://doi.org/10.1063/1.1148756
http://doi.org/10.1063/1.3698003
http://doi.org/10.1063/1.1419217
http://doi.org/10.1364/ao.45.009191
http://doi.org/10.1063/1.4808246
http://isbnsearch.org/isbn/ResearchGate235004789
http://doi.org/10.1140/epjst/e2008-00811-y


34.4. FURTHER READING 1469

J. Alnis et al., Subhertz linewidth diode lasers by stabilization to vibrationally and
thermally compensated ultralow-expansion glass Fabry-Pérot cavities [DOI]

L. Couturier et al., Laser frequency stabilization using a commercial wavelength me-
ter [DOI]

K. Huang et al., Microcontroller-based locking in optics experiments [DOI]

Shun Wu et al., Direct fiber comb stabilization to a gas-filled hollow-core photonic
crystal fiber [DOI]

Y.N. Zhao et al., Sub-Hertz frequency stabilization of a commercial diode laser [DOI]

R.W.P. Drever et al., Laser Phase and Frequency Stabilization Using an Optical
Resonator [DOI]

D. Budker et al., Obtaining frequency markers of variable separation with a spherical
mirror Fabry-Perot interferometer [DOI]

34.4.3 on control theory

U. Tietze et al., Halbleiterschaltungstechnik [ISBN]

O. Föllinger et al., Regelungstechnik: Einführung in die Methoden und ihre Anwen-
dung [ISBN]

http://doi.org/10.1103/PhysRevA.77.053809
http://doi.org/10.1063/1.5025537
http://doi.org/10.1063/1.4903869
http://doi.org/10.1364/OE.22.023704
http://doi.org/10.1016/j.optcom.2010.06.079
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http://isbnsearch.org/isbn/978-3-800-74201-1
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Chapter 35

Appendices to
’Instrumentation of a
Quantum Optics Lab’

DATE: 12/10/91 

TO: J. Barnes 

FROM: W. Riley 

SUBJECT: Items we discussed at the PTTI Meeting last week 

(1) Typo in J.A. Barnes, "The Measurement of Linear Drift in Oscil- 
lators'l, Proc. 15th PTTI Meetinq, 1983, p. 566 (p. TN-279 of NIST 
Technical Note 1337): 

The.expression for A is missing the term N after the 2nd 3. See 

Pa 568 (TN-281) for the correct expression. 

NON SEQUITUR by Wiley 

Figure 35.1: At the National Institute for Standards and Technology (NIST).

35.1 Calculating the uncertainty of measured quan-
tities

35.1.1 Mean value and standard deviation

Mean value and standard deviation are defined by,

x̄ ≡ 1

N

∑

k

xk and σx̄ ≡
√

1

N − 1

∑

k

(xk − x̄)2 . (35.1)

The standard deviation can be weighed by a confidence parameter,

x̄ ≡
∑
k wkxk∑
k wk

and σx̄ ≡
1√∑
k wk

(35.2)

Weighing by individual standard deviation,

wk ≡
1

σ2
k

for σk = σ0 (35.3)
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gives,

x̄ ≡
∑
k
xk

σ2
k∑

k
1
σ2
k

= σ2
x̄

∑

k

xk
σ2
k

σk=σ0−→ 1

N

∑

k

xk with σx̄ ≡
1√∑
k

1
σ2
k

σk=σ0−→ σ0√
N

(35.4)

or,

σ̂x̄ ≡ σx̄χv σk=σ0−→
√

1

N − 1

∑

k

(xk − x̄)2 (35.5)

χv =

√
1

N − 1

∑

k

(xk − x̄)2
σ2
i

.

From error propagation

∆x̄ ≡
√

1

N

∑

k

∆x2k . (35.6)

35.1.1.1 χ2-fit

The χ2-fit of a constant of a function y = f(x) to a measured data set (xk, yk) is,

χ2 =
1

N(N − 1)

∑

k

[f(xk)− yk]2 . (35.7)

The above formula suggest that, increasing the number of measurements N →∞ we
could pull the error to zero. This, however, is NOT TRUE. If the standard deviation
is smaller than the precision ∆ of the measurement tool, the error will be limited by
∆,

ȳ ±max (σ,∆) . (35.8)

35.1.2 Error propagation

The error propagation for a function f(x1, x2, ..) is given by,

∆f =

√(
∂f

∂x1

)2

∆x21 +

(
∂f

∂x2

)2

∆x22 + ... <

∣∣∣∣
∂f

∂x1

∣∣∣∣∆x1 +
∣∣∣∣
∂f

∂x2

∣∣∣∣∆x2 + ... . (35.9)

Calculations can often be simplified by noting that the four fundamental operations,
f = x1 ± x2, f = x1x2, and f = x1

x2
allow us to simply add the relative errors,

∆f

f
=

∆x1
x1

+
∆x2
x2

. (35.10)

Alternatively, we may use the following quick rules,

sum : f ±∆f = (x±∆x) + (y ±∆y) = (x+ y) ± (∆x+∆y)

subtraction : f ±∆f = (x±∆x)− (y ±∆y) = (x− y) ± (∆x+∆y)

multiplication : f ±∆f = (x±∆x) · (y ±∆y) = (x · y) ± (x∆y + y∆x)

division : f ±∆f = x±∆x
y±∆y = x

y ± 1
y2 (x∆y + y∆x)

power : f ±∆f = (x±∆x)n = xn ± nxn−1∆x

.

(35.11)
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Example 209 (Error propagation): Let us study the following example,

f =
x1

x2 + a

=⇒ ∆f = f
∆x1
x1

+ f
∆(x2 + a)

x2 + a
= f

∆x1
x1

+ f
∆x2
x2 + a

.

35.1.3 Fitting a curve

We start defining the following prescription to calculate mean values,

x̄ ≡ 1

N

N∑

k=1

xk , xy ≡ 1

N

N∑

k=1

xkyk . (35.12)

For a fit of a linear curve f(x) = ax+ b to a data set {xk, yk}k∈[1,N ], we calculate ,

f(x) = ax+ b , a =
xy − x y
x2 − x2

=
(x− x̄)y
(x− x̄)2

, b =
y x2 − xy x
x2 − x2

= y − ax .

(35.13)
The uncertainties are obtained via,

∆y =

√
N

N − 2
(ax+ b− y)2 , ∆a = ∆y

√
1

N (x2 − x2)
=

∆y√
N x− x̄

(35.14)

, ∆b = ∆y

√
x2

N x2 − x2
= ∆y

√
x2

N x− x̄ .

To fit an exponential curve f(x) = βeαx, we simply convert the data set {xk, vk} ≡
{xk, lg yk}, calculate the mean values of the decadal logarithm using the recipe (35.12),
and fit a linear curve f̃(x) = lg f(x) = α

ln 10x + lg β ≡ ax + b in a semi-logarithmic
scale to the data set {xk, vk}. This gives,

f(x) = βeαx ,
α

ln 10
= a =

x lg y − x lg y

x2 − x2
, lg β = b =

lg y x2 − x lg y x
x2 − x2

.

(35.15)

To fit a power law curve f(x) = βxα, we simply convert the data set {uk, vk} ≡
{lg xk, lg yk}, calculate the mean values of the decadal logarithm using the recipe
(35.12), and fit the linear curve f̃(x) = lg f(x) = α lg x + lg β ≡ ax + b in a double-
logarithmic scale to the data set {uk, vk}. This gives,

f(x) = βxα , α = a =
lg x lg y − lg x lg y

lg x2 − lg x
2 , lg β = b =

lg y lg x2 − lg x lg y lg x

lg x2 − lg x
2 .

(35.16)
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35.1.4 Probability density

Consider a function P (x) having the meaning of a probability depending on a variable
x ∈ [−∞,∞]. The probability density ρ(x) is defined as its derivative, ρ(x) = P ′(x),
such that,

P (x) =

∫ ∞

−∞
ρ(t)dt with P (−∞) = 0 and P (∞) = 1 . (35.17)

Every probability must have the same likeliness, i.e.,

P (x) = ζn , (35.18)

where ζn ∈ [0, 1] is a uniformly distributed random variable. In order to numerically
generate a stochastic distribution, we have to invert the distribution function, i.e. when
ζn is generated by a computer, then

xn = P−1(ζn) (35.19)

is the distribution of the random variable xn. In other words, a histogram of xn
reproduces the probability density ρ(x).

Let us, for example, consider the Boltzmann distribution,

P (x) ≡ 1− e−βx . (35.20)

Probing the probability with a random number, as in (35.18), we obtain the random
variable via (35.19),

xn = P−1(ζn) = −
1

β
ln(1− ζn) . (35.21)

The histogram of this random variable xn can directly be compared with the proba-
bility density ρ(x) given by,

ρ(x) = P ′(x) = βe−βx . (35.22)

This is illustrated in Fig. 35.2(a).

Example 210 (Probability density of a Gaussian distribution): Another
example is the error function given by,

erf(x) ≡ 2√
π

∫ x

0

e−t
2

dt .

By define the probability function,

P (x) ≡ 1

2
[erf(x)− erf(−∞)] =

1√
π

∫ x

−∞
e−t

2

dt .

Probing the probability with a random number, as in (35.18), we obtain the
random variable via (35.19),

xn = P−1(ζn) = erf−1(2ζn − 1) .

The histogram of this random variable xn can directly be compared with the
probability density ρ(x), which is nothing else than the Gauss function,

ρ(x) = P ′(x) =
1√
π
e−x

2

= 2erf′(x) .

This is illustrated in Fig. 35.2(b).
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Figure 35.2: (code) (a) Boltzmann distribution simulated by random numbers (histogram).

The numerical derivative of this distribution is shown as a blue dotted line, and the proba-

bility density as a green solid line. (b) Error function probability distribution simulated by

random numbers (histogram). The numerical derivative of the error function is shown as a

blue dotted line, and the Gauss function as a green solid line.

35.2 Deepening control theory

The variation of a physical quantity (e.g., a voltage or a temperature) in time is called
signal. In a specific environment or technical device, such a variation may cause other
physical quantities to change as well. For example, the rise in temperature of an
optical cavity may modify its length and its resonance frequency, while the inverse
is not true. This feature is illustrated by a block diagram as shown in Fig. 35.3,
where x(t) denotes the variation of a physical quantity (called input) that causes the
variation of another quantity y(t) (called output). The precise way how y(t) depends
on x(t) depends on the particularities of the device, which is labeled by a symbol T
called transfer function. T is in fact an operator acting on functions and transforming
input signals into output signals.

Figure 35.3: Transfer and modification of a time-dependent signal.

While we have described above the transfer of (time-varying) signals, the same
feature can be treated in frequency domain via Fourier or Laplace-transforms. This
script is not the right place to recapitulate the mathematics of these transforms, and
we will restrict ourselves to reproducing some on the most fundamental results, as we
may need them in the following.

35.2.1 Analysis techniques - frequency domain and time do-
main

Mathematical techniques for analyzing and designing control systems fall into two
different categories:

Frequency domain: In this type the values of the state variables, the mathemat-
ical variables representing the system’s input, output and feedback are represented

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
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as functions of frequency. The input signal and the system’s transfer function are
converted from time functions to functions of frequency by a transform such as the
Fourier transform, Laplace transform, or Z transform. The advantage of this tech-
nique is that it results in a simplification of the mathematics; the differential equations
that represent the system are replaced by algebraic equations in the frequency domain
which are much simpler to solve. However, frequency domain techniques can only be
used with linear systems, as mentioned above.

Time-domain state space representation: In this type the values of the state vari-
ables are represented as functions of time. With this model the system being analyzed
is represented by one or more differential equations. Since frequency domain tech-
niques are limited to linear systems, time domain is widely used to analyze real-world
nonlinear systems. Although these are more difficult to solve, modern computer sim-
ulation techniques such as simulation languages have made their analysis routine.

In contrast to the frequency domain analysis of the classical control theory, mod-
ern control theory utilizes the time-domain state space representation, a mathematical
model of a physical system as a set of input, output and state variables related by
first-order differential equations. To abstract from the number of inputs, outputs and
states, the variables are expressed as vectors and the differential and algebraic equa-
tions are written in matrix form (the latter only being possible when the dynamical
system is linear). The state space representation (also known as the ’time-domain ap-
proach’) provides a convenient and compact way to model and analyze systems with
multiple inputs and outputs. With inputs and outputs, we would otherwise have to
write down Laplace transforms to encode all the information about a system. Un-
like the frequency domain approach, the use of the state-space representation is not
limited to systems with linear components and zero initial conditions. ’State space’
refers to the space whose axes are the state variables. The state of the system can be
represented as a point within that space.

35.2.1.1 Signal transfer through LTI systems without delay

For an operator T transforming a temporal signal x(t) into a signal y(t),

y(t) = T x(t) , (35.23)

to be linear and time-independent, we require,

T [αx1(t) + βx2(t)] = αT [x1(t)] + βT [x2(t)] (35.24)

T [x(t− τ)] = T [x(t)] ⋆ δ(t− τ) ,

where the ⋆ denotes a convolution,

(f ⋆ g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ . (35.25)

Such system are called Linear Time-Independent LTI systems 1.

1To be more general, also the derivative and integral of the output signal must be included (see
later sections).
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35.2.1.2 Laplace transform

We define the Laplace transform L as a linear operator acting on a signal x(t) defined
through,

L... ≡
∫ 0

−∞
...estdτ . (35.26)

The frequency variable is denoted by the imaginary quantity s = ıf . The question is
now, what is the meaning of the Laplace operator?

To answer this question, we start introducing the pulse response h(t) via

h(t) = T [δ(t)] (35.27)

as the reaction of a system T to a pulse δ(t). Now, it is easy to see, that the operator
P defined as,

P... ≡ h(t) ⋆ ... , (35.28)

and which describes the convolution of an arbitrary input signal with the pulse re-
sponse, satisfies the above linearity condition. Now calculating,

Pest = h(t) ⋆ est =

∫ 0

−∞
h(τ)es(t−τ)dτ = L[h(t)] · est = (Lh)(s) · est , (35.29)

we find that the functions est are eigenfunctions of the operator P with the eigenvalues
L[h(t)], which are just the Laplace transforms of the pulse response.

We can now expand arbitrary functions x(t)θ(t) in a Laplace series and obtain,

L[h(t) ⋆ x(t)] =
∫ 0

−∞
h(t) ⋆ est x(t)dt = (Lh)(s)

∫ 0

−∞
estx(t)dt = (Lh)(s) · (Lx)(s) .

(35.30)
The convolution on the left-hand side is in time domain, while the product on the
right-hand side is in frequency domain.

35.2.1.3 Pulse and jump response from a transfer function

The transmission of a signal by an element of a control loop can be described in the
temporal or spectral domain [288, 308, 545], and we can switch from one representa-
tion to another via Laplace transformation. Operators of LTI systems T are repre-
sented by products with spectral functions in frequency-domain, F̃ (s)·... = (LF )(s)·...
or convolutions with time-varying functions in time-domain, F (t) ⋆ ...,

y(t) = T x(t) (35.31)

Laplace−→ ỹ(s) = F̃ (s) · x̃(s)
inverse Laplace−→ y(t) = F (t) ⋆ x(t) .

In practice, the function F̃ (f) can be determined by feeding a sinusoidal signal
with amplitude x(s) into the system, measuring y(s) (which is a complex number) 2,

2From now on, we will drop the tilde ∼ on transfer functions and amplitudes, when it is clear
that we are in frequency-domain.
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and calculating

F (s) =
y(s)

x(s)
. (35.32)

The transitory behavior F (t) can in practice be extracted via an adequate choice
of the test function, f.ex., the response to a pulse:

x(t) = δ(t) (35.33)

Laplace−→ y(s) = F (s)

inverse Laplace−→ y(t) = F (t) ,

or to a sudden jump:

x(t) = θ(t) (35.34)

Laplace−→ y(s) = F (s)/s

inverse Laplace−→ y(t) =

∫ t

0

F (τ)dτ .

Here, θ(t) denotes the Heavyside function, which is 1 for t > 0 and 0 else. The time-
dependent function, which describes the pulse response is often used as a symbol for
a specific control loop element.

The pulse response works in a similar way as the Green’s function procedure:
Wanting to know how a loop control element F transforms a given input signal x(t)
into an output signal y(t), i.e., y(t) = F (t) ⋆ x(t), we produce a rapid pulse leading
to the output,

yδ(t) = F (t) ⋆ δ(t) = F (t) . (35.35)

Now, once we know F (t), the response to arbitrary input signals can be computed
via,

y(t) = yδ(t) ⋆ x(t) . (35.36)

35.2.1.4 Bode diagram and polar diagram

The Bode diagram illustrates the transfer function in the spectral domain on a biloga-
rithmic scale separating the amplitude spectrum from the phase spectrum [see Fig. 35.4(a-
b)]. Frequency regions, where |F (s)| or φ(s) vary particularly strongly are nicely
emphasized in the polar representation [see Fig. 35.4(c-d)].

For LTI systems F (s) is always a rational function and can, hence, be represented
by its poles and zeros in the complex plane,

F (s) = A
(s− a1)(s− a2)...(s− an)
(s− b1)(s− b2)...(s− bn)

. (35.37)

With this, F (s) is analytical and conform, i.e., multiple curves in the s-plane are
represented in an isogonal way in the F (s)-plane. In order to avoid that the eigen-
functions est oscillate and diverge, it is necessary that all the poles and zeros are in
the left halfplane.
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Figure 35.4: (code) Bode diagram.

35.2.2 Algebra of transfer circuits

A technical realization of a signal transfer circuit is illustrated by a signal flux diagram,
which itself corresponds to the formalism of linear operators. As shown in Fig. 35.5,
signals can be

• (a) added (f1 + f2)(t) ≡ f1(t) + f2(t),

• (b) multiplied (f1 · f2)(t) ≡ f1(t) · f2(t),

• (c) combined f1(t) = f2(t),

• (d) transformed f2(t) = F [f1](t) ≡ F (f1(t)),

• (e) connected in parallel (F1 + F2)[f(t)] ≡ F1[f(t)] + F2[f(t)],

• (f) connected in series (F1 ◦ F2)[f(t)] ≡ F1[F2[f(t)]],

Mathematically, the functions f(t) form a vector space and the operators F [f ] a
ring. The linear operators generally are defined implicitly by a system of differential
equations. The particular case of linear systems is considerably simpler. The general
circuit shown in Fig. 35.5(g) corresponds to the differential equation,

0 = F [x1, .., xk, ∂tx1, .., ∂txk, y1, .., yj ] . (35.38)

The linearity F [λf1 + µf2] = λF [f1] + µF [f2] warrants that this equation becomes,

0 = [1 + ∂t + ...+

∫
dt+ ...]yk = [1 + ∂t + ...+

∫
dt+ ...]xj . (35.39)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_Controle.m
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Figure 35.5: LTI circuits.

Note that the multiplication, the derivation, and the integration are linear operators
in the same sense as the Fourier and the Laplace transformation.

Linear differential equations can be Laplace transformed. The corresponding
transfer function is,

F (s) = F (−δ + ıω) ≡ Ly(t)Lx(t) . (35.40)

In the Laplace-transformed space the operations multiplication, derivation, and inte-
gration are all replaced by multiplications:

L[λ+ ∂t + ...+

∫
dt+ ...] = λ+ s+ ...+

1

s
. (35.41)

With this, the control loop elements and the additive nodes can be used to completely
represent a control circuit.

The characteristic responses of components are frequently non-linear (e.g. transis-
tor). For small signal amplitudes, these response functions, and also multiplication
points (e.g. mixers) can be linearized by Taylor expansion up to first order,

y0 +∆y = F [x01 +∆x1, ..., x0k +∆xk] (35.42)

= F [x01, ..., x0k] +

(
∂F

∂x1

)

0

∆x1 + ...+

(
∂F

∂xk

)

0

∆xk ,

with y0 = 0 = F [x01, ..., x0k] giving,

∆y =

(
∂F

∂x1

)

0

∆x1 + ...+

(
∂F

∂xk

)

0

∆xk . (35.43)

For example for a multiplication point,

∆y = K1∆x1 +K2∆x2 . (35.44)
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Figure 35.6: Transfer function h(t) = y(t)
xw

, Bode diagram amplitude L(ω) = 20 lg |FR| and
phase φ = arctan Im FR

Re FR
, and polar representation F (iω) = ReFR + ıImFR of the most

common regulators. With delay time (—), T2 = T1 = 0, first order with delay time (- - -),
T2 = 0 ̸= T1, and second order (· · ·), T2 ̸= 0 ̸= T1. From top to bottom, the diagrams show
the regulators P , I, D, PI, PD, and PID, described by the equations (35.45) and (35.46).

35.2.2.1 Regulators

For many circuits, it is sufficient to restrict to combinations of resistive (proportional),
capacitive (integral), and inductive (differential) circuits. Then, the general case of a
control regulator is that of a PID − T1...Tn-element, meaning that:

T 2
2 ÿ + T1ẏ + y = KDẋ+KPx+KI

∫
dtx = KP

(
x+ Tvẋ+

1

Tn

∫
dtx

)
, (35.45)

corresponding to the transfer function,

F (s) =
KDs+KP +KI/s

1 + T1s+ T 2
2 s

2
=

(1 + Tvs+ 1/Tns)

1 + T1s+ T 2
2 s

2
. (35.46)

In literature, two notations are used for the constants. They are linked via: KD ≡
KPTv and KI ≡ KP /Tn. The stationary behavior is obtained setting the delays to
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zero: Tn ≡ 0.

Example 211 (PID regulators): For example, for a proportional regulator,
we have,

y = KPxw and FR = KP , (35.47)

for an integral regulator with time delay T1, we have,

T1ẏ + y = KI

∫
xwdt and FR =

KI

s(1 + sT1)
, (35.48)

or for a PID regulator without delay, we have,

y = KPxw +KDẋw +KI

∫
xwdt and FR = KP +

KI

s
+KDs . (35.49)

Since there are three basic operations (multiplication with 1, s and 1/s), in the
end, all rational circuit elements can be reduced to an addition and concatenation of
proportional F (s) = KP , integral F (s) = KI/s, and differentials elements, F (s) =
KDs. In particular, PID−T1...Tn circuits can be constructed by putting in parallel P ,
I, and D regulators concatenated with delay elements T1. The possibility of feedback
opens other possibilities [see Fig. 35.7(a)].

Figure 35.7: (a) Circuit with feedback, (b) low-pass filter circuit.

Example 212 (Low-pass filter and time delays): We consider the example
of a low-pass filter exhibited in Fig. 35.7(b) and described by the equation,

F (ıω) =
R+ ıωL+ 1/ıωC

Ri +R+ ıωL+ 1/ıωC
. (35.50)

I.e., we have a PID − T1T2 circuit.
Another example, is the dead time circuit,

y(t) = x(t− Tt) and F (s) = e−sTt . (35.51)

We have,

F (ıω) = e−ıωTtF0 and |F (ıω)| = F0 and φ(ıω) = −ωTt . (35.52)

Hence, dead time circuits produce phase shifts, which are proportional to the

dead time interval Tt.

35.2.2.2 Heuristic rules for the Bode diagram

Any deviation of the amplitude spectrum from n · 6dB/octave to (n+1) · 6dB/octave
causes a retardation in the phase spectrum of 90◦. At the cut-off frequency, where
the inclination changes its behavior, the phase shift is just 45◦. A deviation to high-
er/lower inclinations shifts the phase by ±90◦. (This does not hold for some phase-
shifting circuits).
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35.2.2.3 Transfer function of feedback circuits

Fig. 35.7 shows the idea underlying the feedback,

F (s) =
1

1/FR − Ffb
. (35.53)

For example, for FR = 1/T1s and Ffb = −1 we have,

F (s) =
1

1 + T1s
, (35.54)

which corresponds to a delay element (or high-pass filter).
For Fr being a proportional element, we say that the feedback rigid, for Fr being

differential, the feedback is anticipating, and for Fr being integral, the feedback is
delaying.

35.2.3 Stability of feedback circuits

As discussed above, the transfer function of the feedback circuit is,

H(s) =
F (s)

1 + F (s)Ffb(s)
. (35.55)

The open loop gain is V (s) = F (s)Ffb(s). The circuit is stable, when for all the
eigenfunctions est, that do not decay with Re s ≥ 0, the transfer function of the
feedback circuit is finite, H(s) <∞.

An equivalent criterion is the Nyquist criterion: The curve V (ıω) to ω ∈ [0;∞[
must always bypass the point of instability at Re s = −1 leaving it on the left
side. That is, considering negative frequencies, the curve should not circle this point.
Fig. 35.9 shows an example.

35.2.4 Further topics in control theory

35.2.4.1 Nonlinear control theory

Linear control theory applies to systems made of devices which obey the superposition
principle, which means roughly that the output is proportional to the input. They
are governed by linear differential equations. A major subclass is systems which in
addition have parameters which do not change with time, called linear time invariant
(LTI) systems. These systems are amenable to powerful frequency domain mathemat-
ical techniques of great generality, such as the Laplace transform, Fourier transform,
Z transform, Bode plot, root locus, and Nyquist stability criterion. These lead to a
description of the system using terms like bandwidth, frequency response, eigenvalues,
gain, resonant frequencies, poles, and zeros, which give solutions for system response
and design techniques for most systems of interest.

Nonlinear control theory covers a wider class of systems that do not obey the su-
perposition principle, and applies to more real-world systems, because all real control
systems are nonlinear. These systems are often governed by nonlinear differential
equations. If only solutions near a stable point are of interest, nonlinear systems
can often be linearized by approximating them by a linear system using perturbation
theory, and linear techniques can be used.
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Figure 35.8: Some examples for feedback regulators. The columns show from left to right:
the nomenclature, the circuit diagram, the behavior, and the constants of the LTI system.

35.2.4.2 MIMO control systems

In this script we restrict to single-input single-output control systems (SISO), which is
the simplest and most common type, in which one output is controlled by one control
signal. Examples are the temperature control or an audio system, in which the control
input is the input audio signal and the output is the sound waves from the speaker.

In contrast, multiple-input multiple-output control systems (MIMO) are found in
more complicated systems. For example, modern large telescopes such as the Keck
and MMT have mirrors composed of many separate segments each controlled by
an actuator. The shape of the entire mirror is constantly adjusted by a MIMO
active optics control system using input from multiple sensors at the focal plane, to
compensate for changes in the mirror shape due to thermal expansion, contraction,
stresses as it is rotated and distortion of the wavefront due to turbulence in the
atmosphere.
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Figure 35.9: Illustration of the Nyquist criterion.

Another example are ultra-stable laser systems stabilized by combinations of fast
actuators with low dynamic range and slow actuators with large dynamic range.

35.2.5 Exercises

35.2.5.1 Ex: Step response

Calculate the step response of a low-pass filter using the Laplace transform formalism.

35.3 Characterization of stability

The quality factor of a resonance measured with an oscillator in its function as a
measuring apparatus for the resonance frequency is named precision. The precision
also includes the perturbations to which the controlled oscillator is exposed and can be
understood as the standard deviation of the frequency realized by the standard. The
temporal or spectral behavior of precision, i.e. the stability can e.g. measured directly
by comparing similar but independent standards. The reciprocal of the spread of the
frequency realizations of an ensemble of similar standards is called reproducibility.
The term reproducibility is also used to compare the frequencies of an individual
standard before and after readjustment of all its technical parameters.

The accuracy is defined as the degree of agreement between the frequency realized
by the standard and the defined standard frequency, i.e. the frequency that would be
displayed in the fault-free ideal case 3. The accuracy is always less than the quality
of the resonance and the certainty of it center frequency. It includes the precision
and limits the reproducibility [13]. The fact that the accuracy is related to the ideal
case of absent errors implies that it cannot be measured directly. It must be inferred
indirectly through model assumptions regarding the measuring apparatus estimating
the probability for presumed or possible errors. We then speak of the uncertainty of
the measured value [162].

The temporal or spectral behavior of accuracy is called stability. It is measur-
able and is quantified in the frequency domain by the spectral density of fluctuations
and in the time domain best by the Allan variance. The noise is now the physical
phenomenon that manifests itself as a deviation from the optimal stability.

3For example, when a measurement apparatus for the constant π provided the value x =
3.141 59 (12), then the accuracy is x− π and the precision 0.000 12.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Appendix_ControlTheory01.pdf
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The stability that an ideal frequency standard can achieve in principle is propor-
tional to quality factor of the resonance ω/(∆ωnat+∆ωbroaden) and the signal-to-noise
ratio of the control signal S/N . Hence, the stability can be optimized by choosing
atomic transitions with small spontaneous decay rates ∆ωnat. Appropriate techniques
for the experimental preparation of the resonance limit the influence of line broaden-
ing mechanisms ∆ω. According to the Fourier theorem, the resolution of narrow lines
requires long observation times. Now, the control signal of a feedback regulator can
only be determined after a whole observation period. This means that the appara-
tus already must have an intrinsic stability good enough that the frequency does not
leave the control range during a period of observation. Furthermore, a better signal-
to-noise ratio can improve the precision with which the line center of the resonance
can be determined.

Ultimately, the most promising way to increase the accuracy of a frequency stan-
dard seems to be to choose the highest possible transition frequencies ω, provided that
the oscillations can still be counted electronically, or be linked in a phase-coherent
way to oscillators generating countable oscillations, e.g. using frequency combs. The
requirement of phase coherence at optical frequencies puts the laser in the focus of
interest in metrology.

35.3.1 Quantifying frequency fluctuations

The following sections deal with perturbation-induced fluctuations of the laser fre-
quency, i.e. frequency noise. To characterize the behavior of an oscillator (especially
when used as a frequency standard), it is necessary to introduce some concepts that al-
low the quantitative description of the noise. The most important are reproducibility,
stability, spectral density of fluctuations, Allan variance, and emission bandwidth.
The basic work on this has been carried out at the National Bureau of Standards
(NBS) in Boulder, Co, USA [12, 13, 56, 188].

35.3.1.1 Stability in the frequency domain, spectral fluctuation density

The instantaneous amplitude of an oscillator, e.g. the electric field of a laser radiation,
can be written,

E(t) = E0(t)eıϕ(t) . (35.56)

noise afflicts phase and amplitude. In the following we will neglect amplitude noise,
E0(t) = E0, and if the frequency fluctuations only deviate slightly from a mean value,
ω0 ≫ |φ̇(t)|, we may write,

ϕ(t) ≡ ω0t+ φ(t) . (35.57)

In the following, we will often consider normalized frequency fluctuations,

y(t) = φ̇(t)/ω0 . (35.58)

When measuring stability, one must differentiate between deterministic fluctua-
tions and stochastic noise. Deterministic fluctuations are usually due to inadequate
control of equipment parameters. They generate systematic errors and slow drifts
ysys(t) which, if one recognizes them as such in time domain measurements (mea-
sure for sufficiently long times!), can be subtracted and disregarded. Stochastic noise,



35.3. CHARACTERIZATION OF STABILITY 1487

however, is stationary:

ysto(t) = y(t)− ysys(t) = 0 defining y(t) ≡ lim
T→∞

1

T

∫ T

0

y(t)dt (35.59)

as the time average. In the following only stationary stochastic fluctuations are con-
sidered.

Let us take a look at the autocorrelation function of the phase defined as,

Ry(τ) ≡ y∗(t)y(t+ τ) = lim
T→∞

1

T

∫ T

0

y∗(t)y(t+ τ)⟩dτ (35.60)

and the spectral density of phase fluctuations which, according to theWiener-Khintchine
theorem, can be obtained as the Fourier transform of the autocorrelation function,

Sy(f) ≡ FRy(τ) =
∫ ∞

−∞
Ry(τ)e

−2πıfτdτ . (35.61)

The normalized density of frequency fluctuations Sy(f) is a spectral quantity with
the unit 1/Hz. Frequency and phase fluctuations are linked by:

Sẋ(f) = f2Sx(f) , (35.62)

as will be shown in Exc. 35.3.3.1. Also,

Sax(f) = a2Sx(f) , (35.63)

If the integral of the spectral fluctuation density is finite it corresponds, according to
the definition (35.62), to the noise power or the mean square deviation of a measured
variable: ∫ ∞

0

Sy(f)df = Ry(0) = |y(t)|2 <∞ . (35.64)

35.3.1.2 Model of noise

Measurements seem to confirm today that stochastic fluctuations in frequency stan-
dards can be traced back to a few additive noise processes with different physical
origins and different frequency responses [12]:

Sy(f) =

2∑

β=−2

hβf
β . (35.65)

The table below lists the most common ones.
This noise model is based on the assumption that the noise processes it describes

operate in all Fourier frequency ranges, which violates the requirement (35.64). The
dilemma does not arise in experiment, since the integration over an unlimited Fourier
frequency range is not a realistic concept in that each measurement only takes a finite
time τ , so that very low frequencies below a cut-off frequency fmin = 2π/τ are not
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noise type Sx(f) Sy(f) σ2
y(τ)

white phase noise h2 h2f
2 ∝ h2

τ2

flicker phase noise h1f
−1 h1f

1 ∝ h1

τ2

white frequency noise h0f
−2 h0f

0 h0

2τ

flicker frequency noise h−1f
−3 h−1f

−1 h−12 ln 2

random walk frequency drifts h−2f
−4 h−2f

−2 h−2
(2π)2

6 τ

Table 35.1: Spectral fluctuation density and Allan-variance for common noise pro-
cesses [56].
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Figure 35.10: Noise model according to (35.65).

perceived. In addition, every real data acquisition system has a low-pass behavior
with a cut-off frequency fmax, so that high frequencies also do not contribute to the
integral. These bandwidth constraints enforce the condition (35.64) for the five noise
processes assumed by (35.65) [513]. The measure for the noise power in any case has

the form:
∫ fmax

fmin
Sy(f)df .

35.3.1.3 Description of stability in the time domain, Allan variance

Temporal frequency fluctuations of an oscillator can be measured by discriminating
the frequency fluctuations at the dispersive profile of a resonance (or error signal)
and convert it into voltage fluctuations. It is just the curve exhibited by a spectrum
analyzer to which the error signal is fed, as illustrated by the left setup of Fig. 35.12.

Like any physical quantity, frequency fluctuations can only be measured as an
average over an integration time interval τ imposed by the measuring apparatus.
The k-th measurement of the quantity y at the time tk results in the measured value:

yk(τ) =
1

τ

∫ tk+τ

tk

y(t)dt . (35.66)

Assuming that the dead time of the measuring apparatus is negligible (if necessary,
technical precautions must be taken to meet this requirement approximately), the
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variance of stochastic noise can be expressed as follows:

σ2
y(τ) =

1

N − 1

N∑

k=1

y2k where yk = 0 . (35.67)

The variance is a direct measure of the stability of an oscillator in time domain. It
is measured from a discrimination of the error signal in a similar way as the fluctuation
density Sy(f). However, as illustrated by the left setup of Fig. 35.12, the discriminated
signal is recorded in time domain, e.g. by an oscilloscope.

The variance can be linked to the spectral density of frequency fluctuations in
frequency domain by Fourier transformation. With the Heaviside step function Θ the
following relationship can be given [188, 12, 36],

σ2
y(τ) =

∫ ∞

0

Sy(f)|Fζ1(f)|2df where ζ1(t) =
1

τ
Θ[−τ,0](t) , (35.68)

is the area-normalized jump function, which models the duration of the integration
time τ . Its Fourier-transform is the transfer function of the equivalent filter.

Figure 35.11: (a) Noise can exhibit very different short and long time behavior. (b) Any
measurement needs a minimum integration time.

It turns out that the variance for 1/f noise and for stochastic drifts (1/f2 noise)
diverges at the lower limit, i.e. this variance is not useful for practical applications.
The divergence comes from the fact that for longer and longer measurements (N →
∞), respectively, smaller and smaller Fourier frequencies (f → 0), longer and longer
periodic fluctuations can be identified as such, while for shorter measurements they
appear as linear drifts. One way out is to calculate the variance for a limited number
k of measurement data and to average the variances of M of such data sets of length
k. This variance converges for a larger number of noise processes. This so-called pair
variance (k = 2) or Allan variance is widely used:

σ2
y(τ) =

1

2M

M∑

j=1

(y2j − y2j−1)
2 . (35.69)

Like the normal variance, the Allan variance can also be related to the spectral density
of frequency fluctuations:

σ2
y(τ) =

∫ ∞

0

Sy(f)|Fζ2(f)|2df where ζ2(t) ≡ 1√
2
[ζ1(t)− ζ1(−t)] . (35.70)
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The Fourier transforms of the step functions ζ1(t) and ζ2(t) will be calculated in
Exc. 35.3.3.2, as well as the variances for white noise.

35.3.2 Power spectral density

It is important not to confuse the spectral density of frequency fluctuations with the
power spectral density of the oscillator defined via the autocorrelation function of the
field amplitude 4,

RE(τ) ≡ ⟨E∗(t)E(t+ τ)⟩ = E20 ⟨eı[ϕ(t+τ)−ϕ(t)]⟩ = E20eıω0τ ⟨eı[φ(t+τ)−φ(t)]⟩ , (35.71)

as its Fourier transform,

SE(ω) = FRE(τ) . (35.72)

The power spectral density is typically measured as the beat frequency of two inde-
pendent oscillators. It is just the curve exhibited by a spectrum analyzer to which
the beat signal is fed, as illustrated in the right setup of Fig. 35.12.

Figure 35.12: (left) Setup for measuring the spectral density of frequency fluctuations Sy(f)
and the Allan variance σ2

y(τ) of laser 1 discriminating it at the slope of transmission signal of
an optical cavity. (right) The power spectral density SE(ω) can be found as the beat signal
between two lasers and either be exhibited on a spectrum analyzer SE(ω) or counted and
processed to an Allan variance σ2

y(τ).

The beat spectrum is the convolution of the emission bandwidth of the two oscil-
lators,

SE(ω) = SE,laser1(ω) ∗ SE,laser2(ω) . (35.73)

In particular, for the case that we have good reasons to believe that one laser is much
narrower than the other, the power spectral density SE(ω) will reflect the emission
spectrum of just the broader laser. Note that the power spectral density derived

4Note that the first-order coherence is just the normalized autocorrelation,

g(1)(τ) ≡ ⟨E∗(t)E(t+ τ)⟩
⟨E∗(t)E(t)⟩ =

RE(τ)

RE(0)
.

.
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from a beat of two independent (uncorrelated) oscillators gives us information on
their true emission bandwidths, which is relevant e.g. for resolving narrow atomic
transitions. On the other hand, the stability measures Sy(f) and σ

2
y(τ) derived from

a discriminated error signal (left setup in Fig. 35.12) only tell us the stability of an
oscillator with respect to the reference from which the error signal was derived, e.g. the
transmission slope of an optical cavity.

35.3.2.1 Spectral noise power density in the case of white noise

The spectral noise power density SE(ω) of the field E(t) of an oscillator can, in the
case of white frequency noise, be related to the spectral density of its frequency
fluctuations. In the case of a laser oscillator, the half-width half maximum of the
spectral noise power density, i.e. the emission bandwidth, is often specified. We will,
in the following, derive the emission spectrum for the case of white Gaussian noise
[794, 263, 240].

In Exc. 35.3.3.3 we show that for a Gaussian noise process holds [198, 263],
〈
e−ı[φ(t)−φ(t+τ)]

〉
= e−⟨[φ(t)−φ(t+τ)]2⟩/2 . (35.74)

Now we set φ(t) = ω0

∫ t
0
y(t′)dt′ using (35.58) and obtain,

〈
[φ(t)− φ(t+ τ)]2

〉
=

〈
ω2
0

[∫ τ

0

y(t′)dt′
]2〉

= ω2
0

∫ τ

0

∫ τ

0

⟨y(t′)y(t′′)⟩ dt′dt′′ (35.75)

= ω2
0

∫ τ

0

∫ τ

0

Ry(t
′ − t′′)dt′dt′′ = 2ω2

0

∫ τ

0

(τ − t)Ry(t)dt .

Using (35.61), we now substitute the autocorrelation function by its Fourier trans-
form, the spectral fluctuation density, Ry(t) =

∫∞
0
Sy(f)e

2πıftdf :

〈
[φ(t)− φ(t+ τ)]2

〉
= 2ω2

0

∫ ∞

0

Sy(f)

∫ τ

0

(τ − t)e2πıftdtdf (35.76)

= 2ω2
0

∫ ∞

0

Sy(f)

(
sinπfτ

2πf

)2

df + imaginary part .

We neglect the imaginary part.
For Markovian white noise the phase fluctuations are δ-distributed, which means,

Ry ≡ ⟨y∗(t)y(t+ τ)⟩ = h0δ(τ) and Sy(f) = h0 = const. (35.77)

I.e. the so-called white noise is characterized by a constant spectral density of phase
fluctuations. Carrying on the calculation (35.76) for the case of white frequency noise
we get,

〈
[φ(t)− φ(t+ τ)]2

〉
=
h0ω

2
0 |τ |
π

∫ ∞

0

(
sinx

x

)2

dx =
h0ω

2
0 |τ |
2

. (35.78)

With this result, we can undertake to calculate the autocorrelation function of the
field amplitude (35.71),

RE(τ) = E20eω0τe−h0ω
2
0 |τ |/2 . (35.79)
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The resulting power spectral density (35.72) is 5:

SE(ω) = E20
∫ ∞

−∞
RE(τ)e

−ı(ω−ω0)τdτ =
2h0ω

2
0

4∆2 + (h0ω2
0/2)

2
, (35.80)

where ∆ ≡ ω − ω0 is the deviation of the oscillator frequency from the center fre-
quency ω0. Thus, the the emission spectrum for the case of white Gaussian noise is a
Lorentzian profile with the laser emission bandwidth,

β = 1
2h0ω

2
0 . (35.81)
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Figure 35.13: (code) Allan variance (b) and spectral density of frequency fluctuations (c)

calculated from a randomly generated data set (a).

The Lorentz shape of the emission profile of an oscillator or a resonance always
indicates white noise of the underlying frequency fluctuation density. In this sense,
the Lorentz form of the natural broadening of an atomic resonance can also be traced
back to the white noise of the vacuum fluctuations. Here, the emission bandwidth
has to be replaced by the natural linewidth. The Allan variance in this case is:

σ2
y(τ) =

h0
2τ

=
1

Q2

1

Γ

1

τ
. (35.82)

with the linewidth (FWHM) Γ = h0ω
2
0/2 and Q = ω0/Γ and indicates the maximum

achievable stability for a frequency standard that is coupled to the resonance ω0.

5Using F [e−a|x|] =
∫∞
−∞ e−a|t|e−ıωtdt = 2a

a2+ω2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_AllanVarianceSpectralDensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_AllanVarianceSpectralDensity.m
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35.3.2.2 Spectral noise power density in case of periodic phase perturba-
tion

The momentary deflection of the oscillator can be described in the case of a harmonic
phase disturbance by equation (35.60) with the additional condition: ϕ(t) = N sinΩt.
The frequency fluctuation density and the Allan variance are obtained in this case:

Sy(f) =

(
fN

2ω0

)2

δ(f − Ω) resp. σ2
y(τ) =

(
ΩN

2ω0

)2
sin2 Ωτ/2

Ωτ/2
. (35.83)

The spectral noise power density consists of a discrete spectrum of sidebands, the
number and height of which is given by the modulation index N :

SE(ω) =
∞∑

n=−∞
|Jn(N)|2δ(ω − ω0 − Ω) . (35.84)

A full width at half maximum of the spectral noise power density cannot be specified.
However, as a measure of the emission bandwidth of the oscillator, the frequency
spacing of the sideband of the highest order can be understood, the height of which
corresponds to at least half the height of the carrier frequency ω0.

35.3.3 Exercises

35.3.3.1 Ex: Spectral density of frequency fluctuations

Prove the relationship Sẋ(f) = f2Sx(f).

35.3.3.2 Ex: Allan variance for white noise

a. Calculate the Fourier transform of step function ζ1(t) and the one-point variance
for white noise from its definition (35.68).
b. Repeat the calculation for the step function ζ2(t) and the Allan variance as defined
in (35.70).

35.3.3.3 Ex: Gaussian noise process

Prove the relationship (35.75) for a Gaussian noise process characterized by,

⟨A2n⟩
(2n)!

=
⟨A2⟩n
2nn!

and ⟨A2n−1⟩ = 0 .

35.4 Data sheets

The following pages contain the data sheets of the main components used in this
course.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Appendix_SpectralNoise01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Appendix_SpectralNoise02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Appendix_SpectralNoise04.pdf
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HL6722G 
AlGaInP Laser Diode 

 
ODE-208-220E (Z) 

 
Rev.5 

Mar. 2005 

Description 

The HL6722G is a 0.67 µm band AlGaInP index-guided laser diode with a multi-quantum well (MQW) 
structure.  It is suitable as a light source for bercode scanner, and various other types of optical equipment.  
Hermetic sealing of the package assures high reliability. 

Features 

• Visible light output at wavelengths up to 680 nm 
• Single longitudinal mode 
• Continuous operating output:  5 mW CW 
• Low voltage operation:  2.7 V Max 
• Low current operation:  32 mA Typ 
• Built-in monitor photodiode 
 

LDPD

1 3

Internal CircuitPackage Type
•  HL6722G: G2

2  

Figure 35.14: Data sheet for the diode laser from Thorlabs, model Hitachi HL6722G.
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Features
• wideband, 10 to 1000 MHz
• high IP3, +38 dBm typ.
• medium high power, 29 dBm min.

Applications
• VHF/UHF
• test equipment
• cellular
• instrumentation
• laboratory

* Heat sink not included
Open load is not recommended, potentially can cause damage. 
With no load derate max input power by 20 dB

To order without heat sink, add suffix X to model number.  Alternative heat sinking and heat 
removal must be provided by the user to limit maximum temperature to 65°C,  in order to ensure 
proper performance.  For reference, this requires thermal resistance of user’s external heat sink 
to be 1.35°C/W Max.

MODEL
NO.

FREQ.
(MHz)

GAIN 
(dB)

MAXIMUM POWER 
OUTPUT

(dBm)

DYNAMIC 
RANGE

VSWR 
(:1)

Max.

DC
POWER

fL fU

Flatness (1 dB Compr.)  Input 
(no damage)

NF
(dB)

IP3
(dBm)

Volt
(V)

Nom.

Current
(A)

Max.Min. Typ. Max. Min. Typ. Typ. In Out
ZHL-2-8 10 1000 31 35 ±1.0 +29 +5 10.0 +38 2.0 2.0 24 0.6
ZHL-2-8X* 10 1000 31 35 ±1.0 +29 +5 10.0 +38 2.0 2.0 24 0.6
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Mini-Circuits®
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®
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For detailed performance specs 
& shopping online see web site

 minicircuits.com
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Maximum Ratings
Operating Temperature  -20°C to 65°C

Storage Temperature  -55°C to 100°C

DC Voltage +25V Max.

Electrical Specifications

REV. C
M133857
ZHL-2-8
110929
Page 1 of 2

Amplifier
50Ω     Medium High Power     10 to 1000 MHz

Coaxial

ZHL-2-8

SMA version shown

CASE STYLE: T34
Connectors Model Price  Qty.
BNC ZHL-2-8 $525.00 ea. (1-9)
BNC ZHL-2-8X $515.00 ea. (1-9)
SMA ZHL-2-8-S $535.00 ea. (1-9)
SMA ZHL-2-8X-S $525.00 ea. (1-9)

ZHL-2-8ZHL-2-8X

Outline Dimensions  (     )inch
mm

Outline Drawing

A B C D E F G H J K L M N P Q R S T wt
4.75 2.00 2.12 .19 4.375 .23 1.540 .144 .58 .34 .50 1.50 1.00 .12 .38 4.00 .30 2.60 grams*

120.65 50.80 53.85 4.83 111.13 5.84 39.12 3.66 14.73 8.64 12.70 38.10 25.40 3.05 9.65 101.60 7.62 66.04 440.0
*325 grams without heatsink

Permanent damage may occur if any of these limits are exceeded. 

 
 Outline Dimensions 

M OUNT I NG  I NF OR M A T I ON F OR  M ODE L S W I T H OUT  H E A T SI NK

Figure 35.15: Data sheet for the rf-amplifier from MiniCircuits, model ZHL-2-8.
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FREQUENCY
(MHz)

POWER
OUTPUT

(dBm)
Typ.

TUNING
VOLTAGE

(V)

PHASE NOISE
(dBc/Hz)

SSB at offset frequencies: 
Typ.

PULLING
(MHz)
pk-pk

(open/short)

PUSHING
(MHz/V)

TUNING
SENSITIVITY

(MHz/V)

HARMONICS
(dBc)

3 dB
MODULATION
BANDWIDTH

(MHz)

DC
OPERATING

POWER

Vcc
(volts)

Current
(mA)
Max.Min. Max. Main Aux. Min. Max. 10 kHz 100 kHz 1 MHz Typ. Typ. Typ. Typ. Max. Typ.

50 100 +9 -12 1 16 -111 -131 -143 0.026 0.25 4.5 -29 -20 0.1 12 140
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& shopping online see web site

 minicircuits.com
IF/RF MICROWAVE COMPONENTS

Coaxial

ZOS-100+

Maximum Ratings
Operating Temperature -55°C to 85°C

Storage Temperature  -55°C to 100°C

Absolute Max. Supply Voltage (Vcc) +16V

Absolute Max. Tuning Voltage (Vtune) +18V

Electrical Specifications

REV. B
M113397
ZOS-100+
SK/TD/CP/AM
091223

Outline Drawing

Dual Output     50 to 100 MHz

Features
• octave bandwidth
• linear tuning, 4.5 MHz/V typ.
• excellent harmonic suppression, -29 dBc typ.
• rugged shielded case
• protected by US Patent, 6,943,629

Applications
• auxiliary output freq. monitoring
• load insensitive source

Voltage Controlled Oscillator

Outline Dimensions  (     )inch
mm

electrical schematic

ZOS-100+
FREQUENCY vs.TUNING VOLTAGE
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CASE STYLE: BR386
Connectors Model Price Qty.
SMA ZOS-100+ $119.95     (1-9)

all specifications: 50 ohm system
Permanent damage may occur if any of these limits are exceeded.

A B C D E F G H J K L M N P Q R wt
3.25 1.38 1.25 .71 1.13 .125 2.25 .71 .41 .98 1.28 2.950 .15 1.100 .14 .150 grams

82.55 35.05 31.75 18.03 28.70 3.18 57.15 18.03 10.41 24.89 32.51 74.93 3.81 27.94 3.56 3.81 180

+ RoHS compliant in accordance 
    with EU Directive (2002/95/EC)
The +Suffix has been added in order to identify RoHS 
Compliance.  See our web site for RoHS Compliance 
methodologies and qualifications.

Figure 35.16: Data sheet for the Voltage-Controlled Oscillator (VCO) from Minicir-
cuits, model ZOS-100+.
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Figure 35.17: Data sheet for the voltage-controlled variable attenuator from Minicir-
cuits, model ZX73-2500+.



1498 CHAPTER 35. APPENDICES TO ’INSTRUMENTATION OF A QO LAB’

L = low range [fL to 10 fL]      M = mid range [10 fL to fU/2]      U= upper range [fU/2 to fU]

FREQ. 
RANGE
(MHz)

ISOLATION
(dB)

INSERTION LOSS (dB)
ABOVE 3.0 dB

PHASE 
UNBALANCE

(Degrees)

AMPLITUDE
UNBALANCE

(dB)

fL-fU

L M U L M U L M U L M U

Typ. Min Typ. Min Typ. Min Typ. Max. Typ. Max. Typ. Max. Max. Max. Max. Max. Max. Max.

0.1-400 20 15 25 20 25 20 0.2 0.6 0.4 0.75 0.6 1.0 2.0 3.0 4.0 0.15 0.2 0.3

ISO 9001  ISO 14001 CERTIFIED
Mini-Circuits®

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500  Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site

The Design Engineers Search Engine  Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

RF/IF MICROWAVE COMPONENTS

 minicircuits.com
ALL NEW 

A B C D E F
.770 .800 .385 .400 .370 .400

19.56 20.32 9.78 10.16 9.40 10.16
G H J K wt

.200 .20 .14 .031 grams
5.08 5.08 3.56 0.79 5.2

Typical Performance Data

Electrical Specifi cations

Maximum Ratings

Pin Connections
SUM  PORT 1 

PORT 1   5

PORT 2   6

GROUND   2,3,4,7,8

CASE GROUND 2,3,4,7,8

Operating Temperature  -55°C to 100°C

Storage Temperature  -55°C to 100°C

Power Input (as a splitter) 1W max.

Internal Dissipation  0.125W max.

PSC-2-1+
PSC-2-1

2 Way-0°     50Ω       0.1 to 400 MHz 

Power Splitter/Combiner

REV. A
M98898
PSC-2-1
HY/TD/CP
070202

Plug-In

Features
• wideband, 0.1 to 400 MHz
• low insertion loss, 0.4 dB typ.
• rugged welded construction

Applications
• VHF/UHF
• federal & defense communications

CASE STYLE: A01
PRICE: $14.20 ea.  QTY. (1-9)

PSC-2-1
INSERTION  LOSS

3.0

3.2

3.4

3.6

3.8

4.0
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PSC-2-1
VSWR

1.0

1.1

1.2

1.3

1.4

1.5

0 80 160 240 320 400

FREQUENCY (MHz)

V
S

W
R

#S-VSWR #1-VSWR #2-VSWR
electrical schematic

Outline Drawing

Outline Dimensions  (     )inch
mm

Frequency
(MHz)

Insertion Loss
(dB)

Amplitude
Unbalance

(dB)

Isolation
(dB)

Phase
Unbalance

(deg.)

VSWR
S

VSWR
1

VSWR
2

S-1 S-2

+ RoHS compliant in accordance 
    with EU Directive (2002/95/EC)

The +Suffi x identifi es RoHS Compliance. See our web site 
for RoHS Compliance methodologies and qualifi cations.

 
 0.10 3.23 3.23 0.00 24.82 0.01 1.16 1.37 1.37
 5.00 3.14 3.14 0.00 35.64 0.01 1.10 1.11 1.11
 20.00 3.18 3.17 0.00 35.33 0.03 1.11 1.10 1.10
 40.00 3.18 3.18 0.00 34.39 0.02 1.12 1.10 1.10
 60.00 3.22 3.22 0.00 33.16 0.02 1.12 1.09 1.09 
 80.00 3.24 3.24 0.00 31.85 0.04 1.13 1.09 1.09
 100.00 3.24 3.24 0.00 30.68 0.05 1.13 1.09 1.09
 150.00 3.28 3.27 0.00 28.37 0.04 1.14 1.08 1.08
 175.00 3.31 3.30 0.01 27.46 0.07 1.14 1.07 1.07
 200.00 3.32 3.31 0.01 26.72 0.05 1.15 1.07 1.07 
 225.00 3.32 3.31 0.01 26.14 0.02 1.15 1.06 1.06
 250.00 3.37 3.36 0.01 25.65 0.05 1.15 1.06 1.06
 300.00 3.41 3.38 0.03 24.88 0.10 1.15 1.06 1.06
 350.00 3.47 3.44 0.03 24.40 0.06 1.16 1.08 1.07
 400.00 3.50 3.46 0.04 23.86 0.05 1.18 1.10 1.09

Figure 35.18: Data sheet for the power divider from Minicircuits, model PSC-2-1.
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ISO 9001  ISO 14001 CERTIFIED
Mini-Circuits®

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500  Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site
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RF/IF MICROWAVE COMPONENTS

 minicircuits.com
ALL NEW 

Page 1 of 2

Level 7  (LO Power +7 dBm)   5 to 1000 MHz

Frequency Mixer
Plug-In

CASE STYLE: A01
PRICE: $18.20 ea.  QTY (1-9)

Outline Dimensions  (      )inch
mm

Maximum Ratings

Pin Connections
LO 8

RF 1

IF 3,4^

GROUND 2,5,6,7

CASE GROUND 2,5,6,7

Outline Drawing

Electrical Specifications

REV. A
M98898
SRA-2CM+
DJ/TD/CP/AM
061211

1 dB COMP.:  +1 dBm typ.

FREQUENCY 
(MHz)

CONVERSION LOSS
(dB)

LO-RF ISOLATION
(dB)

LO-IF ISOLATION
(dB)

LO/RF IF
Mid-Band

m Total 
Range
Max.

L M U L M U

fL-fU
—
X σ Max. Typ. Min. Typ. Min. Typ. Min. Typ. Min. Typ. Min. Typ. Min.

5-1000 DC-1000 5.27 .04 7.0 8.5 60 50 35 30 30 25 50 45 30 25 25 20

Frequency
(MHz)

Conversion 
Loss 
(dB)

Isolation 
L-R
(dB)

Isolation
L-I

(dB)

VSWR 
RF Port

(:1)

VSWR 
LO Port

(:1)

RF LO
LO

+7dBm
LO

+7dBm
LO

+7dBm
LO

+7dBm
LO

+7dBm

Typical Performance Data

Electrical Schematic

SRA-2CM+

L = low range [fL to 10 fL]           M = mid range [10 fL to fU/2]      U = upper range [fU/2 to fU]
m= mid band [2fL to fU/2]

Features
• excellent conversion loss, 5.27 dB typ.
• good L-R isolation, 35 dB typ. L-I isolation, 30 dB typ.
• rugged welded construction
• hermetic

Applications
• VHF/UHF
• cellular
• defense & federal communications
• ISM/GSM

Operating Temperature  -55°C to 100°C

Storage Temperature  -55°C to 100°C

RF Power  50mW

IF Current 40mA

^ pins must be connected together externally

A B C D E F
.770 .800 .385 .400 .370 .400

19.56 20.32 9.78 10.16 9.40 10.16
G H J K wt

.200 .20 .14 .031 grams
5.08 5.08 3.56 0.79 5.2

+ RoHS compliant in accordance 
    with EU Directive (2002/95/EC)

The +Suffix has been added in order to identify RoHS 
Compliance. See our web site for RoHS Compliance 
methodologies and qualifications.

 5.00 35.00 7.36 67.00 67.00 5.03 4.09 
 38.13 68.13 5.59 54.82 53.34 1.40 3.04 
 71.27 41.27 5.30 49.15 48.13 1.31 2.99 
 137.53 107.53 5.33 46.10 45.22 1.27 2.83 
 200.00 170.00 5.35 42.68 41.91 1.24 2.82 

 236.93 206.93 5.27 41.09 40.29 1.24 2.72 
 303.20 273.20 5.28 39.42 38.94 1.24 2.76 
 336.33 306.33 5.42 39.72 36.88 1.26 2.77 
 402.60 372.60 5.63 38.13 35.49 1.30 2.85 
 468.86 438.86 5.62 37.15 35.09 1.37 2.84 

 535.13 505.13 5.87 35.49 32.57 1.45 2.97 
 568.26 538.26 6.01 35.26 31.27 1.50 2.96 
 634.53 604.53 6.17 36.03 29.46 1.61 3.10 
 700.79 670.79 6.68 38.00 30.29 1.70 3.21 
 767.06 737.06 6.49 38.00 29.92 1.85 3.09 

 800.19 770.19 6.11 39.26 28.34 2.01 3.03 
 833.33 803.33 6.37 39.87 27.52 2.08 3.08 
 899.59 869.59 6.80 40.23 26.99 2.32 3.39 
 965.86 935.86 6.86 42.61 25.65 2.53 3.58 
 1000.00 969.00 7.10 44.90 24.17 2.76 3.76 

Figure 35.19: Data sheet for the mixer from Minicircuits, model SRA-2CM+.
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W/mm

Optical Ghosting Due To Acoustic Reflection 0.5% Maximum.
Notes:

99-48201-11

Crystal Technology, Inc.
DESCRIPTION:

PART NUMBER: REV:

MATERIAL:

FINISH:

TOLERANCES:

DR

CHK

APP

APP SHEET   1 OF  1

3080-120

Outline Drawing: AOMO 3080-120Package

F

AOMO

Polarization

Acoustic Velocity

Active Aperture*

Center Frequency (Fc)

RF Bandwidth

Input Impedance

VSWR @ Fc

Wavelength

Insertion Loss

Reflectivity per Surface

Anti-Reflection Coating

Optical Power Density

Contrast Ratio

Return Loss

AO Medium TeO2

4.2

80

20

50

442-633

MIL-C-48497

250

1000

90

mm/µs

MHz

MHz @

nm

:1  Min

°

Ohms Nominal

-10

1.3

4

1

dB

:1  Max

% Max

% Max

To Mounting Plane

Wavelength (nm) 442 488 515 633
0.27 0.33 0.36 0.55

Bragg Angle (mr)
Beam Separation 8.4 9.2 9.8 12

Beam Diameter (µm) 200 300 500

Diffraction Efficiency (%) 80 83 85
Rise Time (nsec) 34 49 80

15.9 10.6 6.3
10 5 1

PERFORMANCE VS WAVELENGTH

PERFORMANCE VS BEAM DIAMETER

SPECIFICATIONS

A. Campi
6/17/2002

(mr)

mm 'L'

at Wavelength (nm) 633 633 633

4.2 4.6 4.9 6

X mm 'H'2.5 1

*Active Aperture: Aperture over which performance specifications apply.

.XX
.XXX

± .01
± .005

Saturation RF Power (W)

THIS DOCUMENT IS THE PROPERTY OF CRYSTAL TECHNOLOGY, INC.  IT IS NOT TO BE REPRODUCED OR
DISCLOSED IN WHOLE OR IN PART OTHER THAN BY EMPLOYEES CRYSTAL TECHNOLOGY AND ITS
CONTRACTED REPRESENTATIVES AND DISTRIBUTERS.  ANY EXCEPTION REQUIRES THE WRITTEN
CONSENT OF AN AUTHORIZED REPRESENTATIVE OF CRYSTAL TECHNOLOGY.

 

2

Figure 35.20: Data sheet for the acousto-optic modulator (AOM) from Crystal Tech-
nologies, model AOMO 3080-120.

Silicon PIN Photodiodes - Standard N-Type – 400 nm to 1100 nm

The C308XX series devices are high-quality N-type Si PIN photodiodes in hermetically sealed TO packages designed for the 400 nm to 1100
nm wavelength region.

Si PINs – Standard N-Type
Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 900 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 900 nm   Bias Volt
Package Diam. (mm)  (A/W) Id (nA)        Curr. Dens.           Cd (pF)                tr (ns)              (fW/√Hz)            (V)

(fA/√Hz)

C30807E A 1 0.6 1 18 2.5 3 30 45

C30808E B 2.5 0.6 3 31 6 5 52 45

C30822E C 5 0.6 5 40 17 7 67 45

C30809E C3 8 0.6 7 47 35 10 79 45

C30810E D 11.4 0.6 30 98    70 12 163 45

Typical Applications
Laser detection systems, photometry, data transmission, instrumentation, and high-speed switching.

Silicon Epitaxial PIN Photodiodes  - High Speed – 400 nm to 1100 nm

The C30736 series of high-speed epitaxial silicon PIN photodetectors provide fast response and good quantum efficiency in the spectral
range between 400 nm and 1100 nm.  These devices are optimized for high-speed, high volume and low cost applications.  Standard sizes
include 0.25 mm, 0.5 mm, 1.0 mm, 1.5 x 1.5 mm, and custom sizes can be accomodated depending on volume required.  Available in plastic
surface mount packages and in chip form. 

Silicon Epitaxial PIN Photodiodes Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 870 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 870 nm   Bias Volt
Package Diam. (mm)  (A/W) @2V Id (nA)     Curr. Dens.           Cd (pF)                tr (ns)              (fW/√Hz)            (V)

In (fW/√Hz)

C30736-1 Chip form 0.20 0.55                    0.05 6 0.75 0.3 11 2

C30736-2 Chip form 0.50 0.55 0.10 10 1.5                      0.5 18 2

C30736-3 Chip form 1.5 x 1.5 0.55  0.50           50 14 0.3 91 2

6

Detectors

Silicon PIN Photodiodes  - Large Area, Fast Response Time – 400 nm to 1100 nm

The FFD series devices are high-quality, large-area, high-speed, N-type Si PIN photodiodes in hermetically sealed TO packages designed for 
the 400 nm to 1100 nm wavelength range.  The FND-100Q has a quartz window to enhance UV responsivity.

Preamplifiers
Preamplifier modules incorporating these photodiodes are available on a custom basis.

Si PINs – Large Area, Fast Response
Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 900 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 900 nm   Bias Volt
Package Diam. (mm)  (A/W) Id (nA)         Curr. Dens.          Cd (pF)                 tr (ns)              (fW/√Hz) (V)

In (fW/√Hz)

FFD-040B Y 1 0.58 1 18 1.8 2 31 15

FFD-100 B 2.5 0.58 2 25 8.5 3.5 44 15

FFD-200 C3 5.1 0.58 4 36 30 5 62 15

FND-100Q B 2.5 0.58 10 60 8.5 2 100 90

Typical Applications
Laser detection systems, fast pulse detection, instrumentation, and high-speed switching.

Figure 35.21: Data sheet for the photo diode from Perkin Elmers FDD100.
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Silicon PIN Photodiodes - Standard N-Type – 400 nm to 1100 nm

The C308XX series devices are high-quality N-type Si PIN photodiodes in hermetically sealed TO packages designed for the 400 nm to 1100
nm wavelength region.

Si PINs – Standard N-Type
Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 900 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 900 nm   Bias Volt
Package Diam. (mm)  (A/W) Id (nA)        Curr. Dens.           Cd (pF)                tr (ns)              (fW/√Hz)            (V)

(fA/√Hz)

C30807E A 1 0.6 1 18 2.5 3 30 45

C30808E B 2.5 0.6 3 31 6 5 52 45

C30822E C 5 0.6 5 40 17 7 67 45

C30809E C3 8 0.6 7 47 35 10 79 45

C30810E D 11.4 0.6 30 98    70 12 163 45

Typical Applications
Laser detection systems, photometry, data transmission, instrumentation, and high-speed switching.

Silicon Epitaxial PIN Photodiodes  - High Speed – 400 nm to 1100 nm

The C30736 series of high-speed epitaxial silicon PIN photodetectors provide fast response and good quantum efficiency in the spectral
range between 400 nm and 1100 nm.  These devices are optimized for high-speed, high volume and low cost applications.  Standard sizes
include 0.25 mm, 0.5 mm, 1.0 mm, 1.5 x 1.5 mm, and custom sizes can be accomodated depending on volume required.  Available in plastic
surface mount packages and in chip form. 

Silicon Epitaxial PIN Photodiodes Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 870 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 870 nm   Bias Volt
Package Diam. (mm)  (A/W) @2V Id (nA)     Curr. Dens.           Cd (pF)                tr (ns)              (fW/√Hz)            (V)

In (fW/√Hz)

C30736-1 Chip form 0.20 0.55                    0.05 6 0.75 0.3 11 2

C30736-2 Chip form 0.50 0.55 0.10 10 1.5                      0.5 18 2

C30736-3 Chip form 1.5 x 1.5 0.55  0.50           50 14 0.3 91 2

6

Detectors

Silicon PIN Photodiodes  - Large Area, Fast Response Time – 400 nm to 1100 nm

The FFD series devices are high-quality, large-area, high-speed, N-type Si PIN photodiodes in hermetically sealed TO packages designed for 
the 400 nm to 1100 nm wavelength range.  The FND-100Q has a quartz window to enhance UV responsivity.

Preamplifiers
Preamplifier modules incorporating these photodiodes are available on a custom basis.

Si PINs – Large Area, Fast Response
Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 900 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 900 nm   Bias Volt
Package Diam. (mm)  (A/W) Id (nA)         Curr. Dens.          Cd (pF)                 tr (ns)              (fW/√Hz) (V)

In (fW/√Hz)

FFD-040B Y 1 0.58 1 18 1.8 2 31 15

FFD-100 B 2.5 0.58 2 25 8.5 3.5 44 15

FFD-200 C3 5.1 0.58 4 36 30 5 62 15

FND-100Q B 2.5 0.58 10 60 8.5 2 100 90

Typical Applications
Laser detection systems, fast pulse detection, instrumentation, and high-speed switching.

Figure 35.22: Data sheet for the photo diode from Perkin Elmers C30822E.
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_______________General Description
The MAX320/MAX321/MAX322 are precision, dual,
SPST analog switches designed to operate from ±3V to
±8V dual supplies. The MAX320 has two normally open
(NO) switches and the MAX321 has two normally
closed (NC) switches. The MAX322 has one NO and
one NC switch.  Low power consumption (1.25mW)
makes these parts ideal for battery-powered equip-
ment. They offer low leakage currents (100pA max) and
fast switching speeds (tON = 150ns max, tOFF = 100ns
max).

The MAX320 series, powered from ±5V supplies, offers
35Ω max on-resistance (RON), 2Ω max matching
between channels, and 4Ω max RON flatness.

These switches also offer 5pC max charge injection
and a minimum of 2000V ESD protection per Method
3015.7.

For equivalent devices specified for single-supply oper-
ation, see the MAX323/MAX324/MAX325 data sheet.
For quad versions of these switches, see the
MAX391/MAX392/MAX393 data sheet.

________________________Applications
Battery-Operated Systems Sample-and-Hold Circuits

Heads-Up Displays Guidance and Control Systems

Audio and Video Switching Military Radios

Test Equipment Communications Systems

±5V DACs and ADCs PBX, PABX

____________________________Features
♦ Low On-Resistance, 35Ω max (16Ω typical)

♦ RON Matching Between Channels <2Ω
♦ RON Flatness <4Ω
♦ Guaranteed Charge Injection <5pC

♦ Bipolar Supply Operation (±3V to ±8V)

♦ Low Power Consumption, <1.25mW

♦ Low Leakage Current Over Temperature, 
<2.5nA at +85°C

♦ Fast Switching, tON <150ns, tOFF <100ns

♦ Guaranteed Break-Before-Make (MAX322 only)

______________Ordering Information

M
A

X
3

2
0

/M
A

X
3

2
1

/M
A

X
3

2
2

Precision, Dual-Supply, SPST 
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NC1
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COM2
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COM1
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MAX322

_____________________Pin Configurations/Functional Diagrams/Truth Tables

Call toll free 1-800-998-8800 for free samples or literature.

19-0350; Rev 0; 12/94

Ordering Information continued at end of data sheet.
*  Contact factory for dice specifications.
** Contact factory for availability.

8 CERDIP**-55°C to +125°CMAX320MJA
8 CERDIP**-40°C to +85°CMAX320EJA
8 SO-40°C to +85°CMAX320ESA
8 Plastic DIP-40°C to +85°CMAX320EPA
Dice*0°C to +70°CMAX320C/D

8 SO0°C to +70°CMAX320CSA

8 Plastic DIP0°C to +70°CMAX320CPA

PIN-PACKAGETEMP. RANGEPART

8 µMAX0°C to +70°CMAX320CUA

Figure 35.23: Data sheet for the digital switch MAX322 from Maxim.
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LM741
Operational Amplifier
General Description
The LM741 series are general purpose operational amplifi-
ers which feature improved performance over industry stan-
dards like the LM709. They are direct, plug-in replacements
for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their appli-
cation nearly foolproof: overload protection on the input and

output, no latch-up when the common mode range is ex-
ceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except that
the LM741C has their performance guaranteed over a 0˚C to
+70˚C temperature range, instead of −55˚C to +125˚C.

Features

Connection Diagrams

Metal Can Package Dual-In-Line or S.O. Package

00934102

Note 1: LM741H is available per JM38510/10101

Order Number LM741H, LM741H/883 (Note 1),
LM741AH/883 or LM741CH

See NS Package Number H08C

00934103

Order Number LM741J, LM741J/883, LM741CN
See NS Package Number J08A, M08A or N08E

Ceramic Flatpak

00934106

Order Number LM741W/883
See NS Package Number W10A

Typical Application

Offset Nulling Circuit

00934107

August 2000

LM
741

O
perationalA

m
plifier

© 2004 National Semiconductor Corporation DS009341 www.national.com

Figure 35.24: Data sheet for the operational amplifier LM741 from National Semicon-
ductor.
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REV. A

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.

a
OP27

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700 www.analog.com

Fax: 781/326-8703 © Analog Devices, Inc., 2002

Low-Noise, Precision
Operational Amplifier

PIN CONNECTIONS

TO-99
(J-Suffix)

V+

OUT

NC

4V– (CASE)

BAL

BAL 1

–IN 2

+IN 3

OP27

NC = NO CONNECT

FEATURES

Low Noise: 80 nV p-p (0.1 Hz to 10 Hz), 3 nV/√Hz
Low Drift: 0.2 �V/�C
High Speed: 2.8 V/�s Slew Rate, 8 MHz Gain

Bandwidth

Low VOS: 10 �V

Excellent CMRR: 126 dB at VCM of ±11 V

High Open-Loop Gain: 1.8 Million

Fits 725, OP07, 5534A Sockets

Available in Die Form

GENERAL DESCRIPTION
The OP27 precision operational amplifier combines the low
offset and drift of the OP07 with both high speed and low noise.
Offsets down to 25 µV and drift of 0.6 µV/°C maximum make
the OP27 ideal for precision instrumentation applications.
Exceptionally low noise, en = 3.5 nV/√Hz, at 10 Hz, a low 1/f
noise corner frequency of 2.7 Hz, and high gain (1.8 million),
allow accurate high-gain amplification of low-level signals. A
gain-bandwidth product of 8 MHz and a 2.8 V/µsec slew rate
provides excellent dynamic accuracy in high-speed, data-
acquisition systems.

A low input bias current of ± 10 nA is achieved by use of a
bias-current-cancellation circuit. Over the military temperature
range, this circuit typically holds IB and IOS to ±20 nA and 15 nA,
respectively.

The output stage has good load driving capability. A guaranteed
swing of ±10 V into 600 Ω and low output distortion make the
OP27 an excellent choice for professional audio applications.

(Continued on page 7)
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1 8
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ADJUSTED AT WAFER TEST FOR
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*
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INPUT (+)
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Q21
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R23 R24
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Q27 Q28
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Q20 Q19
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Figure 1. Simplified Schematic
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OUT
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Figure 35.25: Data sheet for the operational amplifier OP27 from Analog Devices.
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em átomos frios, Ph.D. thesis, Universidade de Sã Paulo, 2016.
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[350] D. Guéry-Odelin, J. Söding, P. Desbiolles, and J. Dalibard, Is Bose-Einstein
condensation of atomic cesium possible?, Europhys. Lett. 44 (1998), 25.

[351] D. Guéry-Odelin and S. Stringari, Scissors mode and superfluidity of a trapped
Bose-Einstein condensed gas, Phys. Rev. Lett. 83 (1999), 4452, .

[352] L. Guidoni and P. Verkerk, Optical lattices: Cold atoms ordered by light, J. Opt.
B: Quantum Semiclass. Opt. 1 (1999), R23, DOI.

[353] J. Guo, P. R. Berman, H. Dubetsky, and G. Grynberg, Recoil-induced resonances
in non-linear spectroscopy, Phys. Rev. A 46 (1992), 1426, .

[354] Jun Guo, Contribution of energy continuum states to probe absorption signal of
atoms in one-dimensional optical molasses, Phys. Rev. A 49 (1994), 3934, DOI.

[355] Jun Guo and P. R. Berman, Recoil-induced resonances in pump-probe spec-
troscopy, Phys. Rev. A 47 (1993), 4128.

https://isbnsearch.org/isbn/
https://isbnsearch.org/isbn/
https://isbnsearch.org/isbn/
https://doi.org/10.1088/1464-4266/1/5/201
https://doi.org/10.1103/PhysRevA.49.3934


1528 BIBLIOGRAPHY

[356] S. Gupta, Z. Hadzibabic, M. W. Zwierlein, B. J. Verhaar, and W. Ketterle,
Radio-frequency spectroscopy of ultracold fermions, Sciencexpress (2003), 1, .

[357] A. M. Guzman, M. Moore, and P. Meystre, Theory of a coherent atomic-beam
generator, Phys. Rev. A 53 (1996), 977.

[358] Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W. Zwierlein, K. Dieck-
mann, and W. Ketterle, Fiftyfold improvement in the number of quantum de-
generate fermionic atoms, Phys. Rev. Lett. 91 (2003), 160401, .

[359] E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards,
M. Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips,
Measurement of the coherence of a Bose-Einstein condensate, Phys. Rev. Lett.
83 (1999), 3112, .

[360] E. W. Hagley, L. Deng, M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston,
and W. D. Phillips, A well-collimated quasi-continuous atom laser, Science 283
(1999), 1706, .

[361] J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, Spin squeezed atoms: A
macroscopic entangled ensemble created by light, Phys. Rev. Lett. 83 (1999),
1319, .

[362] D. S. Hall, J. R. Ensher, D. S. Jin, and et al., Recent experiments with Bose-
condensed gases at JILA, Proc. SPIE 3270 (1998), 98, cond-mat/9903459.

[363] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cor-
nell, Dynamics of component separation in a binary mixture of Bose-Einstein
condensates, Phys. Rev. Lett. 81 (1998), 1539, .

[364] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Measurements
of relative phase of two-component Bose-Einstein condensates, Phys. Rev. Lett.
81 (1998), 1543, .

[365] J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Optical heterodyne satu-
ration spectroscopy, Appl. Phys. Lett. 39 (1981), 680.

[366] D.-J. Han, S. Wolf, S. Oliver, C. McCormick, M. T. DePue, and D. S. Weiss,
3d Raman sideband cooling of cesium atoms at high density, Phys. Rev. Lett.
85 (2000), 724, .

[367] D. J. Han, R. H. Wynar, Ph. W. Courteille, and D. J. Heinzen, Bose-Einstein
condensation of large numbers of atoms in a magnetic time-averaged orbiting
potential trap, Phys. Rev. A 57 (1998), R4114.

[368] S. Haroche, J. C. Gay, and G. Grynberg (eds.), Atom traps, World Scientific,
1989.

[369] T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, Dynamics of Bloch
oscillations, New J. Phys. 6 (2004), 2, DOI.

[370] J. A. Seman Harutiniam, Study of excitations in a Bose-Einstein condensate,
Ph.D. thesis, Universidade de São Paulo, 2011.

https://doi.org/10.1088/1367-2630/6/1/002


BIBLIOGRAPHY 1529

[371] L. V. Hau, B. D. Busch, Ch. Liu, Z. Dutton, M. M. Burns, and J. A.
Golovchenko, Near-resonant spatial images of a confined Bose-Einstein con-
densates in a 4-dee magnetic bottle, Phys. Rev. A 58 (1998), R54, .

[372] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to
17 metres per second in an ultracold atomic gas, Nature 397 (1999), 594, DOI.

[373] G. Hechenblaikner, M. Gangl, P. Horak, and H. Ritsch, Cooling an atom in a
weakly driven high-q cavity, Phys. Rev. A 58 (1998), 3030.
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[417] S. Inouye, R. F. Löw, S. Gupta, T. Pfau, A. Görlitz, T. L. Gustavson, D. E.
Pritchard, and W. Ketterle, Amplification of light and atoms in a Bose-Einstein
condensate, Phys. Rev. Lett. 85 (2000), 4225, .

https://isbnsearch.org/isbn/
https://doi.org/10.1088/1367-2630/abc70c
https://isbnsearch.org/isbn/
https://doi.org/10.1038/32354
https://doi.org/10.1126/science.285.5427.571


1532 BIBLIOGRAPHY

[418] S. Inouye, T. Pfau, S. Gupta, A. P. Chikkatur, A. Görlitz, D. E. Pritchard, and
W. Ketterle, Phase-coherent amplification of atomic matter-waves, Nature 402
(1999), 641, DOI.

[419] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilli-Gans, D. J. Heinzen,
F. L. Moore, M. G. Raizen, and D. J. Wineland, Quantum projection noise:
Population fluctuations in two-level systems, Phys. Rev. A 47 (1993), 3554,
DOI.

[420] W. M. Itano, J. J. Bollinger, and D. J. Wineland, Quantum zeno effect, Phys.
Rev. A 41 (1990), 2295, .

[421] W. M. Itano and D. J. Wineland, Laser cooling of ions stored in harmonic and
penning traps, Phys. Rev. A 25 (1982), 35, .

[422] H. Ito, T. Nakata, K.Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Laser-
spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical
fibers, Phys. Rev. Lett. 76 (1996), 4500.

[423] A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick, Solitary waves in clouds
of Bose-Einstein condensates, Phys. Rev. A 58 (1998), 2417, .

[424] B. Jackson, J. F. McCann, and C. S. Adams, Vortex line and ring dynamics in
trapped Bose-Einstein condensates, Phys. Rev. A 61 (2000), 013604.

[425] J. D. Jackson, Classical electrodynamics, John Wiley and Sons, 1999, ISBN.

[426] D. Jaksch, J.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Entanglement
of atoms via cold controlled collisions, Phys. Rev. Lett. 82 (1998), 1975, .

[427] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast
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[523] Haonan Liu, S. B. Jäger, Xianquan Yu, S. Touzard, A. Shankar, M. J. Holland,
and T. L. Nicholson, Rugged mhz-linewidth superradiant laser driven by a hot
atomic beam, Phys. Rev. Lett. 125 (2020), 253602, DOI.

[524] Jing Liu and Xiaoguang Wang Heng-Na Xiongb, Fei Songa, Fidelity susceptibil-
ity and quantum fisher information for density operators with arbitrary ranks,
Physica A 410 (2014), 167, DOI.

[525] Jing Liu, Haidong Yuan, Xiao-Ming Lu, and Xiaoguang Wang, Quantum fisher
information matrix and multiparameter estimation, J. Phys. A: Math. Theor.
53 (2020), 023001, DOI.
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[559] C. E. Máximo, N. Piovella, Ph. W. Courteille, R. Kaiser, and R. Bachelard,
Spatial and temporal localization of light in two dimensions, Phys. Rev. A 92
(2015), 062702.

[560] T. Mayer-Kuckuk, Atomphysik, Teubner Studienbücher, 1985, ISBN.
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Springer-Verlag Berlin (1954).

[567] I. B. Mekhov, V. S. Egorov, V. N. Lebedev, P. V. Moroshkin, I. A. Chekhonin,
and S. N. Bagayev, Strong light-matter coupling: parametric interactions in a
cavity and free-space, quant-ph/0607033 (2006), .

[568] I. V. Mekhov, C. Maschler, and H. Ritsch, Light scattering from ultracold atoms
in optical lattices as an optical probe of quantum statistics, Phys. Rev. A 76
(2007), 053618, DOI.

[569] C. R. Menegatti, Trap loss in a rubidium crossed dipole trap by short-range
photoassociation, Phys. Rev. A 87 (2013), 053404, .

[570] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A.
Nielsen, Universal quantum computation with continuous-variable cluster states,
Phys. Rev. Lett. 97 (2006), 110501, DOI.

[571] M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and
W. Ketterle, Output coupler for Bose-Einstein condensed atoms, Phys. Rev.
Lett. 78 (1997), 582, .

[572] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee,
and W. Ketterle, Bose-Einstein condensation in a tightly confining dc magnetic
trap, Phys. Rev. Lett. 77 (1996), 416, .

[573] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee,
C. G. Townsend, and W. Ketterle, Collective excitations of a Bose-Einstein
condensation in a magnetic trap, Phys. Rev. Lett. 77 (1996), 988, .

https://isbnsearch.org/isbn/
https://doi.org/10.1103/PhysRevLett.102.163601
https://doi.org/10.1103/PhysRevA.76.053618
https://doi.org/10.1103/PhysRevLett.97.110501


1542 BIBLIOGRAPHY

[574] J. J. Meyer, Fisher information in noisy intermediate-scale quantum applica-
tions, Quantum 4 (2021), 539, DOI.

[575] R. Meyer, Trigonometric interpolation method for one-dimensional quantum-
mechanical problems, J. Chem. Phys. 52 (1969), 2053.

[576] V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M. Itano, C. Monroe,
and D. J. Wineland, Experimental demonstration of entanglement-enhanced ro-
tation angle estimation using trapped ions, Phys. Rev. Lett. 86 (2001), 5870,
.

[577] F. H. Mies, C. J. Williams, P. S. Julienne, and M. Krauss, Estimating bounds
on collisional relaxation rates of spin-polarized 87Rb atoms at ultracold temper-
atures, J. Res. Natl. Inst. Stand. Tech. 101 (1996), 521.

[578] H.-J. Miesner, D. M. Stamper-Kurn, M. R. Andrews, D. S. Durfee, S. Inouye,
and W. Ketterle, Bosonic stimulation in the formation of a Bose-Einstein con-
densate, Science 279 (1998), 1005, .

[579] A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergman, and H. J. Metcalf,
First observation of magnetically trapped neutral atoms, Phys. Rev. Lett. 54
(1985), 2596.

[580] G. Milburn, Intrinsic decoherence in quantum mechanics, Phys. Rev. A 44
(1991), 5401, .

[581] J. D. Miller, R. A. Cline, and D. J. Heinzen, Far-off-resonance optical trapping
of atoms, Phys. Rev. A 47 (1993), R4567, .

[582] Randell L. Mills, The grand unified theory of classical quantum mechanics,
ISBN.

[583] P. W. Milonni, The quantum vacuum: An introduction to quantum electrody-
namics, Academic, San Diego, 1994, ISBN.

[584] P. W. Milonni and R. W. Boyd, Momentum of light in a dielectric medium,
Adv. Opt. Phot. 2 (2010), 519, .

[585] F. Minardi, C. Fort, P. Maddaloni, M. Modugno, and M. Inguscio, Time-
domain atom interferometry across the threshold for Bose-Einstein condensa-
tion, ePrints (2001), cond–mat/0103602, .

[586] Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-JÃ¡uregui,
R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, and M. H. Devoret, To catch
and reverse a quantum jump mid-flight, Nature 570 (2019), 200, DOI.

[587] B. Misra and E. C. G. Sudarshan, The zeno paradox in quantum theory, J.
Math. Phys. 18 (1977), 756.

[588] J. Mlynek, V. Balykn, and P. Meystre, ”topical review”, Appl. Phys. B 54
(1992).

https://doi.org/10.22331/q-2021-09-09-539
https://isbnsearch.org/isbn/
https://isbnsearch.org/isbn/
https://doi.org/10.1038/s41586-019-1287-z


BIBLIOGRAPHY 1543

[589] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Resonances in ultracold colli-
sions of 6li, 7li, and 23na, Phys. Rev. A 51 (1995), 4852, .

[590] A. J. Moerdijk, B. J. Verhaar, and T. M. Nagtegaal, Collisions of dressed
ground-state atoms, Phys. Rev. A 53 (1996), 4343, .

[591] M. Mohammad, Eunjong Kim, Xueyue Zhang, A. Sipahigil, P. B. Dieterle,
A. J. Keller, A. Asenjo-Garcia, D. E. Chang, and O. Painter, Cavity quantum
electrodynamics with atom-like mirrors, Nature 569 (2019), 692, DOI.

[592] B. R. Mollow, Stimulated emission and absorption near resonance for driven
systems, Phys. Rev. A 5 (1972), 2217.

[593] , Pure-state analysis of resonant light scattering: Radiative damping,
saturation, and multiphoton effects, Phys. Rev. A 12 (1975), 1919.

[594] K. Mølmer, Y. Castin, and J. Dalibard, Monte-carlo wave-function method in
quantum optics, J. Opt. Soc. Am. B 10 (1993), 524, DOI.

[595] C. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt, and C. E. Wieman,
Measurement of cs-cs elastic scattering at t=30uk, Phys. Rev. Lett. 70 (1993),
414, .

[596] Th. Monz, Ph. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish,
M. Harlander, W. Hänsel, M. Hennrich, and R. Blatt, 14-qubit entanglement:
Creation and coherence, Phys. Rev. Lett. 106 (2011), 130506, DOI.

[597] M. G. Moore and P. Meystre, Optical control and entanglement of atomic
schrödinger fields, Phys. Rev. A 59 (1999), 1754, DOI.

[598] , Theory of superradiant scattering of laser light from Bose-Einstein con-
densates, Phys. Rev. Lett. 83 (1999), 5202, .

[599] , Atomic four-wave mixing: Fermions versus bosons, Phys. Rev. Lett.
86 (2001), 4199, DOI.

[600] M. G. Moore, O. Zobay, and P. Meystre, Quantum optics of a Bose-Einstein
condensate coupled to a quantized light field, Phys. Rev. A 60 (1999), 1491,
DOI.

[601] S. A. Morgan, R. J. Ballagh, and K. Burnett, Solitary-wave solutions to non-
linear schrödinger equations, Phys. Rev. A 55 (1997), 4338, .

[602] M. Morinaga, M. Yasuda, T. Kishimoto, F. Shimizu, J.-I. Fujita, and S. Matsui,
Holographic manipulation of a cold atom beam, Phys. Rev. Lett. 77 (1996), 802,
.
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Killian, P. Pellegrini, and R. Côte, Photoassociative spectroscopy at long range
in ultracold strontium, Phys. Rev. Lett. 94 (2005), 083004, DOI.
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fluctuation-dissipation theorem, 1126
fluctuations

frequency, 1451
intensity, 1451

flux of electromagnetic energy, 16
flux operator, 1274
flux quantum, 376
Fock

Vladimir Aleksandrovich, 108, 148
Fock state, 108, 663, 733, 1280
Fokker

Adriaan Daniël, 1124
Fokker-Planck equation, 761, 1125, 1128
forced evaporation, 1193
FORT, 1180
forward gain, 1445
forward scattering, 1288
four-wave mixing, 1272, 1310, 1408
Fourier grid method, 99, 437
Fourier reconstruction, 1211
Franck-Condon factor, 429, 430
Franck-Condon overlap, 770
Franck-Condon principle, 429
Franck-Hertz experiment, 20
Fredkin gate, 1032
free electron laser, 1093
free path, 1236
free spectral range, 579
frequency comb, 1436
frequency modulation spectroscopy, 1411,

1426, 1429
Fresnel

Augustin-Jean, 1348
Fresnel formula, 92, 1348
Fresnel zone plate, 1352
Frisch

Otto Robert, 756
fugacity, 280
FWM or 4WM, 1272, 1408

g-factor, 342
Galilei boost, 75, 79
Galilei invariance, 79
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Galilei transform, 75
Gamma function, 243
gauge field, 76
gauge invariance, 80
gauge transform, 76
Gaussian beam, 1338
Gaussian noise process, 1487, 1489
Gaussian optics, 1335
Gedankenexperiment, 78
generator, 1050
geometric phase, 735
Gerlach

Walther, 11, 152
GHZ state, 999
Gibbs, 321

Josiah Willard, 247
Gibbs paradox, 264, 315
Glauber

Roy, 74
Glauber formula, 74
Glauber state, 114
Glauber-Sudarshan representation, 521
GPE, 1225
grand canonical ensemble, 278
grating, 1421
gravimetry, 1038
gravitational force, 751
gravitational red-shift, 1037
Green

George, 470
green flash, 829
Green’s function, 469, 931
Green’s method, 469
Gross-Pitaevskii equation, 104, 1225,

1265
Grotrian diagram, 609
gyromagnetic ratio, 342, 619
gyroscope, 1382

Hänsch-Couillaud technique, 1431
Hadamard

Jacques Salomon, 1014
Hadamard gate, 1014
Hadamard product, 55
hadron, 359
hadronic atom, 359
Hall effect

quantum, 377
Hamilton operator, 37
Hamiltonian, 37
Hanbury Brown

Robert, 682
Hanbury Brown-Twiss experiment, 682
Hankel function, 240

spherical, 240
Hanle effect, 654
hard core approximation, 634
hard sphere collision, 1224
harmonic oscillator, 106
Hartree

Douglas Rayner, 399
Hartree method, 399
Hartree-Fock equation, 401
Hartree-Fock method, 399, 1245
Hartree-Fock-Bogolubov method, 1224
healing length, 1238, 1255, 1260
heat capacity, 289
heating rate, 1181
Heisenberg equation, 64, 623
Heisenberg limit, 733, 1278, 1280
Heisenberg picture, 63
helicity, 652, 1346
helium, 387
Helmholtz equation, 815
Hermite

Charles, 39
Hermite polynomials, 241
Hermitian operator, 39, 45
heterodyne method, 1416
heterodyning, 1366
hidden variables, 995
Hilbert space, 39, 45, 46
hole heating, 307
Holstein-Primakoff transformation, 914
homodyne detection, 546
homodyne method, 1416
homodyne tomography, 549
homogeneity, 1255

spatial, 78
temporal, 78

homogeneous broadening, 632
Hong-Ou-Mandel effect, 1004
Hubbard

John, 1275
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Hubbard model, 201, 1275
Hund’s cases, 442
Husimi representation, 521
hydrodynamic regime, 1236
hyperfine splitting, 352
hyperfine structure, 352, 353, 606

Paschen-Back effect of the, 372
Zeeman effect of the, 371

image reconstruction, 1211
impedance matching, 1385
impedance of free space, 16
induced dipole moment, 598
induced emission, 599
inelastic scattering, 694, 702
information entropy, 516, 1001
Inglis-Teller limit, 363
inhomogeneous broadening, 632, 636
injection locking, 1403
input, 1471
input-output theory, 883
integral regulator, 1478
intensity, 16
interaction picture, 65, 225, 610, 613
interaction-free measurement, 554
interferometer

birefringent, 1377
interferometry, 1373
intermediate coupling, 407
interval factor, 355
interval rule, 356
inverting amplifier, 1357
Ioffe-Pritchard trap, 1185, 1188
ionic bond, 412
ionization energy, 412
irreducible matrix element, 380, 603
irrotational superfluid flow, 1259
Ising model, 253, 936
isolator

optical, 1346
isotropy

spatial, 79

Jacques
Hadamard, 55

Jaynes-Cummings model, 668, 1065
jj-coupling, 162
Jones

Robert Clark, 1346
Jones matrix, 1346
Josephson junction, 174, 1274
Josephson tunneling, 1274
jump operator, 566

Kapitza-Dirac scattering, 1305
kernel, 51
Kerr

John, 1409
Kerr effect, 1409
Kerr state, 534
ket, 38
kick, 117
kick operator, 71
Kirchhoff

Gustav Robert, 1357
Kirchhoff’s rule, 1357
Klein-Gordon equation, 32, 330
Koopman’s theorem, 401
Kramers

Hendrik Anthony, 217
Kramers-Heisenberg formula, 233, 706
Kronig-Penney model, 173, 841
Kuramoto

modelo de, 1135
Yoshiki, 1124

Kuramoto equation, 1138
Kuramoto model, 1138

Laguerre
Edmond, 145

Laguerre polynomials, 145, 241
Laguerre’s associated differential equa-

tion, 145
Laguerre-Gaussian mode, 1352
Lamb

Willis Eugene, Jr., 351
Lamb dip, 1428
Lamb shift, 351

cooperative, 857
Lamb-Dicke parameter, 120, 1173
Lamb-Dicke regime, 120, 767, 768
Lamb-dip, 632
Lamb-dip spectroscopy, 1427
Lamb-shift

collective, 787
lambda point, 289
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Lambert-Beer law, 26, 1207, 1394
Landé factor, 369, 371, 754
Landau criterion, 1233
Landau gauge, 375
Landau level, 376
Landau velocity

critical, 1256
Landau-Zehner transition, 498
Landau-Zener formula, 1196
Landau-Zener transition, 201
Langevin

Paul, 1124
Langevin equation, 623, 1125, 1126

quantum, 1068
Laplace transform, 1473
large component, 331
Larmor frequency, 10, 619, 1187
laser, 684

state of a, 528
laser emission bandwidth, 1488
laser gyroscopes, 872
laser without inversion, 747
lattice

direct, 831
least squares fit, 216
Legendre

Adrien-Marie, 139
Legendre operator, 138
Legendre polynomials, 139, 242
lepton, 359
LeRoy-Bernstein method, 434
Leucippus, 1
Lie algebra, 45
light shift, 630, 651, 761
Lindblad

Göran, 641
Lindblad operator, 564, 566, 568, 761,

1241
linear algebra, 1017
linear cavity, 1064
linear combination of atomic orbitals,

416
linear momentum space, 51
linear operator, 1472
Liouville

Joseph, 563
Liouville equation, 563

Liouville operator, 563, 642
Lippmann-Schwinger equation, 470
Littrow configuration, 1422
local causality, 996
local density approximation, 1224
local density of states, 844
local oscillator, 1368
local realism, 1001
localization energy, 85, 433
lock-in amplifier, 1370
lock-in method, 1455
locking, 1445
loop, 1357
loop gain, 1445
Lorentz

Hendrik Antoon, 343
Lorentz boost, 76
Lorentz distribution, 596
Lorentz gauge, 740
Lorentz model, 601, 758
Lorentz transform, 76
low-pass filter, 1459
lowering operator, 151
LS-coupling, 162, 406
LTI, 1472
Luttinger liquid, 307
Lyot filter, 1377

Mößbauer
Rudolf Ludwig, 768

Mößbauer effect, 121, 768, 1173
Mach

Ernst Waldfried Josef Wenzel, 1376
Mach-Zehnder interferometer, 1376
macromotion, 1202
magnetic bottle, 1185, 1188
magnetic dipole transition, 603
magnetic quantum number, 138
magnetic trap, 754
magneto-optical trap, 1175
Magnus effect, 1262
main quantum number, 144
Majorana spin-flip, 1187
many-body Hamiltonian, 1222
Markov approximation, 564, 693
Markovian process, 698
maser, 1391
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master equation, 566, 628, 679, 691,
723, 1066

Mathieu equation, 1201
matrix element, 593
matter wave

superradiance, 1096
matter wave amplifier

coherent, 1311
matter wave superradiance, 1095, 1309
Maxwell equations, 739
Maxwell stress tensor, 757
Maxwell-Bloch equation, 1102
Maxwell-Boltzmann distribution, 257,

1161
Maxwell-Boltzmann law, 1162
mean-field approximation, 898, 1323
mean-field theory, 1224
measurement, 516, 715
mechanics

wave, 41
mechanics of matrices, 41
meson, 359
meter, 717
metrological gain, 1047, 1053
metrology, 1038
Michelson interferometer, 1376
microcanonical ensemble, 261, 312
micromotion, 1202
Mie regime, 824
Mie scattering, 142, 813
Milne

Edward Arthur, 436
Milne equation, 436
MIMO, 1480
minimal coupling, 77, 335, 366
mixer, 1370

frequency, 1366
mode density, 17
mode field diameter, 1381
mode volume, 579
mode-locked laser, 1270, 1434
mode-locking, 1438
modulation index, 1365
modulation transfer spectroscopy, 1411,

1426, 1429
molasses

optical, 1124

molecular orbital, 417
molecular orbital method, 416
molecular orbital model, 415
Mollow gain, 747
Mollow triplet, 700
moment

first, 36
momentum of inertia, 141
momentum space, 35
Monte Carlo simulation, 104
Monte Carlo wavefunction simulation

quantum, 679, 721, 1111
Morse potential, 426, 440
MOSFET, 1455
MOT, 1175
Mott insulator, 733, 905, 1278, 1280

incompressibility of a, 1281
Mott transition, 1278
Movre-Pichler potential, 440
multiple worlds, 719
multiple-input multiple-output control

system, 1480
muonic hydrogen, 360

nearly-degenerate, 1090
negation, 1016
neutral density filter, 1353
Newton method, 103
Newton’s law, 37
no-cloning theorem, 1003
node, 1357
Noether’s theorem, 77
non-inverting amplifier, 1357
non-linear Schrödinger equation, 1225
non-observation, 721
nonlinear atom optics, 1267
nonlinear optics, 745
NOON state, 1004
normal mode, 551, 1233
normal mode splitting, 867, 875
normal order, 521
normalization, 34, 38
nuclear magnetic resonance, 372, 618
nuclear magneton, 352
nuclear model, 6
number state, 108, 663
numerical aperture, 1381
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nutation, 616, 617
Nyquist criterion, 1479

observable, 39
one-axis twisting, 949
OpAmp, 1357
open

Dicke model, 925
open loop, 1443
open loop gain, 1479
open-loop gain, 1445
operational amplifier, 1356, 1357
operator, 39

unitary, 46
optical bistability, 1086
optical cross section, 23
optical cross-section, 628
optical density, 305, 1208
optical diode, 1347
optical isolator, 1347
optical lattice, 176, 830
optical suppression, 499
optical theorem, 476, 1207
optical tweezer, 1180
orbital angular momentum, 73, 150
orbital magnetic moment, 10
order parameter, 1137, 1225, 1259
orientation, 653
ortho-helium, 392
orthogonal, 46
orthogonalization by Schmidt, 47
oscillator strength for absorption, 601
oscillator strength for emission, 600
outer tensorial product, 54
output, 1471
output coupler, 1270

P-function, 521
para-helium, 392
parametric oscillator

optical, 1005
parity, 50, 603
parity conservation, 79
parity inversion, 80
partial wave, 474

amplitude of the, 475
particle-like excitation, 1233
partition function, 252

Paschen-Back effect, 369
Paschen-Goudsmith effect, 372
passive component, 1355
passive device, 1312
Paul

Wolfgang, 1200
Paul trap, 1200

linear, 1203
Pauli

Wolfgang, 41
Pauli blocking, 306
Pauli equation, 342
Pauli exlusion principle, 306
Pauli spin matrices, 41, 152, 331, 615,

669, 896, 1067
Pauli vector, 41
Pauli’s exclusion principle, 1162
Pauli’s strong exclusion principle, 386
Pauli’s weak exclusion principle, 386
Peltier

Jean Charles Athanase, 1359
Penning trap, 1200
permeability

negative, 651
permittivity

negative, 651
perturbation theory

time-dependent, 225
time-independent, 207

Petit
Alexis Thérèse, 254

phase conjugation, 1272
phase contrast imaging, 1210
phase gate, 1005, 1012, 1014
phase matching condition, 1288
phase modulation, 1365, 1410
phase space density, 1162
phase transition

CARL, 1139
phase-locked loop, 1459
phase-locking, 1434
phase-sensitive detection, 546
phonon, 111, 255, 509, 748, 1233
phonon-like excitation, 1233
phonons, 256
phosphorescence, 603
photo detector, 1361
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photoassociation, 431, 489, 499
photoelectric effect, 20, 230
photon, 14, 111, 509
photon condensation, 1220
photon echo method, 618
photonic bands

forbidden, 830
photonic density of states, 174
photonic recoil, 1161
PI servo, 1453
PID control, 1443
PID controller, 1446
PID regulator, 1478
piezo-electric actuator, 1375
Planck

Max, 2
Planck’s constant, 19
planetary model, 8
plant, 1443
PLL, see phase-locked loop
PM, 1365
Pockels

Friedrich Carl Alwin, 1352
Pockels cell, 1352, 1408
Poisson distribution, 114
Poisson’s law, 470
polar equation, 139
polariton scattering, 747
polarization, 652, 1346
polarization contrast imaging, 1211
polarization gradient cooling, 1166
polarizations optics, 1335
polarizer, 1346
ponderomotive force, 1093
population, 613
population inversion, 616
position space, 51
Pound-Drever-Hall, 1411
Pound-Drever-Hall method, 1458
power broadening, 624
power spectral density, 1488
Poynting vector, 16
precession, 616, 617
precision, 1481
pressure broadening, 686
prism, 1421
probability, 1470

probability charge, 34
probability current, 34
probability density, 34, 1470
probability distribution, 34
probability flux, 92
probability wave, 34
product state, 902
projection of the wavefunction, 42
projector, 40, 53
propagator

photon, 709
proportional regulator, 1478
pseudo potential, 467
Purcell

Edward Mills, 888
Purcell factor, 859
pure state, 512
purity, 516

Q-function, 521, 677
quadrature component, 1028, 1417
quadrupolar electron-nucleus interaction

constant of the, 356
quadrupolar interaction, 356
quantization

first, 12, 130
of phase space, 261
second, 129

quantized vortex, 1259
quantum amplifier, 550, 720, 722
quantum beat, 705
quantum communication, 1026
quantum computing, 1026
quantum confinement, 1184
quantum cryptography, 995
quantum decoherence, 719
quantum defect, 362, 404
quantum depletion, 1236
quantum electrodynamics, 595
quantum electronics, 1373
quantum entanglement, 1011
quantum Fourier transform, 1028
quantum gate, 1005
quantum information, 1013, 1026
quantum information content, 1002
quantum jump, 651, 721
quantum Langevin equation, 569
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quantum measurement, 42
quantum number, 85

good, 81
quantum phase transition, 1278, 1280
quantum processing, 1026
quantum projection noise, 730, 733, 905
quantum ratchet, 200
quantum reflection, 91
quantum regression theorem, 954
quantum sensing, 689, 1026, 1035, 1038
quantum signal, 550
quantum simulation, 1026
quantum state endoscopy, 549
quantum statistics, 262
quantum trajectory, 720
quantum transport, 1274
quantum turbulence, 1266
quantum volume, 1027
quantum Zeno effect, 722
quasi-momentum, 72, 180
quasi-particle, 1232, 1233
qubit, 1005
qubits, 1005
quenching, 660
QUEST, 1205

Rabi frequency, 28, 228, 613, 664, 753
generalized, 229, 614

Rabi splitting
vacuum, 674, 875

radiance, 1335
spectral, 19

radiant energy, 1335
radiant intensity, 1335
radiant power, 1335
radiation collapse, 10
radiation pressure, 20, 757, 759, 1165
radiation trapping, 1178
radiative escape, 493
radiofrequency trap, 1200
radon transform, 549
Raman scattering, 195, 694

stimulated, 747
Raman sideband cooling, 1173
Raman-Nath regime, 1305
Raman-scattering, 747
Ramsey interferometry, 1271

Ramsey method, 618
Ramsey-Bordé interferometer, 81
random variable, 1470
random walk, 1124
Rayleigh

JohnWilliam Strutt, 3. Baron, 215
Rayleigh fraction, 215
Rayleigh length, 1180
Rayleigh scattering, 694, 695, 702

superradiant, 1095
Rayleigh-Debye-Gans regime, 824
Rayleigh-Jeans law, 18
Rayleigh-Ritz method, 216
reciprocal lattice, 168
recoil frequency, 180
recoil-induced resonances, 1090, 1298
reduced mass, 424
reduced matrix element, 603
reflection, 92
refraction, 762
refractive index

negative, 651
register

quantum, 1005
regression theorem

quantum, 698
regularization of the interaction, 1224
regulator, 1445
relative phase, 1281
relaxation explosion, 1187
release energy, 289
Renyi entropy, 516
repetition rate, 1436
representation, 38
reproducibility, 1481
reservoir, 42, 599
resolution parameter, 863
resolved sidebands, 768
resonance fluorescence, 697
resonance integral, 416
Riemann zeta-function, 281, 311
rigid rotation, 424
rigid rotor, 141, 616
ring

non-commutative, 45
ring cavity, 1065, 1433
ringing, 571
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rising operator, 151
rotating wave approximation, 227, 228,

611, 613, 782
rotation operator, 72, 115
rotational constant, 432
run-away evaporation, 1195
Runge-Kutta method, 103, 1126
Russel-Saunders coupling, 406
Rutherford

Ernest, 4
Rutherford scattering, 5
Rydberg atom, 360
Rydberg blockade, 935
Rydberg series, 361

S-matrix, 503
s-wave collision, 481
s-wave scattering, 1223
Sackur-Tetrode equation, 321
Sackur-Tetrode formula, 293
Sagnac

Georges, 1382
Sagnac effect, 1382
sample-and-hold circuit, 1370
saturation, 787
saturation broadening, 624, 629
saturation intensity, 28, 633
saturation parameter, 26, 624, 633, 863,

1165
saturation spectroscopy, 1426
scalar product, 46
scattering amplitude, 469, 471, 1223
scattering cross section, 5

differential, 696
scattering length, 480, 1223

interspecies, 1198
scattering matrix, 90
scattering phase, 475
Schawlow-Townes limit, 580, 1270
Schlieren method, 1210
Schrödinger cat, 716
Schrödinger cat state, 117, 529
Schrödinger equation, 32
Schrödinger kitten, 1299
Schrödinger picture, 62, 563, 613
Schrieffer-Wolff transform, 934
Schrieffer-Wolff transformation, 65

Schwartz inequality, 50
Schwinger bosonization, 900
scissor mode, 1259
screening, 7
second quantization, 1221
second sound, 1236
second-harmonic generation, 1272
secular determinant, 211
secular equation, 211
selection rule, 392
selection rules, 603
self-consistency, 395
self-defocusing, 1272
self-focusing, 1272
semi-classical, 753
semiconducting materials, 1361
sensor, 1038, 1443
separable state, 1002
servo oscillations, 1448
servo system, 1443
shaking mode, 1235
shape oscillation, 1235
shape resonance, 485, 496
SHG, 1272
shielding, 499
shot noise, 548, 730, 1051
Shubnikov-de Haas effect, 377
side-of-fringe stabilization, 1455
sideband cooling, 1173
Siegert relation, 685
signal, 1471
single-input single-output control sys-

tem, 1480
single-input-single-output control, 1444
SISO, 1480
Slater

John Clarke, 386
Slater determinant, 386
small component, 331
smooth density approximation, 813
Snell’s law, 1407
Sommerfeld

Arnold Johannes Wilhelm, 12, 351
Sommerfeld expansion, 312
Sommerfeld fine-structure formula, 339
sound, 1236
sound velocity, 1233
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spatial coherence, 1284
speckle pattern, 829
spectra

excitation, 1425
spectral density of fluctuations, 1481
spectral density of modes, 17
spectral density of phase fluctuations,

1483
spectral energy density, 18
spectral noise density, 1449
spectrum, 683

fluorescence, 1425
spherical harmonics, 139, 242
spin, 152, 335
spin exchange, 488
spin flip, 1196
spin relaxation, 1180
spin squeezing, 1278
spin-charge separation, 307
spin-orbit interaction, 347, 490
spin-squeezed state, 733, 1280
spinning top, 616
spontaneous breaking of gauge symme-

try, 1225
spontaneous emission, 595
squeezed state, 538, see squeezing
squeezed vacuum, 536
squeezing, 538

multimode, 555
spin, 905

squeezing operator, 535, 910
stability, 1481
stability diagram, 1202
stabilization

intensity, 1451
standard deviation, 636, 1467
standard model, 330
standard quantum limit, 1052, 1053
Stark

Johannes Nikolaus, 380
Stark effect, 380

linear, 211, 380
quadratic, 211, 380

Stark shift, 362
state function, 38
state reduction, 42, 721
statistical mixture, 517

statistical operator, 512
steepest descent method, 103, 1228
Stefan-Boltzmann law, 29
Stern

Otto, 11, 152
Stern-Gerlach experiment, 152, 754
stimulated Brillouin scattering, 747
stimulated emission, 594
STIRAP, 651
Stirling

James, 311
Stirling’s formula, 251, 311
stochastic distribution, 1470
stochastic noise, 1482
Stokes parameters, 1349
stretched Zeeman state, 374
strong binding regime, 121
strong coupling, 1203
structure coefficient, 781, 795, 832
structure factor, 581, 831

dynamic, 772, 780, 1284
static, 780, 1284

subradiance, 935
subspace, 53
superfluidity, 1255
superfluorescence, 935
superoperator, 563, 564, see Louville

operator642
superposition principle, 38
superradiance, 935
superradiant extinction, 829
superradiant laser, 930
superradiant lasing, 930
superradiant Rayleigh scattering, 1309
superresolution, 1059
supersolid phase, 1278
surface excitation, 1235
susceptibility, 627
SWAP-gate, 56
swirling mode, 1235
symmetric logarithmic derivative, 1050
symmetric order, 523
symmetric ordering, 533
symmetrized wavefunction, 384
symmetry transformation, 77
sympathetic cooling, 1190, 1198

tapered amplifier, 1403
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Tavis-Cummings model, 900, 930, 1005
temperature reservoir, 568
tensorial external product, 56
thermal bath, 599
thermal de Broglie wavelength, 280
thermal equilibrium, 599
thermal excitations, 1225
thermalization, 1190
thermistor, 1360
thermodynamic limit, 270
thermoionic emission, 308
thermopile, 1358
theta (θ)-transform, 80
Thomas

Llewellyn, 343
Thomas factor, 343, 348
Thomas precession, 343
Thomas-Fermi energy, 397
Thomas-Fermi equation, 398
Thomas-Fermi limit, 1227
Thomas-Fermi model, 394, 395
Thomas-Reiche-Kuhn sum rule, 601
Thomson

Joseph John, 4
Thomson scattering, 695
three-level system, 722
threshold behavior, 749
tight-binding regime, 192
time reversal, 78
time-dependent perturbation theory, 592
time-of-flight, 1207
time-orbiting potential, 1194
time-reversal invariance, 542
time-splitting spectral algorithm, 1031,

1246, 1248
timed Dicke state, 785, 794
Toffoli gate, 1020, 1033
topological mode, 1259, 1265
topological phase, 735
trace, 59, 514
transfer cavity, 1461
transformation matrix, 48
transit time broadening, 632
transition dipole moment, 429
transition rate, 231
translation operator, 69
transmission, 92

truth table, 1019
tunneling, 93, 188
Twiss

Richard Quintin, 682
two-body problem, 135
two-mode

squeezing, 555

ultraviolet catastrophe, 18
uncertainty, 1481
uncertainty principle, 50, 85
undulator, 1093
unitarity limit, 481, 503
unitary matrix, 48
unitary operator, 69
unitary transformation, 69
universality, 481

vacuum fluctuation, 108
valence bond, 419
valence bond model, 415
van der Waals

Johannes Diderik, 424
van der Waals coefficients, 440
van der Waals force, 424, 439
van der Waals potential, 499
variable attenuator, 1412
variational method, 215, 1228
variational principle, 1225
VCO, 1364, 1412
vector space, 39, 45
vector spherical harmonics, 243
vibration, 424
virial theorem, 148
viscosity, 1256
Vlasov equation, 1125
Voigt profile, 636
voltage-controlled oscillator, 1364, 1412
von Neumann

John, 42
von Neumann entropy, 516, 1001
von Neumann equation, 563, 642, 690
von Neumann function, 240

spherical, 240
von Neumann postulate, 42

Wannier
Gregory Hugh, 169
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Wannier function, 169, 186, 203, 1278
Wannier-Stark ladder, 197
wave equation, 31, 1338
wave packet, 471
wave vector, 15
wavefunction, 34, 38

photonic, 511
waveplate

half, 1345
quarter, 1345

Weisskopf-Wigner theory, 691
Wentzel

Gregor, 217
Werner

Heisenberg, 63
Weyl ordering, 533
white noise, 1487
white phase noise, 685
Wien

Wilhelm, 29
Wien’s displacement law, 29
Wiener-Khintchine theorem, 683, 1483
Wigner

Eugene Paul, 380
Wigner {3j}-symbol, 239
Wigner {6j}-symbol, 239, 605
Wigner {9j}-symbol, 239
Wigner function, 523, 761
Wigner threshold law, 482
Wigner-Eckart theorem, 380, 433, 603
Wirtinger derivative, 533
WKB approximation, 217

XOR, 1013
XX-Heisenberg model, 948

Young
Thomas, 682

Young’s experiment, 682
Yukawa

Hideki, 330
Yukawa potential, 330

Zeeman
Pieter, 368

Zeeman effect, 10
anomalous, 369
normal, 369

Zeeman slower, 633, 1183, 1217
Zeeman splitting, 368
Zeno

de Elea, 727
Zeno effect, 727
zero point energy, 85
zero sound, 1237
zero temperature reservoir, 1324
Zitterbewegung, 333, 349
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